Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / HTools / Cluster.hs @ 5f4464db

History | View | Annotate | Download (62.2 kB)

1 e4f08c46 Iustin Pop
{-| Implementation of cluster-wide logic.
2 e4f08c46 Iustin Pop
3 e4f08c46 Iustin Pop
This module holds all pure cluster-logic; I\/O related functionality
4 525bfb36 Iustin Pop
goes into the /Main/ module for the individual binaries.
5 e4f08c46 Iustin Pop
6 e4f08c46 Iustin Pop
-}
7 e4f08c46 Iustin Pop
8 e2fa2baf Iustin Pop
{-
9 e2fa2baf Iustin Pop
10 aa5b2f07 Iustin Pop
Copyright (C) 2009, 2010, 2011, 2012 Google Inc.
11 e2fa2baf Iustin Pop
12 e2fa2baf Iustin Pop
This program is free software; you can redistribute it and/or modify
13 e2fa2baf Iustin Pop
it under the terms of the GNU General Public License as published by
14 e2fa2baf Iustin Pop
the Free Software Foundation; either version 2 of the License, or
15 e2fa2baf Iustin Pop
(at your option) any later version.
16 e2fa2baf Iustin Pop
17 e2fa2baf Iustin Pop
This program is distributed in the hope that it will be useful, but
18 e2fa2baf Iustin Pop
WITHOUT ANY WARRANTY; without even the implied warranty of
19 e2fa2baf Iustin Pop
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20 e2fa2baf Iustin Pop
General Public License for more details.
21 e2fa2baf Iustin Pop
22 e2fa2baf Iustin Pop
You should have received a copy of the GNU General Public License
23 e2fa2baf Iustin Pop
along with this program; if not, write to the Free Software
24 e2fa2baf Iustin Pop
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25 e2fa2baf Iustin Pop
02110-1301, USA.
26 e2fa2baf Iustin Pop
27 e2fa2baf Iustin Pop
-}
28 e2fa2baf Iustin Pop
29 669d7e3d Iustin Pop
module Ganeti.HTools.Cluster
30 f23f21c3 Iustin Pop
  (
31 f23f21c3 Iustin Pop
    -- * Types
32 f23f21c3 Iustin Pop
    AllocSolution(..)
33 f23f21c3 Iustin Pop
  , EvacSolution(..)
34 f23f21c3 Iustin Pop
  , Table(..)
35 f23f21c3 Iustin Pop
  , CStats(..)
36 f23f21c3 Iustin Pop
  , AllocResult
37 f23f21c3 Iustin Pop
  , AllocMethod
38 f23f21c3 Iustin Pop
  -- * Generic functions
39 f23f21c3 Iustin Pop
  , totalResources
40 f23f21c3 Iustin Pop
  , computeAllocationDelta
41 f23f21c3 Iustin Pop
  -- * First phase functions
42 f23f21c3 Iustin Pop
  , computeBadItems
43 f23f21c3 Iustin Pop
  -- * Second phase functions
44 f23f21c3 Iustin Pop
  , printSolutionLine
45 f23f21c3 Iustin Pop
  , formatCmds
46 f23f21c3 Iustin Pop
  , involvedNodes
47 f23f21c3 Iustin Pop
  , splitJobs
48 f23f21c3 Iustin Pop
  -- * Display functions
49 f23f21c3 Iustin Pop
  , printNodes
50 f23f21c3 Iustin Pop
  , printInsts
51 f23f21c3 Iustin Pop
  -- * Balacing functions
52 f23f21c3 Iustin Pop
  , checkMove
53 f23f21c3 Iustin Pop
  , doNextBalance
54 f23f21c3 Iustin Pop
  , tryBalance
55 f23f21c3 Iustin Pop
  , compCV
56 f23f21c3 Iustin Pop
  , compCVNodes
57 f23f21c3 Iustin Pop
  , compDetailedCV
58 f23f21c3 Iustin Pop
  , printStats
59 f23f21c3 Iustin Pop
  , iMoveToJob
60 f23f21c3 Iustin Pop
  -- * IAllocator functions
61 f23f21c3 Iustin Pop
  , genAllocNodes
62 f23f21c3 Iustin Pop
  , tryAlloc
63 f23f21c3 Iustin Pop
  , tryMGAlloc
64 f23f21c3 Iustin Pop
  , tryNodeEvac
65 f23f21c3 Iustin Pop
  , tryChangeGroup
66 f23f21c3 Iustin Pop
  , collapseFailures
67 f23f21c3 Iustin Pop
  -- * Allocation functions
68 f23f21c3 Iustin Pop
  , iterateAlloc
69 f23f21c3 Iustin Pop
  , tieredAlloc
70 f23f21c3 Iustin Pop
  -- * Node group functions
71 f23f21c3 Iustin Pop
  , instanceGroup
72 f23f21c3 Iustin Pop
  , findSplitInstances
73 f23f21c3 Iustin Pop
  , splitCluster
74 f23f21c3 Iustin Pop
  ) where
75 e4f08c46 Iustin Pop
76 63a78055 Iustin Pop
import qualified Data.IntSet as IntSet
77 e4f08c46 Iustin Pop
import Data.List
78 129734d3 Iustin Pop
import Data.Maybe (fromJust, isNothing)
79 5182e970 Iustin Pop
import Data.Ord (comparing)
80 e4f08c46 Iustin Pop
import Text.Printf (printf)
81 e4f08c46 Iustin Pop
82 669d7e3d Iustin Pop
import qualified Ganeti.HTools.Container as Container
83 669d7e3d Iustin Pop
import qualified Ganeti.HTools.Instance as Instance
84 669d7e3d Iustin Pop
import qualified Ganeti.HTools.Node as Node
85 aec636b9 Iustin Pop
import qualified Ganeti.HTools.Group as Group
86 e4c5beaf Iustin Pop
import Ganeti.HTools.Types
87 669d7e3d Iustin Pop
import Ganeti.HTools.Utils
88 1adec4be Iustin Pop
import Ganeti.HTools.Compat
89 6b20875c Iustin Pop
import qualified Ganeti.OpCodes as OpCodes
90 e4f08c46 Iustin Pop
91 9188aeef Iustin Pop
-- * Types
92 9188aeef Iustin Pop
93 0c936d24 Iustin Pop
-- | Allocation\/relocation solution.
94 85d0ddc3 Iustin Pop
data AllocSolution = AllocSolution
95 129734d3 Iustin Pop
  { asFailures :: [FailMode]              -- ^ Failure counts
96 129734d3 Iustin Pop
  , asAllocs   :: Int                     -- ^ Good allocation count
97 129734d3 Iustin Pop
  , asSolution :: Maybe Node.AllocElement -- ^ The actual allocation result
98 129734d3 Iustin Pop
  , asLog      :: [String]                -- ^ Informational messages
99 85d0ddc3 Iustin Pop
  }
100 85d0ddc3 Iustin Pop
101 47eed3f4 Iustin Pop
-- | Node evacuation/group change iallocator result type. This result
102 47eed3f4 Iustin Pop
-- type consists of actual opcodes (a restricted subset) that are
103 47eed3f4 Iustin Pop
-- transmitted back to Ganeti.
104 47eed3f4 Iustin Pop
data EvacSolution = EvacSolution
105 f23f21c3 Iustin Pop
  { esMoved   :: [(Idx, Gdx, [Ndx])]  -- ^ Instances moved successfully
106 f23f21c3 Iustin Pop
  , esFailed  :: [(Idx, String)]      -- ^ Instances which were not
107 f23f21c3 Iustin Pop
                                      -- relocated
108 f23f21c3 Iustin Pop
  , esOpCodes :: [[OpCodes.OpCode]]   -- ^ List of jobs
109 6a855aaa Iustin Pop
  } deriving (Show)
110 47eed3f4 Iustin Pop
111 40ee14bc Iustin Pop
-- | Allocation results, as used in 'iterateAlloc' and 'tieredAlloc'.
112 40ee14bc Iustin Pop
type AllocResult = (FailStats, Node.List, Instance.List,
113 40ee14bc Iustin Pop
                    [Instance.Instance], [CStats])
114 40ee14bc Iustin Pop
115 6cb1649f Iustin Pop
-- | A type denoting the valid allocation mode/pairs.
116 525bfb36 Iustin Pop
--
117 b0631f10 Iustin Pop
-- For a one-node allocation, this will be a @Left ['Ndx']@, whereas
118 b0631f10 Iustin Pop
-- for a two-node allocation, this will be a @Right [('Ndx',
119 b0631f10 Iustin Pop
-- ['Ndx'])]@. In the latter case, the list is basically an
120 b0631f10 Iustin Pop
-- association list, grouped by primary node and holding the potential
121 b0631f10 Iustin Pop
-- secondary nodes in the sub-list.
122 b0631f10 Iustin Pop
type AllocNodes = Either [Ndx] [(Ndx, [Ndx])]
123 6cb1649f Iustin Pop
124 525bfb36 Iustin Pop
-- | The empty solution we start with when computing allocations.
125 97936d51 Iustin Pop
emptyAllocSolution :: AllocSolution
126 97936d51 Iustin Pop
emptyAllocSolution = AllocSolution { asFailures = [], asAllocs = 0
127 129734d3 Iustin Pop
                                   , asSolution = Nothing, asLog = [] }
128 78694255 Iustin Pop
129 47eed3f4 Iustin Pop
-- | The empty evac solution.
130 47eed3f4 Iustin Pop
emptyEvacSolution :: EvacSolution
131 47eed3f4 Iustin Pop
emptyEvacSolution = EvacSolution { esMoved = []
132 47eed3f4 Iustin Pop
                                 , esFailed = []
133 47eed3f4 Iustin Pop
                                 , esOpCodes = []
134 47eed3f4 Iustin Pop
                                 }
135 47eed3f4 Iustin Pop
136 525bfb36 Iustin Pop
-- | The complete state for the balancing solution.
137 262a08a2 Iustin Pop
data Table = Table Node.List Instance.List Score [Placement]
138 6bc39970 Iustin Pop
             deriving (Show, Read)
139 e4f08c46 Iustin Pop
140 179c0828 Iustin Pop
-- | Cluster statistics data type.
141 33e17565 Iustin Pop
data CStats = CStats
142 33e17565 Iustin Pop
  { csFmem :: Integer -- ^ Cluster free mem
143 33e17565 Iustin Pop
  , csFdsk :: Integer -- ^ Cluster free disk
144 33e17565 Iustin Pop
  , csAmem :: Integer -- ^ Cluster allocatable mem
145 33e17565 Iustin Pop
  , csAdsk :: Integer -- ^ Cluster allocatable disk
146 33e17565 Iustin Pop
  , csAcpu :: Integer -- ^ Cluster allocatable cpus
147 33e17565 Iustin Pop
  , csMmem :: Integer -- ^ Max node allocatable mem
148 33e17565 Iustin Pop
  , csMdsk :: Integer -- ^ Max node allocatable disk
149 33e17565 Iustin Pop
  , csMcpu :: Integer -- ^ Max node allocatable cpu
150 33e17565 Iustin Pop
  , csImem :: Integer -- ^ Instance used mem
151 33e17565 Iustin Pop
  , csIdsk :: Integer -- ^ Instance used disk
152 33e17565 Iustin Pop
  , csIcpu :: Integer -- ^ Instance used cpu
153 33e17565 Iustin Pop
  , csTmem :: Double  -- ^ Cluster total mem
154 33e17565 Iustin Pop
  , csTdsk :: Double  -- ^ Cluster total disk
155 33e17565 Iustin Pop
  , csTcpu :: Double  -- ^ Cluster total cpus
156 90c2f1e8 Iustin Pop
  , csVcpu :: Integer -- ^ Cluster total virtual cpus
157 90c2f1e8 Iustin Pop
  , csNcpu :: Double  -- ^ Equivalent to 'csIcpu' but in terms of
158 90c2f1e8 Iustin Pop
                      -- physical CPUs, i.e. normalised used phys CPUs
159 33e17565 Iustin Pop
  , csXmem :: Integer -- ^ Unnacounted for mem
160 33e17565 Iustin Pop
  , csNmem :: Integer -- ^ Node own memory
161 33e17565 Iustin Pop
  , csScore :: Score  -- ^ The cluster score
162 33e17565 Iustin Pop
  , csNinst :: Int    -- ^ The total number of instances
163 33e17565 Iustin Pop
  } deriving (Show, Read)
164 1a7eff0e Iustin Pop
165 7eda951b Iustin Pop
-- | A simple type for allocation functions.
166 7eda951b Iustin Pop
type AllocMethod =  Node.List           -- ^ Node list
167 7eda951b Iustin Pop
                 -> Instance.List       -- ^ Instance list
168 7eda951b Iustin Pop
                 -> Maybe Int           -- ^ Optional allocation limit
169 7eda951b Iustin Pop
                 -> Instance.Instance   -- ^ Instance spec for allocation
170 7eda951b Iustin Pop
                 -> AllocNodes          -- ^ Which nodes we should allocate on
171 7eda951b Iustin Pop
                 -> [Instance.Instance] -- ^ Allocated instances
172 7eda951b Iustin Pop
                 -> [CStats]            -- ^ Running cluster stats
173 7eda951b Iustin Pop
                 -> Result AllocResult  -- ^ Allocation result
174 7eda951b Iustin Pop
175 9188aeef Iustin Pop
-- * Utility functions
176 9188aeef Iustin Pop
177 e4f08c46 Iustin Pop
-- | Verifies the N+1 status and return the affected nodes.
178 e4f08c46 Iustin Pop
verifyN1 :: [Node.Node] -> [Node.Node]
179 9f6dcdea Iustin Pop
verifyN1 = filter Node.failN1
180 e4f08c46 Iustin Pop
181 9188aeef Iustin Pop
{-| Computes the pair of bad nodes and instances.
182 9188aeef Iustin Pop
183 9188aeef Iustin Pop
The bad node list is computed via a simple 'verifyN1' check, and the
184 9188aeef Iustin Pop
bad instance list is the list of primary and secondary instances of
185 9188aeef Iustin Pop
those nodes.
186 9188aeef Iustin Pop
187 9188aeef Iustin Pop
-}
188 9188aeef Iustin Pop
computeBadItems :: Node.List -> Instance.List ->
189 9188aeef Iustin Pop
                   ([Node.Node], [Instance.Instance])
190 9188aeef Iustin Pop
computeBadItems nl il =
191 dbba5246 Iustin Pop
  let bad_nodes = verifyN1 $ getOnline nl
192 5182e970 Iustin Pop
      bad_instances = map (`Container.find` il) .
193 9f6dcdea Iustin Pop
                      sort . nub $
194 2060348b Iustin Pop
                      concatMap (\ n -> Node.sList n ++ Node.pList n) bad_nodes
195 9188aeef Iustin Pop
  in
196 9188aeef Iustin Pop
    (bad_nodes, bad_instances)
197 9188aeef Iustin Pop
198 255f55a9 Iustin Pop
-- | Extracts the node pairs for an instance. This can fail if the
199 255f55a9 Iustin Pop
-- instance is single-homed. FIXME: this needs to be improved,
200 255f55a9 Iustin Pop
-- together with the general enhancement for handling non-DRBD moves.
201 255f55a9 Iustin Pop
instanceNodes :: Node.List -> Instance.Instance ->
202 255f55a9 Iustin Pop
                 (Ndx, Ndx, Node.Node, Node.Node)
203 255f55a9 Iustin Pop
instanceNodes nl inst =
204 255f55a9 Iustin Pop
  let old_pdx = Instance.pNode inst
205 255f55a9 Iustin Pop
      old_sdx = Instance.sNode inst
206 255f55a9 Iustin Pop
      old_p = Container.find old_pdx nl
207 255f55a9 Iustin Pop
      old_s = Container.find old_sdx nl
208 255f55a9 Iustin Pop
  in (old_pdx, old_sdx, old_p, old_s)
209 255f55a9 Iustin Pop
210 525bfb36 Iustin Pop
-- | Zero-initializer for the CStats type.
211 1a7eff0e Iustin Pop
emptyCStats :: CStats
212 90c2f1e8 Iustin Pop
emptyCStats = CStats 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
213 1a7eff0e Iustin Pop
214 525bfb36 Iustin Pop
-- | Update stats with data from a new node.
215 1a7eff0e Iustin Pop
updateCStats :: CStats -> Node.Node -> CStats
216 1a7eff0e Iustin Pop
updateCStats cs node =
217 f23f21c3 Iustin Pop
  let CStats { csFmem = x_fmem, csFdsk = x_fdsk,
218 f23f21c3 Iustin Pop
               csAmem = x_amem, csAcpu = x_acpu, csAdsk = x_adsk,
219 f23f21c3 Iustin Pop
               csMmem = x_mmem, csMdsk = x_mdsk, csMcpu = x_mcpu,
220 f23f21c3 Iustin Pop
               csImem = x_imem, csIdsk = x_idsk, csIcpu = x_icpu,
221 f23f21c3 Iustin Pop
               csTmem = x_tmem, csTdsk = x_tdsk, csTcpu = x_tcpu,
222 90c2f1e8 Iustin Pop
               csVcpu = x_vcpu, csNcpu = x_ncpu,
223 f23f21c3 Iustin Pop
               csXmem = x_xmem, csNmem = x_nmem, csNinst = x_ninst
224 f23f21c3 Iustin Pop
             }
225 f23f21c3 Iustin Pop
        = cs
226 f23f21c3 Iustin Pop
      inc_amem = Node.fMem node - Node.rMem node
227 f23f21c3 Iustin Pop
      inc_amem' = if inc_amem > 0 then inc_amem else 0
228 f23f21c3 Iustin Pop
      inc_adsk = Node.availDisk node
229 f23f21c3 Iustin Pop
      inc_imem = truncate (Node.tMem node) - Node.nMem node
230 f23f21c3 Iustin Pop
                 - Node.xMem node - Node.fMem node
231 f23f21c3 Iustin Pop
      inc_icpu = Node.uCpu node
232 f23f21c3 Iustin Pop
      inc_idsk = truncate (Node.tDsk node) - Node.fDsk node
233 f23f21c3 Iustin Pop
      inc_vcpu = Node.hiCpu node
234 f23f21c3 Iustin Pop
      inc_acpu = Node.availCpu node
235 90c2f1e8 Iustin Pop
      inc_ncpu = fromIntegral (Node.uCpu node) /
236 90c2f1e8 Iustin Pop
                 iPolicyVcpuRatio (Node.iPolicy node)
237 f23f21c3 Iustin Pop
  in cs { csFmem = x_fmem + fromIntegral (Node.fMem node)
238 f23f21c3 Iustin Pop
        , csFdsk = x_fdsk + fromIntegral (Node.fDsk node)
239 f23f21c3 Iustin Pop
        , csAmem = x_amem + fromIntegral inc_amem'
240 f23f21c3 Iustin Pop
        , csAdsk = x_adsk + fromIntegral inc_adsk
241 f23f21c3 Iustin Pop
        , csAcpu = x_acpu + fromIntegral inc_acpu
242 f23f21c3 Iustin Pop
        , csMmem = max x_mmem (fromIntegral inc_amem')
243 f23f21c3 Iustin Pop
        , csMdsk = max x_mdsk (fromIntegral inc_adsk)
244 f23f21c3 Iustin Pop
        , csMcpu = max x_mcpu (fromIntegral inc_acpu)
245 f23f21c3 Iustin Pop
        , csImem = x_imem + fromIntegral inc_imem
246 f23f21c3 Iustin Pop
        , csIdsk = x_idsk + fromIntegral inc_idsk
247 f23f21c3 Iustin Pop
        , csIcpu = x_icpu + fromIntegral inc_icpu
248 f23f21c3 Iustin Pop
        , csTmem = x_tmem + Node.tMem node
249 f23f21c3 Iustin Pop
        , csTdsk = x_tdsk + Node.tDsk node
250 f23f21c3 Iustin Pop
        , csTcpu = x_tcpu + Node.tCpu node
251 f23f21c3 Iustin Pop
        , csVcpu = x_vcpu + fromIntegral inc_vcpu
252 90c2f1e8 Iustin Pop
        , csNcpu = x_ncpu + inc_ncpu
253 f23f21c3 Iustin Pop
        , csXmem = x_xmem + fromIntegral (Node.xMem node)
254 f23f21c3 Iustin Pop
        , csNmem = x_nmem + fromIntegral (Node.nMem node)
255 f23f21c3 Iustin Pop
        , csNinst = x_ninst + length (Node.pList node)
256 f23f21c3 Iustin Pop
        }
257 1a7eff0e Iustin Pop
258 9188aeef Iustin Pop
-- | Compute the total free disk and memory in the cluster.
259 1a7eff0e Iustin Pop
totalResources :: Node.List -> CStats
260 de4ac2c2 Iustin Pop
totalResources nl =
261 f23f21c3 Iustin Pop
  let cs = foldl' updateCStats emptyCStats . Container.elems $ nl
262 f23f21c3 Iustin Pop
  in cs { csScore = compCV nl }
263 9188aeef Iustin Pop
264 9b8fac3d Iustin Pop
-- | Compute the delta between two cluster state.
265 9b8fac3d Iustin Pop
--
266 9b8fac3d Iustin Pop
-- This is used when doing allocations, to understand better the
267 e2436511 Iustin Pop
-- available cluster resources. The return value is a triple of the
268 e2436511 Iustin Pop
-- current used values, the delta that was still allocated, and what
269 e2436511 Iustin Pop
-- was left unallocated.
270 9b8fac3d Iustin Pop
computeAllocationDelta :: CStats -> CStats -> AllocStats
271 9b8fac3d Iustin Pop
computeAllocationDelta cini cfin =
272 80d7d8a1 Iustin Pop
  let CStats {csImem = i_imem, csIdsk = i_idsk, csIcpu = i_icpu,
273 80d7d8a1 Iustin Pop
              csNcpu = i_ncpu } = cini
274 f23f21c3 Iustin Pop
      CStats {csImem = f_imem, csIdsk = f_idsk, csIcpu = f_icpu,
275 80d7d8a1 Iustin Pop
              csTmem = t_mem, csTdsk = t_dsk, csVcpu = f_vcpu,
276 80d7d8a1 Iustin Pop
              csNcpu = f_ncpu, csTcpu = f_tcpu } = cfin
277 80d7d8a1 Iustin Pop
      rini = AllocInfo { allocInfoVCpus = fromIntegral i_icpu
278 80d7d8a1 Iustin Pop
                       , allocInfoNCpus = i_ncpu
279 80d7d8a1 Iustin Pop
                       , allocInfoMem   = fromIntegral i_imem
280 80d7d8a1 Iustin Pop
                       , allocInfoDisk  = fromIntegral i_idsk
281 80d7d8a1 Iustin Pop
                       }
282 80d7d8a1 Iustin Pop
      rfin = AllocInfo { allocInfoVCpus = fromIntegral (f_icpu - i_icpu)
283 80d7d8a1 Iustin Pop
                       , allocInfoNCpus = f_ncpu - i_ncpu
284 80d7d8a1 Iustin Pop
                       , allocInfoMem   = fromIntegral (f_imem - i_imem)
285 80d7d8a1 Iustin Pop
                       , allocInfoDisk  = fromIntegral (f_idsk - i_idsk)
286 80d7d8a1 Iustin Pop
                       }
287 80d7d8a1 Iustin Pop
      runa = AllocInfo { allocInfoVCpus = fromIntegral (f_vcpu - f_icpu)
288 80d7d8a1 Iustin Pop
                       , allocInfoNCpus = f_tcpu - f_ncpu
289 80d7d8a1 Iustin Pop
                       , allocInfoMem   = truncate t_mem - fromIntegral f_imem
290 80d7d8a1 Iustin Pop
                       , allocInfoDisk  = truncate t_dsk - fromIntegral f_idsk
291 80d7d8a1 Iustin Pop
                       }
292 f23f21c3 Iustin Pop
  in (rini, rfin, runa)
293 9b8fac3d Iustin Pop
294 525bfb36 Iustin Pop
-- | The names and weights of the individual elements in the CV list.
295 8a3b30ca Iustin Pop
detailedCVInfo :: [(Double, String)]
296 8a3b30ca Iustin Pop
detailedCVInfo = [ (1,  "free_mem_cv")
297 8a3b30ca Iustin Pop
                 , (1,  "free_disk_cv")
298 8a3b30ca Iustin Pop
                 , (1,  "n1_cnt")
299 8a3b30ca Iustin Pop
                 , (1,  "reserved_mem_cv")
300 8a3b30ca Iustin Pop
                 , (4,  "offline_all_cnt")
301 8a3b30ca Iustin Pop
                 , (16, "offline_pri_cnt")
302 8a3b30ca Iustin Pop
                 , (1,  "vcpu_ratio_cv")
303 8a3b30ca Iustin Pop
                 , (1,  "cpu_load_cv")
304 8a3b30ca Iustin Pop
                 , (1,  "mem_load_cv")
305 8a3b30ca Iustin Pop
                 , (1,  "disk_load_cv")
306 8a3b30ca Iustin Pop
                 , (1,  "net_load_cv")
307 306cccd5 Iustin Pop
                 , (2,  "pri_tags_score")
308 084565ac Iustin Pop
                 , (1,  "spindles_cv")
309 8a3b30ca Iustin Pop
                 ]
310 8a3b30ca Iustin Pop
311 179c0828 Iustin Pop
-- | Holds the weights used by 'compCVNodes' for each metric.
312 8a3b30ca Iustin Pop
detailedCVWeights :: [Double]
313 8a3b30ca Iustin Pop
detailedCVWeights = map fst detailedCVInfo
314 fca250e9 Iustin Pop
315 9188aeef Iustin Pop
-- | Compute the mem and disk covariance.
316 9bb5721c Iustin Pop
compDetailedCV :: [Node.Node] -> [Double]
317 9bb5721c Iustin Pop
compDetailedCV all_nodes =
318 f23f21c3 Iustin Pop
  let (offline, nodes) = partition Node.offline all_nodes
319 f23f21c3 Iustin Pop
      mem_l = map Node.pMem nodes
320 f23f21c3 Iustin Pop
      dsk_l = map Node.pDsk nodes
321 f23f21c3 Iustin Pop
      -- metric: memory covariance
322 f23f21c3 Iustin Pop
      mem_cv = stdDev mem_l
323 f23f21c3 Iustin Pop
      -- metric: disk covariance
324 f23f21c3 Iustin Pop
      dsk_cv = stdDev dsk_l
325 f23f21c3 Iustin Pop
      -- metric: count of instances living on N1 failing nodes
326 f23f21c3 Iustin Pop
      n1_score = fromIntegral . sum . map (\n -> length (Node.sList n) +
327 f23f21c3 Iustin Pop
                                                 length (Node.pList n)) .
328 f23f21c3 Iustin Pop
                 filter Node.failN1 $ nodes :: Double
329 f23f21c3 Iustin Pop
      res_l = map Node.pRem nodes
330 f23f21c3 Iustin Pop
      -- metric: reserved memory covariance
331 f23f21c3 Iustin Pop
      res_cv = stdDev res_l
332 f23f21c3 Iustin Pop
      -- offline instances metrics
333 f23f21c3 Iustin Pop
      offline_ipri = sum . map (length . Node.pList) $ offline
334 f23f21c3 Iustin Pop
      offline_isec = sum . map (length . Node.sList) $ offline
335 f23f21c3 Iustin Pop
      -- metric: count of instances on offline nodes
336 f23f21c3 Iustin Pop
      off_score = fromIntegral (offline_ipri + offline_isec)::Double
337 f23f21c3 Iustin Pop
      -- metric: count of primary instances on offline nodes (this
338 f23f21c3 Iustin Pop
      -- helps with evacuation/failover of primary instances on
339 f23f21c3 Iustin Pop
      -- 2-node clusters with one node offline)
340 f23f21c3 Iustin Pop
      off_pri_score = fromIntegral offline_ipri::Double
341 f23f21c3 Iustin Pop
      cpu_l = map Node.pCpu nodes
342 f23f21c3 Iustin Pop
      -- metric: covariance of vcpu/pcpu ratio
343 f23f21c3 Iustin Pop
      cpu_cv = stdDev cpu_l
344 f23f21c3 Iustin Pop
      -- metrics: covariance of cpu, memory, disk and network load
345 f23f21c3 Iustin Pop
      (c_load, m_load, d_load, n_load) =
346 f23f21c3 Iustin Pop
        unzip4 $ map (\n ->
347 f23f21c3 Iustin Pop
                      let DynUtil c1 m1 d1 n1 = Node.utilLoad n
348 f23f21c3 Iustin Pop
                          DynUtil c2 m2 d2 n2 = Node.utilPool n
349 f23f21c3 Iustin Pop
                      in (c1/c2, m1/m2, d1/d2, n1/n2)) nodes
350 f23f21c3 Iustin Pop
      -- metric: conflicting instance count
351 f23f21c3 Iustin Pop
      pri_tags_inst = sum $ map Node.conflictingPrimaries nodes
352 f23f21c3 Iustin Pop
      pri_tags_score = fromIntegral pri_tags_inst::Double
353 084565ac Iustin Pop
      -- metric: spindles %
354 084565ac Iustin Pop
      spindles_cv = map (\n -> Node.instSpindles n / Node.hiSpindles n) nodes
355 f23f21c3 Iustin Pop
  in [ mem_cv, dsk_cv, n1_score, res_cv, off_score, off_pri_score, cpu_cv
356 f23f21c3 Iustin Pop
     , stdDev c_load, stdDev m_load , stdDev d_load, stdDev n_load
357 084565ac Iustin Pop
     , pri_tags_score, stdDev spindles_cv ]
358 9188aeef Iustin Pop
359 9188aeef Iustin Pop
-- | Compute the /total/ variance.
360 9bb5721c Iustin Pop
compCVNodes :: [Node.Node] -> Double
361 9bb5721c Iustin Pop
compCVNodes = sum . zipWith (*) detailedCVWeights . compDetailedCV
362 9bb5721c Iustin Pop
363 9bb5721c Iustin Pop
-- | Wrapper over 'compCVNodes' for callers that have a 'Node.List'.
364 9188aeef Iustin Pop
compCV :: Node.List -> Double
365 9bb5721c Iustin Pop
compCV = compCVNodes . Container.elems
366 9bb5721c Iustin Pop
367 525bfb36 Iustin Pop
-- | Compute online nodes from a 'Node.List'.
368 dbba5246 Iustin Pop
getOnline :: Node.List -> [Node.Node]
369 dbba5246 Iustin Pop
getOnline = filter (not . Node.offline) . Container.elems
370 dbba5246 Iustin Pop
371 525bfb36 Iustin Pop
-- * Balancing functions
372 9188aeef Iustin Pop
373 9188aeef Iustin Pop
-- | Compute best table. Note that the ordering of the arguments is important.
374 9188aeef Iustin Pop
compareTables :: Table -> Table -> Table
375 9188aeef Iustin Pop
compareTables a@(Table _ _ a_cv _) b@(Table _ _ b_cv _ ) =
376 f23f21c3 Iustin Pop
  if a_cv > b_cv then b else a
377 9188aeef Iustin Pop
378 9188aeef Iustin Pop
-- | Applies an instance move to a given node list and instance.
379 262a08a2 Iustin Pop
applyMove :: Node.List -> Instance.Instance
380 8880d889 Iustin Pop
          -> IMove -> OpResult (Node.List, Instance.Instance, Ndx, Ndx)
381 00b51a14 Iustin Pop
-- Failover (f)
382 e4f08c46 Iustin Pop
applyMove nl inst Failover =
383 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
384 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
385 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
386 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
387 3603605a Iustin Pop
        new_p <- Node.addPriEx (Node.offline old_p) int_s inst
388 f23f21c3 Iustin Pop
        new_s <- Node.addSec int_p inst old_sdx
389 f23f21c3 Iustin Pop
        let new_inst = Instance.setBoth inst old_sdx old_pdx
390 f23f21c3 Iustin Pop
        return (Container.addTwo old_pdx new_s old_sdx new_p nl,
391 f23f21c3 Iustin Pop
                new_inst, old_sdx, old_pdx)
392 f23f21c3 Iustin Pop
  in new_nl
393 e4f08c46 Iustin Pop
394 00b51a14 Iustin Pop
-- Replace the primary (f:, r:np, f)
395 e4f08c46 Iustin Pop
applyMove nl inst (ReplacePrimary new_pdx) =
396 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
397 f23f21c3 Iustin Pop
      tgt_n = Container.find new_pdx nl
398 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
399 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
400 f23f21c3 Iustin Pop
      force_p = Node.offline old_p
401 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
402 f23f21c3 Iustin Pop
                  -- check that the current secondary can host the instance
403 f23f21c3 Iustin Pop
                  -- during the migration
404 f23f21c3 Iustin Pop
        tmp_s <- Node.addPriEx force_p int_s inst
405 f23f21c3 Iustin Pop
        let tmp_s' = Node.removePri tmp_s inst
406 f23f21c3 Iustin Pop
        new_p <- Node.addPriEx force_p tgt_n inst
407 f23f21c3 Iustin Pop
        new_s <- Node.addSecEx force_p tmp_s' inst new_pdx
408 f23f21c3 Iustin Pop
        let new_inst = Instance.setPri inst new_pdx
409 f23f21c3 Iustin Pop
        return (Container.add new_pdx new_p $
410 f23f21c3 Iustin Pop
                Container.addTwo old_pdx int_p old_sdx new_s nl,
411 f23f21c3 Iustin Pop
                new_inst, new_pdx, old_sdx)
412 f23f21c3 Iustin Pop
  in new_nl
413 e4f08c46 Iustin Pop
414 00b51a14 Iustin Pop
-- Replace the secondary (r:ns)
415 e4f08c46 Iustin Pop
applyMove nl inst (ReplaceSecondary new_sdx) =
416 f23f21c3 Iustin Pop
  let old_pdx = Instance.pNode inst
417 f23f21c3 Iustin Pop
      old_sdx = Instance.sNode inst
418 f23f21c3 Iustin Pop
      old_s = Container.find old_sdx nl
419 f23f21c3 Iustin Pop
      tgt_n = Container.find new_sdx nl
420 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
421 f23f21c3 Iustin Pop
      force_s = Node.offline old_s
422 f23f21c3 Iustin Pop
      new_inst = Instance.setSec inst new_sdx
423 f23f21c3 Iustin Pop
      new_nl = Node.addSecEx force_s tgt_n inst old_pdx >>=
424 f23f21c3 Iustin Pop
               \new_s -> return (Container.addTwo new_sdx
425 f23f21c3 Iustin Pop
                                 new_s old_sdx int_s nl,
426 f23f21c3 Iustin Pop
                                 new_inst, old_pdx, new_sdx)
427 f23f21c3 Iustin Pop
  in new_nl
428 e4f08c46 Iustin Pop
429 00b51a14 Iustin Pop
-- Replace the secondary and failover (r:np, f)
430 79ac6b6f Iustin Pop
applyMove nl inst (ReplaceAndFailover new_pdx) =
431 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
432 f23f21c3 Iustin Pop
      tgt_n = Container.find new_pdx nl
433 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
434 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
435 f23f21c3 Iustin Pop
      force_s = Node.offline old_s
436 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
437 f23f21c3 Iustin Pop
        new_p <- Node.addPri tgt_n inst
438 f23f21c3 Iustin Pop
        new_s <- Node.addSecEx force_s int_p inst new_pdx
439 f23f21c3 Iustin Pop
        let new_inst = Instance.setBoth inst new_pdx old_pdx
440 f23f21c3 Iustin Pop
        return (Container.add new_pdx new_p $
441 f23f21c3 Iustin Pop
                Container.addTwo old_pdx new_s old_sdx int_s nl,
442 f23f21c3 Iustin Pop
                new_inst, new_pdx, old_pdx)
443 f23f21c3 Iustin Pop
  in new_nl
444 79ac6b6f Iustin Pop
445 19493d33 Iustin Pop
-- Failver and replace the secondary (f, r:ns)
446 19493d33 Iustin Pop
applyMove nl inst (FailoverAndReplace new_sdx) =
447 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
448 f23f21c3 Iustin Pop
      tgt_n = Container.find new_sdx nl
449 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
450 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
451 f23f21c3 Iustin Pop
      force_p = Node.offline old_p
452 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
453 f23f21c3 Iustin Pop
        new_p <- Node.addPriEx force_p int_s inst
454 f23f21c3 Iustin Pop
        new_s <- Node.addSecEx force_p tgt_n inst old_sdx
455 f23f21c3 Iustin Pop
        let new_inst = Instance.setBoth inst old_sdx new_sdx
456 f23f21c3 Iustin Pop
        return (Container.add new_sdx new_s $
457 f23f21c3 Iustin Pop
                Container.addTwo old_sdx new_p old_pdx int_p nl,
458 f23f21c3 Iustin Pop
                new_inst, old_sdx, new_sdx)
459 f23f21c3 Iustin Pop
  in new_nl
460 19493d33 Iustin Pop
461 9188aeef Iustin Pop
-- | Tries to allocate an instance on one given node.
462 0d66ea67 Iustin Pop
allocateOnSingle :: Node.List -> Instance.Instance -> Ndx
463 1fe81531 Iustin Pop
                 -> OpResult Node.AllocElement
464 0d66ea67 Iustin Pop
allocateOnSingle nl inst new_pdx =
465 f23f21c3 Iustin Pop
  let p = Container.find new_pdx nl
466 f23f21c3 Iustin Pop
      new_inst = Instance.setBoth inst new_pdx Node.noSecondary
467 aa5b2f07 Iustin Pop
  in do
468 aa5b2f07 Iustin Pop
    Instance.instMatchesPolicy inst (Node.iPolicy p)
469 aa5b2f07 Iustin Pop
    new_p <- Node.addPri p inst
470 f23f21c3 Iustin Pop
    let new_nl = Container.add new_pdx new_p nl
471 f23f21c3 Iustin Pop
        new_score = compCV nl
472 f23f21c3 Iustin Pop
    return (new_nl, new_inst, [new_p], new_score)
473 5e15f460 Iustin Pop
474 9188aeef Iustin Pop
-- | Tries to allocate an instance on a given pair of nodes.
475 0d66ea67 Iustin Pop
allocateOnPair :: Node.List -> Instance.Instance -> Ndx -> Ndx
476 1fe81531 Iustin Pop
               -> OpResult Node.AllocElement
477 0d66ea67 Iustin Pop
allocateOnPair nl inst new_pdx new_sdx =
478 f23f21c3 Iustin Pop
  let tgt_p = Container.find new_pdx nl
479 f23f21c3 Iustin Pop
      tgt_s = Container.find new_sdx nl
480 f23f21c3 Iustin Pop
  in do
481 aa5b2f07 Iustin Pop
    Instance.instMatchesPolicy inst (Node.iPolicy tgt_p)
482 f23f21c3 Iustin Pop
    new_p <- Node.addPri tgt_p inst
483 f23f21c3 Iustin Pop
    new_s <- Node.addSec tgt_s inst new_pdx
484 f23f21c3 Iustin Pop
    let new_inst = Instance.setBoth inst new_pdx new_sdx
485 f23f21c3 Iustin Pop
        new_nl = Container.addTwo new_pdx new_p new_sdx new_s nl
486 f23f21c3 Iustin Pop
    return (new_nl, new_inst, [new_p, new_s], compCV new_nl)
487 4a340313 Iustin Pop
488 9188aeef Iustin Pop
-- | Tries to perform an instance move and returns the best table
489 9188aeef Iustin Pop
-- between the original one and the new one.
490 e4f08c46 Iustin Pop
checkSingleStep :: Table -- ^ The original table
491 e4f08c46 Iustin Pop
                -> Instance.Instance -- ^ The instance to move
492 e4f08c46 Iustin Pop
                -> Table -- ^ The current best table
493 e4f08c46 Iustin Pop
                -> IMove -- ^ The move to apply
494 e4f08c46 Iustin Pop
                -> Table -- ^ The final best table
495 e4f08c46 Iustin Pop
checkSingleStep ini_tbl target cur_tbl move =
496 f23f21c3 Iustin Pop
  let Table ini_nl ini_il _ ini_plc = ini_tbl
497 f23f21c3 Iustin Pop
      tmp_resu = applyMove ini_nl target move
498 f23f21c3 Iustin Pop
  in case tmp_resu of
499 f23f21c3 Iustin Pop
       OpFail _ -> cur_tbl
500 f23f21c3 Iustin Pop
       OpGood (upd_nl, new_inst, pri_idx, sec_idx) ->
501 f23f21c3 Iustin Pop
         let tgt_idx = Instance.idx target
502 f23f21c3 Iustin Pop
             upd_cvar = compCV upd_nl
503 f23f21c3 Iustin Pop
             upd_il = Container.add tgt_idx new_inst ini_il
504 f23f21c3 Iustin Pop
             upd_plc = (tgt_idx, pri_idx, sec_idx, move, upd_cvar):ini_plc
505 f23f21c3 Iustin Pop
             upd_tbl = Table upd_nl upd_il upd_cvar upd_plc
506 f23f21c3 Iustin Pop
         in compareTables cur_tbl upd_tbl
507 e4f08c46 Iustin Pop
508 c0501c69 Iustin Pop
-- | Given the status of the current secondary as a valid new node and
509 c0501c69 Iustin Pop
-- the current candidate target node, generate the possible moves for
510 c0501c69 Iustin Pop
-- a instance.
511 5f4464db Iustin Pop
possibleMoves :: MirrorType -- ^ The mirroring type of the instance
512 5f4464db Iustin Pop
              -> Bool       -- ^ Whether the secondary node is a valid new node
513 5f4464db Iustin Pop
              -> Bool       -- ^ Whether we can change the primary node
514 5f4464db Iustin Pop
              -> Ndx        -- ^ Target node candidate
515 5f4464db Iustin Pop
              -> [IMove]    -- ^ List of valid result moves
516 e08424a8 Guido Trotter
517 5f4464db Iustin Pop
possibleMoves MirrorNone _ _ _ = []
518 e08424a8 Guido Trotter
519 5f4464db Iustin Pop
possibleMoves MirrorExternal _ _ _ = []
520 5f4464db Iustin Pop
521 5f4464db Iustin Pop
possibleMoves MirrorInternal _ False tdx =
522 5f4464db Iustin Pop
  [ ReplaceSecondary tdx ]
523 5f4464db Iustin Pop
524 5f4464db Iustin Pop
possibleMoves MirrorInternal True True tdx =
525 f23f21c3 Iustin Pop
  [ ReplaceSecondary tdx
526 f23f21c3 Iustin Pop
  , ReplaceAndFailover tdx
527 f23f21c3 Iustin Pop
  , ReplacePrimary tdx
528 f23f21c3 Iustin Pop
  , FailoverAndReplace tdx
529 f23f21c3 Iustin Pop
  ]
530 40d4eba0 Iustin Pop
531 5f4464db Iustin Pop
possibleMoves MirrorInternal False True tdx =
532 f23f21c3 Iustin Pop
  [ ReplaceSecondary tdx
533 f23f21c3 Iustin Pop
  , ReplaceAndFailover tdx
534 f23f21c3 Iustin Pop
  ]
535 40d4eba0 Iustin Pop
536 40d4eba0 Iustin Pop
-- | Compute the best move for a given instance.
537 c0501c69 Iustin Pop
checkInstanceMove :: [Ndx]             -- ^ Allowed target node indices
538 c0501c69 Iustin Pop
                  -> Bool              -- ^ Whether disk moves are allowed
539 e08424a8 Guido Trotter
                  -> Bool              -- ^ Whether instance moves are allowed
540 c0501c69 Iustin Pop
                  -> Table             -- ^ Original table
541 c0501c69 Iustin Pop
                  -> Instance.Instance -- ^ Instance to move
542 c0501c69 Iustin Pop
                  -> Table             -- ^ Best new table for this instance
543 e08424a8 Guido Trotter
checkInstanceMove nodes_idx disk_moves inst_moves ini_tbl target =
544 f23f21c3 Iustin Pop
  let opdx = Instance.pNode target
545 f23f21c3 Iustin Pop
      osdx = Instance.sNode target
546 3603605a Iustin Pop
      bad_nodes = [opdx, osdx]
547 3603605a Iustin Pop
      nodes = filter (`notElem` bad_nodes) nodes_idx
548 5f4464db Iustin Pop
      mir_type = templateMirrorType $ Instance.diskTemplate target
549 f23f21c3 Iustin Pop
      use_secondary = elem osdx nodes_idx && inst_moves
550 5f4464db Iustin Pop
      aft_failover = if mir_type == MirrorInternal && use_secondary
551 5f4464db Iustin Pop
                       -- if drbd and allowed to failover
552 40d4eba0 Iustin Pop
                       then checkSingleStep ini_tbl target ini_tbl Failover
553 40d4eba0 Iustin Pop
                       else ini_tbl
554 5f4464db Iustin Pop
      all_moves =
555 5f4464db Iustin Pop
        if disk_moves
556 5f4464db Iustin Pop
          then concatMap (possibleMoves mir_type use_secondary inst_moves)
557 5f4464db Iustin Pop
               nodes
558 5f4464db Iustin Pop
          else []
559 4e25d1c2 Iustin Pop
    in
560 4e25d1c2 Iustin Pop
      -- iterate over the possible nodes for this instance
561 9dc6023f Iustin Pop
      foldl' (checkSingleStep ini_tbl target) aft_failover all_moves
562 4e25d1c2 Iustin Pop
563 e4f08c46 Iustin Pop
-- | Compute the best next move.
564 608efcce Iustin Pop
checkMove :: [Ndx]               -- ^ Allowed target node indices
565 c0501c69 Iustin Pop
          -> Bool                -- ^ Whether disk moves are allowed
566 e08424a8 Guido Trotter
          -> Bool                -- ^ Whether instance moves are allowed
567 256810de Iustin Pop
          -> Table               -- ^ The current solution
568 e4f08c46 Iustin Pop
          -> [Instance.Instance] -- ^ List of instances still to move
569 256810de Iustin Pop
          -> Table               -- ^ The new solution
570 e08424a8 Guido Trotter
checkMove nodes_idx disk_moves inst_moves ini_tbl victims =
571 f23f21c3 Iustin Pop
  let Table _ _ _ ini_plc = ini_tbl
572 f23f21c3 Iustin Pop
      -- we're using rwhnf from the Control.Parallel.Strategies
573 f23f21c3 Iustin Pop
      -- package; we don't need to use rnf as that would force too
574 f23f21c3 Iustin Pop
      -- much evaluation in single-threaded cases, and in
575 f23f21c3 Iustin Pop
      -- multi-threaded case the weak head normal form is enough to
576 f23f21c3 Iustin Pop
      -- spark the evaluation
577 f23f21c3 Iustin Pop
      tables = parMap rwhnf (checkInstanceMove nodes_idx disk_moves
578 f23f21c3 Iustin Pop
                             inst_moves ini_tbl)
579 f23f21c3 Iustin Pop
               victims
580 f23f21c3 Iustin Pop
      -- iterate over all instances, computing the best move
581 f23f21c3 Iustin Pop
      best_tbl = foldl' compareTables ini_tbl tables
582 f23f21c3 Iustin Pop
      Table _ _ _ best_plc = best_tbl
583 f23f21c3 Iustin Pop
  in if length best_plc == length ini_plc
584 a804261a Iustin Pop
       then ini_tbl -- no advancement
585 a804261a Iustin Pop
       else best_tbl
586 e4f08c46 Iustin Pop
587 525bfb36 Iustin Pop
-- | Check if we are allowed to go deeper in the balancing.
588 3fea6959 Iustin Pop
doNextBalance :: Table     -- ^ The starting table
589 3fea6959 Iustin Pop
              -> Int       -- ^ Remaining length
590 3fea6959 Iustin Pop
              -> Score     -- ^ Score at which to stop
591 3fea6959 Iustin Pop
              -> Bool      -- ^ The resulting table and commands
592 5ad86777 Iustin Pop
doNextBalance ini_tbl max_rounds min_score =
593 f23f21c3 Iustin Pop
  let Table _ _ ini_cv ini_plc = ini_tbl
594 f23f21c3 Iustin Pop
      ini_plc_len = length ini_plc
595 f23f21c3 Iustin Pop
  in (max_rounds < 0 || ini_plc_len < max_rounds) && ini_cv > min_score
596 5ad86777 Iustin Pop
597 525bfb36 Iustin Pop
-- | Run a balance move.
598 f25e5aac Iustin Pop
tryBalance :: Table       -- ^ The starting table
599 f25e5aac Iustin Pop
           -> Bool        -- ^ Allow disk moves
600 e08424a8 Guido Trotter
           -> Bool        -- ^ Allow instance moves
601 2e28ac32 Iustin Pop
           -> Bool        -- ^ Only evacuate moves
602 848b65c9 Iustin Pop
           -> Score       -- ^ Min gain threshold
603 848b65c9 Iustin Pop
           -> Score       -- ^ Min gain
604 f25e5aac Iustin Pop
           -> Maybe Table -- ^ The resulting table and commands
605 e08424a8 Guido Trotter
tryBalance ini_tbl disk_moves inst_moves evac_mode mg_limit min_gain =
606 5ad86777 Iustin Pop
    let Table ini_nl ini_il ini_cv _ = ini_tbl
607 5ad86777 Iustin Pop
        all_inst = Container.elems ini_il
608 73d12eab Iustin Pop
        all_nodes = Container.elems ini_nl
609 73d12eab Iustin Pop
        (offline_nodes, online_nodes) = partition Node.offline all_nodes
610 2e28ac32 Iustin Pop
        all_inst' = if evac_mode
611 73d12eab Iustin Pop
                      then let bad_nodes = map Node.idx offline_nodes
612 73d12eab Iustin Pop
                           in filter (any (`elem` bad_nodes) .
613 73d12eab Iustin Pop
                                          Instance.allNodes) all_inst
614 73d12eab Iustin Pop
                      else all_inst
615 c424cdc8 Iustin Pop
        reloc_inst = filter Instance.movable all_inst'
616 73d12eab Iustin Pop
        node_idx = map Node.idx online_nodes
617 e08424a8 Guido Trotter
        fin_tbl = checkMove node_idx disk_moves inst_moves ini_tbl reloc_inst
618 5ad86777 Iustin Pop
        (Table _ _ fin_cv _) = fin_tbl
619 f25e5aac Iustin Pop
    in
620 848b65c9 Iustin Pop
      if fin_cv < ini_cv && (ini_cv > mg_limit || ini_cv - fin_cv >= min_gain)
621 5ad86777 Iustin Pop
      then Just fin_tbl -- this round made success, return the new table
622 f25e5aac Iustin Pop
      else Nothing
623 f25e5aac Iustin Pop
624 478df686 Iustin Pop
-- * Allocation functions
625 478df686 Iustin Pop
626 525bfb36 Iustin Pop
-- | Build failure stats out of a list of failures.
627 478df686 Iustin Pop
collapseFailures :: [FailMode] -> FailStats
628 478df686 Iustin Pop
collapseFailures flst =
629 b4bae394 Iustin Pop
    map (\k -> (k, foldl' (\a e -> if e == k then a + 1 else a) 0 flst))
630 b4bae394 Iustin Pop
            [minBound..maxBound]
631 478df686 Iustin Pop
632 d7339c99 Iustin Pop
-- | Compares two Maybe AllocElement and chooses the besst score.
633 d7339c99 Iustin Pop
bestAllocElement :: Maybe Node.AllocElement
634 d7339c99 Iustin Pop
                 -> Maybe Node.AllocElement
635 d7339c99 Iustin Pop
                 -> Maybe Node.AllocElement
636 d7339c99 Iustin Pop
bestAllocElement a Nothing = a
637 d7339c99 Iustin Pop
bestAllocElement Nothing b = b
638 d7339c99 Iustin Pop
bestAllocElement a@(Just (_, _, _, ascore)) b@(Just (_, _, _, bscore)) =
639 9fc18384 Iustin Pop
  if ascore < bscore then a else b
640 d7339c99 Iustin Pop
641 478df686 Iustin Pop
-- | Update current Allocation solution and failure stats with new
642 525bfb36 Iustin Pop
-- elements.
643 1fe81531 Iustin Pop
concatAllocs :: AllocSolution -> OpResult Node.AllocElement -> AllocSolution
644 85d0ddc3 Iustin Pop
concatAllocs as (OpFail reason) = as { asFailures = reason : asFailures as }
645 478df686 Iustin Pop
646 d7339c99 Iustin Pop
concatAllocs as (OpGood ns) =
647 9fc18384 Iustin Pop
  let -- Choose the old or new solution, based on the cluster score
648 9fc18384 Iustin Pop
    cntok = asAllocs as
649 9fc18384 Iustin Pop
    osols = asSolution as
650 9fc18384 Iustin Pop
    nsols = bestAllocElement osols (Just ns)
651 9fc18384 Iustin Pop
    nsuc = cntok + 1
652 478df686 Iustin Pop
    -- Note: we force evaluation of nsols here in order to keep the
653 478df686 Iustin Pop
    -- memory profile low - we know that we will need nsols for sure
654 478df686 Iustin Pop
    -- in the next cycle, so we force evaluation of nsols, since the
655 478df686 Iustin Pop
    -- foldl' in the caller will only evaluate the tuple, but not the
656 7d11799b Iustin Pop
    -- elements of the tuple
657 9fc18384 Iustin Pop
  in nsols `seq` nsuc `seq` as { asAllocs = nsuc, asSolution = nsols }
658 dbba5246 Iustin Pop
659 f828f4aa Iustin Pop
-- | Sums two 'AllocSolution' structures.
660 f828f4aa Iustin Pop
sumAllocs :: AllocSolution -> AllocSolution -> AllocSolution
661 f828f4aa Iustin Pop
sumAllocs (AllocSolution aFails aAllocs aSols aLog)
662 f828f4aa Iustin Pop
          (AllocSolution bFails bAllocs bSols bLog) =
663 9fc18384 Iustin Pop
  -- note: we add b first, since usually it will be smaller; when
664 9fc18384 Iustin Pop
  -- fold'ing, a will grow and grow whereas b is the per-group
665 9fc18384 Iustin Pop
  -- result, hence smaller
666 9fc18384 Iustin Pop
  let nFails  = bFails ++ aFails
667 9fc18384 Iustin Pop
      nAllocs = aAllocs + bAllocs
668 9fc18384 Iustin Pop
      nSols   = bestAllocElement aSols bSols
669 9fc18384 Iustin Pop
      nLog    = bLog ++ aLog
670 9fc18384 Iustin Pop
  in AllocSolution nFails nAllocs nSols nLog
671 f828f4aa Iustin Pop
672 525bfb36 Iustin Pop
-- | Given a solution, generates a reasonable description for it.
673 859fc11d Iustin Pop
describeSolution :: AllocSolution -> String
674 859fc11d Iustin Pop
describeSolution as =
675 859fc11d Iustin Pop
  let fcnt = asFailures as
676 129734d3 Iustin Pop
      sols = asSolution as
677 859fc11d Iustin Pop
      freasons =
678 859fc11d Iustin Pop
        intercalate ", " . map (\(a, b) -> printf "%s: %d" (show a) b) .
679 859fc11d Iustin Pop
        filter ((> 0) . snd) . collapseFailures $ fcnt
680 129734d3 Iustin Pop
  in case sols of
681 129734d3 Iustin Pop
     Nothing -> "No valid allocation solutions, failure reasons: " ++
682 129734d3 Iustin Pop
                (if null fcnt then "unknown reasons" else freasons)
683 129734d3 Iustin Pop
     Just (_, _, nodes, cv) ->
684 129734d3 Iustin Pop
         printf ("score: %.8f, successes %d, failures %d (%s)" ++
685 129734d3 Iustin Pop
                 " for node(s) %s") cv (asAllocs as) (length fcnt) freasons
686 129734d3 Iustin Pop
               (intercalate "/" . map Node.name $ nodes)
687 859fc11d Iustin Pop
688 525bfb36 Iustin Pop
-- | Annotates a solution with the appropriate string.
689 859fc11d Iustin Pop
annotateSolution :: AllocSolution -> AllocSolution
690 859fc11d Iustin Pop
annotateSolution as = as { asLog = describeSolution as : asLog as }
691 859fc11d Iustin Pop
692 47eed3f4 Iustin Pop
-- | Reverses an evacuation solution.
693 47eed3f4 Iustin Pop
--
694 47eed3f4 Iustin Pop
-- Rationale: we always concat the results to the top of the lists, so
695 47eed3f4 Iustin Pop
-- for proper jobset execution, we should reverse all lists.
696 47eed3f4 Iustin Pop
reverseEvacSolution :: EvacSolution -> EvacSolution
697 47eed3f4 Iustin Pop
reverseEvacSolution (EvacSolution f m o) =
698 9fc18384 Iustin Pop
  EvacSolution (reverse f) (reverse m) (reverse o)
699 47eed3f4 Iustin Pop
700 6cb1649f Iustin Pop
-- | Generate the valid node allocation singles or pairs for a new instance.
701 6d0bc5ca Iustin Pop
genAllocNodes :: Group.List        -- ^ Group list
702 6d0bc5ca Iustin Pop
              -> Node.List         -- ^ The node map
703 6cb1649f Iustin Pop
              -> Int               -- ^ The number of nodes required
704 6d0bc5ca Iustin Pop
              -> Bool              -- ^ Whether to drop or not
705 6d0bc5ca Iustin Pop
                                   -- unallocable nodes
706 6cb1649f Iustin Pop
              -> Result AllocNodes -- ^ The (monadic) result
707 6d0bc5ca Iustin Pop
genAllocNodes gl nl count drop_unalloc =
708 9fc18384 Iustin Pop
  let filter_fn = if drop_unalloc
709 e4491427 Iustin Pop
                    then filter (Group.isAllocable .
710 e4491427 Iustin Pop
                                 flip Container.find gl . Node.group)
711 6d0bc5ca Iustin Pop
                    else id
712 9fc18384 Iustin Pop
      all_nodes = filter_fn $ getOnline nl
713 9fc18384 Iustin Pop
      all_pairs = [(Node.idx p,
714 9fc18384 Iustin Pop
                    [Node.idx s | s <- all_nodes,
715 9fc18384 Iustin Pop
                                       Node.idx p /= Node.idx s,
716 9fc18384 Iustin Pop
                                       Node.group p == Node.group s]) |
717 9fc18384 Iustin Pop
                   p <- all_nodes]
718 9fc18384 Iustin Pop
  in case count of
719 9fc18384 Iustin Pop
       1 -> Ok (Left (map Node.idx all_nodes))
720 9fc18384 Iustin Pop
       2 -> Ok (Right (filter (not . null . snd) all_pairs))
721 9fc18384 Iustin Pop
       _ -> Bad "Unsupported number of nodes, only one or two  supported"
722 6cb1649f Iustin Pop
723 dbba5246 Iustin Pop
-- | Try to allocate an instance on the cluster.
724 dbba5246 Iustin Pop
tryAlloc :: (Monad m) =>
725 dbba5246 Iustin Pop
            Node.List         -- ^ The node list
726 dbba5246 Iustin Pop
         -> Instance.List     -- ^ The instance list
727 dbba5246 Iustin Pop
         -> Instance.Instance -- ^ The instance to allocate
728 6cb1649f Iustin Pop
         -> AllocNodes        -- ^ The allocation targets
729 78694255 Iustin Pop
         -> m AllocSolution   -- ^ Possible solution list
730 1bf6d813 Iustin Pop
tryAlloc _  _ _    (Right []) = fail "Not enough online nodes"
731 6cb1649f Iustin Pop
tryAlloc nl _ inst (Right ok_pairs) =
732 9fc18384 Iustin Pop
  let psols = parMap rwhnf (\(p, ss) ->
733 9fc18384 Iustin Pop
                              foldl' (\cstate ->
734 9fc18384 Iustin Pop
                                        concatAllocs cstate .
735 9fc18384 Iustin Pop
                                        allocateOnPair nl inst p)
736 9fc18384 Iustin Pop
                              emptyAllocSolution ss) ok_pairs
737 9fc18384 Iustin Pop
      sols = foldl' sumAllocs emptyAllocSolution psols
738 9fc18384 Iustin Pop
  in return $ annotateSolution sols
739 dbba5246 Iustin Pop
740 1bf6d813 Iustin Pop
tryAlloc _  _ _    (Left []) = fail "No online nodes"
741 6cb1649f Iustin Pop
tryAlloc nl _ inst (Left all_nodes) =
742 9fc18384 Iustin Pop
  let sols = foldl' (\cstate ->
743 9fc18384 Iustin Pop
                       concatAllocs cstate . allocateOnSingle nl inst
744 9fc18384 Iustin Pop
                    ) emptyAllocSolution all_nodes
745 9fc18384 Iustin Pop
  in return $ annotateSolution sols
746 dbba5246 Iustin Pop
747 525bfb36 Iustin Pop
-- | Given a group/result, describe it as a nice (list of) messages.
748 aec636b9 Iustin Pop
solutionDescription :: Group.List -> (Gdx, Result AllocSolution) -> [String]
749 aec636b9 Iustin Pop
solutionDescription gl (groupId, result) =
750 9b1584fc Iustin Pop
  case result of
751 73206d0a Iustin Pop
    Ok solution -> map (printf "Group %s (%s): %s" gname pol) (asLog solution)
752 aec636b9 Iustin Pop
    Bad message -> [printf "Group %s: error %s" gname message]
753 73206d0a Iustin Pop
  where grp = Container.find groupId gl
754 73206d0a Iustin Pop
        gname = Group.name grp
755 5f828ce4 Agata Murawska
        pol = allocPolicyToRaw (Group.allocPolicy grp)
756 9b1584fc Iustin Pop
757 9b1584fc Iustin Pop
-- | From a list of possibly bad and possibly empty solutions, filter
758 88253d03 Iustin Pop
-- only the groups with a valid result. Note that the result will be
759 525bfb36 Iustin Pop
-- reversed compared to the original list.
760 73206d0a Iustin Pop
filterMGResults :: Group.List
761 73206d0a Iustin Pop
                -> [(Gdx, Result AllocSolution)]
762 73206d0a Iustin Pop
                -> [(Gdx, AllocSolution)]
763 88253d03 Iustin Pop
filterMGResults gl = foldl' fn []
764 9fc18384 Iustin Pop
  where unallocable = not . Group.isAllocable . flip Container.find gl
765 9fc18384 Iustin Pop
        fn accu (gdx, rasol) =
766 9fc18384 Iustin Pop
          case rasol of
767 9fc18384 Iustin Pop
            Bad _ -> accu
768 9fc18384 Iustin Pop
            Ok sol | isNothing (asSolution sol) -> accu
769 9fc18384 Iustin Pop
                   | unallocable gdx -> accu
770 9fc18384 Iustin Pop
                   | otherwise -> (gdx, sol):accu
771 9b1584fc Iustin Pop
772 525bfb36 Iustin Pop
-- | Sort multigroup results based on policy and score.
773 73206d0a Iustin Pop
sortMGResults :: Group.List
774 73206d0a Iustin Pop
             -> [(Gdx, AllocSolution)]
775 73206d0a Iustin Pop
             -> [(Gdx, AllocSolution)]
776 73206d0a Iustin Pop
sortMGResults gl sols =
777 9fc18384 Iustin Pop
  let extractScore (_, _, _, x) = x
778 9fc18384 Iustin Pop
      solScore (gdx, sol) = (Group.allocPolicy (Container.find gdx gl),
779 9fc18384 Iustin Pop
                             (extractScore . fromJust . asSolution) sol)
780 9fc18384 Iustin Pop
  in sortBy (comparing solScore) sols
781 73206d0a Iustin Pop
782 8fd09137 Iustin Pop
-- | Finds the best group for an instance on a multi-group cluster.
783 d72ff6c3 Iustin Pop
--
784 d72ff6c3 Iustin Pop
-- Only solutions in @preferred@ and @last_resort@ groups will be
785 d72ff6c3 Iustin Pop
-- accepted as valid, and additionally if the allowed groups parameter
786 d72ff6c3 Iustin Pop
-- is not null then allocation will only be run for those group
787 d72ff6c3 Iustin Pop
-- indices.
788 8fd09137 Iustin Pop
findBestAllocGroup :: Group.List           -- ^ The group list
789 8fd09137 Iustin Pop
                   -> Node.List            -- ^ The node list
790 8fd09137 Iustin Pop
                   -> Instance.List        -- ^ The instance list
791 d72ff6c3 Iustin Pop
                   -> Maybe [Gdx]          -- ^ The allowed groups
792 8fd09137 Iustin Pop
                   -> Instance.Instance    -- ^ The instance to allocate
793 8fd09137 Iustin Pop
                   -> Int                  -- ^ Required number of nodes
794 8fd09137 Iustin Pop
                   -> Result (Gdx, AllocSolution, [String])
795 d72ff6c3 Iustin Pop
findBestAllocGroup mggl mgnl mgil allowed_gdxs inst cnt =
796 9b1584fc Iustin Pop
  let groups = splitCluster mgnl mgil
797 d72ff6c3 Iustin Pop
      groups' = maybe groups (\gs -> filter ((`elem` gs) . fst) groups)
798 d72ff6c3 Iustin Pop
                allowed_gdxs
799 9b1584fc Iustin Pop
      sols = map (\(gid, (nl, il)) ->
800 6d0bc5ca Iustin Pop
                   (gid, genAllocNodes mggl nl cnt False >>=
801 6d0bc5ca Iustin Pop
                       tryAlloc nl il inst))
802 d72ff6c3 Iustin Pop
             groups'::[(Gdx, Result AllocSolution)]
803 aec636b9 Iustin Pop
      all_msgs = concatMap (solutionDescription mggl) sols
804 73206d0a Iustin Pop
      goodSols = filterMGResults mggl sols
805 73206d0a Iustin Pop
      sortedSols = sortMGResults mggl goodSols
806 9b1584fc Iustin Pop
  in if null sortedSols
807 6a855aaa Iustin Pop
       then if null groups'
808 6a855aaa Iustin Pop
              then Bad $ "no groups for evacuation: allowed groups was" ++
809 6a855aaa Iustin Pop
                     show allowed_gdxs ++ ", all groups: " ++
810 6a855aaa Iustin Pop
                     show (map fst groups)
811 6a855aaa Iustin Pop
              else Bad $ intercalate ", " all_msgs
812 9fc18384 Iustin Pop
       else let (final_group, final_sol) = head sortedSols
813 9fc18384 Iustin Pop
            in return (final_group, final_sol, all_msgs)
814 8fd09137 Iustin Pop
815 8fd09137 Iustin Pop
-- | Try to allocate an instance on a multi-group cluster.
816 8fd09137 Iustin Pop
tryMGAlloc :: Group.List           -- ^ The group list
817 8fd09137 Iustin Pop
           -> Node.List            -- ^ The node list
818 8fd09137 Iustin Pop
           -> Instance.List        -- ^ The instance list
819 8fd09137 Iustin Pop
           -> Instance.Instance    -- ^ The instance to allocate
820 8fd09137 Iustin Pop
           -> Int                  -- ^ Required number of nodes
821 8fd09137 Iustin Pop
           -> Result AllocSolution -- ^ Possible solution list
822 8fd09137 Iustin Pop
tryMGAlloc mggl mgnl mgil inst cnt = do
823 8fd09137 Iustin Pop
  (best_group, solution, all_msgs) <-
824 d72ff6c3 Iustin Pop
      findBestAllocGroup mggl mgnl mgil Nothing inst cnt
825 8fd09137 Iustin Pop
  let group_name = Group.name $ Container.find best_group mggl
826 8fd09137 Iustin Pop
      selmsg = "Selected group: " ++ group_name
827 8fd09137 Iustin Pop
  return $ solution { asLog = selmsg:all_msgs }
828 9b1584fc Iustin Pop
829 47eed3f4 Iustin Pop
-- | Function which fails if the requested mode is change secondary.
830 47eed3f4 Iustin Pop
--
831 47eed3f4 Iustin Pop
-- This is useful since except DRBD, no other disk template can
832 47eed3f4 Iustin Pop
-- execute change secondary; thus, we can just call this function
833 47eed3f4 Iustin Pop
-- instead of always checking for secondary mode. After the call to
834 47eed3f4 Iustin Pop
-- this function, whatever mode we have is just a primary change.
835 47eed3f4 Iustin Pop
failOnSecondaryChange :: (Monad m) => EvacMode -> DiskTemplate -> m ()
836 47eed3f4 Iustin Pop
failOnSecondaryChange ChangeSecondary dt =
837 9fc18384 Iustin Pop
  fail $ "Instances with disk template '" ++ diskTemplateToRaw dt ++
838 47eed3f4 Iustin Pop
         "' can't execute change secondary"
839 47eed3f4 Iustin Pop
failOnSecondaryChange _ _ = return ()
840 47eed3f4 Iustin Pop
841 47eed3f4 Iustin Pop
-- | Run evacuation for a single instance.
842 20b376ff Iustin Pop
--
843 20b376ff Iustin Pop
-- /Note:/ this function should correctly execute both intra-group
844 20b376ff Iustin Pop
-- evacuations (in all modes) and inter-group evacuations (in the
845 20b376ff Iustin Pop
-- 'ChangeAll' mode). Of course, this requires that the correct list
846 20b376ff Iustin Pop
-- of target nodes is passed.
847 47eed3f4 Iustin Pop
nodeEvacInstance :: Node.List         -- ^ The node list (cluster-wide)
848 47eed3f4 Iustin Pop
                 -> Instance.List     -- ^ Instance list (cluster-wide)
849 47eed3f4 Iustin Pop
                 -> EvacMode          -- ^ The evacuation mode
850 47eed3f4 Iustin Pop
                 -> Instance.Instance -- ^ The instance to be evacuated
851 a86fbf36 Iustin Pop
                 -> Gdx               -- ^ The group we're targetting
852 47eed3f4 Iustin Pop
                 -> [Ndx]             -- ^ The list of available nodes
853 47eed3f4 Iustin Pop
                                      -- for allocation
854 47eed3f4 Iustin Pop
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode])
855 47eed3f4 Iustin Pop
nodeEvacInstance _ _ mode (Instance.Instance
856 a86fbf36 Iustin Pop
                           {Instance.diskTemplate = dt@DTDiskless}) _ _ =
857 47eed3f4 Iustin Pop
                  failOnSecondaryChange mode dt >>
858 47eed3f4 Iustin Pop
                  fail "Diskless relocations not implemented yet"
859 47eed3f4 Iustin Pop
860 47eed3f4 Iustin Pop
nodeEvacInstance _ _ _ (Instance.Instance
861 a86fbf36 Iustin Pop
                        {Instance.diskTemplate = DTPlain}) _ _ =
862 47eed3f4 Iustin Pop
                  fail "Instances of type plain cannot be relocated"
863 47eed3f4 Iustin Pop
864 47eed3f4 Iustin Pop
nodeEvacInstance _ _ _ (Instance.Instance
865 a86fbf36 Iustin Pop
                        {Instance.diskTemplate = DTFile}) _ _ =
866 47eed3f4 Iustin Pop
                  fail "Instances of type file cannot be relocated"
867 47eed3f4 Iustin Pop
868 47eed3f4 Iustin Pop
nodeEvacInstance _ _ mode  (Instance.Instance
869 a86fbf36 Iustin Pop
                            {Instance.diskTemplate = dt@DTSharedFile}) _ _ =
870 47eed3f4 Iustin Pop
                  failOnSecondaryChange mode dt >>
871 47eed3f4 Iustin Pop
                  fail "Shared file relocations not implemented yet"
872 47eed3f4 Iustin Pop
873 47eed3f4 Iustin Pop
nodeEvacInstance _ _ mode (Instance.Instance
874 a86fbf36 Iustin Pop
                           {Instance.diskTemplate = dt@DTBlock}) _ _ =
875 47eed3f4 Iustin Pop
                  failOnSecondaryChange mode dt >>
876 47eed3f4 Iustin Pop
                  fail "Block device relocations not implemented yet"
877 47eed3f4 Iustin Pop
878 bdd6931c Guido Trotter
nodeEvacInstance _ _ mode  (Instance.Instance
879 bdd6931c Guido Trotter
                            {Instance.diskTemplate = dt@DTRbd}) _ _ =
880 bdd6931c Guido Trotter
                  failOnSecondaryChange mode dt >>
881 bdd6931c Guido Trotter
                  fail "Rbd relocations not implemented yet"
882 bdd6931c Guido Trotter
883 bef83fd1 Iustin Pop
nodeEvacInstance nl il ChangePrimary
884 a86fbf36 Iustin Pop
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
885 a86fbf36 Iustin Pop
                 _ _ =
886 bef83fd1 Iustin Pop
  do
887 bef83fd1 Iustin Pop
    (nl', inst', _, _) <- opToResult $ applyMove nl inst Failover
888 bef83fd1 Iustin Pop
    let idx = Instance.idx inst
889 bef83fd1 Iustin Pop
        il' = Container.add idx inst' il
890 bef83fd1 Iustin Pop
        ops = iMoveToJob nl' il' idx Failover
891 bef83fd1 Iustin Pop
    return (nl', il', ops)
892 bef83fd1 Iustin Pop
893 db56cfc4 Iustin Pop
nodeEvacInstance nl il ChangeSecondary
894 db56cfc4 Iustin Pop
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
895 a86fbf36 Iustin Pop
                 gdx avail_nodes =
896 db56cfc4 Iustin Pop
  do
897 db56cfc4 Iustin Pop
    (nl', inst', _, ndx) <- annotateResult "Can't find any good node" $
898 db56cfc4 Iustin Pop
                            eitherToResult $
899 db56cfc4 Iustin Pop
                            foldl' (evacDrbdSecondaryInner nl inst gdx)
900 db56cfc4 Iustin Pop
                            (Left "no nodes available") avail_nodes
901 db56cfc4 Iustin Pop
    let idx = Instance.idx inst
902 db56cfc4 Iustin Pop
        il' = Container.add idx inst' il
903 db56cfc4 Iustin Pop
        ops = iMoveToJob nl' il' idx (ReplaceSecondary ndx)
904 db56cfc4 Iustin Pop
    return (nl', il', ops)
905 db56cfc4 Iustin Pop
906 97da6b71 Iustin Pop
-- The algorithm for ChangeAll is as follows:
907 97da6b71 Iustin Pop
--
908 97da6b71 Iustin Pop
-- * generate all (primary, secondary) node pairs for the target groups
909 97da6b71 Iustin Pop
-- * for each pair, execute the needed moves (r:s, f, r:s) and compute
910 97da6b71 Iustin Pop
--   the final node list state and group score
911 97da6b71 Iustin Pop
-- * select the best choice via a foldl that uses the same Either
912 97da6b71 Iustin Pop
--   String solution as the ChangeSecondary mode
913 d52d41de Iustin Pop
nodeEvacInstance nl il ChangeAll
914 d52d41de Iustin Pop
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
915 a86fbf36 Iustin Pop
                 gdx avail_nodes =
916 d52d41de Iustin Pop
  do
917 97da6b71 Iustin Pop
    let no_nodes = Left "no nodes available"
918 97da6b71 Iustin Pop
        node_pairs = [(p,s) | p <- avail_nodes, s <- avail_nodes, p /= s]
919 97da6b71 Iustin Pop
    (nl', il', ops, _) <-
920 97da6b71 Iustin Pop
        annotateResult "Can't find any good nodes for relocation" $
921 d52d41de Iustin Pop
        eitherToResult $
922 97da6b71 Iustin Pop
        foldl'
923 97da6b71 Iustin Pop
        (\accu nodes -> case evacDrbdAllInner nl il inst gdx nodes of
924 97da6b71 Iustin Pop
                          Bad msg ->
925 97da6b71 Iustin Pop
                              case accu of
926 97da6b71 Iustin Pop
                                Right _ -> accu
927 97da6b71 Iustin Pop
                                -- we don't need more details (which
928 97da6b71 Iustin Pop
                                -- nodes, etc.) as we only selected
929 97da6b71 Iustin Pop
                                -- this group if we can allocate on
930 97da6b71 Iustin Pop
                                -- it, hence failures will not
931 97da6b71 Iustin Pop
                                -- propagate out of this fold loop
932 97da6b71 Iustin Pop
                                Left _ -> Left $ "Allocation failed: " ++ msg
933 97da6b71 Iustin Pop
                          Ok result@(_, _, _, new_cv) ->
934 97da6b71 Iustin Pop
                              let new_accu = Right result in
935 97da6b71 Iustin Pop
                              case accu of
936 97da6b71 Iustin Pop
                                Left _ -> new_accu
937 97da6b71 Iustin Pop
                                Right (_, _, _, old_cv) ->
938 97da6b71 Iustin Pop
                                    if old_cv < new_cv
939 97da6b71 Iustin Pop
                                    then accu
940 97da6b71 Iustin Pop
                                    else new_accu
941 97da6b71 Iustin Pop
        ) no_nodes node_pairs
942 97da6b71 Iustin Pop
943 97da6b71 Iustin Pop
    return (nl', il', ops)
944 47eed3f4 Iustin Pop
945 db56cfc4 Iustin Pop
-- | Inner fold function for changing secondary of a DRBD instance.
946 db56cfc4 Iustin Pop
--
947 97da6b71 Iustin Pop
-- The running solution is either a @Left String@, which means we
948 db56cfc4 Iustin Pop
-- don't have yet a working solution, or a @Right (...)@, which
949 db56cfc4 Iustin Pop
-- represents a valid solution; it holds the modified node list, the
950 db56cfc4 Iustin Pop
-- modified instance (after evacuation), the score of that solution,
951 db56cfc4 Iustin Pop
-- and the new secondary node index.
952 db56cfc4 Iustin Pop
evacDrbdSecondaryInner :: Node.List -- ^ Cluster node list
953 db56cfc4 Iustin Pop
                       -> Instance.Instance -- ^ Instance being evacuated
954 db56cfc4 Iustin Pop
                       -> Gdx -- ^ The group index of the instance
955 db56cfc4 Iustin Pop
                       -> Either String ( Node.List
956 db56cfc4 Iustin Pop
                                        , Instance.Instance
957 db56cfc4 Iustin Pop
                                        , Score
958 db56cfc4 Iustin Pop
                                        , Ndx)  -- ^ Current best solution
959 db56cfc4 Iustin Pop
                       -> Ndx  -- ^ Node we're evaluating as new secondary
960 db56cfc4 Iustin Pop
                       -> Either String ( Node.List
961 db56cfc4 Iustin Pop
                                        , Instance.Instance
962 db56cfc4 Iustin Pop
                                        , Score
963 db56cfc4 Iustin Pop
                                        , Ndx) -- ^ New best solution
964 db56cfc4 Iustin Pop
evacDrbdSecondaryInner nl inst gdx accu ndx =
965 9fc18384 Iustin Pop
  case applyMove nl inst (ReplaceSecondary ndx) of
966 9fc18384 Iustin Pop
    OpFail fm ->
967 9fc18384 Iustin Pop
      case accu of
968 9fc18384 Iustin Pop
        Right _ -> accu
969 9fc18384 Iustin Pop
        Left _ -> Left $ "Node " ++ Container.nameOf nl ndx ++
970 9fc18384 Iustin Pop
                  " failed: " ++ show fm
971 9fc18384 Iustin Pop
    OpGood (nl', inst', _, _) ->
972 9fc18384 Iustin Pop
      let nodes = Container.elems nl'
973 9fc18384 Iustin Pop
          -- The fromJust below is ugly (it can fail nastily), but
974 9fc18384 Iustin Pop
          -- at this point we should have any internal mismatches,
975 9fc18384 Iustin Pop
          -- and adding a monad here would be quite involved
976 9fc18384 Iustin Pop
          grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
977 9fc18384 Iustin Pop
          new_cv = compCVNodes grpnodes
978 9fc18384 Iustin Pop
          new_accu = Right (nl', inst', new_cv, ndx)
979 9fc18384 Iustin Pop
      in case accu of
980 9fc18384 Iustin Pop
           Left _ -> new_accu
981 9fc18384 Iustin Pop
           Right (_, _, old_cv, _) ->
982 9fc18384 Iustin Pop
             if old_cv < new_cv
983 9fc18384 Iustin Pop
               then accu
984 9fc18384 Iustin Pop
               else new_accu
985 db56cfc4 Iustin Pop
986 97da6b71 Iustin Pop
-- | Compute result of changing all nodes of a DRBD instance.
987 97da6b71 Iustin Pop
--
988 97da6b71 Iustin Pop
-- Given the target primary and secondary node (which might be in a
989 97da6b71 Iustin Pop
-- different group or not), this function will 'execute' all the
990 97da6b71 Iustin Pop
-- required steps and assuming all operations succceed, will return
991 97da6b71 Iustin Pop
-- the modified node and instance lists, the opcodes needed for this
992 97da6b71 Iustin Pop
-- and the new group score.
993 97da6b71 Iustin Pop
evacDrbdAllInner :: Node.List         -- ^ Cluster node list
994 97da6b71 Iustin Pop
                 -> Instance.List     -- ^ Cluster instance list
995 97da6b71 Iustin Pop
                 -> Instance.Instance -- ^ The instance to be moved
996 97da6b71 Iustin Pop
                 -> Gdx               -- ^ The target group index
997 97da6b71 Iustin Pop
                                      -- (which can differ from the
998 97da6b71 Iustin Pop
                                      -- current group of the
999 97da6b71 Iustin Pop
                                      -- instance)
1000 97da6b71 Iustin Pop
                 -> (Ndx, Ndx)        -- ^ Tuple of new
1001 97da6b71 Iustin Pop
                                      -- primary\/secondary nodes
1002 97da6b71 Iustin Pop
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode], Score)
1003 9fc18384 Iustin Pop
evacDrbdAllInner nl il inst gdx (t_pdx, t_sdx) = do
1004 9fc18384 Iustin Pop
  let primary = Container.find (Instance.pNode inst) nl
1005 9fc18384 Iustin Pop
      idx = Instance.idx inst
1006 9fc18384 Iustin Pop
  -- if the primary is offline, then we first failover
1007 9fc18384 Iustin Pop
  (nl1, inst1, ops1) <-
1008 9fc18384 Iustin Pop
    if Node.offline primary
1009 9fc18384 Iustin Pop
      then do
1010 9fc18384 Iustin Pop
        (nl', inst', _, _) <-
1011 9fc18384 Iustin Pop
          annotateResult "Failing over to the secondary" $
1012 9fc18384 Iustin Pop
          opToResult $ applyMove nl inst Failover
1013 9fc18384 Iustin Pop
        return (nl', inst', [Failover])
1014 9fc18384 Iustin Pop
      else return (nl, inst, [])
1015 9fc18384 Iustin Pop
  let (o1, o2, o3) = (ReplaceSecondary t_pdx,
1016 9fc18384 Iustin Pop
                      Failover,
1017 9fc18384 Iustin Pop
                      ReplaceSecondary t_sdx)
1018 9fc18384 Iustin Pop
  -- we now need to execute a replace secondary to the future
1019 9fc18384 Iustin Pop
  -- primary node
1020 9fc18384 Iustin Pop
  (nl2, inst2, _, _) <-
1021 9fc18384 Iustin Pop
    annotateResult "Changing secondary to new primary" $
1022 9fc18384 Iustin Pop
    opToResult $
1023 9fc18384 Iustin Pop
    applyMove nl1 inst1 o1
1024 9fc18384 Iustin Pop
  let ops2 = o1:ops1
1025 9fc18384 Iustin Pop
  -- we now execute another failover, the primary stays fixed now
1026 9fc18384 Iustin Pop
  (nl3, inst3, _, _) <- annotateResult "Failing over to new primary" $
1027 9fc18384 Iustin Pop
                        opToResult $ applyMove nl2 inst2 o2
1028 9fc18384 Iustin Pop
  let ops3 = o2:ops2
1029 9fc18384 Iustin Pop
  -- and finally another replace secondary, to the final secondary
1030 9fc18384 Iustin Pop
  (nl4, inst4, _, _) <-
1031 9fc18384 Iustin Pop
    annotateResult "Changing secondary to final secondary" $
1032 9fc18384 Iustin Pop
    opToResult $
1033 9fc18384 Iustin Pop
    applyMove nl3 inst3 o3
1034 9fc18384 Iustin Pop
  let ops4 = o3:ops3
1035 9fc18384 Iustin Pop
      il' = Container.add idx inst4 il
1036 9fc18384 Iustin Pop
      ops = concatMap (iMoveToJob nl4 il' idx) $ reverse ops4
1037 9fc18384 Iustin Pop
  let nodes = Container.elems nl4
1038 9fc18384 Iustin Pop
      -- The fromJust below is ugly (it can fail nastily), but
1039 9fc18384 Iustin Pop
      -- at this point we should have any internal mismatches,
1040 9fc18384 Iustin Pop
      -- and adding a monad here would be quite involved
1041 9fc18384 Iustin Pop
      grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
1042 9fc18384 Iustin Pop
      new_cv = compCVNodes grpnodes
1043 9fc18384 Iustin Pop
  return (nl4, il', ops, new_cv)
1044 97da6b71 Iustin Pop
1045 c9a9b853 Iustin Pop
-- | Computes the nodes in a given group which are available for
1046 c9a9b853 Iustin Pop
-- allocation.
1047 c9a9b853 Iustin Pop
availableGroupNodes :: [(Gdx, [Ndx])] -- ^ Group index/node index assoc list
1048 c9a9b853 Iustin Pop
                    -> IntSet.IntSet  -- ^ Nodes that are excluded
1049 c9a9b853 Iustin Pop
                    -> Gdx            -- ^ The group for which we
1050 c9a9b853 Iustin Pop
                                      -- query the nodes
1051 c9a9b853 Iustin Pop
                    -> Result [Ndx]   -- ^ List of available node indices
1052 c9a9b853 Iustin Pop
availableGroupNodes group_nodes excl_ndx gdx = do
1053 47eed3f4 Iustin Pop
  local_nodes <- maybe (Bad $ "Can't find group with index " ++ show gdx)
1054 47eed3f4 Iustin Pop
                 Ok (lookup gdx group_nodes)
1055 47eed3f4 Iustin Pop
  let avail_nodes = filter (not . flip IntSet.member excl_ndx) local_nodes
1056 47eed3f4 Iustin Pop
  return avail_nodes
1057 47eed3f4 Iustin Pop
1058 47eed3f4 Iustin Pop
-- | Updates the evac solution with the results of an instance
1059 47eed3f4 Iustin Pop
-- evacuation.
1060 47eed3f4 Iustin Pop
updateEvacSolution :: (Node.List, Instance.List, EvacSolution)
1061 5440c877 Iustin Pop
                   -> Idx
1062 47eed3f4 Iustin Pop
                   -> Result (Node.List, Instance.List, [OpCodes.OpCode])
1063 47eed3f4 Iustin Pop
                   -> (Node.List, Instance.List, EvacSolution)
1064 5440c877 Iustin Pop
updateEvacSolution (nl, il, es) idx (Bad msg) =
1065 9fc18384 Iustin Pop
  (nl, il, es { esFailed = (idx, msg):esFailed es})
1066 5440c877 Iustin Pop
updateEvacSolution (_, _, es) idx (Ok (nl, il, opcodes)) =
1067 9fc18384 Iustin Pop
  (nl, il, es { esMoved = new_elem:esMoved es
1068 9fc18384 Iustin Pop
              , esOpCodes = opcodes:esOpCodes es })
1069 9fc18384 Iustin Pop
    where inst = Container.find idx il
1070 9fc18384 Iustin Pop
          new_elem = (idx,
1071 9fc18384 Iustin Pop
                      instancePriGroup nl inst,
1072 9fc18384 Iustin Pop
                      Instance.allNodes inst)
1073 47eed3f4 Iustin Pop
1074 47eed3f4 Iustin Pop
-- | Node-evacuation IAllocator mode main function.
1075 47eed3f4 Iustin Pop
tryNodeEvac :: Group.List    -- ^ The cluster groups
1076 47eed3f4 Iustin Pop
            -> Node.List     -- ^ The node list (cluster-wide, not per group)
1077 47eed3f4 Iustin Pop
            -> Instance.List -- ^ Instance list (cluster-wide)
1078 47eed3f4 Iustin Pop
            -> EvacMode      -- ^ The evacuation mode
1079 47eed3f4 Iustin Pop
            -> [Idx]         -- ^ List of instance (indices) to be evacuated
1080 4036f63a Iustin Pop
            -> Result (Node.List, Instance.List, EvacSolution)
1081 47eed3f4 Iustin Pop
tryNodeEvac _ ini_nl ini_il mode idxs =
1082 9fc18384 Iustin Pop
  let evac_ndx = nodesToEvacuate ini_il mode idxs
1083 9fc18384 Iustin Pop
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1084 9fc18384 Iustin Pop
      excl_ndx = foldl' (flip IntSet.insert) evac_ndx offline
1085 9fc18384 Iustin Pop
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1086 9fc18384 Iustin Pop
                                           (Container.elems nl))) $
1087 9fc18384 Iustin Pop
                  splitCluster ini_nl ini_il
1088 9fc18384 Iustin Pop
      (fin_nl, fin_il, esol) =
1089 9fc18384 Iustin Pop
        foldl' (\state@(nl, il, _) inst ->
1090 9fc18384 Iustin Pop
                  let gdx = instancePriGroup nl inst
1091 9fc18384 Iustin Pop
                      pdx = Instance.pNode inst in
1092 9fc18384 Iustin Pop
                  updateEvacSolution state (Instance.idx inst) $
1093 9fc18384 Iustin Pop
                  availableGroupNodes group_ndx
1094 9fc18384 Iustin Pop
                    (IntSet.insert pdx excl_ndx) gdx >>=
1095 9fc18384 Iustin Pop
                      nodeEvacInstance nl il mode inst gdx
1096 9fc18384 Iustin Pop
               )
1097 9fc18384 Iustin Pop
        (ini_nl, ini_il, emptyEvacSolution)
1098 9fc18384 Iustin Pop
        (map (`Container.find` ini_il) idxs)
1099 9fc18384 Iustin Pop
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1100 47eed3f4 Iustin Pop
1101 20b376ff Iustin Pop
-- | Change-group IAllocator mode main function.
1102 20b376ff Iustin Pop
--
1103 20b376ff Iustin Pop
-- This is very similar to 'tryNodeEvac', the only difference is that
1104 20b376ff Iustin Pop
-- we don't choose as target group the current instance group, but
1105 20b376ff Iustin Pop
-- instead:
1106 20b376ff Iustin Pop
--
1107 20b376ff Iustin Pop
--   1. at the start of the function, we compute which are the target
1108 20b376ff Iustin Pop
--   groups; either no groups were passed in, in which case we choose
1109 20b376ff Iustin Pop
--   all groups out of which we don't evacuate instance, or there were
1110 20b376ff Iustin Pop
--   some groups passed, in which case we use those
1111 20b376ff Iustin Pop
--
1112 20b376ff Iustin Pop
--   2. for each instance, we use 'findBestAllocGroup' to choose the
1113 20b376ff Iustin Pop
--   best group to hold the instance, and then we do what
1114 20b376ff Iustin Pop
--   'tryNodeEvac' does, except for this group instead of the current
1115 20b376ff Iustin Pop
--   instance group.
1116 20b376ff Iustin Pop
--
1117 20b376ff Iustin Pop
-- Note that the correct behaviour of this function relies on the
1118 20b376ff Iustin Pop
-- function 'nodeEvacInstance' to be able to do correctly both
1119 20b376ff Iustin Pop
-- intra-group and inter-group moves when passed the 'ChangeAll' mode.
1120 20b376ff Iustin Pop
tryChangeGroup :: Group.List    -- ^ The cluster groups
1121 20b376ff Iustin Pop
               -> Node.List     -- ^ The node list (cluster-wide)
1122 20b376ff Iustin Pop
               -> Instance.List -- ^ Instance list (cluster-wide)
1123 20b376ff Iustin Pop
               -> [Gdx]         -- ^ Target groups; if empty, any
1124 20b376ff Iustin Pop
                                -- groups not being evacuated
1125 20b376ff Iustin Pop
               -> [Idx]         -- ^ List of instance (indices) to be evacuated
1126 4036f63a Iustin Pop
               -> Result (Node.List, Instance.List, EvacSolution)
1127 20b376ff Iustin Pop
tryChangeGroup gl ini_nl ini_il gdxs idxs =
1128 9fc18384 Iustin Pop
  let evac_gdxs = nub $ map (instancePriGroup ini_nl .
1129 9fc18384 Iustin Pop
                             flip Container.find ini_il) idxs
1130 9fc18384 Iustin Pop
      target_gdxs = (if null gdxs
1131 20b376ff Iustin Pop
                       then Container.keys gl
1132 20b376ff Iustin Pop
                       else gdxs) \\ evac_gdxs
1133 9fc18384 Iustin Pop
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1134 9fc18384 Iustin Pop
      excl_ndx = foldl' (flip IntSet.insert) IntSet.empty offline
1135 9fc18384 Iustin Pop
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1136 9fc18384 Iustin Pop
                                           (Container.elems nl))) $
1137 9fc18384 Iustin Pop
                  splitCluster ini_nl ini_il
1138 9fc18384 Iustin Pop
      (fin_nl, fin_il, esol) =
1139 9fc18384 Iustin Pop
        foldl' (\state@(nl, il, _) inst ->
1140 9fc18384 Iustin Pop
                  let solution = do
1141 9fc18384 Iustin Pop
                        let ncnt = Instance.requiredNodes $
1142 9fc18384 Iustin Pop
                                   Instance.diskTemplate inst
1143 9fc18384 Iustin Pop
                        (gdx, _, _) <- findBestAllocGroup gl nl il
1144 9fc18384 Iustin Pop
                                       (Just target_gdxs) inst ncnt
1145 9fc18384 Iustin Pop
                        av_nodes <- availableGroupNodes group_ndx
1146 9fc18384 Iustin Pop
                                    excl_ndx gdx
1147 9fc18384 Iustin Pop
                        nodeEvacInstance nl il ChangeAll inst gdx av_nodes
1148 9fc18384 Iustin Pop
                  in updateEvacSolution state (Instance.idx inst) solution
1149 9fc18384 Iustin Pop
               )
1150 9fc18384 Iustin Pop
        (ini_nl, ini_il, emptyEvacSolution)
1151 9fc18384 Iustin Pop
        (map (`Container.find` ini_il) idxs)
1152 9fc18384 Iustin Pop
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1153 20b376ff Iustin Pop
1154 7eda951b Iustin Pop
-- | Standard-sized allocation method.
1155 7eda951b Iustin Pop
--
1156 7eda951b Iustin Pop
-- This places instances of the same size on the cluster until we're
1157 7eda951b Iustin Pop
-- out of space. The result will be a list of identically-sized
1158 7eda951b Iustin Pop
-- instances.
1159 7eda951b Iustin Pop
iterateAlloc :: AllocMethod
1160 8f48f67d Iustin Pop
iterateAlloc nl il limit newinst allocnodes ixes cstats =
1161 9fc18384 Iustin Pop
  let depth = length ixes
1162 9fc18384 Iustin Pop
      newname = printf "new-%d" depth::String
1163 dce9bbb3 Iustin Pop
      newidx = Container.size il
1164 9fc18384 Iustin Pop
      newi2 = Instance.setIdx (Instance.setName newinst newname) newidx
1165 9fc18384 Iustin Pop
      newlimit = fmap (flip (-) 1) limit
1166 9fc18384 Iustin Pop
  in case tryAlloc nl il newi2 allocnodes of
1167 9fc18384 Iustin Pop
       Bad s -> Bad s
1168 9fc18384 Iustin Pop
       Ok (AllocSolution { asFailures = errs, asSolution = sols3 }) ->
1169 9fc18384 Iustin Pop
         let newsol = Ok (collapseFailures errs, nl, il, ixes, cstats) in
1170 9fc18384 Iustin Pop
         case sols3 of
1171 9fc18384 Iustin Pop
           Nothing -> newsol
1172 9fc18384 Iustin Pop
           Just (xnl, xi, _, _) ->
1173 9fc18384 Iustin Pop
             if limit == Just 0
1174 9fc18384 Iustin Pop
               then newsol
1175 9fc18384 Iustin Pop
               else iterateAlloc xnl (Container.add newidx xi il)
1176 9fc18384 Iustin Pop
                      newlimit newinst allocnodes (xi:ixes)
1177 9fc18384 Iustin Pop
                      (totalResources xnl:cstats)
1178 3ce8009a Iustin Pop
1179 7eda951b Iustin Pop
-- | Tiered allocation method.
1180 7eda951b Iustin Pop
--
1181 7eda951b Iustin Pop
-- This places instances on the cluster, and decreases the spec until
1182 7eda951b Iustin Pop
-- we can allocate again. The result will be a list of decreasing
1183 7eda951b Iustin Pop
-- instance specs.
1184 7eda951b Iustin Pop
tieredAlloc :: AllocMethod
1185 8f48f67d Iustin Pop
tieredAlloc nl il limit newinst allocnodes ixes cstats =
1186 9fc18384 Iustin Pop
  case iterateAlloc nl il limit newinst allocnodes ixes cstats of
1187 9fc18384 Iustin Pop
    Bad s -> Bad s
1188 9fc18384 Iustin Pop
    Ok (errs, nl', il', ixes', cstats') ->
1189 9fc18384 Iustin Pop
      let newsol = Ok (errs, nl', il', ixes', cstats')
1190 9fc18384 Iustin Pop
          ixes_cnt = length ixes'
1191 9fc18384 Iustin Pop
          (stop, newlimit) = case limit of
1192 9fc18384 Iustin Pop
                               Nothing -> (False, Nothing)
1193 9fc18384 Iustin Pop
                               Just n -> (n <= ixes_cnt,
1194 9fc18384 Iustin Pop
                                            Just (n - ixes_cnt)) in
1195 9fc18384 Iustin Pop
      if stop then newsol else
1196 3ce8009a Iustin Pop
          case Instance.shrinkByType newinst . fst . last $
1197 3ce8009a Iustin Pop
               sortBy (comparing snd) errs of
1198 8f48f67d Iustin Pop
            Bad _ -> newsol
1199 8f48f67d Iustin Pop
            Ok newinst' -> tieredAlloc nl' il' newlimit
1200 8f48f67d Iustin Pop
                           newinst' allocnodes ixes' cstats'
1201 3ce8009a Iustin Pop
1202 9188aeef Iustin Pop
-- * Formatting functions
1203 e4f08c46 Iustin Pop
1204 e4f08c46 Iustin Pop
-- | Given the original and final nodes, computes the relocation description.
1205 c9926b22 Iustin Pop
computeMoves :: Instance.Instance -- ^ The instance to be moved
1206 c9926b22 Iustin Pop
             -> String -- ^ The instance name
1207 668c03b3 Iustin Pop
             -> IMove  -- ^ The move being performed
1208 e4f08c46 Iustin Pop
             -> String -- ^ New primary
1209 e4f08c46 Iustin Pop
             -> String -- ^ New secondary
1210 e4f08c46 Iustin Pop
             -> (String, [String])
1211 e4f08c46 Iustin Pop
                -- ^ Tuple of moves and commands list; moves is containing
1212 e4f08c46 Iustin Pop
                -- either @/f/@ for failover or @/r:name/@ for replace
1213 e4f08c46 Iustin Pop
                -- secondary, while the command list holds gnt-instance
1214 e4f08c46 Iustin Pop
                -- commands (without that prefix), e.g \"@failover instance1@\"
1215 668c03b3 Iustin Pop
computeMoves i inam mv c d =
1216 9fc18384 Iustin Pop
  case mv of
1217 9fc18384 Iustin Pop
    Failover -> ("f", [mig])
1218 9fc18384 Iustin Pop
    FailoverAndReplace _ -> (printf "f r:%s" d, [mig, rep d])
1219 9fc18384 Iustin Pop
    ReplaceSecondary _ -> (printf "r:%s" d, [rep d])
1220 9fc18384 Iustin Pop
    ReplaceAndFailover _ -> (printf "r:%s f" c, [rep c, mig])
1221 9fc18384 Iustin Pop
    ReplacePrimary _ -> (printf "f r:%s f" c, [mig, rep c, mig])
1222 7959cbb9 Iustin Pop
  where morf = if Instance.isRunning i then "migrate" else "failover"
1223 9fc18384 Iustin Pop
        mig = printf "%s -f %s" morf inam::String
1224 9fc18384 Iustin Pop
        rep n = printf "replace-disks -n %s %s" n inam
1225 e4f08c46 Iustin Pop
1226 9188aeef Iustin Pop
-- | Converts a placement to string format.
1227 9188aeef Iustin Pop
printSolutionLine :: Node.List     -- ^ The node list
1228 9188aeef Iustin Pop
                  -> Instance.List -- ^ The instance list
1229 9188aeef Iustin Pop
                  -> Int           -- ^ Maximum node name length
1230 9188aeef Iustin Pop
                  -> Int           -- ^ Maximum instance name length
1231 9188aeef Iustin Pop
                  -> Placement     -- ^ The current placement
1232 9188aeef Iustin Pop
                  -> Int           -- ^ The index of the placement in
1233 9188aeef Iustin Pop
                                   -- the solution
1234 db1bcfe8 Iustin Pop
                  -> (String, [String])
1235 db1bcfe8 Iustin Pop
printSolutionLine nl il nmlen imlen plc pos =
1236 9fc18384 Iustin Pop
  let pmlen = (2*nmlen + 1)
1237 9fc18384 Iustin Pop
      (i, p, s, mv, c) = plc
1238 e85444d0 Iustin Pop
      old_sec = Instance.sNode inst
1239 9fc18384 Iustin Pop
      inst = Container.find i il
1240 9fc18384 Iustin Pop
      inam = Instance.alias inst
1241 9fc18384 Iustin Pop
      npri = Node.alias $ Container.find p nl
1242 9fc18384 Iustin Pop
      nsec = Node.alias $ Container.find s nl
1243 9fc18384 Iustin Pop
      opri = Node.alias $ Container.find (Instance.pNode inst) nl
1244 e85444d0 Iustin Pop
      osec = Node.alias $ Container.find old_sec nl
1245 9fc18384 Iustin Pop
      (moves, cmds) =  computeMoves inst inam mv npri nsec
1246 e85444d0 Iustin Pop
      -- FIXME: this should check instead/also the disk template
1247 e85444d0 Iustin Pop
      ostr = if old_sec == Node.noSecondary
1248 e85444d0 Iustin Pop
               then printf "%s" opri
1249 e85444d0 Iustin Pop
               else printf "%s:%s" opri osec
1250 e85444d0 Iustin Pop
      nstr = if s == Node.noSecondary
1251 e85444d0 Iustin Pop
               then printf "%s" npri
1252 e85444d0 Iustin Pop
               else printf "%s:%s" npri nsec
1253 255d140d Iustin Pop
  in (printf "  %3d. %-*s %-*s => %-*s %12.8f a=%s"
1254 e85444d0 Iustin Pop
      pos imlen inam pmlen (ostr::String)
1255 e85444d0 Iustin Pop
      pmlen (nstr::String) c moves,
1256 9fc18384 Iustin Pop
      cmds)
1257 ca8258d9 Iustin Pop
1258 0e8ae201 Iustin Pop
-- | Return the instance and involved nodes in an instance move.
1259 77ecfa82 Iustin Pop
--
1260 77ecfa82 Iustin Pop
-- Note that the output list length can vary, and is not required nor
1261 77ecfa82 Iustin Pop
-- guaranteed to be of any specific length.
1262 77ecfa82 Iustin Pop
involvedNodes :: Instance.List -- ^ Instance list, used for retrieving
1263 77ecfa82 Iustin Pop
                               -- the instance from its index; note
1264 77ecfa82 Iustin Pop
                               -- that this /must/ be the original
1265 77ecfa82 Iustin Pop
                               -- instance list, so that we can
1266 77ecfa82 Iustin Pop
                               -- retrieve the old nodes
1267 77ecfa82 Iustin Pop
              -> Placement     -- ^ The placement we're investigating,
1268 77ecfa82 Iustin Pop
                               -- containing the new nodes and
1269 77ecfa82 Iustin Pop
                               -- instance index
1270 77ecfa82 Iustin Pop
              -> [Ndx]         -- ^ Resulting list of node indices
1271 0e8ae201 Iustin Pop
involvedNodes il plc =
1272 9fc18384 Iustin Pop
  let (i, np, ns, _, _) = plc
1273 9fc18384 Iustin Pop
      inst = Container.find i il
1274 9fc18384 Iustin Pop
  in nub $ [np, ns] ++ Instance.allNodes inst
1275 0e8ae201 Iustin Pop
1276 0e8ae201 Iustin Pop
-- | Inner function for splitJobs, that either appends the next job to
1277 0e8ae201 Iustin Pop
-- the current jobset, or starts a new jobset.
1278 0e8ae201 Iustin Pop
mergeJobs :: ([JobSet], [Ndx]) -> MoveJob -> ([JobSet], [Ndx])
1279 924f9c16 Iustin Pop
mergeJobs ([], _) n@(ndx, _, _, _) = ([[n]], ndx)
1280 924f9c16 Iustin Pop
mergeJobs (cjs@(j:js), nbuf) n@(ndx, _, _, _)
1281 9fc18384 Iustin Pop
  | null (ndx `intersect` nbuf) = ((n:j):js, ndx ++ nbuf)
1282 9fc18384 Iustin Pop
  | otherwise = ([n]:cjs, ndx)
1283 0e8ae201 Iustin Pop
1284 0e8ae201 Iustin Pop
-- | Break a list of moves into independent groups. Note that this
1285 0e8ae201 Iustin Pop
-- will reverse the order of jobs.
1286 0e8ae201 Iustin Pop
splitJobs :: [MoveJob] -> [JobSet]
1287 0e8ae201 Iustin Pop
splitJobs = fst . foldl mergeJobs ([], [])
1288 0e8ae201 Iustin Pop
1289 0e8ae201 Iustin Pop
-- | Given a list of commands, prefix them with @gnt-instance@ and
1290 0e8ae201 Iustin Pop
-- also beautify the display a little.
1291 0e8ae201 Iustin Pop
formatJob :: Int -> Int -> (Int, MoveJob) -> [String]
1292 924f9c16 Iustin Pop
formatJob jsn jsl (sn, (_, _, _, cmds)) =
1293 9fc18384 Iustin Pop
  let out =
1294 9fc18384 Iustin Pop
        printf "  echo job %d/%d" jsn sn:
1295 9fc18384 Iustin Pop
        printf "  check":
1296 9fc18384 Iustin Pop
        map ("  gnt-instance " ++) cmds
1297 9fc18384 Iustin Pop
  in if sn == 1
1298 0e8ae201 Iustin Pop
       then ["", printf "echo jobset %d, %d jobs" jsn jsl] ++ out
1299 0e8ae201 Iustin Pop
       else out
1300 0e8ae201 Iustin Pop
1301 9188aeef Iustin Pop
-- | Given a list of commands, prefix them with @gnt-instance@ and
1302 9188aeef Iustin Pop
-- also beautify the display a little.
1303 0e8ae201 Iustin Pop
formatCmds :: [JobSet] -> String
1304 9f6dcdea Iustin Pop
formatCmds =
1305 9fc18384 Iustin Pop
  unlines .
1306 9fc18384 Iustin Pop
  concatMap (\(jsn, js) -> concatMap (formatJob jsn (length js))
1307 9fc18384 Iustin Pop
                           (zip [1..] js)) .
1308 9fc18384 Iustin Pop
  zip [1..]
1309 142538ff Iustin Pop
1310 e4f08c46 Iustin Pop
-- | Print the node list.
1311 e98fb766 Iustin Pop
printNodes :: Node.List -> [String] -> String
1312 e98fb766 Iustin Pop
printNodes nl fs =
1313 9fc18384 Iustin Pop
  let fields = case fs of
1314 9fc18384 Iustin Pop
                 [] -> Node.defaultFields
1315 9fc18384 Iustin Pop
                 "+":rest -> Node.defaultFields ++ rest
1316 9fc18384 Iustin Pop
                 _ -> fs
1317 9fc18384 Iustin Pop
      snl = sortBy (comparing Node.idx) (Container.elems nl)
1318 9fc18384 Iustin Pop
      (header, isnum) = unzip $ map Node.showHeader fields
1319 c3024b7e René Nussbaumer
  in printTable "" header (map (Node.list fields) snl) isnum
1320 e4f08c46 Iustin Pop
1321 507fda3f Iustin Pop
-- | Print the instance list.
1322 507fda3f Iustin Pop
printInsts :: Node.List -> Instance.List -> String
1323 507fda3f Iustin Pop
printInsts nl il =
1324 9fc18384 Iustin Pop
  let sil = sortBy (comparing Instance.idx) (Container.elems il)
1325 7959cbb9 Iustin Pop
      helper inst = [ if Instance.isRunning inst then "R" else " "
1326 9fc18384 Iustin Pop
                    , Instance.name inst
1327 9fc18384 Iustin Pop
                    , Container.nameOf nl (Instance.pNode inst)
1328 9fc18384 Iustin Pop
                    , let sdx = Instance.sNode inst
1329 9fc18384 Iustin Pop
                      in if sdx == Node.noSecondary
1330 5182e970 Iustin Pop
                           then  ""
1331 5182e970 Iustin Pop
                           else Container.nameOf nl sdx
1332 9fc18384 Iustin Pop
                    , if Instance.autoBalance inst then "Y" else "N"
1333 9fc18384 Iustin Pop
                    , printf "%3d" $ Instance.vcpus inst
1334 9fc18384 Iustin Pop
                    , printf "%5d" $ Instance.mem inst
1335 9fc18384 Iustin Pop
                    , printf "%5d" $ Instance.dsk inst `div` 1024
1336 9fc18384 Iustin Pop
                    , printf "%5.3f" lC
1337 9fc18384 Iustin Pop
                    , printf "%5.3f" lM
1338 9fc18384 Iustin Pop
                    , printf "%5.3f" lD
1339 9fc18384 Iustin Pop
                    , printf "%5.3f" lN
1340 9fc18384 Iustin Pop
                    ]
1341 9fc18384 Iustin Pop
          where DynUtil lC lM lD lN = Instance.util inst
1342 9fc18384 Iustin Pop
      header = [ "F", "Name", "Pri_node", "Sec_node", "Auto_bal"
1343 9fc18384 Iustin Pop
               , "vcpu", "mem" , "dsk", "lCpu", "lMem", "lDsk", "lNet" ]
1344 9fc18384 Iustin Pop
      isnum = False:False:False:False:False:repeat True
1345 c3024b7e René Nussbaumer
  in printTable "" header (map helper sil) isnum
1346 507fda3f Iustin Pop
1347 9188aeef Iustin Pop
-- | Shows statistics for a given node list.
1348 2922d2c5 René Nussbaumer
printStats :: String -> Node.List -> String
1349 2922d2c5 René Nussbaumer
printStats lp nl =
1350 9fc18384 Iustin Pop
  let dcvs = compDetailedCV $ Container.elems nl
1351 9fc18384 Iustin Pop
      (weights, names) = unzip detailedCVInfo
1352 9fc18384 Iustin Pop
      hd = zip3 (weights ++ repeat 1) (names ++ repeat "unknown") dcvs
1353 2922d2c5 René Nussbaumer
      header = [ "Field", "Value", "Weight" ]
1354 2922d2c5 René Nussbaumer
      formatted = map (\(w, h, val) ->
1355 2922d2c5 René Nussbaumer
                         [ h
1356 2922d2c5 René Nussbaumer
                         , printf "%.8f" val
1357 2922d2c5 René Nussbaumer
                         , printf "x%.2f" w
1358 2922d2c5 René Nussbaumer
                         ]) hd
1359 c3024b7e René Nussbaumer
  in printTable lp header formatted $ False:repeat True
1360 6b20875c Iustin Pop
1361 6b20875c Iustin Pop
-- | Convert a placement into a list of OpCodes (basically a job).
1362 179c0828 Iustin Pop
iMoveToJob :: Node.List        -- ^ The node list; only used for node
1363 179c0828 Iustin Pop
                               -- names, so any version is good
1364 179c0828 Iustin Pop
                               -- (before or after the operation)
1365 179c0828 Iustin Pop
           -> Instance.List    -- ^ The instance list; also used for
1366 179c0828 Iustin Pop
                               -- names only
1367 179c0828 Iustin Pop
           -> Idx              -- ^ The index of the instance being
1368 179c0828 Iustin Pop
                               -- moved
1369 179c0828 Iustin Pop
           -> IMove            -- ^ The actual move to be described
1370 179c0828 Iustin Pop
           -> [OpCodes.OpCode] -- ^ The list of opcodes equivalent to
1371 179c0828 Iustin Pop
                               -- the given move
1372 3e4480e0 Iustin Pop
iMoveToJob nl il idx move =
1373 9fc18384 Iustin Pop
  let inst = Container.find idx il
1374 9fc18384 Iustin Pop
      iname = Instance.name inst
1375 9fc18384 Iustin Pop
      lookNode  = Just . Container.nameOf nl
1376 9fc18384 Iustin Pop
      opF = OpCodes.OpInstanceMigrate iname True False True Nothing
1377 9fc18384 Iustin Pop
      opR n = OpCodes.OpInstanceReplaceDisks iname (lookNode n)
1378 9fc18384 Iustin Pop
              OpCodes.ReplaceNewSecondary [] Nothing
1379 9fc18384 Iustin Pop
  in case move of
1380 9fc18384 Iustin Pop
       Failover -> [ opF ]
1381 9fc18384 Iustin Pop
       ReplacePrimary np -> [ opF, opR np, opF ]
1382 9fc18384 Iustin Pop
       ReplaceSecondary ns -> [ opR ns ]
1383 9fc18384 Iustin Pop
       ReplaceAndFailover np -> [ opR np, opF ]
1384 9fc18384 Iustin Pop
       FailoverAndReplace ns -> [ opF, opR ns ]
1385 32b8d9c0 Iustin Pop
1386 949397c8 Iustin Pop
-- * Node group functions
1387 949397c8 Iustin Pop
1388 525bfb36 Iustin Pop
-- | Computes the group of an instance.
1389 10ef6b4e Iustin Pop
instanceGroup :: Node.List -> Instance.Instance -> Result Gdx
1390 32b8d9c0 Iustin Pop
instanceGroup nl i =
1391 32b8d9c0 Iustin Pop
  let sidx = Instance.sNode i
1392 32b8d9c0 Iustin Pop
      pnode = Container.find (Instance.pNode i) nl
1393 32b8d9c0 Iustin Pop
      snode = if sidx == Node.noSecondary
1394 32b8d9c0 Iustin Pop
              then pnode
1395 32b8d9c0 Iustin Pop
              else Container.find sidx nl
1396 10ef6b4e Iustin Pop
      pgroup = Node.group pnode
1397 10ef6b4e Iustin Pop
      sgroup = Node.group snode
1398 10ef6b4e Iustin Pop
  in if pgroup /= sgroup
1399 9fc18384 Iustin Pop
       then fail ("Instance placed accross two node groups, primary " ++
1400 9fc18384 Iustin Pop
                  show pgroup ++ ", secondary " ++ show sgroup)
1401 9fc18384 Iustin Pop
       else return pgroup
1402 32b8d9c0 Iustin Pop
1403 525bfb36 Iustin Pop
-- | Computes the group of an instance per the primary node.
1404 4bc33d60 Iustin Pop
instancePriGroup :: Node.List -> Instance.Instance -> Gdx
1405 4bc33d60 Iustin Pop
instancePriGroup nl i =
1406 4bc33d60 Iustin Pop
  let pnode = Container.find (Instance.pNode i) nl
1407 4bc33d60 Iustin Pop
  in  Node.group pnode
1408 4bc33d60 Iustin Pop
1409 32b8d9c0 Iustin Pop
-- | Compute the list of badly allocated instances (split across node
1410 525bfb36 Iustin Pop
-- groups).
1411 32b8d9c0 Iustin Pop
findSplitInstances :: Node.List -> Instance.List -> [Instance.Instance]
1412 2a8e2dc9 Iustin Pop
findSplitInstances nl =
1413 2a8e2dc9 Iustin Pop
  filter (not . isOk . instanceGroup nl) . Container.elems
1414 f4161783 Iustin Pop
1415 525bfb36 Iustin Pop
-- | Splits a cluster into the component node groups.
1416 f4161783 Iustin Pop
splitCluster :: Node.List -> Instance.List ->
1417 10ef6b4e Iustin Pop
                [(Gdx, (Node.List, Instance.List))]
1418 f4161783 Iustin Pop
splitCluster nl il =
1419 f4161783 Iustin Pop
  let ngroups = Node.computeGroups (Container.elems nl)
1420 f4161783 Iustin Pop
  in map (\(guuid, nodes) ->
1421 f4161783 Iustin Pop
           let nidxs = map Node.idx nodes
1422 f4161783 Iustin Pop
               nodes' = zip nidxs nodes
1423 f4161783 Iustin Pop
               instances = Container.filter ((`elem` nidxs) . Instance.pNode) il
1424 cb0c77ff Iustin Pop
           in (guuid, (Container.fromList nodes', instances))) ngroups
1425 1f4ae205 Iustin Pop
1426 63a78055 Iustin Pop
-- | Compute the list of nodes that are to be evacuated, given a list
1427 63a78055 Iustin Pop
-- of instances and an evacuation mode.
1428 63a78055 Iustin Pop
nodesToEvacuate :: Instance.List -- ^ The cluster-wide instance list
1429 63a78055 Iustin Pop
                -> EvacMode      -- ^ The evacuation mode we're using
1430 63a78055 Iustin Pop
                -> [Idx]         -- ^ List of instance indices being evacuated
1431 63a78055 Iustin Pop
                -> IntSet.IntSet -- ^ Set of node indices
1432 63a78055 Iustin Pop
nodesToEvacuate il mode =
1433 9fc18384 Iustin Pop
  IntSet.delete Node.noSecondary .
1434 9fc18384 Iustin Pop
  foldl' (\ns idx ->
1435 9fc18384 Iustin Pop
            let i = Container.find idx il
1436 9fc18384 Iustin Pop
                pdx = Instance.pNode i
1437 9fc18384 Iustin Pop
                sdx = Instance.sNode i
1438 9fc18384 Iustin Pop
                dt = Instance.diskTemplate i
1439 9fc18384 Iustin Pop
                withSecondary = case dt of
1440 9fc18384 Iustin Pop
                                  DTDrbd8 -> IntSet.insert sdx ns
1441 9fc18384 Iustin Pop
                                  _ -> ns
1442 9fc18384 Iustin Pop
            in case mode of
1443 9fc18384 Iustin Pop
                 ChangePrimary   -> IntSet.insert pdx ns
1444 9fc18384 Iustin Pop
                 ChangeSecondary -> withSecondary
1445 9fc18384 Iustin Pop
                 ChangeAll       -> IntSet.insert pdx withSecondary
1446 9fc18384 Iustin Pop
         ) IntSet.empty