root / htest / Test / Ganeti / BasicTypes.hs @ 1493a93b
History | View | Annotate | Download (5 kB)
1 |
{-# LANGUAGE TemplateHaskell #-} |
---|---|
2 |
{-# OPTIONS_GHC -fno-warn-orphans #-} |
3 |
|
4 |
{-| Unittests for ganeti-htools. |
5 |
|
6 |
-} |
7 |
|
8 |
{- |
9 |
|
10 |
Copyright (C) 2009, 2010, 2011, 2012 Google Inc. |
11 |
|
12 |
This program is free software; you can redistribute it and/or modify |
13 |
it under the terms of the GNU General Public License as published by |
14 |
the Free Software Foundation; either version 2 of the License, or |
15 |
(at your option) any later version. |
16 |
|
17 |
This program is distributed in the hope that it will be useful, but |
18 |
WITHOUT ANY WARRANTY; without even the implied warranty of |
19 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
20 |
General Public License for more details. |
21 |
|
22 |
You should have received a copy of the GNU General Public License |
23 |
along with this program; if not, write to the Free Software |
24 |
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
25 |
02110-1301, USA. |
26 |
|
27 |
-} |
28 |
|
29 |
module Test.Ganeti.BasicTypes (testBasicTypes) where |
30 |
|
31 |
import Test.QuickCheck hiding (Result) |
32 |
import Test.QuickCheck.Function |
33 |
|
34 |
import Control.Applicative |
35 |
import Control.Monad |
36 |
|
37 |
import Test.Ganeti.TestHelper |
38 |
import Test.Ganeti.TestCommon |
39 |
|
40 |
import Ganeti.BasicTypes |
41 |
|
42 |
-- Since we actually want to test these, don't tell us not to use them :) |
43 |
|
44 |
{-# ANN module "HLint: ignore Functor law" #-} |
45 |
{-# ANN module "HLint: ignore Monad law, left identity" #-} |
46 |
{-# ANN module "HLint: ignore Monad law, right identity" #-} |
47 |
{-# ANN module "HLint: ignore Use >=>" #-} |
48 |
|
49 |
-- * Arbitrary instances |
50 |
|
51 |
instance (Arbitrary a) => Arbitrary (Result a) where |
52 |
arbitrary = oneof [ Bad <$> arbitrary |
53 |
, Ok <$> arbitrary |
54 |
] |
55 |
|
56 |
-- * Test cases |
57 |
|
58 |
-- | Tests the functor identity law (fmap id == id). |
59 |
prop_functor_id :: Result Int -> Property |
60 |
prop_functor_id ri = |
61 |
fmap id ri ==? ri |
62 |
|
63 |
-- | Tests the functor composition law (fmap (f . g) == fmap f . fmap g). |
64 |
prop_functor_composition :: Result Int |
65 |
-> Fun Int Int -> Fun Int Int -> Property |
66 |
prop_functor_composition ri (Fun _ f) (Fun _ g) = |
67 |
fmap (f . g) ri ==? (fmap f . fmap g) ri |
68 |
|
69 |
-- | Tests the applicative identity law (pure id <*> v = v). |
70 |
prop_applicative_identity :: Result Int -> Property |
71 |
prop_applicative_identity v = |
72 |
pure id <*> v ==? v |
73 |
|
74 |
-- | Tests the applicative composition law (pure (.) <*> u <*> v <*> w |
75 |
-- = u <*> (v <*> w)). |
76 |
prop_applicative_composition :: (Result (Fun Int Int)) |
77 |
-> (Result (Fun Int Int)) |
78 |
-> Result Int |
79 |
-> Property |
80 |
prop_applicative_composition u v w = |
81 |
let u' = fmap apply u |
82 |
v' = fmap apply v |
83 |
in pure (.) <*> u' <*> v' <*> w ==? u' <*> (v' <*> w) |
84 |
|
85 |
-- | Tests the applicative homomorphism law (pure f <*> pure x = pure (f x)). |
86 |
prop_applicative_homomorphism :: Fun Int Int -> Int -> Property |
87 |
prop_applicative_homomorphism (Fun _ f) x = |
88 |
((pure f <*> pure x)::Result Int) ==? |
89 |
(pure (f x)) |
90 |
|
91 |
-- | Tests the applicative interchange law (u <*> pure y = pure ($ y) <*> u). |
92 |
prop_applicative_interchange :: Result (Fun Int Int) |
93 |
-> Int -> Property |
94 |
prop_applicative_interchange f y = |
95 |
let u = fmap apply f -- need to extract the actual function from Fun |
96 |
in u <*> pure y ==? pure ($ y) <*> u |
97 |
|
98 |
-- | Tests the applicative\/functor correspondence (fmap f x = pure f <*> x). |
99 |
prop_applicative_functor :: Fun Int Int -> Result Int -> Property |
100 |
prop_applicative_functor (Fun _ f) x = |
101 |
fmap f x ==? pure f <*> x |
102 |
|
103 |
-- | Tests the applicative\/monad correspondence (pure = return and |
104 |
-- (<*>) = ap). |
105 |
prop_applicative_monad :: Int -> Result (Fun Int Int) -> Property |
106 |
prop_applicative_monad v f = |
107 |
let v' = pure v :: Result Int |
108 |
f' = fmap apply f -- need to extract the actual function from Fun |
109 |
in v' ==? return v .&&. (f' <*> v') ==? f' `ap` v' |
110 |
|
111 |
-- | Tests the monad laws (return a >>= k == k a, m >>= return == m, m |
112 |
-- >>= (\x -> k x >>= h) == (m >>= k) >>= h). |
113 |
prop_monad_laws :: Int -> Result Int |
114 |
-> Fun Int (Result Int) |
115 |
-> Fun Int (Result Int) |
116 |
-> Property |
117 |
prop_monad_laws a m (Fun _ k) (Fun _ h) = |
118 |
printTestCase "return a >>= k == k a" ((return a >>= k) ==? k a) .&&. |
119 |
printTestCase "m >>= return == m" ((m >>= return) ==? m) .&&. |
120 |
printTestCase "m >>= (\\x -> k x >>= h) == (m >>= k) >>= h)" |
121 |
((m >>= (\x -> k x >>= h)) ==? ((m >>= k) >>= h)) |
122 |
|
123 |
-- | Tests the monad plus laws ( mzero >>= f = mzero, v >> mzero = mzero). |
124 |
prop_monadplus_mzero :: Result Int -> Fun Int (Result Int) -> Property |
125 |
prop_monadplus_mzero v (Fun _ f) = |
126 |
printTestCase "mzero >>= f = mzero" ((mzero >>= f) ==? mzero) .&&. |
127 |
-- FIXME: since we have "many" mzeros, we can't test for equality, |
128 |
-- just that we got back a 'Bad' value; I'm not sure if this means |
129 |
-- our MonadPlus instance is not sound or not... |
130 |
printTestCase "v >> mzero = mzero" (isBad (v >> mzero)) |
131 |
|
132 |
testSuite "BasicTypes" |
133 |
[ 'prop_functor_id |
134 |
, 'prop_functor_composition |
135 |
, 'prop_applicative_identity |
136 |
, 'prop_applicative_composition |
137 |
, 'prop_applicative_homomorphism |
138 |
, 'prop_applicative_interchange |
139 |
, 'prop_applicative_functor |
140 |
, 'prop_applicative_monad |
141 |
, 'prop_monad_laws |
142 |
, 'prop_monadplus_mzero |
143 |
] |