
http://docs.openstack.org
http://docs.openstack.org

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

ii

OpenStack Object Storage Developer Guide
API v1 (2011-09-22)
Copyright © 2010, 2011 OpenStack, LLC All rights reserved.

This document is intended for software developers interested in developing applications using the
OpenStack™ Object Storage Application Programming Interface (API).

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

iii

Table of Contents
1. Overview ... 1

1.1. Intended Audience ... 1
1.2. Document Change History .. 1
1.3. Additional Resources .. 2

2. General API Information ... 3
2.1. Authentication ... 3
2.2. Overview of API Operations ... 4

3. API Operations for Storage Services .. 6
3.1. Storage Account Services .. 6

3.1.1. List Containers ... 6
3.1.2. Retrieve Account Metadata ... 9

3.2. Storage Container Services .. 10
3.2.1. List Objects .. 10
3.2.2. Create Container ... 15
3.2.3. Delete Container .. 16
3.2.4. Retrieve Container Metadata ... 17

3.3. Storage Object Services .. 17
3.3.1. Retrieve Object .. 18
3.3.2. Create/Update Object .. 19
3.3.3. Assigning CORS Headers to Requests ... 22
3.3.4. Enabling File Compression with the Content-Encoding Header 22
3.3.5. Enabling Browser Bypass with the Content-Disposition Header 23
3.3.6. Copy Object ... 23
3.3.7. Delete Object .. 24
3.3.8. Retrieve Object Metadata .. 24
3.3.9. Update Object Metadata ... 25

4. Troubleshooting .. 26
4.1. Using cURL ... 26

4.1.1. Authentication ... 26
4.1.2. Determining Storage Usage ... 27
4.1.3. Creating a Storage Container ... 27
4.1.4. Uploading a Storage Object ... 27
4.1.5. Other cURL Commands .. 28

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

iv

List of Examples
2.1. Authentication Request .. 4
2.2. Authentication Response .. 4
3.1. Storage Account HTTP Request: General Structure .. 6
3.2. Containers List Request .. 6
3.3. Containers List Response .. 7
3.4. Containers Details Request: JSON ... 7
3.5. Containers Details Response: JSON ... 7
3.6. Containers Details Request: XML .. 7
3.7. Containers Details Response: XML .. 7
3.8. List Large Number of Containers .. 8
3.9. Account Metadata Request .. 9
3.10. Account Metadata Response .. 9
3.11. Storage Container HTTP Request: General Structure .. 10
3.12. Objects List Request .. 10
3.13. Objects List Response ... 11
3.14. Objects Details Request: JSON .. 11
3.15. Objects Details Response: JSON .. 11
3.16. Objects Details Request: XML ... 12
3.17. Objects Details Request: XML ... 12
3.18. List Large Number of Objects ... 13
3.19. Pseudo-Hierarchical Folders/Directories ... 14
3.20. Container Create Request ... 15
3.21. Container Create Response ... 16
3.22. Container Create Request with Metadata ... 16
3.23. Container Create Response ... 16
3.24. Container Delete Request ... 16
3.25. Container Delete Response ... 17
3.26. Container Metadata Request .. 17
3.27. Container Metadata Response .. 17
3.28. Retrieve Object Request .. 18
3.29. Retrieve Object Response ... 18
3.30. Create/Update Object Request ... 19
3.31. Create/Update Object Response ... 19
3.32. Upload Segment of a Large Object ... 20
3.33. Upload Next Segment of the Large Object .. 20
3.34. Upload Manifest ... 21
3.35. Upload Unspecified Quantity of Content ... 21
3.36. Assign CORS Header ... 22
3.37. Content-Encoding Header Example ... 22
3.38. Content-Disposition Header Example .. 23
3.39. Object Delete Request .. 24
3.40. Object Delete Response .. 24
3.41. Object Metadata Request ... 24
3.42. Object Metadata Response ... 25
3.43. Update Object Metadata Request ... 25
3.44. Update Object Metadata Response ... 25
4.1. cURL Authenticate .. 26
4.2. cURL Get Storage Space ... 27

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

v

4.3. cURL Create Storage Container ... 27
4.4. cURL Upload Storage Object .. 28

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

1

1. Overview
OpenStack Object Storage is an affordable, redundant, scalable, and dynamic storage
service offering. The core storage system is designed to provide a safe, secure,
automatically re-sizing and network accessible way to store data. You can store an
unlimited quantity of files and each file can be as large as 5 gigabytes, plus with large
storage support you can download and .

OpenStack Object Storage allows users to store and retrieve files and content via a simple
Web Service (ReST: Representational State Transfer) interface. There are also language-
specific APIs that utilize the ReSTful API but make it much easier for developers to integrate
into their applications.

For more details on the OpenStack Object Storage service, please refer to http://
swift.openstack.org

We welcome feedback, comments, and bug reports at bugs.launchpad.net/swift.

1.1. Intended Audience
This guide is intended to assist software developers who want to develop applications using
the OpenStack Object Storage API. It fully documents the ReST application programming
interface (API) that allows developers to interact with the storage components of the
OpenStack Object Storage system. To use the information provided here, you should first
have a general understanding of the OpenStack Object Storage service and have access to
an installation of OpenStack Object Storage. You should also be familiar with:

• ReSTful web services
• HTTP/1.1

Rackspace also provides Rackspace-supported, language-specific APIs in several popular
programming languages. Currently, the supported APIs are C#/.NET, Java, PHP, Python,
and Ruby. These APIs utilize the ReST API and are provided to help developers rapidly
integrate OpenStack Object Storage support into their applications without needing to
write at the ReST interface. Each API includes its own documentation in its native format.
For example, the Java API includes JavaDocs and the C#/.NET API includes a CHM file.

1.2. Document Change History
This version of the Developer Guide was forked from the Rackspace Cloud Files Developer
Guide. The most recent changes for both guides are described in the table below:

Revision Date Summary of Changes

Feb. 10, 2011 • Revised to change first to last in the first range example for fetching a portion of an object.

Jan. 25, 2011 • Revised for OpenStack Object Storage use by removing CDN references, Rackspace Cloud
references, and revised account examples and URLs for generic implementations.

• It's not a changed requirement that Container and Object names are required to be UTF-8,
but it's pointed out in the documentation.

Jan. 12, 2011 • Removed references to ACL (Access Control List).
• Fixed error in examples referring to X-Auth-Key where it should be X-Auth-Token.
• Added section numbers.

http://swift.openstack.org
http://swift.openstack.org
http://bugs.launchpad.net/swift

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

2

Revision Date Summary of Changes

Jan. 4, 2011 • Expanded authentication information for UK release.
• Added "delimiter" as a Query Parameter and server-side object copy example.

May 5, 2008 • Initial release.

1.3. Additional Resources
You can download the most current version of this document from the OpenStack Docs
website at http://docs.openstack.org.

For more details about the Rackspace Cloud Files implementation of the OpenStack Object
Storage service, please refer to http://www.rackspacecloud.com/cloud_hosting_products/
files. Related documents are available at the same site, as are links to Rackspace's official
support channels, including knowledge base articles, forums, phone, chat, and email.

http://docs.openstack.org
www.rackspacecloud.com/cloud_hosting_products/files
www.rackspacecloud.com/cloud_hosting_products/files

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

3

2. General API Information
API Operations Reference Summary

Storage Accounts

Verb URI Description

GET /account List containers

HEAD account Retrieve account metadata

Storage Containers

Verb URI Description

GET /account/container List objects

PUT /account/container Create container

DELETE /account/container Delete container

HEAD /account/container Retrieve container metadata

Storage Objects

Verb URI Description

GET /account/container/object Retrieve object

PUT /account/container/object Create/Update Object

PUT /account/container/object Chunked transfer encoding

DELETE /account/container/object Delete container

HEAD /account/container/object Retrieve object metadata

POST /account/container/object Update object metadata

2.1. Authentication
Client authentication is provided via a ReST interface using the GET method, with v1.0
supplied as the path. Additionally, two headers are required, X-Auth-User and X-Auth-
Key with values for the username and API Access Key respectively.

Each ReST request against the OpenStack Object Storage system requires the inclusion of a
specific authorization token HTTP x-header, defined as X-Auth-Token. Clients obtain this
token, along with the Cloud Servers API URL, by first using an authentication service and
supplying a valid username and API access key.

Request

To authenticate, you must supply your username and API access key in x-headers:

• Use your OpenStack Object Storage (Swift) username as the username for the API. Place
it in the X-Auth-User x-header.

• Obtain your API access key from authentication service you chose when installing. You
have some options for auth, including tempauth, which is included, or swauth, an auth
service for Swift as WSGI middleware that uses Swift itself as a backing store that is

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

4

provided via download from Github, or the OpenStack Identity Service (project named
Keystone), or you can use your own authentication system. Place your access key in the
X-Auth-Key x-header.

Example 2.1. Authentication Request

GET /v1.0 HTTP/1.1
Host: auth.api.yourcloud.com
X-Auth-User: jdoe
X-Auth-Key: a86850deb2742ec3cb41518e26aa2d89

Response

When authentication is successful, an HTTP status 204 (No Content) is returned with the
X-Storage-Url and X-Auth-Token headers. Any 2xx response is a good response. For
example, a 202 response means the request has been accepted. Also, additional X- headers
may be returned. These additional headers are related to other Rackspace services and can
be ignored. An HTTP status of 401 (Unauthorized) is returned upon authentication failure.
All subsequent container/object operations against OpenStack Object Storage should be
made against the URI specified in X-Storage-Url and must include the X-Auth-Token
header.

Example 2.2. Authentication Response

 HTTP/1.1 204 No Content
 Date: Mon, 12 Nov 2010 15:32:21 GMT
 Server: Apache
 X-Storage-Url: https://storage.swiftdrive.com/v1/CF_xer7_34
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Content-Length: 0
 Content-Type: text/plain; charset=UTF-8

The X-Storage-Url will need to be parsed and used in the connection and request line
of all subsequent requests against Object Storage. In the example response above, users
connecting to OpenStack Object Storage would send most container/object requests with
a host header of storage.swiftdrive.com and the request line's version and account
as /v1/CF_xer7_34. Note that authentication tokens are valid for a 24 hour period for
many authentication configurations.

2.2. Overview of API Operations
The OpenStack Object Storage API is implemented as a set of ReSTful (Representational
State Transfer) web services. All authentication and container/object operations can be
performed with standard HTTP calls. See the Wikipedia article for more information about
ReST.

The following constraints apply to the ReST API's HTTP requests:

• Maximum number of HTTP headers per request: 90

http://en.wikipedia.org/wiki/Representational_State_Transfer

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

5

• Maximum length of all HTTP headers: 4096 bytes

• Maximum length per HTTP request line: 8192 bytes

• Maximum length of HTTP request: 5 gigabytes

• Maximum length of container name: 256 bytes

• Maximum length of object name: 1024 bytes

Container and object names should be properly URL-encoded prior to interacting with the
ReST interface (the language APIs handle URL encoding/decoding) and the container and
object names must be UTF-8 encoded. The length restrictions should be checked against the
URL encoded string.

Each ReST request against the OpenStack Object Storage system requires the inclusion of
a specific authorization token HTTP header defined as X-Auth-Token. Clients obtain this
token, along with the OpenStack Object Storage URIs, by first using the Authentication
service and supplying a valid Username and API Access Key.

The ReST service identified with X-Storage-Url is used for managing the data stored in
the system. Example operations are creating containers and uploading objects.

In the following sections, the purpose of each HTTP method depends upon which service
the call is made against. For example, a PUT request against X-Storage-Url can be used
to create a container or upload an object.

The language-specific APIs mask this system separation from the programmer. They simply
create a container and mark it public and it handles calling out to the appropriate back-end
services using the appropriate ReST API.

Note

All requests to authenticate and operate against OpenStack Object Storage are
performed using SSL over HTTP (HTTPS) on TCP port 443.

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

6

3. API Operations for Storage Services
The following section describes the ReST API for interacting with the storage component
of OpenStack Object Storage. All requests will be directed to the host and URL described in
the X-Storage-Url HTTP header obtained during successful authentication.

The following are some pointers for the use of the storage services:

• Container names cannot exceed 256 bytes and cannot contain a '/' character

• Object names cannot exceed 1024 bytes and have no character restrictions

• Object and container names must be URL-encoded and UTF-8 encoded

3.1. Storage Account Services
The following operations can be performed at the account level of the URI. For example,
the URI for the requests below will end with the OpenStack Object Storage account string:

Example 3.1. Storage Account HTTP Request: General Structure

 METHOD /v1/<account> HTTP/1.1

3.1.1. List Containers

GET operations against the X-Storage-Url for an account are performed to retrieve a
list of existing storage containers ordered by name. The following list describes the optional
query parameters that are supported with this request.

Query Parameters

limit For an integer value n, limits the number of results to at most n values.

marker Given a string value x, return object names greater in value than the specified
marker.

format Specify either json or xml to return the respective serialized response.

At this time, a prefix query parameter is not supported at the account level.

Example 3.2. Containers List Request

 GET /<api version>/<account> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

A list of containers is returned in the response body, one container per line. A 204 (No
Content) HTTP return code will be passed back if the account has no containers.

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

7

Example 3.3. Containers List Response

 HTTP/1.1 200 Ok
 Date: Thu, 07 Jun 2010 18:57:07 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8
 Content-Length: 32

 images
 movies
 documents
 backups

3.1.1.1. Serialized List Output

If a format=xml or format=json argument is appended to the storage account URL,
the service will serve extended container information serialized in the chosen format. The
sample responses below are formatted for readability.

Example 3.4. Containers Details Request: JSON

 GET /<api version>/<account>?format=json HTTP/1.1
 Host: storage.swiftdrive.com
 Content-Length: 0
 X-Storage-Token: 182f9c0af0e828cfe3281767d29d19f4

Example 3.5. Containers Details Response: JSON

 HTTP/1.1 200 OK
 Date: Tue, 25 Nov 2008 19:39:13 GMT
 Server: Apache
 Content-Type: application/json; charset=utf-8

 [
 {"name":"test_container_1", "count":2, "bytes":78},
 {"name":"test_container_2", "count":1, "bytes":17}
]

Example 3.6. Containers Details Request: XML

 GET /<api version>/<account>?format=xml HTTP/1.1
 Host: storage.swiftdrive.com
 Content-Length: 0
 X-Storage-Token: 182f9c0af0e828cfe3281767d29d19f4

Example 3.7. Containers Details Response: XML

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

8

 HTTP/1.1 200 OK
 Date: Tue, 25 Nov 2008 19:42:35 GMT
 Server: Apache
 Content-Type: application/xml; charset=utf-8

 <?xml version="1.0" encoding="UTF-8"?>

 <account name="MichaelBarton">
 <container>
 <name>test_container_1</name>
 <count>2</count>
 <bytes>78</bytes>
 </container>
 <container>
 <name>test_container_2</name>
 <count>1</count>
 <bytes>17</bytes>
 </container>
 </account>

3.1.1.2. List Large Number of Containers

The system will return a maximum of 10,000 container names per request. To retrieve
subsequent container names, another request must be made with a 'marker' parameter.
The marker indicates where the last list left off; the system will return container names
greater than this marker, up to 10,000 again. Note that the ‘marker’ value should be URL-
encoded prior to sending the HTTP request.

If 10,000 is larger than desired, a 'limit' parameter may be given.

If the number of container names returned equals the limit given (or 10,000 if no limit is
given), it can be assumed there are more container names to be listed. If the container
name list is exactly divisible by the limit, the last request will simply have no content.

Example 3.8. List Large Number of Containers

For example, let's use a listing of five container names

 apples
 bananas
 kiwis
 oranges
 pears

We'll use a limit of two to show how things work:

 GET /<api version>/<account>?limit=2
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

9

 apples
 bananas

Since we received two items back, we can assume there are more container names to list,
so we make another request with a marker of the last item returned:

 GET /<api version>/<account>?limit=2&marker=bananas
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 kiwis
 oranges

Again, two items are returned; there may be more:

 GET /<api version>/<account>?limit=2&marker=oranges
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 pears

With this one-item response we received less than the limit number of container names,
indicating that this is the end of the list.

3.1.2. Retrieve Account Metadata

HEAD operations against an account are performed to retrieve the number of containers
and the total bytes stored in OpenStack Object Storage for the account. This information
is returned in two custom headers, X-Account-Container-Count and X-Account-
Bytes-Used. Since the storage system is designed to store large amounts of data, care
should be taken when representing the total bytes response as an integer; when possible,
convert it to a 64-bit unsigned integer if your platform supports that primitive type.

Example 3.9. Account Metadata Request

 HEAD /<api version>/<account> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

The HTTP return code will be 204 (No Content) if the request succeeds. A 401
(Unauthorized) will be returned for an invalid account or access key.

Example 3.10. Account Metadata Response

 HTTP/1.1 204 No Content
 Date: Thu, 07 Jun 2010 18:57:07 GMT

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

10

 Server: Apache
 X-Account-Container-Count: 3
 X-Account-Bytes-Used: 323479

3.2. Storage Container Services
This section documents the ReST operations that can be performed on containers. All
operations are valid HTTP request methods and will resemble this format:

Example 3.11. Storage Container HTTP Request: General Structure

 METHOD /v1/<account>/<container> HTTP/1.1

3.2.1. List Objects

GET operations against a storage container name are performed to retrieve a list of objects
stored in the container. Additionally, there are a number of optional query parameters that
can be used to refine the list results.

A request with no query parameters will return the full list of object names stored in the
container, up to 10,000 names. Optionally specifying the query parameters will filter the full
list and return a subset of objects.

Query Parameters

limit For an integer value n, limits the number of results to at most n values.

marker Given a string value x, return object names greater in value than the
specified marker.

prefix For a string value x, causes the results to be limited to object names
beginning with the substring x.

format Specify either json or xml to return the respective serialized response.

path For a string value x, return the object names nested in the pseudo path
(assuming preconditions are met - see below).

delimiter For a character c, return all the object names nested in the container
(without the need for the directory marker objects).

Example 3.12. Objects List Request

 GET /<api version>/<account>/<container>[?parm=value] HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

A list of objects is returned in the response body, one object name per line. A 204 (No
Content) HTTP return code will be passed back if the container is empty or does not exist

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

11

for the specified account. If an incorrect account is specified, the HTTP return code will be
404 (Not Found).

Example 3.13. Objects List Response

 HTTP/1.1 200 Ok
 Date: Thu, 07 Jun 2010 18:50:19 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8
 Content-Length: 171

 kate_beckinsale.jpg
 How To Win Friends And Influence People.pdf
 moms_birthday.jpg
 poodle_strut.mov
 Disturbed - Down With The Sickness.mp3
 army_of_darkness.avi
 the_mad.avi

3.2.1.1. Serialized List Output

If a format=xml or format=json argument is appended to the storage account URL,
the service will serve extended object information serialized in the chosen format. Other
than the ?format=xml|json parameter, it will return the same status/errors codes. The
sample responses below are formatted for readability.

Example 3.14. Objects Details Request: JSON

 GET /<api version>/<account>/<container>?format=json HTTP/1.1
 Host: storage.swiftdrive.com
 Content-Length: 0
 X-Storage-Token: 182f9c0af0e828cfe3281767d29d19f4

Example 3.15. Objects Details Response: JSON

 HTTP/1.1 200 OK
 Date: Tue, 25 Nov 2008 19:39:13 GMT
 Server: Apache
 Content-Length: 387
 Content-Type: application/json; charset=utf-8

 [
 {"name":"test_obj_1",
 "hash":"4281c348eaf83e70ddce0e07221c3d28",
 "bytes":14,
 "content_type":"application\/octet-stream",
 "last_modified":"2009-02-03T05:26:32.612278"},
 {"name":"test_obj_2",
 "hash":"b039efe731ad111bc1b0ef221c3849d0",

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

12

 "bytes":64,
 "content_type":"application\/octet-stream",
 "last_modified":"2009-02-03T05:26:32.612278"},
]

Example 3.16. Objects Details Request: XML

 GET /<api version>/<account>/<container>?format=xml HTTP/1.1
 Host: storage.swiftdrive.com
 X-Storage-Token: 182f9c0af0e828cfe3281767d29d19f4

Example 3.17. Objects Details Request: XML

 HTTP/1.1 200 OK
 Date: Tue, 25 Nov 2008 19:42:35 GMT
 Server: Apache
 Content-Length: 643
 Content-Type: application/xml; charset=utf-8

 <?xml version="1.0" encoding="UTF-8"?>

 <container name="test_container_1">
 <object>
 <name>test_object_1</name>
 <hash>4281c348eaf83e70ddce0e07221c3d28</hash>
 <bytes>14</bytes>
 <content_type>application/octet-stream</content_type>
 <last_modified>2009-02-03T05:26:32.612278</last_modified>
 </object>
 <object>
 <name>test_object_2</name>
 <hash>b039efe731ad111bc1b0ef221c3849d0</hash>
 <bytes>64</bytes>
 <content_type>application/octet-stream</content_type>
 <last_modified>2009-02-03T05:26:32.612278</last_modified>
 </object>
 </container>

3.2.1.2. List Large Number of Objects

The system will return a maximum of 10,000 object names per request. To retrieve
subsequent object names, another request must be made with a 'marker' parameter. The
marker indicates where the last list left off and the system will return object names greater
than this marker, up to 10,000 again. Note that the ‘marker’ value should be URL encoded
prior to sending the HTTP request.

If 10,000 is larger than desired, a 'limit' parameter may be given.

If the number of object names returned equals the limit given (or 10,000 if no limit is
given), it can be assumed there are more object names to be listed. If the container name
list is exactly divisible by the limit, the last request will simply have no content.

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

13

Example 3.18. List Large Number of Objects

For an example, let's use a listing of five object names:

 gala
 grannysmith
 honeycrisp
 jonagold
 reddelicious

We'll use a limit of two to show how things work:

 GET /<api version>/<account>/<container>?limit=2
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 gala
 grannysmith

Since we received two items back, we can assume there are more object names to list. So,
we make another request with a marker of the last item returned:

 GET /<api version>/<account>/<container>?limit=2&marker=grannysmith
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 honeycrisp
 jonagold

Again we have two items returned; there may be more:

 GET /<api version>/<account>/<container>?limit=2&marker=oranges
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 reddelicious

Now we received less than the limit number of container names, indicating that we have
the complete list.

3.2.1.3. Pseudo-Hierarchical Folders/Directories

You can simulate a hierarchical structure in OpenStack Object Storage by following a few
guidelines. Object names must contain the forward slash character / as a path element

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

14

separator and also create directory marker objects; then they will be able to traverse
this nested structure with the new path query parameter. This can best be illustrated by
example:

Note

For the purposes of this example, the container where the objects reside is
called backups. All objects in this example start with a prefix of photos and
should NOT be confused with the container name. In the example, the full URI
of the me.jpg file would be https://storage.swiftdrive.com/v1/
CF_xer7_343/backups/photos/me.jpg

Example 3.19. Pseudo-Hierarchical Folders/Directories

In the example, the following real objects are uploaded to the storage system with names
representing their full filesystem path:

 photos/animals/dogs/poodle.jpg
 photos/animals/dogs/terrier.jpg
 photos/animals/cats/persian.jpg
 photos/animals/cats/siamese.jpg
 photos/plants/fern.jpg
 photos/plants/rose.jpg
 photos/me.jpg

To take advantage of this feature, the directory marker objects must also be created to
represent the appropriate directories. The following additional objects need to be created.
A good convention would be to create these as zero- or one-byte files with a Content-Type
of application/directory.

 photos/animals/dogs
 photos/animals/cats
 photos/animals
 photos/plants
 photos

Now issuing a GET request against the container name coupled with the path query
parameter of the directory to list can traverse these directories. Only the request line and
results are depicted below excluding other request/response headers.

 GET /v1/AccountString/backups?path=photos HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 photos/animals
 photos/cats
 photos/me.jpg

To traverse down into the animals directory, specify that path.

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

15

 GET /v1/AccountString/backups?path=photos/animals
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 photos/animals/dogs
 photos/animals/cats

By combining this path query parameter with the format query parameter, users will
be able to easily distinguish between virtual folders/directories by Content-Type and build
interfaces that allow traversal of the pseudo-nested structure.

You can also use a delimiter parameter to represent a nested directory hierarchy without
the need for the directory marker objects. You can use any single character as a delimiter.
The listings can return virtual directories - they are virtual in that they don't actually
represent real objects. like the directory markers, though, they will have a content-type of
application/directory and be in a subdir section of json and xml results.

If you have the following objects—photos/photo1, photos/photo2, movieobject, videos/
movieobj4—in a container, your delimiter parameter query using slash (/) would give you
photos, movieobject, videos.

GET /v1/acct/container?delimiter=/
Host: storage.swiftdrive.com
X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

3.2.2. Create Container

PUT operations against a storage container are used to create that container.

Containers are storage compartments for your data. The URL encoded name must be less
than 256 bytes and cannot contain a forward slash '/' character.

Containers can be assigned custom metadata by including additional HTTP headers on the
PUT request. The custom metadata is assigned to a container via HTTP headers identified
with the X-Container-Meta- prefix.

Example 3.20. Container Create Request

 PUT /<api version>/<account>/<container> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

No content is returned. A status code of 201 (Created) indicates that the container
was created as requested. Container PUT requests are idempotent and a code of 202
(Accepted) is returned when the container already existed. If you request a PUT to a
container with an X-Container-Meta- prefix in the header, your GET/HEAD request
responses carry the metadata prefix from the container in subsequent requests.

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

16

Example 3.21. Container Create Response

 HTTP/1.1 201 Created
 Date: Thu, 07 Jun 2007 18:50:19 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8

Using custom container metadata, you can create information in the header to effectively
"tag" a container with metadata. The container metadata restrictions are the same
as object metadata, you can have 4096 bytes maximum overall metadata, 90 distinct
metadata items at the most. Each may have a 128 character name length with a 256 max
value length each. Any valid UTF-8 http header value is allowed for metadata, however we
recommend that you URL-encode any non-ASCII values using a "%" symbol, followed by the
two-digit hexadecimal representation of the ISO-Latin code for the character.

Example 3.22. Container Create Request with Metadata

 PUT /<api version>/<account>/<container> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 X-Container-Meta-InspectedBy: JackWolf

No content is returned. A status code of 201 (Created) indicates that the container
was created as requested. Container PUT requests are idempotent and a code of 202
(Accepted) is returned when the container already existed. If you request a PUT to a
container with an X-Container-Meta- prefix in the header, your GET/HEAD request
responses carry the metadata prefix from the container in subsequent requests.

Example 3.23. Container Create Response

 HTTP/1.1 201 Created
 Date: Thu, 07 Jun 2010 18:50:19 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8

3.2.3. Delete Container
DELETE operations against a storage container are used to permanently remove that
container. The container must be empty before it can be deleted.

A HEAD request against the container can be used to determine if it contains any objects.

Example 3.24. Container Delete Request

 DELETE /<api version>/<account>/<container> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

'Response '

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

17

No content is returned. A status code of 204 (No Content) indicates success, 404 (Not
Found) is returned if the requested container was not found, and a 409 (Conflict) if the
container is not empty. No response body will be generated.

Example 3.25. Container Delete Response

 HTTP/1.1 204 No Content
 Date: Thu, 07 Jun 2010 18:57:07 GMT
 Server: Apache
 Content-Length: 0
 Content-Type: text/plain; charset=UTF-8

3.2.4. Retrieve Container Metadata

HEAD operations against a storage container are used to determine the number of objects,
and the total bytes of all objects stored in the container. Since the storage system is
designed to store large amounts of data, care should be taken when representing the total
bytes response as an integer; when possible, convert it to a 64-bit unsigned integer if your
platform supports that primitive type.

Example 3.26. Container Metadata Request

 HEAD /<api version>/<account>/<container> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

The HTTP return code will be 204 (No Content) if the container exists, and 404 (Not
Found) if it does not. The object count and utilization are returned in the X-Container-
Object-Count and X-Container-Bytes-Used headers respectively.

Example 3.27. Container Metadata Response

 HTTP/1.1 204 No Content
 Date: Wed, 11 Jul 2010 19:37:41 GMT
 Content-type: text/html
 X-Container-Object-Count: 7
 X-Container-Bytes-Used: 413
 X-Container-Meta-InspectedBy: JackWolf

3.3. Storage Object Services
An object represents the data and any metadata for the files stored in the system. Through
the ReST interface, metadata for an object can be included by adding custom HTTP headers
to the request and the data payload as the request body. Objects cannot exceed 5GB and
must have names that do not exceed 1024 bytes after URL encoding. However, objects
larger than 5GB can be segmented and then concatenated together so that you can
upload 5 GB segments and download a single concatenated object. You can work with the
segments and manifests directly with HTTP requests.

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

18

3.3.1. Retrieve Object

GET operations against an object are used to retrieve the object's data.

Note that you can perform conditional GET requests by using certain HTTP headers as
documented in RFC 2616. OpenStack Object Storage supports the following headers:

RFC 2616: http://www.ietf.org/rfc/rfc2616.txt

• If-Match

• If-None-Match

• If-Modified-Since

• If-Unmodified-Since

It is also possible to fetch a portion of data using the HTTP Range header. At this time,
OpenStack Object Storage does not support the full specification for Range but basic
support is provided. OpenStack Object Storage only allows a single range that includes
OFFSET and/or LENGTH. We support a sub-set of Range and do not adhere to the full
RFC-2616 specification. We support specifying OFFSET-LENGTH where either OFFSET or
LENGTH can be optional (not both at the same time). The following are supported forms of
the header:

• Range: bytes=-5 - last five bytes of the object

• Range: bytes=10-15 - the five bytes after a 10-byte offset

• Range: bytes=32- - all data after the first 32 bytes of the object

Example 3.28. Retrieve Object Request

 GET /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

The object's data is returned in the response body. Object metadata is returned as HTTP
headers. A status of 200 (Ok) indicates success; status 404 (Not Found) is returned if no
such object exists.

Example 3.29. Retrieve Object Response

 HTTP/1.1 200 Ok
 Date: Wed, 11 Jul 2010 19:37:41 GMT
 Server: Apache
 Last-Modified: Fri, 12 Jun 2010 13:40:18 GMT
 ETag: b0dffe8254d152d8fd28f3c5e0404a10
 Content-type: text/html
 Content-Length: 512000

http://www.ietf.org/rfc/rfc2616.txt

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

19

 [...]

3.3.2. Create/Update Object

PUT operations are used to write, or overwrite, an object's metadata and content.

You can ensure end-to-end data integrity by including an MD5 checksum of your object's
data in the ETag header. You are not required to include the ETag header, but it is
recommended to ensure that the storage system successfully stored your object's content.

The HTTP response will include the MD5 checksum of the data written to the storage
system. If you do not send the ETag in the request, you should compare the value returned
with your content's MD5 locally to perform the end-to-end data validation on the client
side. For segmented objects, the ETag is the MD5 sum of the concatenated string of ETags
for each of the segments in the manifest, which only offers change detection but not direct
comparison.

Objects can be assigned custom metadata by including additional HTTP headers on the PUT
request.

The object can be created with custom metadata via HTTP headers identified with the X-
Object-Meta- prefix.

Example 3.30. Create/Update Object Request

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 ETag: 8a964ee2a5e88be344f36c22562a6486
 Content-Length: 512000
 X-Object-Meta-PIN: 1234

 [...]

No response body is returned. A status code of 201 (Created) indicates a successful write;
status 412 (Length Required) denotes a missing Content-Length or Content-Type
header in the request. If the MD5 checksum of the data written to the storage system does
NOT match the (optionally) supplied ETag value, a 422 (Unprocessable Entity) response is
returned.

Example 3.31. Create/Update Object Response

 HTTP/1.1 201 Created
 Date: Thu, 07 Jun 2010 18:57:07 GMT
 Server: Apache
 ETag: d9f5eb4bba4e2f2f046e54611bc8196b
 Content-Length: 0
 Content-Type: text/plain; charset=UTF-8

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

20

3.3.2.1. Large Object Creation

Objects that are larger than 5GB must be segmented, prior to upload. You then upload the
segments like you would any other object and create a manifest object telling OpenStack
Object Storage how to find the segments of the large object. The segments remain
individually addressable, but retrieving the manifest object streams all the segments
concatenated. There is no limit to the number of segments that can be a part of a single
large object.

In order to ensure the download works correctly, you must upload all the object segments
to the same container, ensure each object name has a common prefix where their names
sort in the order they should be concatenated. You also create and upload a manifest file.
The manifest file is simply a zero-byte file with the extra X-Object-Manifest: <container>/
<prefix> header, where <container> is the container the object segments are in and <prefix>
is the common prefix for all the segments.

It is best to upload all the segments first and then create or update the manifest. With this
method, the full object will not be available for downloading until the upload is complete.
Also, you can upload a new set of segments to a second location and then update the
manifest to point to this new location. During the upload of the new segments, the original
manifest will still be available to download the first set of segments.

Example 3.32. Upload Segment of a Large Object

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 ETag: 8a964ee2a5e88be344f36c22562a6486
 Content-Length: 1
 X-Object-Meta-PIN: 1234

 s

No response body is returned. A status code of 201 (Created) indicates a successful write;
status 412 (Length Required) denotes a missing Content-Length or Content-Type
header in the request. If the MD5 checksum of the data written to the storage system does
NOT match the (optionally) supplied ETag value, a 422 (Unprocessable Entity) response is
returned.

You can continue uploading segments like this example shows, prior to uploading the
manifest.

Example 3.33. Upload Next Segment of the Large Object

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 ETag: 8a964ee2a5e88be344f36c22562a6486
 Content-Length: 1
 X-Object-Meta-PIN: 1234

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

21

 w

Next, upload the manifest you created that indicates the container the object segments
reside within. Note that uploading additional segments after the manifest is created will
cause the concatenated object to be that much larger but you do not need to recreate the
manifest file for subsequent additional segments.

Example 3.34. Upload Manifest

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Content-Length: 0
 X-Object-Meta-PIN: 1234
 X-Object-Manifest: container/object/segments

 [...]

The response's Content-Type for a GET or HEAD on the manifest will be the same as the
Content-Type set during the PUT request that created the manifest. You can easily change
the Content-Type by reissuing the PUT request.

3.3.2.2. Chunked Transfer Encoding

Users can upload data without needing to know in advance the amount of data to be
uploaded. Users can do this by specifying an HTTP header of Transfer-Encoding:
chunked and not using a Content-Length header. A good use of this feature would
be doing a DB dump, piping the output through gzip, then piping the data directly into
OpenStack Object Storage without having to buffer the data to disk to compute the file
size. If users attempt to upload more that 5GB with this method, the server will close
the TCP/IP connection after 5GB and purge the customer data from the system. Users
must take responsibility for ensuring the data they transfer will be less than 5GB or for
splitting it into 5GB chunks, each in its own storage object. If you have files that are larger
than 5GB and still want to use Object Storage, you can segment them prior to upload,
upload them to the same container, and then use a manifest file to allow downloading of a
concatenated object containing all the segmented objects, concatenated as a single object.

Example 3.35. Upload Unspecified Quantity of Content

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Transfer-Encoding: chunked
 X-Object-Meta-PIN: 1234

 19
 A bunch of data broken up

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

22

 D
 into chunks.
 0

3.3.3. Assigning CORS Headers to Requests

CORS is a specification that stands for Cross-Origin Resource Sharing. It defines how
browsers and servers communicate across origins using HTTP headers, such as those
assigned by Cloud Files API requests. These headers are supported with the Cloud Files API.
You can read more about the definition of the Access-Control- response headers and Origin
response header at www.w3.org/TR/access-control/.

• Access-Control-Allow-Credentials

• Access-Control-Allow-Methods

• Access-Control-Allow-Origin

• Access-Control-Expose-Headers

• Access-Control-Max-Age

• Access-Control-Request-Headers

• Access-Control-Request-Method

• Origin

These headers can be assigned to objects only.

Example 3.36. Assign CORS Header

In the example, the origin header is assigned that indicates where the file came from. This
allows you to provide security that requests to your Cloud Files repository are indeed from
the correct origination:

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Origin: http://storage.clouddrive.com

3.3.4. Enabling File Compression with the Content-Encoding
Header

The Content-Encoding header allows a file to be compressed without losing the identity of
the underlying media type of the file, for example, a video.

Example 3.37. Content-Encoding Header Example

In the example, the content-encoding header is assigned with an attachment type that
indicates how the file should be downloaded:

http://www.w3.org/TR/access-control/

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

23

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Content-Type: video/mp4
 Content-Encoding: gzip

3.3.5. Enabling Browser Bypass with the Content-
Disposition Header

When an object is assigned the Content-Disposition header you can override a browser's
default behavior for a file so that the downloader saves the file rather than displaying it
using default browser settings.

Example 3.38. Content-Disposition Header Example

In the example, the content-encoding header is assigned with an attachment type that
indicates how the file should be downloaded.

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Content-Type: image/tiff
 Content-Disposition: attachment; filename=platmap.tif

3.3.6. Copy Object

Suppose you upload a file with the wrong object name or content type, or you needed to
move some objects to another container. Without a server-side copy feature, you would
need to repeat uploading the same content and then delete the existing object. With
server-side object copy, you can save the step of re-uploading the content and thus also
save the associated bandwidth charges, if any were to apply.

There are two ways to copy an existing object to another object in OpenStack Object
Storage. One way is to do a PUT to the new object (the target) location, but add the “X-
Copy-From” header to designate the source of the data. The header value should be the
container and object name of the source object in the form of “/container/object”. Also,
the X-Copy-From PUT requests require a Content-Length header, even if it is zero (0).

PUT /<api version>/<account>/<container>/<destobject> HTTP/1.1
Host: <storage URL>
X-Auth-Token: <some-auth-token>
X-Copy-From: /<container>/<sourceobject>
Content-Length: 0

The second way to do an object copy is similar. Do a COPY to the existing object, and
include the “Destination” header to specify the target of the copy. The header value is the
container and new object name in the form of “/container/object”.

COPY /<api version>/<account>/<container>/<sourceobject> HTTP/1.1
Host: <storage URL>

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

24

X-Auth-Token: <some-auth-token>
Destination: /<container>/<destobject>

With both of these methods, the destination container must exist before attempting
the copy. If you were wanting to perform a move of the objects rather than a copy, you
would need to send a DELETE request to the old object. A move simply becomes a COPY +
DELETE. All metadata is preserved during the object copy. Note that you can set metadata
on the request to copy the object (either the PUT or the COPY) and the metadata will
overwrite any conflicting keys on the target (new) object. One interesting use case is to
copy an object to itself and set the content type to a new value. This is the only way to
change the content type of an existing object.

3.3.7. Delete Object

DELETE operations on an object are used to permanently remove that object from the
storage system (metadata and data).

Deleting an object is processed immediately at the time of the request. Any subsequent
GET, HEAD, POST, or DELETE operations will return a 404 (Not Found) error.

Example 3.39. Object Delete Request

 DELETE /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

No response body is returned. A status code of 204 (No Content) indicates success, status
404 (Not Found) is returned when the object does not exist.

Example 3.40. Object Delete Response

 HTTP/1.1 204 No Content
 Date: Thu, 07 Jun 2010 20:59:39 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8

3.3.8. Retrieve Object Metadata

HEAD operations on an object are used to retrieve object metadata and other standard
HTTP headers.

The only required header to be sent in the request is the authorization token.

Example 3.41. Object Metadata Request

 HEAD /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

25

No response body is returned. Metadata is returned as HTTP headers. A status code of 200
(OK) indicates success; status 404 (Not Found) is returned when the object does not exist.

Example 3.42. Object Metadata Response

 HTTP/1.1 200 OK
 Date: Thu, 07 Jun 2010 20:59:39 GMT
 Server: Apache
 Last-Modified: Fri, 12 Jun 2010 13:40:18 GMT
 ETag: 8a964ee2a5e88be344f36c22562a6486
 Content-Length: 512000
 Content-Type: text/plain; charset=UTF-8
 X-Object-Meta-Meat: Bacon
 X-Object-Meta-Fruit: Bacon
 X-Object-Meta-Veggie: Bacon
 X-Object-Meta-Dairy: Bacon

3.3.9. Update Object Metadata

POST operations against an object name are used to set and overwrite arbitrary key/value
metadata. You cannot use the POST operation to change any of the object's other headers
such as Content-Type, ETag, etc. It is not used to upload storage objects (see PUT).

Key names must be prefixed with X-Object-Meta-. A POST request will delete all
existing metadata added with a previous PUT/POST.

Example 3.43. Update Object Metadata Request

 POST /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.swiftdrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 X-Object-Meta-Fruit: Apple
 X-Object-Meta-Veggie: Carrot

No response body is returned. A status code of 202 (Accepted) indicates success; status 404
(Not Found) is returned when the requested object does not exist.

Example 3.44. Update Object Metadata Response

 HTTP/1.1 202 Accepted
 Date: Thu, 07 Jun 2010 20:59:39 GMT
 Server: Apache
 Content-Length: 0
 Content-Type: text/plain; charset=UTF-8

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

26

4. Troubleshooting
This section introduces a command-line utility, cURL, and demonstrates interacting with the
ReST interfaces through that utility.

4.1. Using cURL
cURL is a command-line tool which is available on most UNIX®-like environments and Mac
OS X® and can be downloaded for Windows®. For more information on cURL, visit http://
curl.haxx.se/.

cURL allows you to transmit and receive HTTP requests and responses from the command-
line or from within a shell script. This makes it possible to work with the ReST API directly
without using one of the client APIs.

The following cURL command-line options will be used

cURL Command-Line Options

-X METHOD Specify the HTTP method to request (HEAD, GET, etc.)

-D Dump HTTP response headers to stdout.

-H HEADER Specify an HTTP header in the request.

4.1.1. Authentication
In order to use the ReST API, you will first need to obtain a authorization token, which will
need to be passed in for each request using the X-Auth-Token header. The following
example demonstrates how to use cURL to obtain the authorization token and the URL of
the storage system.

Example 4.1. cURL Authenticate

 curl -D - \
 -H "X-Auth-Key: jdoesecretpassword" \
 -H "X-Auth-User: jdoe" \
 https://auth.api.yourcloud.com/v1.0

 HTTP/1.1 204 No Content
 Date: Thu, 09 Jul 2009 15:31:39 GMT
 Server: Apache/2.2.3
 X-Storage-Url: https://storage.swiftdrive.com/v1/CF_xer7_343
 X-Auth-Token: fc81aaa6-98a1-9ab0-94ba-aba9a89aa9ae
 Content-Length: 0
 Connection: close
 Content-Type: application/octet-stream

The storage URL and authentication token are returned in the headers of the response.
After authentication, you can use cURL to perform HEAD, GET, DELETE, POST and PUT
requests on the storage service.

http://curl.haxx.se/
http://curl.haxx.se/

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

27

4.1.2. Determining Storage Usage
A HEAD request can be sent to the storage service to determine how much data you
have stored in the system and the number of containers you are using. Use the -X switch
to specify the correct HTTP method and the -D to dump the HTTP response headers to
terminal output (stdout).

Example 4.2. cURL Get Storage Space

 curl –X HEAD -D - \
 -H "X-Auth-Token: fc81aaa6-98a1-9ab0-94ba-aba9a89aa9ae" \
 https://storage.swiftdrive.com/v1/CF_xer7_343

 HTTP/1.1 204 No Content
 Date: Thu, 09 Jul 2009 15:38:14 GMT
 Server: Apache
 X-Account-Container-Count: 22
 X-Account-Bytes-Used: 9891628380
 Content-Type: text/plain

The HTTP request must include a header to specify the authentication token. The HTTP
headers in the response indicate the number of containers in this storage account and the
total bytes stored for the entire account.

4.1.3. Creating a Storage Container
Before uploading any data to OpenStack Object Storage, you must create a storage
container. You do this with a PUT request; cURL can be used for that, too.

Example 4.3. cURL Create Storage Container

 curl –X PUT -D - \
 -H "X-Auth-Token: fc81aaa6-98a1-9ab0-94ba-aba9a89aa9ae" \
 https://storage.swiftdrive.com/v1/CF_xer7_343/images

 HTTP/1.1 201 Created
 Date: Thu, 09 Jul 2009 17:03:36 GMT
 Server: Apache
 Content-Length: 0
 Content-Type: text/plain

Returning an HTTP status code of 201 (Created) indicates that the container was
successfully created.

4.1.4. Uploading a Storage Object
After creating a container, you can upload a local file. For this example, let's upload a
screenshot image. The -T switch specifies the full path to the local file to upload.

OpenStack Object Storage
Developer Guide

Sep 22, 2011 API v1

28

Example 4.4. cURL Upload Storage Object

 curl –X PUT -T screenies/wow1.jpg-D - \
 -H "ETag: 805120ec285a7ed28f74024422fe3594" \
 -H "Content-Type: image/jpeg" \
 -H "X-Auth-Token: fc81aaa6-98a1-9ab0-94ba-aba9a89aa9ae" \
 -H "X-Object-Meta-Screenie: Mel visits Outland" \
 https://storage.swiftdrive.com/v1/CF_xer7_343/images/wow1.jpg

 HTTP/1.1 201 Created
 Date: Thu, 09 Jul 2009 17:03:36 GMT
 Server: Apache
 Content-Length: 0
 Etag: 805120ec285a7ed28f74024422fe3594
 Content-Type: text/plain

4.1.5. Other cURL Commands

You can issue any of the ReST methods defined for OpenStack Object Storage with the
cURL utility. For example, you can use cURL to send POST and DELETE requests even
though we haven't provided specific examples.

Note that generally each time you invoke curl to perform an operation, the system
creates a separate TCP/IP and SSL connection and then throws it away. The language APIs,
however, are designed to re-use these connections between operations and therefore
provide much better performance. We recommend that you use one of the supported
language APIs in your production applications and limit curl to quick-and-easy testing/
troubleshooting.

	OpenStack Object Storage Developer Guide
	Table of Contents
	1. Overview
	1.1. Intended Audience
	1.2. Document Change History
	1.3. Additional Resources

	2. General API Information
	2.1. Authentication
	2.2. Overview of API Operations

	3. API Operations for Storage Services
	3.1. Storage Account Services
	3.1.1. List Containers
	3.1.1.1. Serialized List Output
	3.1.1.2. List Large Number of Containers

	3.1.2. Retrieve Account Metadata

	3.2. Storage Container Services
	3.2.1. List Objects
	3.2.1.1. Serialized List Output
	3.2.1.2. List Large Number of Objects
	3.2.1.3. Pseudo-Hierarchical Folders/Directories

	3.2.2. Create Container
	3.2.3. Delete Container
	3.2.4. Retrieve Container Metadata

	3.3. Storage Object Services
	3.3.1. Retrieve Object
	3.3.2. Create/Update Object
	3.3.2.1. Large Object Creation
	3.3.2.2. Chunked Transfer Encoding

	3.3.3. Assigning CORS Headers to Requests
	3.3.4. Enabling File Compression with the Content-Encoding Header
	3.3.5. Enabling Browser Bypass with the Content-Disposition Header
	3.3.6. Copy Object
	3.3.7. Delete Object
	3.3.8. Retrieve Object Metadata
	3.3.9. Update Object Metadata

	4. Troubleshooting
	4.1. Using cURL
	4.1.1. Authentication
	4.1.2. Determining Storage Usage
	4.1.3. Creating a Storage Container
	4.1.4. Uploading a Storage Object
	4.1.5. Other cURL Commands

