Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / HTools / Cluster.hs @ 2c9336a4

History | View | Annotate | Download (62.8 kB)

1
{-| Implementation of cluster-wide logic.
2

    
3
This module holds all pure cluster-logic; I\/O related functionality
4
goes into the /Main/ module for the individual binaries.
5

    
6
-}
7

    
8
{-
9

    
10
Copyright (C) 2009, 2010, 2011 Google Inc.
11

    
12
This program is free software; you can redistribute it and/or modify
13
it under the terms of the GNU General Public License as published by
14
the Free Software Foundation; either version 2 of the License, or
15
(at your option) any later version.
16

    
17
This program is distributed in the hope that it will be useful, but
18
WITHOUT ANY WARRANTY; without even the implied warranty of
19
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20
General Public License for more details.
21

    
22
You should have received a copy of the GNU General Public License
23
along with this program; if not, write to the Free Software
24
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25
02110-1301, USA.
26

    
27
-}
28

    
29
module Ganeti.HTools.Cluster
30
    (
31
     -- * Types
32
      AllocSolution(..)
33
    , EvacSolution(..)
34
    , Table(..)
35
    , CStats(..)
36
    , AllocStats
37
    -- * Generic functions
38
    , totalResources
39
    , computeAllocationDelta
40
    -- * First phase functions
41
    , computeBadItems
42
    -- * Second phase functions
43
    , printSolutionLine
44
    , formatCmds
45
    , involvedNodes
46
    , splitJobs
47
    -- * Display functions
48
    , printNodes
49
    , printInsts
50
    -- * Balacing functions
51
    , checkMove
52
    , doNextBalance
53
    , tryBalance
54
    , compCV
55
    , compCVNodes
56
    , compDetailedCV
57
    , printStats
58
    , iMoveToJob
59
    -- * IAllocator functions
60
    , genAllocNodes
61
    , tryAlloc
62
    , tryMGAlloc
63
    , tryReloc
64
    , tryNodeEvac
65
    , tryChangeGroup
66
    , collapseFailures
67
    -- * Allocation functions
68
    , iterateAlloc
69
    , tieredAlloc
70
     -- * Node group functions
71
    , instanceGroup
72
    , findSplitInstances
73
    , splitCluster
74
    ) where
75

    
76
import qualified Data.IntSet as IntSet
77
import Data.List
78
import Data.Maybe (fromJust, isNothing)
79
import Data.Ord (comparing)
80
import Text.Printf (printf)
81

    
82
import qualified Ganeti.HTools.Container as Container
83
import qualified Ganeti.HTools.Instance as Instance
84
import qualified Ganeti.HTools.Node as Node
85
import qualified Ganeti.HTools.Group as Group
86
import Ganeti.HTools.Types
87
import Ganeti.HTools.Utils
88
import Ganeti.HTools.Compat
89
import qualified Ganeti.OpCodes as OpCodes
90

    
91
-- * Types
92

    
93
-- | Allocation\/relocation solution.
94
data AllocSolution = AllocSolution
95
  { asFailures :: [FailMode]              -- ^ Failure counts
96
  , asAllocs   :: Int                     -- ^ Good allocation count
97
  , asSolution :: Maybe Node.AllocElement -- ^ The actual allocation result
98
  , asLog      :: [String]                -- ^ Informational messages
99
  }
100

    
101
-- | Node evacuation/group change iallocator result type. This result
102
-- type consists of actual opcodes (a restricted subset) that are
103
-- transmitted back to Ganeti.
104
data EvacSolution = EvacSolution
105
    { esMoved   :: [(Idx, Gdx, [Ndx])]  -- ^ Instances moved successfully
106
    , esFailed  :: [(Idx, String)]      -- ^ Instances which were not
107
                                        -- relocated
108
    , esOpCodes :: [[[OpCodes.OpCode]]] -- ^ List of lists of jobs
109
    }
110

    
111
-- | Allocation results, as used in 'iterateAlloc' and 'tieredAlloc'.
112
type AllocResult = (FailStats, Node.List, Instance.List,
113
                    [Instance.Instance], [CStats])
114

    
115
-- | A type denoting the valid allocation mode/pairs.
116
--
117
-- For a one-node allocation, this will be a @Left ['Ndx']@, whereas
118
-- for a two-node allocation, this will be a @Right [('Ndx',
119
-- ['Ndx'])]@. In the latter case, the list is basically an
120
-- association list, grouped by primary node and holding the potential
121
-- secondary nodes in the sub-list.
122
type AllocNodes = Either [Ndx] [(Ndx, [Ndx])]
123

    
124
-- | The empty solution we start with when computing allocations.
125
emptyAllocSolution :: AllocSolution
126
emptyAllocSolution = AllocSolution { asFailures = [], asAllocs = 0
127
                                   , asSolution = Nothing, asLog = [] }
128

    
129
-- | The empty evac solution.
130
emptyEvacSolution :: EvacSolution
131
emptyEvacSolution = EvacSolution { esMoved = []
132
                                 , esFailed = []
133
                                 , esOpCodes = []
134
                                 }
135

    
136
-- | The complete state for the balancing solution.
137
data Table = Table Node.List Instance.List Score [Placement]
138
             deriving (Show, Read)
139

    
140
-- | Cluster statistics data type.
141
data CStats = CStats { csFmem :: Integer -- ^ Cluster free mem
142
                     , csFdsk :: Integer -- ^ Cluster free disk
143
                     , csAmem :: Integer -- ^ Cluster allocatable mem
144
                     , csAdsk :: Integer -- ^ Cluster allocatable disk
145
                     , csAcpu :: Integer -- ^ Cluster allocatable cpus
146
                     , csMmem :: Integer -- ^ Max node allocatable mem
147
                     , csMdsk :: Integer -- ^ Max node allocatable disk
148
                     , csMcpu :: Integer -- ^ Max node allocatable cpu
149
                     , csImem :: Integer -- ^ Instance used mem
150
                     , csIdsk :: Integer -- ^ Instance used disk
151
                     , csIcpu :: Integer -- ^ Instance used cpu
152
                     , csTmem :: Double  -- ^ Cluster total mem
153
                     , csTdsk :: Double  -- ^ Cluster total disk
154
                     , csTcpu :: Double  -- ^ Cluster total cpus
155
                     , csVcpu :: Integer -- ^ Cluster virtual cpus (if
156
                                         -- node pCpu has been set,
157
                                         -- otherwise -1)
158
                     , csXmem :: Integer -- ^ Unnacounted for mem
159
                     , csNmem :: Integer -- ^ Node own memory
160
                     , csScore :: Score  -- ^ The cluster score
161
                     , csNinst :: Int    -- ^ The total number of instances
162
                     }
163
            deriving (Show, Read)
164

    
165
-- | Currently used, possibly to allocate, unallocable.
166
type AllocStats = (RSpec, RSpec, RSpec)
167

    
168
-- * Utility functions
169

    
170
-- | Verifies the N+1 status and return the affected nodes.
171
verifyN1 :: [Node.Node] -> [Node.Node]
172
verifyN1 = filter Node.failN1
173

    
174
{-| Computes the pair of bad nodes and instances.
175

    
176
The bad node list is computed via a simple 'verifyN1' check, and the
177
bad instance list is the list of primary and secondary instances of
178
those nodes.
179

    
180
-}
181
computeBadItems :: Node.List -> Instance.List ->
182
                   ([Node.Node], [Instance.Instance])
183
computeBadItems nl il =
184
  let bad_nodes = verifyN1 $ getOnline nl
185
      bad_instances = map (`Container.find` il) .
186
                      sort . nub $
187
                      concatMap (\ n -> Node.sList n ++ Node.pList n) bad_nodes
188
  in
189
    (bad_nodes, bad_instances)
190

    
191
-- | Zero-initializer for the CStats type.
192
emptyCStats :: CStats
193
emptyCStats = CStats 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
194

    
195
-- | Update stats with data from a new node.
196
updateCStats :: CStats -> Node.Node -> CStats
197
updateCStats cs node =
198
    let CStats { csFmem = x_fmem, csFdsk = x_fdsk,
199
                 csAmem = x_amem, csAcpu = x_acpu, csAdsk = x_adsk,
200
                 csMmem = x_mmem, csMdsk = x_mdsk, csMcpu = x_mcpu,
201
                 csImem = x_imem, csIdsk = x_idsk, csIcpu = x_icpu,
202
                 csTmem = x_tmem, csTdsk = x_tdsk, csTcpu = x_tcpu,
203
                 csVcpu = x_vcpu,
204
                 csXmem = x_xmem, csNmem = x_nmem, csNinst = x_ninst
205
               }
206
            = cs
207
        inc_amem = Node.fMem node - Node.rMem node
208
        inc_amem' = if inc_amem > 0 then inc_amem else 0
209
        inc_adsk = Node.availDisk node
210
        inc_imem = truncate (Node.tMem node) - Node.nMem node
211
                   - Node.xMem node - Node.fMem node
212
        inc_icpu = Node.uCpu node
213
        inc_idsk = truncate (Node.tDsk node) - Node.fDsk node
214
        inc_vcpu = Node.hiCpu node
215
        inc_acpu = Node.availCpu node
216

    
217
    in cs { csFmem = x_fmem + fromIntegral (Node.fMem node)
218
          , csFdsk = x_fdsk + fromIntegral (Node.fDsk node)
219
          , csAmem = x_amem + fromIntegral inc_amem'
220
          , csAdsk = x_adsk + fromIntegral inc_adsk
221
          , csAcpu = x_acpu + fromIntegral inc_acpu
222
          , csMmem = max x_mmem (fromIntegral inc_amem')
223
          , csMdsk = max x_mdsk (fromIntegral inc_adsk)
224
          , csMcpu = max x_mcpu (fromIntegral inc_acpu)
225
          , csImem = x_imem + fromIntegral inc_imem
226
          , csIdsk = x_idsk + fromIntegral inc_idsk
227
          , csIcpu = x_icpu + fromIntegral inc_icpu
228
          , csTmem = x_tmem + Node.tMem node
229
          , csTdsk = x_tdsk + Node.tDsk node
230
          , csTcpu = x_tcpu + Node.tCpu node
231
          , csVcpu = x_vcpu + fromIntegral inc_vcpu
232
          , csXmem = x_xmem + fromIntegral (Node.xMem node)
233
          , csNmem = x_nmem + fromIntegral (Node.nMem node)
234
          , csNinst = x_ninst + length (Node.pList node)
235
          }
236

    
237
-- | Compute the total free disk and memory in the cluster.
238
totalResources :: Node.List -> CStats
239
totalResources nl =
240
    let cs = foldl' updateCStats emptyCStats . Container.elems $ nl
241
    in cs { csScore = compCV nl }
242

    
243
-- | Compute the delta between two cluster state.
244
--
245
-- This is used when doing allocations, to understand better the
246
-- available cluster resources. The return value is a triple of the
247
-- current used values, the delta that was still allocated, and what
248
-- was left unallocated.
249
computeAllocationDelta :: CStats -> CStats -> AllocStats
250
computeAllocationDelta cini cfin =
251
    let CStats {csImem = i_imem, csIdsk = i_idsk, csIcpu = i_icpu} = cini
252
        CStats {csImem = f_imem, csIdsk = f_idsk, csIcpu = f_icpu,
253
                csTmem = t_mem, csTdsk = t_dsk, csVcpu = v_cpu } = cfin
254
        rini = RSpec (fromIntegral i_icpu) (fromIntegral i_imem)
255
               (fromIntegral i_idsk)
256
        rfin = RSpec (fromIntegral (f_icpu - i_icpu))
257
               (fromIntegral (f_imem - i_imem))
258
               (fromIntegral (f_idsk - i_idsk))
259
        un_cpu = fromIntegral (v_cpu - f_icpu)::Int
260
        runa = RSpec un_cpu (truncate t_mem - fromIntegral f_imem)
261
               (truncate t_dsk - fromIntegral f_idsk)
262
    in (rini, rfin, runa)
263

    
264
-- | The names and weights of the individual elements in the CV list.
265
detailedCVInfo :: [(Double, String)]
266
detailedCVInfo = [ (1,  "free_mem_cv")
267
                 , (1,  "free_disk_cv")
268
                 , (1,  "n1_cnt")
269
                 , (1,  "reserved_mem_cv")
270
                 , (4,  "offline_all_cnt")
271
                 , (16, "offline_pri_cnt")
272
                 , (1,  "vcpu_ratio_cv")
273
                 , (1,  "cpu_load_cv")
274
                 , (1,  "mem_load_cv")
275
                 , (1,  "disk_load_cv")
276
                 , (1,  "net_load_cv")
277
                 , (2,  "pri_tags_score")
278
                 ]
279

    
280
-- | Holds the weights used by 'compCVNodes' for each metric.
281
detailedCVWeights :: [Double]
282
detailedCVWeights = map fst detailedCVInfo
283

    
284
-- | Compute the mem and disk covariance.
285
compDetailedCV :: [Node.Node] -> [Double]
286
compDetailedCV all_nodes =
287
    let
288
        (offline, nodes) = partition Node.offline all_nodes
289
        mem_l = map Node.pMem nodes
290
        dsk_l = map Node.pDsk nodes
291
        -- metric: memory covariance
292
        mem_cv = stdDev mem_l
293
        -- metric: disk covariance
294
        dsk_cv = stdDev dsk_l
295
        -- metric: count of instances living on N1 failing nodes
296
        n1_score = fromIntegral . sum . map (\n -> length (Node.sList n) +
297
                                                   length (Node.pList n)) .
298
                   filter Node.failN1 $ nodes :: Double
299
        res_l = map Node.pRem nodes
300
        -- metric: reserved memory covariance
301
        res_cv = stdDev res_l
302
        -- offline instances metrics
303
        offline_ipri = sum . map (length . Node.pList) $ offline
304
        offline_isec = sum . map (length . Node.sList) $ offline
305
        -- metric: count of instances on offline nodes
306
        off_score = fromIntegral (offline_ipri + offline_isec)::Double
307
        -- metric: count of primary instances on offline nodes (this
308
        -- helps with evacuation/failover of primary instances on
309
        -- 2-node clusters with one node offline)
310
        off_pri_score = fromIntegral offline_ipri::Double
311
        cpu_l = map Node.pCpu nodes
312
        -- metric: covariance of vcpu/pcpu ratio
313
        cpu_cv = stdDev cpu_l
314
        -- metrics: covariance of cpu, memory, disk and network load
315
        (c_load, m_load, d_load, n_load) = unzip4 $
316
            map (\n ->
317
                     let DynUtil c1 m1 d1 n1 = Node.utilLoad n
318
                         DynUtil c2 m2 d2 n2 = Node.utilPool n
319
                     in (c1/c2, m1/m2, d1/d2, n1/n2)
320
                ) nodes
321
        -- metric: conflicting instance count
322
        pri_tags_inst = sum $ map Node.conflictingPrimaries nodes
323
        pri_tags_score = fromIntegral pri_tags_inst::Double
324
    in [ mem_cv, dsk_cv, n1_score, res_cv, off_score, off_pri_score, cpu_cv
325
       , stdDev c_load, stdDev m_load , stdDev d_load, stdDev n_load
326
       , pri_tags_score ]
327

    
328
-- | Compute the /total/ variance.
329
compCVNodes :: [Node.Node] -> Double
330
compCVNodes = sum . zipWith (*) detailedCVWeights . compDetailedCV
331

    
332
-- | Wrapper over 'compCVNodes' for callers that have a 'Node.List'.
333
compCV :: Node.List -> Double
334
compCV = compCVNodes . Container.elems
335

    
336
-- | Compute online nodes from a 'Node.List'.
337
getOnline :: Node.List -> [Node.Node]
338
getOnline = filter (not . Node.offline) . Container.elems
339

    
340
-- * Balancing functions
341

    
342
-- | Compute best table. Note that the ordering of the arguments is important.
343
compareTables :: Table -> Table -> Table
344
compareTables a@(Table _ _ a_cv _) b@(Table _ _ b_cv _ ) =
345
    if a_cv > b_cv then b else a
346

    
347
-- | Applies an instance move to a given node list and instance.
348
applyMove :: Node.List -> Instance.Instance
349
          -> IMove -> OpResult (Node.List, Instance.Instance, Ndx, Ndx)
350
-- Failover (f)
351
applyMove nl inst Failover =
352
    let old_pdx = Instance.pNode inst
353
        old_sdx = Instance.sNode inst
354
        old_p = Container.find old_pdx nl
355
        old_s = Container.find old_sdx nl
356
        int_p = Node.removePri old_p inst
357
        int_s = Node.removeSec old_s inst
358
        force_p = Node.offline old_p
359
        new_nl = do -- Maybe monad
360
          new_p <- Node.addPriEx force_p int_s inst
361
          new_s <- Node.addSec int_p inst old_sdx
362
          let new_inst = Instance.setBoth inst old_sdx old_pdx
363
          return (Container.addTwo old_pdx new_s old_sdx new_p nl,
364
                  new_inst, old_sdx, old_pdx)
365
    in new_nl
366

    
367
-- Replace the primary (f:, r:np, f)
368
applyMove nl inst (ReplacePrimary new_pdx) =
369
    let old_pdx = Instance.pNode inst
370
        old_sdx = Instance.sNode inst
371
        old_p = Container.find old_pdx nl
372
        old_s = Container.find old_sdx nl
373
        tgt_n = Container.find new_pdx nl
374
        int_p = Node.removePri old_p inst
375
        int_s = Node.removeSec old_s inst
376
        force_p = Node.offline old_p
377
        new_nl = do -- Maybe monad
378
          -- check that the current secondary can host the instance
379
          -- during the migration
380
          tmp_s <- Node.addPriEx force_p int_s inst
381
          let tmp_s' = Node.removePri tmp_s inst
382
          new_p <- Node.addPriEx force_p tgt_n inst
383
          new_s <- Node.addSecEx force_p tmp_s' inst new_pdx
384
          let new_inst = Instance.setPri inst new_pdx
385
          return (Container.add new_pdx new_p $
386
                  Container.addTwo old_pdx int_p old_sdx new_s nl,
387
                  new_inst, new_pdx, old_sdx)
388
    in new_nl
389

    
390
-- Replace the secondary (r:ns)
391
applyMove nl inst (ReplaceSecondary new_sdx) =
392
    let old_pdx = Instance.pNode inst
393
        old_sdx = Instance.sNode inst
394
        old_s = Container.find old_sdx nl
395
        tgt_n = Container.find new_sdx nl
396
        int_s = Node.removeSec old_s inst
397
        force_s = Node.offline old_s
398
        new_inst = Instance.setSec inst new_sdx
399
        new_nl = Node.addSecEx force_s tgt_n inst old_pdx >>=
400
                 \new_s -> return (Container.addTwo new_sdx
401
                                   new_s old_sdx int_s nl,
402
                                   new_inst, old_pdx, new_sdx)
403
    in new_nl
404

    
405
-- Replace the secondary and failover (r:np, f)
406
applyMove nl inst (ReplaceAndFailover new_pdx) =
407
    let old_pdx = Instance.pNode inst
408
        old_sdx = Instance.sNode inst
409
        old_p = Container.find old_pdx nl
410
        old_s = Container.find old_sdx nl
411
        tgt_n = Container.find new_pdx nl
412
        int_p = Node.removePri old_p inst
413
        int_s = Node.removeSec old_s inst
414
        force_s = Node.offline old_s
415
        new_nl = do -- Maybe monad
416
          new_p <- Node.addPri tgt_n inst
417
          new_s <- Node.addSecEx force_s int_p inst new_pdx
418
          let new_inst = Instance.setBoth inst new_pdx old_pdx
419
          return (Container.add new_pdx new_p $
420
                  Container.addTwo old_pdx new_s old_sdx int_s nl,
421
                  new_inst, new_pdx, old_pdx)
422
    in new_nl
423

    
424
-- Failver and replace the secondary (f, r:ns)
425
applyMove nl inst (FailoverAndReplace new_sdx) =
426
    let old_pdx = Instance.pNode inst
427
        old_sdx = Instance.sNode inst
428
        old_p = Container.find old_pdx nl
429
        old_s = Container.find old_sdx nl
430
        tgt_n = Container.find new_sdx nl
431
        int_p = Node.removePri old_p inst
432
        int_s = Node.removeSec old_s inst
433
        force_p = Node.offline old_p
434
        new_nl = do -- Maybe monad
435
          new_p <- Node.addPriEx force_p int_s inst
436
          new_s <- Node.addSecEx force_p tgt_n inst old_sdx
437
          let new_inst = Instance.setBoth inst old_sdx new_sdx
438
          return (Container.add new_sdx new_s $
439
                  Container.addTwo old_sdx new_p old_pdx int_p nl,
440
                  new_inst, old_sdx, new_sdx)
441
    in new_nl
442

    
443
-- | Tries to allocate an instance on one given node.
444
allocateOnSingle :: Node.List -> Instance.Instance -> Ndx
445
                 -> OpResult Node.AllocElement
446
allocateOnSingle nl inst new_pdx =
447
    let p = Container.find new_pdx nl
448
        new_inst = Instance.setBoth inst new_pdx Node.noSecondary
449
    in  Node.addPri p inst >>= \new_p -> do
450
      let new_nl = Container.add new_pdx new_p nl
451
          new_score = compCV nl
452
      return (new_nl, new_inst, [new_p], new_score)
453

    
454
-- | Tries to allocate an instance on a given pair of nodes.
455
allocateOnPair :: Node.List -> Instance.Instance -> Ndx -> Ndx
456
               -> OpResult Node.AllocElement
457
allocateOnPair nl inst new_pdx new_sdx =
458
    let tgt_p = Container.find new_pdx nl
459
        tgt_s = Container.find new_sdx nl
460
    in do
461
      new_p <- Node.addPri tgt_p inst
462
      new_s <- Node.addSec tgt_s inst new_pdx
463
      let new_inst = Instance.setBoth inst new_pdx new_sdx
464
          new_nl = Container.addTwo new_pdx new_p new_sdx new_s nl
465
      return (new_nl, new_inst, [new_p, new_s], compCV new_nl)
466

    
467
-- | Tries to perform an instance move and returns the best table
468
-- between the original one and the new one.
469
checkSingleStep :: Table -- ^ The original table
470
                -> Instance.Instance -- ^ The instance to move
471
                -> Table -- ^ The current best table
472
                -> IMove -- ^ The move to apply
473
                -> Table -- ^ The final best table
474
checkSingleStep ini_tbl target cur_tbl move =
475
    let
476
        Table ini_nl ini_il _ ini_plc = ini_tbl
477
        tmp_resu = applyMove ini_nl target move
478
    in
479
      case tmp_resu of
480
        OpFail _ -> cur_tbl
481
        OpGood (upd_nl, new_inst, pri_idx, sec_idx) ->
482
            let tgt_idx = Instance.idx target
483
                upd_cvar = compCV upd_nl
484
                upd_il = Container.add tgt_idx new_inst ini_il
485
                upd_plc = (tgt_idx, pri_idx, sec_idx, move, upd_cvar):ini_plc
486
                upd_tbl = Table upd_nl upd_il upd_cvar upd_plc
487
            in
488
              compareTables cur_tbl upd_tbl
489

    
490
-- | Given the status of the current secondary as a valid new node and
491
-- the current candidate target node, generate the possible moves for
492
-- a instance.
493
possibleMoves :: Bool      -- ^ Whether the secondary node is a valid new node
494
              -> Bool      -- ^ Whether we can change the primary node
495
              -> Ndx       -- ^ Target node candidate
496
              -> [IMove]   -- ^ List of valid result moves
497

    
498
possibleMoves _ False tdx =
499
    [ReplaceSecondary tdx]
500

    
501
possibleMoves True True tdx =
502
    [ReplaceSecondary tdx,
503
     ReplaceAndFailover tdx,
504
     ReplacePrimary tdx,
505
     FailoverAndReplace tdx]
506

    
507
possibleMoves False True tdx =
508
    [ReplaceSecondary tdx,
509
     ReplaceAndFailover tdx]
510

    
511
-- | Compute the best move for a given instance.
512
checkInstanceMove :: [Ndx]             -- ^ Allowed target node indices
513
                  -> Bool              -- ^ Whether disk moves are allowed
514
                  -> Bool              -- ^ Whether instance moves are allowed
515
                  -> Table             -- ^ Original table
516
                  -> Instance.Instance -- ^ Instance to move
517
                  -> Table             -- ^ Best new table for this instance
518
checkInstanceMove nodes_idx disk_moves inst_moves ini_tbl target =
519
    let
520
        opdx = Instance.pNode target
521
        osdx = Instance.sNode target
522
        nodes = filter (\idx -> idx /= opdx && idx /= osdx) nodes_idx
523
        use_secondary = elem osdx nodes_idx && inst_moves
524
        aft_failover = if use_secondary -- if allowed to failover
525
                       then checkSingleStep ini_tbl target ini_tbl Failover
526
                       else ini_tbl
527
        all_moves = if disk_moves
528
                    then concatMap
529
                         (possibleMoves use_secondary inst_moves) nodes
530
                    else []
531
    in
532
      -- iterate over the possible nodes for this instance
533
      foldl' (checkSingleStep ini_tbl target) aft_failover all_moves
534

    
535
-- | Compute the best next move.
536
checkMove :: [Ndx]               -- ^ Allowed target node indices
537
          -> Bool                -- ^ Whether disk moves are allowed
538
          -> Bool                -- ^ Whether instance moves are allowed
539
          -> Table               -- ^ The current solution
540
          -> [Instance.Instance] -- ^ List of instances still to move
541
          -> Table               -- ^ The new solution
542
checkMove nodes_idx disk_moves inst_moves ini_tbl victims =
543
    let Table _ _ _ ini_plc = ini_tbl
544
        -- we're using rwhnf from the Control.Parallel.Strategies
545
        -- package; we don't need to use rnf as that would force too
546
        -- much evaluation in single-threaded cases, and in
547
        -- multi-threaded case the weak head normal form is enough to
548
        -- spark the evaluation
549
        tables = parMap rwhnf (checkInstanceMove nodes_idx disk_moves
550
                               inst_moves ini_tbl)
551
                 victims
552
        -- iterate over all instances, computing the best move
553
        best_tbl = foldl' compareTables ini_tbl tables
554
        Table _ _ _ best_plc = best_tbl
555
    in if length best_plc == length ini_plc
556
       then ini_tbl -- no advancement
557
       else best_tbl
558

    
559
-- | Check if we are allowed to go deeper in the balancing.
560
doNextBalance :: Table     -- ^ The starting table
561
              -> Int       -- ^ Remaining length
562
              -> Score     -- ^ Score at which to stop
563
              -> Bool      -- ^ The resulting table and commands
564
doNextBalance ini_tbl max_rounds min_score =
565
    let Table _ _ ini_cv ini_plc = ini_tbl
566
        ini_plc_len = length ini_plc
567
    in (max_rounds < 0 || ini_plc_len < max_rounds) && ini_cv > min_score
568

    
569
-- | Run a balance move.
570
tryBalance :: Table       -- ^ The starting table
571
           -> Bool        -- ^ Allow disk moves
572
           -> Bool        -- ^ Allow instance moves
573
           -> Bool        -- ^ Only evacuate moves
574
           -> Score       -- ^ Min gain threshold
575
           -> Score       -- ^ Min gain
576
           -> Maybe Table -- ^ The resulting table and commands
577
tryBalance ini_tbl disk_moves inst_moves evac_mode mg_limit min_gain =
578
    let Table ini_nl ini_il ini_cv _ = ini_tbl
579
        all_inst = Container.elems ini_il
580
        all_inst' = if evac_mode
581
                    then let bad_nodes = map Node.idx . filter Node.offline $
582
                                         Container.elems ini_nl
583
                         in filter (any (`elem` bad_nodes) . Instance.allNodes)
584
                            all_inst
585
                    else all_inst
586
        reloc_inst = filter Instance.movable all_inst'
587
        node_idx = map Node.idx . filter (not . Node.offline) $
588
                   Container.elems ini_nl
589
        fin_tbl = checkMove node_idx disk_moves inst_moves ini_tbl reloc_inst
590
        (Table _ _ fin_cv _) = fin_tbl
591
    in
592
      if fin_cv < ini_cv && (ini_cv > mg_limit || ini_cv - fin_cv >= min_gain)
593
      then Just fin_tbl -- this round made success, return the new table
594
      else Nothing
595

    
596
-- * Allocation functions
597

    
598
-- | Build failure stats out of a list of failures.
599
collapseFailures :: [FailMode] -> FailStats
600
collapseFailures flst =
601
    map (\k -> (k, foldl' (\a e -> if e == k then a + 1 else a) 0 flst))
602
            [minBound..maxBound]
603

    
604
-- | Compares two Maybe AllocElement and chooses the besst score.
605
bestAllocElement :: Maybe Node.AllocElement
606
                 -> Maybe Node.AllocElement
607
                 -> Maybe Node.AllocElement
608
bestAllocElement a Nothing = a
609
bestAllocElement Nothing b = b
610
bestAllocElement a@(Just (_, _, _, ascore)) b@(Just (_, _, _, bscore)) =
611
    if ascore < bscore then a else b
612

    
613
-- | Update current Allocation solution and failure stats with new
614
-- elements.
615
concatAllocs :: AllocSolution -> OpResult Node.AllocElement -> AllocSolution
616
concatAllocs as (OpFail reason) = as { asFailures = reason : asFailures as }
617

    
618
concatAllocs as (OpGood ns) =
619
    let -- Choose the old or new solution, based on the cluster score
620
        cntok = asAllocs as
621
        osols = asSolution as
622
        nsols = bestAllocElement osols (Just ns)
623
        nsuc = cntok + 1
624
    -- Note: we force evaluation of nsols here in order to keep the
625
    -- memory profile low - we know that we will need nsols for sure
626
    -- in the next cycle, so we force evaluation of nsols, since the
627
    -- foldl' in the caller will only evaluate the tuple, but not the
628
    -- elements of the tuple
629
    in nsols `seq` nsuc `seq` as { asAllocs = nsuc, asSolution = nsols }
630

    
631
-- | Sums two 'AllocSolution' structures.
632
sumAllocs :: AllocSolution -> AllocSolution -> AllocSolution
633
sumAllocs (AllocSolution aFails aAllocs aSols aLog)
634
          (AllocSolution bFails bAllocs bSols bLog) =
635
    -- note: we add b first, since usually it will be smaller; when
636
    -- fold'ing, a will grow and grow whereas b is the per-group
637
    -- result, hence smaller
638
    let nFails  = bFails ++ aFails
639
        nAllocs = aAllocs + bAllocs
640
        nSols   = bestAllocElement aSols bSols
641
        nLog    = bLog ++ aLog
642
    in AllocSolution nFails nAllocs nSols nLog
643

    
644
-- | Given a solution, generates a reasonable description for it.
645
describeSolution :: AllocSolution -> String
646
describeSolution as =
647
  let fcnt = asFailures as
648
      sols = asSolution as
649
      freasons =
650
        intercalate ", " . map (\(a, b) -> printf "%s: %d" (show a) b) .
651
        filter ((> 0) . snd) . collapseFailures $ fcnt
652
  in case sols of
653
     Nothing -> "No valid allocation solutions, failure reasons: " ++
654
                (if null fcnt then "unknown reasons" else freasons)
655
     Just (_, _, nodes, cv) ->
656
         printf ("score: %.8f, successes %d, failures %d (%s)" ++
657
                 " for node(s) %s") cv (asAllocs as) (length fcnt) freasons
658
               (intercalate "/" . map Node.name $ nodes)
659

    
660
-- | Annotates a solution with the appropriate string.
661
annotateSolution :: AllocSolution -> AllocSolution
662
annotateSolution as = as { asLog = describeSolution as : asLog as }
663

    
664
-- | Reverses an evacuation solution.
665
--
666
-- Rationale: we always concat the results to the top of the lists, so
667
-- for proper jobset execution, we should reverse all lists.
668
reverseEvacSolution :: EvacSolution -> EvacSolution
669
reverseEvacSolution (EvacSolution f m o) =
670
    EvacSolution (reverse f) (reverse m) (reverse o)
671

    
672
-- | Generate the valid node allocation singles or pairs for a new instance.
673
genAllocNodes :: Group.List        -- ^ Group list
674
              -> Node.List         -- ^ The node map
675
              -> Int               -- ^ The number of nodes required
676
              -> Bool              -- ^ Whether to drop or not
677
                                   -- unallocable nodes
678
              -> Result AllocNodes -- ^ The (monadic) result
679
genAllocNodes gl nl count drop_unalloc =
680
    let filter_fn = if drop_unalloc
681
                    then filter (Group.isAllocable .
682
                                 flip Container.find gl . Node.group)
683
                    else id
684
        all_nodes = filter_fn $ getOnline nl
685
        all_pairs = [(Node.idx p,
686
                      [Node.idx s | s <- all_nodes,
687
                                         Node.idx p /= Node.idx s,
688
                                         Node.group p == Node.group s]) |
689
                     p <- all_nodes]
690
    in case count of
691
         1 -> Ok (Left (map Node.idx all_nodes))
692
         2 -> Ok (Right (filter (not . null . snd) all_pairs))
693
         _ -> Bad "Unsupported number of nodes, only one or two  supported"
694

    
695
-- | Try to allocate an instance on the cluster.
696
tryAlloc :: (Monad m) =>
697
            Node.List         -- ^ The node list
698
         -> Instance.List     -- ^ The instance list
699
         -> Instance.Instance -- ^ The instance to allocate
700
         -> AllocNodes        -- ^ The allocation targets
701
         -> m AllocSolution   -- ^ Possible solution list
702
tryAlloc _  _ _    (Right []) = fail "Not enough online nodes"
703
tryAlloc nl _ inst (Right ok_pairs) =
704
    let psols = parMap rwhnf (\(p, ss) ->
705
                                  foldl' (\cstate ->
706
                                          concatAllocs cstate .
707
                                          allocateOnPair nl inst p)
708
                                  emptyAllocSolution ss) ok_pairs
709
        sols = foldl' sumAllocs emptyAllocSolution psols
710
    in return $ annotateSolution sols
711

    
712
tryAlloc _  _ _    (Left []) = fail "No online nodes"
713
tryAlloc nl _ inst (Left all_nodes) =
714
    let sols = foldl' (\cstate ->
715
                           concatAllocs cstate . allocateOnSingle nl inst
716
                      ) emptyAllocSolution all_nodes
717
    in return $ annotateSolution sols
718

    
719
-- | Given a group/result, describe it as a nice (list of) messages.
720
solutionDescription :: Group.List -> (Gdx, Result AllocSolution) -> [String]
721
solutionDescription gl (groupId, result) =
722
  case result of
723
    Ok solution -> map (printf "Group %s (%s): %s" gname pol) (asLog solution)
724
    Bad message -> [printf "Group %s: error %s" gname message]
725
  where grp = Container.find groupId gl
726
        gname = Group.name grp
727
        pol = allocPolicyToString (Group.allocPolicy grp)
728

    
729
-- | From a list of possibly bad and possibly empty solutions, filter
730
-- only the groups with a valid result. Note that the result will be
731
-- reversed compared to the original list.
732
filterMGResults :: Group.List
733
                -> [(Gdx, Result AllocSolution)]
734
                -> [(Gdx, AllocSolution)]
735
filterMGResults gl = foldl' fn []
736
    where unallocable = not . Group.isAllocable . flip Container.find gl
737
          fn accu (gdx, rasol) =
738
              case rasol of
739
                Bad _ -> accu
740
                Ok sol | isNothing (asSolution sol) -> accu
741
                       | unallocable gdx -> accu
742
                       | otherwise -> (gdx, sol):accu
743

    
744
-- | Sort multigroup results based on policy and score.
745
sortMGResults :: Group.List
746
             -> [(Gdx, AllocSolution)]
747
             -> [(Gdx, AllocSolution)]
748
sortMGResults gl sols =
749
    let extractScore (_, _, _, x) = x
750
        solScore (gdx, sol) = (Group.allocPolicy (Container.find gdx gl),
751
                               (extractScore . fromJust . asSolution) sol)
752
    in sortBy (comparing solScore) sols
753

    
754
-- | Finds the best group for an instance on a multi-group cluster.
755
--
756
-- Only solutions in @preferred@ and @last_resort@ groups will be
757
-- accepted as valid, and additionally if the allowed groups parameter
758
-- is not null then allocation will only be run for those group
759
-- indices.
760
findBestAllocGroup :: Group.List           -- ^ The group list
761
                   -> Node.List            -- ^ The node list
762
                   -> Instance.List        -- ^ The instance list
763
                   -> Maybe [Gdx]          -- ^ The allowed groups
764
                   -> Instance.Instance    -- ^ The instance to allocate
765
                   -> Int                  -- ^ Required number of nodes
766
                   -> Result (Gdx, AllocSolution, [String])
767
findBestAllocGroup mggl mgnl mgil allowed_gdxs inst cnt =
768
  let groups = splitCluster mgnl mgil
769
      groups' = maybe groups (\gs -> filter ((`elem` gs) . fst) groups)
770
                allowed_gdxs
771
      sols = map (\(gid, (nl, il)) ->
772
                   (gid, genAllocNodes mggl nl cnt False >>=
773
                       tryAlloc nl il inst))
774
             groups'::[(Gdx, Result AllocSolution)]
775
      all_msgs = concatMap (solutionDescription mggl) sols
776
      goodSols = filterMGResults mggl sols
777
      sortedSols = sortMGResults mggl goodSols
778
  in if null sortedSols
779
     then Bad $ intercalate ", " all_msgs
780
     else let (final_group, final_sol) = head sortedSols
781
          in return (final_group, final_sol, all_msgs)
782

    
783
-- | Try to allocate an instance on a multi-group cluster.
784
tryMGAlloc :: Group.List           -- ^ The group list
785
           -> Node.List            -- ^ The node list
786
           -> Instance.List        -- ^ The instance list
787
           -> Instance.Instance    -- ^ The instance to allocate
788
           -> Int                  -- ^ Required number of nodes
789
           -> Result AllocSolution -- ^ Possible solution list
790
tryMGAlloc mggl mgnl mgil inst cnt = do
791
  (best_group, solution, all_msgs) <-
792
      findBestAllocGroup mggl mgnl mgil Nothing inst cnt
793
  let group_name = Group.name $ Container.find best_group mggl
794
      selmsg = "Selected group: " ++ group_name
795
  return $ solution { asLog = selmsg:all_msgs }
796

    
797
-- | Try to relocate an instance on the cluster.
798
tryReloc :: (Monad m) =>
799
            Node.List       -- ^ The node list
800
         -> Instance.List   -- ^ The instance list
801
         -> Idx             -- ^ The index of the instance to move
802
         -> Int             -- ^ The number of nodes required
803
         -> [Ndx]           -- ^ Nodes which should not be used
804
         -> m AllocSolution -- ^ Solution list
805
tryReloc nl il xid 1 ex_idx =
806
    let all_nodes = getOnline nl
807
        inst = Container.find xid il
808
        ex_idx' = Instance.pNode inst:ex_idx
809
        valid_nodes = filter (not . flip elem ex_idx' . Node.idx) all_nodes
810
        valid_idxes = map Node.idx valid_nodes
811
        sols1 = foldl' (\cstate x ->
812
                            let em = do
813
                                  (mnl, i, _, _) <-
814
                                      applyMove nl inst (ReplaceSecondary x)
815
                                  return (mnl, i, [Container.find x mnl],
816
                                          compCV mnl)
817
                            in concatAllocs cstate em
818
                       ) emptyAllocSolution valid_idxes
819
    in return sols1
820

    
821
tryReloc _ _ _ reqn _  = fail $ "Unsupported number of relocation \
822
                                \destinations required (" ++ show reqn ++
823
                                                  "), only one supported"
824

    
825
-- | Function which fails if the requested mode is change secondary.
826
--
827
-- This is useful since except DRBD, no other disk template can
828
-- execute change secondary; thus, we can just call this function
829
-- instead of always checking for secondary mode. After the call to
830
-- this function, whatever mode we have is just a primary change.
831
failOnSecondaryChange :: (Monad m) => EvacMode -> DiskTemplate -> m ()
832
failOnSecondaryChange ChangeSecondary dt =
833
    fail $ "Instances with disk template '" ++ diskTemplateToString dt ++
834
         "' can't execute change secondary"
835
failOnSecondaryChange _ _ = return ()
836

    
837
-- | Run evacuation for a single instance.
838
--
839
-- /Note:/ this function should correctly execute both intra-group
840
-- evacuations (in all modes) and inter-group evacuations (in the
841
-- 'ChangeAll' mode). Of course, this requires that the correct list
842
-- of target nodes is passed.
843
nodeEvacInstance :: Node.List         -- ^ The node list (cluster-wide)
844
                 -> Instance.List     -- ^ Instance list (cluster-wide)
845
                 -> EvacMode          -- ^ The evacuation mode
846
                 -> Instance.Instance -- ^ The instance to be evacuated
847
                 -> Gdx               -- ^ The group we're targetting
848
                 -> [Ndx]             -- ^ The list of available nodes
849
                                      -- for allocation
850
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode])
851
nodeEvacInstance _ _ mode (Instance.Instance
852
                           {Instance.diskTemplate = dt@DTDiskless}) _ _ =
853
                  failOnSecondaryChange mode dt >>
854
                  fail "Diskless relocations not implemented yet"
855

    
856
nodeEvacInstance _ _ _ (Instance.Instance
857
                        {Instance.diskTemplate = DTPlain}) _ _ =
858
                  fail "Instances of type plain cannot be relocated"
859

    
860
nodeEvacInstance _ _ _ (Instance.Instance
861
                        {Instance.diskTemplate = DTFile}) _ _ =
862
                  fail "Instances of type file cannot be relocated"
863

    
864
nodeEvacInstance _ _ mode  (Instance.Instance
865
                            {Instance.diskTemplate = dt@DTSharedFile}) _ _ =
866
                  failOnSecondaryChange mode dt >>
867
                  fail "Shared file relocations not implemented yet"
868

    
869
nodeEvacInstance _ _ mode (Instance.Instance
870
                           {Instance.diskTemplate = dt@DTBlock}) _ _ =
871
                  failOnSecondaryChange mode dt >>
872
                  fail "Block device relocations not implemented yet"
873

    
874
nodeEvacInstance nl il ChangePrimary
875
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
876
                 _ _ =
877
  do
878
    (nl', inst', _, _) <- opToResult $ applyMove nl inst Failover
879
    let idx = Instance.idx inst
880
        il' = Container.add idx inst' il
881
        ops = iMoveToJob nl' il' idx Failover
882
    return (nl', il', ops)
883

    
884
nodeEvacInstance nl il ChangeSecondary
885
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
886
                 gdx avail_nodes =
887
  do
888
    (nl', inst', _, ndx) <- annotateResult "Can't find any good node" $
889
                            eitherToResult $
890
                            foldl' (evacDrbdSecondaryInner nl inst gdx)
891
                            (Left "no nodes available") avail_nodes
892
    let idx = Instance.idx inst
893
        il' = Container.add idx inst' il
894
        ops = iMoveToJob nl' il' idx (ReplaceSecondary ndx)
895
    return (nl', il', ops)
896

    
897
-- The algorithm for ChangeAll is as follows:
898
--
899
-- * generate all (primary, secondary) node pairs for the target groups
900
-- * for each pair, execute the needed moves (r:s, f, r:s) and compute
901
--   the final node list state and group score
902
-- * select the best choice via a foldl that uses the same Either
903
--   String solution as the ChangeSecondary mode
904
nodeEvacInstance nl il ChangeAll
905
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
906
                 gdx avail_nodes =
907
  do
908
    let no_nodes = Left "no nodes available"
909
        node_pairs = [(p,s) | p <- avail_nodes, s <- avail_nodes, p /= s]
910
    (nl', il', ops, _) <-
911
        annotateResult "Can't find any good nodes for relocation" $
912
        eitherToResult $
913
        foldl'
914
        (\accu nodes -> case evacDrbdAllInner nl il inst gdx nodes of
915
                          Bad msg ->
916
                              case accu of
917
                                Right _ -> accu
918
                                -- we don't need more details (which
919
                                -- nodes, etc.) as we only selected
920
                                -- this group if we can allocate on
921
                                -- it, hence failures will not
922
                                -- propagate out of this fold loop
923
                                Left _ -> Left $ "Allocation failed: " ++ msg
924
                          Ok result@(_, _, _, new_cv) ->
925
                              let new_accu = Right result in
926
                              case accu of
927
                                Left _ -> new_accu
928
                                Right (_, _, _, old_cv) ->
929
                                    if old_cv < new_cv
930
                                    then accu
931
                                    else new_accu
932
        ) no_nodes node_pairs
933

    
934
    return (nl', il', ops)
935

    
936
-- | Inner fold function for changing secondary of a DRBD instance.
937
--
938
-- The running solution is either a @Left String@, which means we
939
-- don't have yet a working solution, or a @Right (...)@, which
940
-- represents a valid solution; it holds the modified node list, the
941
-- modified instance (after evacuation), the score of that solution,
942
-- and the new secondary node index.
943
evacDrbdSecondaryInner :: Node.List -- ^ Cluster node list
944
                       -> Instance.Instance -- ^ Instance being evacuated
945
                       -> Gdx -- ^ The group index of the instance
946
                       -> Either String ( Node.List
947
                                        , Instance.Instance
948
                                        , Score
949
                                        , Ndx)  -- ^ Current best solution
950
                       -> Ndx  -- ^ Node we're evaluating as new secondary
951
                       -> Either String ( Node.List
952
                                        , Instance.Instance
953
                                        , Score
954
                                        , Ndx) -- ^ New best solution
955
evacDrbdSecondaryInner nl inst gdx accu ndx =
956
    case applyMove nl inst (ReplaceSecondary ndx) of
957
      OpFail fm ->
958
          case accu of
959
            Right _ -> accu
960
            Left _ -> Left $ "Node " ++ Container.nameOf nl ndx ++
961
                      " failed: " ++ show fm
962
      OpGood (nl', inst', _, _) ->
963
          let nodes = Container.elems nl'
964
              -- The fromJust below is ugly (it can fail nastily), but
965
              -- at this point we should have any internal mismatches,
966
              -- and adding a monad here would be quite involved
967
              grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
968
              new_cv = compCVNodes grpnodes
969
              new_accu = Right (nl', inst', new_cv, ndx)
970
          in case accu of
971
               Left _ -> new_accu
972
               Right (_, _, old_cv, _) ->
973
                   if old_cv < new_cv
974
                   then accu
975
                   else new_accu
976

    
977
-- | Compute result of changing all nodes of a DRBD instance.
978
--
979
-- Given the target primary and secondary node (which might be in a
980
-- different group or not), this function will 'execute' all the
981
-- required steps and assuming all operations succceed, will return
982
-- the modified node and instance lists, the opcodes needed for this
983
-- and the new group score.
984
evacDrbdAllInner :: Node.List         -- ^ Cluster node list
985
                 -> Instance.List     -- ^ Cluster instance list
986
                 -> Instance.Instance -- ^ The instance to be moved
987
                 -> Gdx               -- ^ The target group index
988
                                      -- (which can differ from the
989
                                      -- current group of the
990
                                      -- instance)
991
                 -> (Ndx, Ndx)        -- ^ Tuple of new
992
                                      -- primary\/secondary nodes
993
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode], Score)
994
evacDrbdAllInner nl il inst gdx (t_pdx, t_sdx) =
995
  do
996
    let primary = Container.find (Instance.pNode inst) nl
997
        idx = Instance.idx inst
998
    -- if the primary is offline, then we first failover
999
    (nl1, inst1, ops1) <-
1000
        if Node.offline primary
1001
        then do
1002
          (nl', inst', _, _) <-
1003
              annotateResult "Failing over to the secondary" $
1004
              opToResult $ applyMove nl inst Failover
1005
          return (nl', inst', [Failover])
1006
        else return (nl, inst, [])
1007
    let (o1, o2, o3) = (ReplaceSecondary t_pdx,
1008
                        Failover,
1009
                        ReplaceSecondary t_sdx)
1010
    -- we now need to execute a replace secondary to the future
1011
    -- primary node
1012
    (nl2, inst2, _, _) <-
1013
        annotateResult "Changing secondary to new primary" $
1014
        opToResult $
1015
        applyMove nl1 inst1 o1
1016
    let ops2 = o1:ops1
1017
    -- we now execute another failover, the primary stays fixed now
1018
    (nl3, inst3, _, _) <- annotateResult "Failing over to new primary" $
1019
                          opToResult $ applyMove nl2 inst2 o2
1020
    let ops3 = o2:ops2
1021
    -- and finally another replace secondary, to the final secondary
1022
    (nl4, inst4, _, _) <-
1023
        annotateResult "Changing secondary to final secondary" $
1024
        opToResult $
1025
        applyMove nl3 inst3 o3
1026
    let ops4 = o3:ops3
1027
        il' = Container.add idx inst4 il
1028
        ops = concatMap (iMoveToJob nl4 il' idx) $ reverse ops4
1029
    let nodes = Container.elems nl4
1030
        -- The fromJust below is ugly (it can fail nastily), but
1031
        -- at this point we should have any internal mismatches,
1032
        -- and adding a monad here would be quite involved
1033
        grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
1034
        new_cv = compCVNodes grpnodes
1035
    return (nl4, il', ops, new_cv)
1036

    
1037
-- | Computes the nodes in a given group which are available for
1038
-- allocation.
1039
availableGroupNodes :: [(Gdx, [Ndx])] -- ^ Group index/node index assoc list
1040
                    -> IntSet.IntSet  -- ^ Nodes that are excluded
1041
                    -> Gdx            -- ^ The group for which we
1042
                                      -- query the nodes
1043
                    -> Result [Ndx]   -- ^ List of available node indices
1044
availableGroupNodes group_nodes excl_ndx gdx = do
1045
  local_nodes <- maybe (Bad $ "Can't find group with index " ++ show gdx)
1046
                 Ok (lookup gdx group_nodes)
1047
  let avail_nodes = filter (not . flip IntSet.member excl_ndx) local_nodes
1048
  return avail_nodes
1049

    
1050
-- | Updates the evac solution with the results of an instance
1051
-- evacuation.
1052
updateEvacSolution :: (Node.List, Instance.List, EvacSolution)
1053
                   -> Idx
1054
                   -> Result (Node.List, Instance.List, [OpCodes.OpCode])
1055
                   -> (Node.List, Instance.List, EvacSolution)
1056
updateEvacSolution (nl, il, es) idx (Bad msg) =
1057
    (nl, il, es { esFailed = (idx, msg):esFailed es})
1058
updateEvacSolution (_, _, es) idx (Ok (nl, il, opcodes)) =
1059
    (nl, il, es { esMoved = new_elem:esMoved es
1060
                , esOpCodes = [opcodes]:esOpCodes es })
1061
     where inst = Container.find idx il
1062
           new_elem = (idx,
1063
                       instancePriGroup nl inst,
1064
                       Instance.allNodes inst)
1065

    
1066
-- | Node-evacuation IAllocator mode main function.
1067
tryNodeEvac :: Group.List    -- ^ The cluster groups
1068
            -> Node.List     -- ^ The node list (cluster-wide, not per group)
1069
            -> Instance.List -- ^ Instance list (cluster-wide)
1070
            -> EvacMode      -- ^ The evacuation mode
1071
            -> [Idx]         -- ^ List of instance (indices) to be evacuated
1072
            -> Result (Node.List, Instance.List, EvacSolution)
1073
tryNodeEvac _ ini_nl ini_il mode idxs =
1074
    let evac_ndx = nodesToEvacuate ini_il mode idxs
1075
        offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1076
        excl_ndx = foldl' (flip IntSet.insert) evac_ndx offline
1077
        group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1078
                                             (Container.elems nl))) $
1079
                      splitCluster ini_nl ini_il
1080
        (fin_nl, fin_il, esol) =
1081
            foldl' (\state@(nl, il, _) inst ->
1082
                        let gdx = instancePriGroup nl inst
1083
                            pdx = Instance.pNode inst in
1084
                        updateEvacSolution state (Instance.idx inst) $
1085
                        availableGroupNodes group_ndx
1086
                          (IntSet.insert pdx excl_ndx) gdx >>=
1087
                        nodeEvacInstance nl il mode inst gdx
1088
                   )
1089
            (ini_nl, ini_il, emptyEvacSolution)
1090
            (map (`Container.find` ini_il) idxs)
1091
    in return (fin_nl, fin_il, reverseEvacSolution esol)
1092

    
1093
-- | Change-group IAllocator mode main function.
1094
--
1095
-- This is very similar to 'tryNodeEvac', the only difference is that
1096
-- we don't choose as target group the current instance group, but
1097
-- instead:
1098
--
1099
--   1. at the start of the function, we compute which are the target
1100
--   groups; either no groups were passed in, in which case we choose
1101
--   all groups out of which we don't evacuate instance, or there were
1102
--   some groups passed, in which case we use those
1103
--
1104
--   2. for each instance, we use 'findBestAllocGroup' to choose the
1105
--   best group to hold the instance, and then we do what
1106
--   'tryNodeEvac' does, except for this group instead of the current
1107
--   instance group.
1108
--
1109
-- Note that the correct behaviour of this function relies on the
1110
-- function 'nodeEvacInstance' to be able to do correctly both
1111
-- intra-group and inter-group moves when passed the 'ChangeAll' mode.
1112
tryChangeGroup :: Group.List    -- ^ The cluster groups
1113
               -> Node.List     -- ^ The node list (cluster-wide)
1114
               -> Instance.List -- ^ Instance list (cluster-wide)
1115
               -> [Gdx]         -- ^ Target groups; if empty, any
1116
                                -- groups not being evacuated
1117
               -> [Idx]         -- ^ List of instance (indices) to be evacuated
1118
               -> Result (Node.List, Instance.List, EvacSolution)
1119
tryChangeGroup gl ini_nl ini_il gdxs idxs =
1120
    let evac_gdxs = nub $ map (instancePriGroup ini_nl .
1121
                               flip Container.find ini_il) idxs
1122
        target_gdxs = (if null gdxs
1123
                       then Container.keys gl
1124
                       else gdxs) \\ evac_gdxs
1125
        offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1126
        excl_ndx = foldl' (flip IntSet.insert) IntSet.empty offline
1127
        group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1128
                                             (Container.elems nl))) $
1129
                      splitCluster ini_nl ini_il
1130
        (fin_nl, fin_il, esol) =
1131
            foldl' (\state@(nl, il, _) inst ->
1132
                        let solution = do
1133
                              let ncnt = Instance.requiredNodes $
1134
                                         Instance.diskTemplate inst
1135
                              (gdx, _, _) <- findBestAllocGroup gl nl il
1136
                                             (Just target_gdxs) inst ncnt
1137
                              av_nodes <- availableGroupNodes group_ndx
1138
                                          excl_ndx gdx
1139
                              nodeEvacInstance nl il ChangeAll inst
1140
                                       gdx av_nodes
1141
                        in updateEvacSolution state
1142
                               (Instance.idx inst) solution
1143
                   )
1144
            (ini_nl, ini_il, emptyEvacSolution)
1145
            (map (`Container.find` ini_il) idxs)
1146
    in return (fin_nl, fin_il, reverseEvacSolution esol)
1147

    
1148
-- | Recursively place instances on the cluster until we're out of space.
1149
iterateAlloc :: Node.List
1150
             -> Instance.List
1151
             -> Maybe Int
1152
             -> Instance.Instance
1153
             -> AllocNodes
1154
             -> [Instance.Instance]
1155
             -> [CStats]
1156
             -> Result AllocResult
1157
iterateAlloc nl il limit newinst allocnodes ixes cstats =
1158
      let depth = length ixes
1159
          newname = printf "new-%d" depth::String
1160
          newidx = length (Container.elems il) + depth
1161
          newi2 = Instance.setIdx (Instance.setName newinst newname) newidx
1162
          newlimit = fmap (flip (-) 1) limit
1163
      in case tryAlloc nl il newi2 allocnodes of
1164
           Bad s -> Bad s
1165
           Ok (AllocSolution { asFailures = errs, asSolution = sols3 }) ->
1166
               let newsol = Ok (collapseFailures errs, nl, il, ixes, cstats) in
1167
               case sols3 of
1168
                 Nothing -> newsol
1169
                 Just (xnl, xi, _, _) ->
1170
                     if limit == Just 0
1171
                     then newsol
1172
                     else iterateAlloc xnl (Container.add newidx xi il)
1173
                          newlimit newinst allocnodes (xi:ixes)
1174
                          (totalResources xnl:cstats)
1175

    
1176
-- | The core of the tiered allocation mode.
1177
tieredAlloc :: Node.List
1178
            -> Instance.List
1179
            -> Maybe Int
1180
            -> Instance.Instance
1181
            -> AllocNodes
1182
            -> [Instance.Instance]
1183
            -> [CStats]
1184
            -> Result AllocResult
1185
tieredAlloc nl il limit newinst allocnodes ixes cstats =
1186
    case iterateAlloc nl il limit newinst allocnodes ixes cstats of
1187
      Bad s -> Bad s
1188
      Ok (errs, nl', il', ixes', cstats') ->
1189
          let newsol = Ok (errs, nl', il', ixes', cstats')
1190
              ixes_cnt = length ixes'
1191
              (stop, newlimit) = case limit of
1192
                                   Nothing -> (False, Nothing)
1193
                                   Just n -> (n <= ixes_cnt,
1194
                                              Just (n - ixes_cnt)) in
1195
          if stop then newsol else
1196
          case Instance.shrinkByType newinst . fst . last $
1197
               sortBy (comparing snd) errs of
1198
            Bad _ -> newsol
1199
            Ok newinst' -> tieredAlloc nl' il' newlimit
1200
                           newinst' allocnodes ixes' cstats'
1201

    
1202
-- * Formatting functions
1203

    
1204
-- | Given the original and final nodes, computes the relocation description.
1205
computeMoves :: Instance.Instance -- ^ The instance to be moved
1206
             -> String -- ^ The instance name
1207
             -> IMove  -- ^ The move being performed
1208
             -> String -- ^ New primary
1209
             -> String -- ^ New secondary
1210
             -> (String, [String])
1211
                -- ^ Tuple of moves and commands list; moves is containing
1212
                -- either @/f/@ for failover or @/r:name/@ for replace
1213
                -- secondary, while the command list holds gnt-instance
1214
                -- commands (without that prefix), e.g \"@failover instance1@\"
1215
computeMoves i inam mv c d =
1216
    case mv of
1217
      Failover -> ("f", [mig])
1218
      FailoverAndReplace _ -> (printf "f r:%s" d, [mig, rep d])
1219
      ReplaceSecondary _ -> (printf "r:%s" d, [rep d])
1220
      ReplaceAndFailover _ -> (printf "r:%s f" c, [rep c, mig])
1221
      ReplacePrimary _ -> (printf "f r:%s f" c, [mig, rep c, mig])
1222
    where morf = if Instance.running i then "migrate" else "failover"
1223
          mig = printf "%s -f %s" morf inam::String
1224
          rep n = printf "replace-disks -n %s %s" n inam
1225

    
1226
-- | Converts a placement to string format.
1227
printSolutionLine :: Node.List     -- ^ The node list
1228
                  -> Instance.List -- ^ The instance list
1229
                  -> Int           -- ^ Maximum node name length
1230
                  -> Int           -- ^ Maximum instance name length
1231
                  -> Placement     -- ^ The current placement
1232
                  -> Int           -- ^ The index of the placement in
1233
                                   -- the solution
1234
                  -> (String, [String])
1235
printSolutionLine nl il nmlen imlen plc pos =
1236
    let
1237
        pmlen = (2*nmlen + 1)
1238
        (i, p, s, mv, c) = plc
1239
        inst = Container.find i il
1240
        inam = Instance.alias inst
1241
        npri = Node.alias $ Container.find p nl
1242
        nsec = Node.alias $ Container.find s nl
1243
        opri = Node.alias $ Container.find (Instance.pNode inst) nl
1244
        osec = Node.alias $ Container.find (Instance.sNode inst) nl
1245
        (moves, cmds) =  computeMoves inst inam mv npri nsec
1246
        ostr = printf "%s:%s" opri osec::String
1247
        nstr = printf "%s:%s" npri nsec::String
1248
    in
1249
      (printf "  %3d. %-*s %-*s => %-*s %.8f a=%s"
1250
       pos imlen inam pmlen ostr
1251
       pmlen nstr c moves,
1252
       cmds)
1253

    
1254
-- | Return the instance and involved nodes in an instance move.
1255
--
1256
-- Note that the output list length can vary, and is not required nor
1257
-- guaranteed to be of any specific length.
1258
involvedNodes :: Instance.List -- ^ Instance list, used for retrieving
1259
                               -- the instance from its index; note
1260
                               -- that this /must/ be the original
1261
                               -- instance list, so that we can
1262
                               -- retrieve the old nodes
1263
              -> Placement     -- ^ The placement we're investigating,
1264
                               -- containing the new nodes and
1265
                               -- instance index
1266
              -> [Ndx]         -- ^ Resulting list of node indices
1267
involvedNodes il plc =
1268
    let (i, np, ns, _, _) = plc
1269
        inst = Container.find i il
1270
    in nub $ [np, ns] ++ Instance.allNodes inst
1271

    
1272
-- | Inner function for splitJobs, that either appends the next job to
1273
-- the current jobset, or starts a new jobset.
1274
mergeJobs :: ([JobSet], [Ndx]) -> MoveJob -> ([JobSet], [Ndx])
1275
mergeJobs ([], _) n@(ndx, _, _, _) = ([[n]], ndx)
1276
mergeJobs (cjs@(j:js), nbuf) n@(ndx, _, _, _)
1277
    | null (ndx `intersect` nbuf) = ((n:j):js, ndx ++ nbuf)
1278
    | otherwise = ([n]:cjs, ndx)
1279

    
1280
-- | Break a list of moves into independent groups. Note that this
1281
-- will reverse the order of jobs.
1282
splitJobs :: [MoveJob] -> [JobSet]
1283
splitJobs = fst . foldl mergeJobs ([], [])
1284

    
1285
-- | Given a list of commands, prefix them with @gnt-instance@ and
1286
-- also beautify the display a little.
1287
formatJob :: Int -> Int -> (Int, MoveJob) -> [String]
1288
formatJob jsn jsl (sn, (_, _, _, cmds)) =
1289
    let out =
1290
            printf "  echo job %d/%d" jsn sn:
1291
            printf "  check":
1292
            map ("  gnt-instance " ++) cmds
1293
    in if sn == 1
1294
       then ["", printf "echo jobset %d, %d jobs" jsn jsl] ++ out
1295
       else out
1296

    
1297
-- | Given a list of commands, prefix them with @gnt-instance@ and
1298
-- also beautify the display a little.
1299
formatCmds :: [JobSet] -> String
1300
formatCmds =
1301
    unlines .
1302
    concatMap (\(jsn, js) -> concatMap (formatJob jsn (length js))
1303
                             (zip [1..] js)) .
1304
    zip [1..]
1305

    
1306
-- | Print the node list.
1307
printNodes :: Node.List -> [String] -> String
1308
printNodes nl fs =
1309
    let fields = case fs of
1310
          [] -> Node.defaultFields
1311
          "+":rest -> Node.defaultFields ++ rest
1312
          _ -> fs
1313
        snl = sortBy (comparing Node.idx) (Container.elems nl)
1314
        (header, isnum) = unzip $ map Node.showHeader fields
1315
    in unlines . map ((:) ' ' .  intercalate " ") $
1316
       formatTable (header:map (Node.list fields) snl) isnum
1317

    
1318
-- | Print the instance list.
1319
printInsts :: Node.List -> Instance.List -> String
1320
printInsts nl il =
1321
    let sil = sortBy (comparing Instance.idx) (Container.elems il)
1322
        helper inst = [ if Instance.running inst then "R" else " "
1323
                      , Instance.name inst
1324
                      , Container.nameOf nl (Instance.pNode inst)
1325
                      , let sdx = Instance.sNode inst
1326
                        in if sdx == Node.noSecondary
1327
                           then  ""
1328
                           else Container.nameOf nl sdx
1329
                      , if Instance.autoBalance inst then "Y" else "N"
1330
                      , printf "%3d" $ Instance.vcpus inst
1331
                      , printf "%5d" $ Instance.mem inst
1332
                      , printf "%5d" $ Instance.dsk inst `div` 1024
1333
                      , printf "%5.3f" lC
1334
                      , printf "%5.3f" lM
1335
                      , printf "%5.3f" lD
1336
                      , printf "%5.3f" lN
1337
                      ]
1338
            where DynUtil lC lM lD lN = Instance.util inst
1339
        header = [ "F", "Name", "Pri_node", "Sec_node", "Auto_bal"
1340
                 , "vcpu", "mem" , "dsk", "lCpu", "lMem", "lDsk", "lNet" ]
1341
        isnum = False:False:False:False:False:repeat True
1342
    in unlines . map ((:) ' ' . intercalate " ") $
1343
       formatTable (header:map helper sil) isnum
1344

    
1345
-- | Shows statistics for a given node list.
1346
printStats :: Node.List -> String
1347
printStats nl =
1348
    let dcvs = compDetailedCV $ Container.elems nl
1349
        (weights, names) = unzip detailedCVInfo
1350
        hd = zip3 (weights ++ repeat 1) (names ++ repeat "unknown") dcvs
1351
        formatted = map (\(w, header, val) ->
1352
                             printf "%s=%.8f(x%.2f)" header val w::String) hd
1353
    in intercalate ", " formatted
1354

    
1355
-- | Convert a placement into a list of OpCodes (basically a job).
1356
iMoveToJob :: Node.List        -- ^ The node list; only used for node
1357
                               -- names, so any version is good
1358
                               -- (before or after the operation)
1359
           -> Instance.List    -- ^ The instance list; also used for
1360
                               -- names only
1361
           -> Idx              -- ^ The index of the instance being
1362
                               -- moved
1363
           -> IMove            -- ^ The actual move to be described
1364
           -> [OpCodes.OpCode] -- ^ The list of opcodes equivalent to
1365
                               -- the given move
1366
iMoveToJob nl il idx move =
1367
    let inst = Container.find idx il
1368
        iname = Instance.name inst
1369
        lookNode  = Just . Container.nameOf nl
1370
        opF = OpCodes.OpInstanceMigrate iname True False True Nothing
1371
        opR n = OpCodes.OpInstanceReplaceDisks iname (lookNode n)
1372
                OpCodes.ReplaceNewSecondary [] Nothing
1373
    in case move of
1374
         Failover -> [ opF ]
1375
         ReplacePrimary np -> [ opF, opR np, opF ]
1376
         ReplaceSecondary ns -> [ opR ns ]
1377
         ReplaceAndFailover np -> [ opR np, opF ]
1378
         FailoverAndReplace ns -> [ opF, opR ns ]
1379

    
1380
-- * Node group functions
1381

    
1382
-- | Computes the group of an instance.
1383
instanceGroup :: Node.List -> Instance.Instance -> Result Gdx
1384
instanceGroup nl i =
1385
  let sidx = Instance.sNode i
1386
      pnode = Container.find (Instance.pNode i) nl
1387
      snode = if sidx == Node.noSecondary
1388
              then pnode
1389
              else Container.find sidx nl
1390
      pgroup = Node.group pnode
1391
      sgroup = Node.group snode
1392
  in if pgroup /= sgroup
1393
     then fail ("Instance placed accross two node groups, primary " ++
1394
                show pgroup ++ ", secondary " ++ show sgroup)
1395
     else return pgroup
1396

    
1397
-- | Computes the group of an instance per the primary node.
1398
instancePriGroup :: Node.List -> Instance.Instance -> Gdx
1399
instancePriGroup nl i =
1400
  let pnode = Container.find (Instance.pNode i) nl
1401
  in  Node.group pnode
1402

    
1403
-- | Compute the list of badly allocated instances (split across node
1404
-- groups).
1405
findSplitInstances :: Node.List -> Instance.List -> [Instance.Instance]
1406
findSplitInstances nl =
1407
  filter (not . isOk . instanceGroup nl) . Container.elems
1408

    
1409
-- | Splits a cluster into the component node groups.
1410
splitCluster :: Node.List -> Instance.List ->
1411
                [(Gdx, (Node.List, Instance.List))]
1412
splitCluster nl il =
1413
  let ngroups = Node.computeGroups (Container.elems nl)
1414
  in map (\(guuid, nodes) ->
1415
           let nidxs = map Node.idx nodes
1416
               nodes' = zip nidxs nodes
1417
               instances = Container.filter ((`elem` nidxs) . Instance.pNode) il
1418
           in (guuid, (Container.fromList nodes', instances))) ngroups
1419

    
1420
-- | Compute the list of nodes that are to be evacuated, given a list
1421
-- of instances and an evacuation mode.
1422
nodesToEvacuate :: Instance.List -- ^ The cluster-wide instance list
1423
                -> EvacMode      -- ^ The evacuation mode we're using
1424
                -> [Idx]         -- ^ List of instance indices being evacuated
1425
                -> IntSet.IntSet -- ^ Set of node indices
1426
nodesToEvacuate il mode =
1427
    IntSet.delete Node.noSecondary .
1428
    foldl' (\ns idx ->
1429
                let i = Container.find idx il
1430
                    pdx = Instance.pNode i
1431
                    sdx = Instance.sNode i
1432
                    dt = Instance.diskTemplate i
1433
                    withSecondary = case dt of
1434
                                      DTDrbd8 -> IntSet.insert sdx ns
1435
                                      _ -> ns
1436
                in case mode of
1437
                     ChangePrimary   -> IntSet.insert pdx ns
1438
                     ChangeSecondary -> withSecondary
1439
                     ChangeAll       -> IntSet.insert pdx withSecondary
1440
           ) IntSet.empty