Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / HTools / Cluster.hs @ 5f4464db

History | View | Annotate | Download (62.2 kB)

1
{-| Implementation of cluster-wide logic.
2

    
3
This module holds all pure cluster-logic; I\/O related functionality
4
goes into the /Main/ module for the individual binaries.
5

    
6
-}
7

    
8
{-
9

    
10
Copyright (C) 2009, 2010, 2011, 2012 Google Inc.
11

    
12
This program is free software; you can redistribute it and/or modify
13
it under the terms of the GNU General Public License as published by
14
the Free Software Foundation; either version 2 of the License, or
15
(at your option) any later version.
16

    
17
This program is distributed in the hope that it will be useful, but
18
WITHOUT ANY WARRANTY; without even the implied warranty of
19
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20
General Public License for more details.
21

    
22
You should have received a copy of the GNU General Public License
23
along with this program; if not, write to the Free Software
24
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25
02110-1301, USA.
26

    
27
-}
28

    
29
module Ganeti.HTools.Cluster
30
  (
31
    -- * Types
32
    AllocSolution(..)
33
  , EvacSolution(..)
34
  , Table(..)
35
  , CStats(..)
36
  , AllocResult
37
  , AllocMethod
38
  -- * Generic functions
39
  , totalResources
40
  , computeAllocationDelta
41
  -- * First phase functions
42
  , computeBadItems
43
  -- * Second phase functions
44
  , printSolutionLine
45
  , formatCmds
46
  , involvedNodes
47
  , splitJobs
48
  -- * Display functions
49
  , printNodes
50
  , printInsts
51
  -- * Balacing functions
52
  , checkMove
53
  , doNextBalance
54
  , tryBalance
55
  , compCV
56
  , compCVNodes
57
  , compDetailedCV
58
  , printStats
59
  , iMoveToJob
60
  -- * IAllocator functions
61
  , genAllocNodes
62
  , tryAlloc
63
  , tryMGAlloc
64
  , tryNodeEvac
65
  , tryChangeGroup
66
  , collapseFailures
67
  -- * Allocation functions
68
  , iterateAlloc
69
  , tieredAlloc
70
  -- * Node group functions
71
  , instanceGroup
72
  , findSplitInstances
73
  , splitCluster
74
  ) where
75

    
76
import qualified Data.IntSet as IntSet
77
import Data.List
78
import Data.Maybe (fromJust, isNothing)
79
import Data.Ord (comparing)
80
import Text.Printf (printf)
81

    
82
import qualified Ganeti.HTools.Container as Container
83
import qualified Ganeti.HTools.Instance as Instance
84
import qualified Ganeti.HTools.Node as Node
85
import qualified Ganeti.HTools.Group as Group
86
import Ganeti.HTools.Types
87
import Ganeti.HTools.Utils
88
import Ganeti.HTools.Compat
89
import qualified Ganeti.OpCodes as OpCodes
90

    
91
-- * Types
92

    
93
-- | Allocation\/relocation solution.
94
data AllocSolution = AllocSolution
95
  { asFailures :: [FailMode]              -- ^ Failure counts
96
  , asAllocs   :: Int                     -- ^ Good allocation count
97
  , asSolution :: Maybe Node.AllocElement -- ^ The actual allocation result
98
  , asLog      :: [String]                -- ^ Informational messages
99
  }
100

    
101
-- | Node evacuation/group change iallocator result type. This result
102
-- type consists of actual opcodes (a restricted subset) that are
103
-- transmitted back to Ganeti.
104
data EvacSolution = EvacSolution
105
  { esMoved   :: [(Idx, Gdx, [Ndx])]  -- ^ Instances moved successfully
106
  , esFailed  :: [(Idx, String)]      -- ^ Instances which were not
107
                                      -- relocated
108
  , esOpCodes :: [[OpCodes.OpCode]]   -- ^ List of jobs
109
  } deriving (Show)
110

    
111
-- | Allocation results, as used in 'iterateAlloc' and 'tieredAlloc'.
112
type AllocResult = (FailStats, Node.List, Instance.List,
113
                    [Instance.Instance], [CStats])
114

    
115
-- | A type denoting the valid allocation mode/pairs.
116
--
117
-- For a one-node allocation, this will be a @Left ['Ndx']@, whereas
118
-- for a two-node allocation, this will be a @Right [('Ndx',
119
-- ['Ndx'])]@. In the latter case, the list is basically an
120
-- association list, grouped by primary node and holding the potential
121
-- secondary nodes in the sub-list.
122
type AllocNodes = Either [Ndx] [(Ndx, [Ndx])]
123

    
124
-- | The empty solution we start with when computing allocations.
125
emptyAllocSolution :: AllocSolution
126
emptyAllocSolution = AllocSolution { asFailures = [], asAllocs = 0
127
                                   , asSolution = Nothing, asLog = [] }
128

    
129
-- | The empty evac solution.
130
emptyEvacSolution :: EvacSolution
131
emptyEvacSolution = EvacSolution { esMoved = []
132
                                 , esFailed = []
133
                                 , esOpCodes = []
134
                                 }
135

    
136
-- | The complete state for the balancing solution.
137
data Table = Table Node.List Instance.List Score [Placement]
138
             deriving (Show, Read)
139

    
140
-- | Cluster statistics data type.
141
data CStats = CStats
142
  { csFmem :: Integer -- ^ Cluster free mem
143
  , csFdsk :: Integer -- ^ Cluster free disk
144
  , csAmem :: Integer -- ^ Cluster allocatable mem
145
  , csAdsk :: Integer -- ^ Cluster allocatable disk
146
  , csAcpu :: Integer -- ^ Cluster allocatable cpus
147
  , csMmem :: Integer -- ^ Max node allocatable mem
148
  , csMdsk :: Integer -- ^ Max node allocatable disk
149
  , csMcpu :: Integer -- ^ Max node allocatable cpu
150
  , csImem :: Integer -- ^ Instance used mem
151
  , csIdsk :: Integer -- ^ Instance used disk
152
  , csIcpu :: Integer -- ^ Instance used cpu
153
  , csTmem :: Double  -- ^ Cluster total mem
154
  , csTdsk :: Double  -- ^ Cluster total disk
155
  , csTcpu :: Double  -- ^ Cluster total cpus
156
  , csVcpu :: Integer -- ^ Cluster total virtual cpus
157
  , csNcpu :: Double  -- ^ Equivalent to 'csIcpu' but in terms of
158
                      -- physical CPUs, i.e. normalised used phys CPUs
159
  , csXmem :: Integer -- ^ Unnacounted for mem
160
  , csNmem :: Integer -- ^ Node own memory
161
  , csScore :: Score  -- ^ The cluster score
162
  , csNinst :: Int    -- ^ The total number of instances
163
  } deriving (Show, Read)
164

    
165
-- | A simple type for allocation functions.
166
type AllocMethod =  Node.List           -- ^ Node list
167
                 -> Instance.List       -- ^ Instance list
168
                 -> Maybe Int           -- ^ Optional allocation limit
169
                 -> Instance.Instance   -- ^ Instance spec for allocation
170
                 -> AllocNodes          -- ^ Which nodes we should allocate on
171
                 -> [Instance.Instance] -- ^ Allocated instances
172
                 -> [CStats]            -- ^ Running cluster stats
173
                 -> Result AllocResult  -- ^ Allocation result
174

    
175
-- * Utility functions
176

    
177
-- | Verifies the N+1 status and return the affected nodes.
178
verifyN1 :: [Node.Node] -> [Node.Node]
179
verifyN1 = filter Node.failN1
180

    
181
{-| Computes the pair of bad nodes and instances.
182

    
183
The bad node list is computed via a simple 'verifyN1' check, and the
184
bad instance list is the list of primary and secondary instances of
185
those nodes.
186

    
187
-}
188
computeBadItems :: Node.List -> Instance.List ->
189
                   ([Node.Node], [Instance.Instance])
190
computeBadItems nl il =
191
  let bad_nodes = verifyN1 $ getOnline nl
192
      bad_instances = map (`Container.find` il) .
193
                      sort . nub $
194
                      concatMap (\ n -> Node.sList n ++ Node.pList n) bad_nodes
195
  in
196
    (bad_nodes, bad_instances)
197

    
198
-- | Extracts the node pairs for an instance. This can fail if the
199
-- instance is single-homed. FIXME: this needs to be improved,
200
-- together with the general enhancement for handling non-DRBD moves.
201
instanceNodes :: Node.List -> Instance.Instance ->
202
                 (Ndx, Ndx, Node.Node, Node.Node)
203
instanceNodes nl inst =
204
  let old_pdx = Instance.pNode inst
205
      old_sdx = Instance.sNode inst
206
      old_p = Container.find old_pdx nl
207
      old_s = Container.find old_sdx nl
208
  in (old_pdx, old_sdx, old_p, old_s)
209

    
210
-- | Zero-initializer for the CStats type.
211
emptyCStats :: CStats
212
emptyCStats = CStats 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
213

    
214
-- | Update stats with data from a new node.
215
updateCStats :: CStats -> Node.Node -> CStats
216
updateCStats cs node =
217
  let CStats { csFmem = x_fmem, csFdsk = x_fdsk,
218
               csAmem = x_amem, csAcpu = x_acpu, csAdsk = x_adsk,
219
               csMmem = x_mmem, csMdsk = x_mdsk, csMcpu = x_mcpu,
220
               csImem = x_imem, csIdsk = x_idsk, csIcpu = x_icpu,
221
               csTmem = x_tmem, csTdsk = x_tdsk, csTcpu = x_tcpu,
222
               csVcpu = x_vcpu, csNcpu = x_ncpu,
223
               csXmem = x_xmem, csNmem = x_nmem, csNinst = x_ninst
224
             }
225
        = cs
226
      inc_amem = Node.fMem node - Node.rMem node
227
      inc_amem' = if inc_amem > 0 then inc_amem else 0
228
      inc_adsk = Node.availDisk node
229
      inc_imem = truncate (Node.tMem node) - Node.nMem node
230
                 - Node.xMem node - Node.fMem node
231
      inc_icpu = Node.uCpu node
232
      inc_idsk = truncate (Node.tDsk node) - Node.fDsk node
233
      inc_vcpu = Node.hiCpu node
234
      inc_acpu = Node.availCpu node
235
      inc_ncpu = fromIntegral (Node.uCpu node) /
236
                 iPolicyVcpuRatio (Node.iPolicy node)
237
  in cs { csFmem = x_fmem + fromIntegral (Node.fMem node)
238
        , csFdsk = x_fdsk + fromIntegral (Node.fDsk node)
239
        , csAmem = x_amem + fromIntegral inc_amem'
240
        , csAdsk = x_adsk + fromIntegral inc_adsk
241
        , csAcpu = x_acpu + fromIntegral inc_acpu
242
        , csMmem = max x_mmem (fromIntegral inc_amem')
243
        , csMdsk = max x_mdsk (fromIntegral inc_adsk)
244
        , csMcpu = max x_mcpu (fromIntegral inc_acpu)
245
        , csImem = x_imem + fromIntegral inc_imem
246
        , csIdsk = x_idsk + fromIntegral inc_idsk
247
        , csIcpu = x_icpu + fromIntegral inc_icpu
248
        , csTmem = x_tmem + Node.tMem node
249
        , csTdsk = x_tdsk + Node.tDsk node
250
        , csTcpu = x_tcpu + Node.tCpu node
251
        , csVcpu = x_vcpu + fromIntegral inc_vcpu
252
        , csNcpu = x_ncpu + inc_ncpu
253
        , csXmem = x_xmem + fromIntegral (Node.xMem node)
254
        , csNmem = x_nmem + fromIntegral (Node.nMem node)
255
        , csNinst = x_ninst + length (Node.pList node)
256
        }
257

    
258
-- | Compute the total free disk and memory in the cluster.
259
totalResources :: Node.List -> CStats
260
totalResources nl =
261
  let cs = foldl' updateCStats emptyCStats . Container.elems $ nl
262
  in cs { csScore = compCV nl }
263

    
264
-- | Compute the delta between two cluster state.
265
--
266
-- This is used when doing allocations, to understand better the
267
-- available cluster resources. The return value is a triple of the
268
-- current used values, the delta that was still allocated, and what
269
-- was left unallocated.
270
computeAllocationDelta :: CStats -> CStats -> AllocStats
271
computeAllocationDelta cini cfin =
272
  let CStats {csImem = i_imem, csIdsk = i_idsk, csIcpu = i_icpu,
273
              csNcpu = i_ncpu } = cini
274
      CStats {csImem = f_imem, csIdsk = f_idsk, csIcpu = f_icpu,
275
              csTmem = t_mem, csTdsk = t_dsk, csVcpu = f_vcpu,
276
              csNcpu = f_ncpu, csTcpu = f_tcpu } = cfin
277
      rini = AllocInfo { allocInfoVCpus = fromIntegral i_icpu
278
                       , allocInfoNCpus = i_ncpu
279
                       , allocInfoMem   = fromIntegral i_imem
280
                       , allocInfoDisk  = fromIntegral i_idsk
281
                       }
282
      rfin = AllocInfo { allocInfoVCpus = fromIntegral (f_icpu - i_icpu)
283
                       , allocInfoNCpus = f_ncpu - i_ncpu
284
                       , allocInfoMem   = fromIntegral (f_imem - i_imem)
285
                       , allocInfoDisk  = fromIntegral (f_idsk - i_idsk)
286
                       }
287
      runa = AllocInfo { allocInfoVCpus = fromIntegral (f_vcpu - f_icpu)
288
                       , allocInfoNCpus = f_tcpu - f_ncpu
289
                       , allocInfoMem   = truncate t_mem - fromIntegral f_imem
290
                       , allocInfoDisk  = truncate t_dsk - fromIntegral f_idsk
291
                       }
292
  in (rini, rfin, runa)
293

    
294
-- | The names and weights of the individual elements in the CV list.
295
detailedCVInfo :: [(Double, String)]
296
detailedCVInfo = [ (1,  "free_mem_cv")
297
                 , (1,  "free_disk_cv")
298
                 , (1,  "n1_cnt")
299
                 , (1,  "reserved_mem_cv")
300
                 , (4,  "offline_all_cnt")
301
                 , (16, "offline_pri_cnt")
302
                 , (1,  "vcpu_ratio_cv")
303
                 , (1,  "cpu_load_cv")
304
                 , (1,  "mem_load_cv")
305
                 , (1,  "disk_load_cv")
306
                 , (1,  "net_load_cv")
307
                 , (2,  "pri_tags_score")
308
                 , (1,  "spindles_cv")
309
                 ]
310

    
311
-- | Holds the weights used by 'compCVNodes' for each metric.
312
detailedCVWeights :: [Double]
313
detailedCVWeights = map fst detailedCVInfo
314

    
315
-- | Compute the mem and disk covariance.
316
compDetailedCV :: [Node.Node] -> [Double]
317
compDetailedCV all_nodes =
318
  let (offline, nodes) = partition Node.offline all_nodes
319
      mem_l = map Node.pMem nodes
320
      dsk_l = map Node.pDsk nodes
321
      -- metric: memory covariance
322
      mem_cv = stdDev mem_l
323
      -- metric: disk covariance
324
      dsk_cv = stdDev dsk_l
325
      -- metric: count of instances living on N1 failing nodes
326
      n1_score = fromIntegral . sum . map (\n -> length (Node.sList n) +
327
                                                 length (Node.pList n)) .
328
                 filter Node.failN1 $ nodes :: Double
329
      res_l = map Node.pRem nodes
330
      -- metric: reserved memory covariance
331
      res_cv = stdDev res_l
332
      -- offline instances metrics
333
      offline_ipri = sum . map (length . Node.pList) $ offline
334
      offline_isec = sum . map (length . Node.sList) $ offline
335
      -- metric: count of instances on offline nodes
336
      off_score = fromIntegral (offline_ipri + offline_isec)::Double
337
      -- metric: count of primary instances on offline nodes (this
338
      -- helps with evacuation/failover of primary instances on
339
      -- 2-node clusters with one node offline)
340
      off_pri_score = fromIntegral offline_ipri::Double
341
      cpu_l = map Node.pCpu nodes
342
      -- metric: covariance of vcpu/pcpu ratio
343
      cpu_cv = stdDev cpu_l
344
      -- metrics: covariance of cpu, memory, disk and network load
345
      (c_load, m_load, d_load, n_load) =
346
        unzip4 $ map (\n ->
347
                      let DynUtil c1 m1 d1 n1 = Node.utilLoad n
348
                          DynUtil c2 m2 d2 n2 = Node.utilPool n
349
                      in (c1/c2, m1/m2, d1/d2, n1/n2)) nodes
350
      -- metric: conflicting instance count
351
      pri_tags_inst = sum $ map Node.conflictingPrimaries nodes
352
      pri_tags_score = fromIntegral pri_tags_inst::Double
353
      -- metric: spindles %
354
      spindles_cv = map (\n -> Node.instSpindles n / Node.hiSpindles n) nodes
355
  in [ mem_cv, dsk_cv, n1_score, res_cv, off_score, off_pri_score, cpu_cv
356
     , stdDev c_load, stdDev m_load , stdDev d_load, stdDev n_load
357
     , pri_tags_score, stdDev spindles_cv ]
358

    
359
-- | Compute the /total/ variance.
360
compCVNodes :: [Node.Node] -> Double
361
compCVNodes = sum . zipWith (*) detailedCVWeights . compDetailedCV
362

    
363
-- | Wrapper over 'compCVNodes' for callers that have a 'Node.List'.
364
compCV :: Node.List -> Double
365
compCV = compCVNodes . Container.elems
366

    
367
-- | Compute online nodes from a 'Node.List'.
368
getOnline :: Node.List -> [Node.Node]
369
getOnline = filter (not . Node.offline) . Container.elems
370

    
371
-- * Balancing functions
372

    
373
-- | Compute best table. Note that the ordering of the arguments is important.
374
compareTables :: Table -> Table -> Table
375
compareTables a@(Table _ _ a_cv _) b@(Table _ _ b_cv _ ) =
376
  if a_cv > b_cv then b else a
377

    
378
-- | Applies an instance move to a given node list and instance.
379
applyMove :: Node.List -> Instance.Instance
380
          -> IMove -> OpResult (Node.List, Instance.Instance, Ndx, Ndx)
381
-- Failover (f)
382
applyMove nl inst Failover =
383
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
384
      int_p = Node.removePri old_p inst
385
      int_s = Node.removeSec old_s inst
386
      new_nl = do -- Maybe monad
387
        new_p <- Node.addPriEx (Node.offline old_p) int_s inst
388
        new_s <- Node.addSec int_p inst old_sdx
389
        let new_inst = Instance.setBoth inst old_sdx old_pdx
390
        return (Container.addTwo old_pdx new_s old_sdx new_p nl,
391
                new_inst, old_sdx, old_pdx)
392
  in new_nl
393

    
394
-- Replace the primary (f:, r:np, f)
395
applyMove nl inst (ReplacePrimary new_pdx) =
396
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
397
      tgt_n = Container.find new_pdx nl
398
      int_p = Node.removePri old_p inst
399
      int_s = Node.removeSec old_s inst
400
      force_p = Node.offline old_p
401
      new_nl = do -- Maybe monad
402
                  -- check that the current secondary can host the instance
403
                  -- during the migration
404
        tmp_s <- Node.addPriEx force_p int_s inst
405
        let tmp_s' = Node.removePri tmp_s inst
406
        new_p <- Node.addPriEx force_p tgt_n inst
407
        new_s <- Node.addSecEx force_p tmp_s' inst new_pdx
408
        let new_inst = Instance.setPri inst new_pdx
409
        return (Container.add new_pdx new_p $
410
                Container.addTwo old_pdx int_p old_sdx new_s nl,
411
                new_inst, new_pdx, old_sdx)
412
  in new_nl
413

    
414
-- Replace the secondary (r:ns)
415
applyMove nl inst (ReplaceSecondary new_sdx) =
416
  let old_pdx = Instance.pNode inst
417
      old_sdx = Instance.sNode inst
418
      old_s = Container.find old_sdx nl
419
      tgt_n = Container.find new_sdx nl
420
      int_s = Node.removeSec old_s inst
421
      force_s = Node.offline old_s
422
      new_inst = Instance.setSec inst new_sdx
423
      new_nl = Node.addSecEx force_s tgt_n inst old_pdx >>=
424
               \new_s -> return (Container.addTwo new_sdx
425
                                 new_s old_sdx int_s nl,
426
                                 new_inst, old_pdx, new_sdx)
427
  in new_nl
428

    
429
-- Replace the secondary and failover (r:np, f)
430
applyMove nl inst (ReplaceAndFailover new_pdx) =
431
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
432
      tgt_n = Container.find new_pdx nl
433
      int_p = Node.removePri old_p inst
434
      int_s = Node.removeSec old_s inst
435
      force_s = Node.offline old_s
436
      new_nl = do -- Maybe monad
437
        new_p <- Node.addPri tgt_n inst
438
        new_s <- Node.addSecEx force_s int_p inst new_pdx
439
        let new_inst = Instance.setBoth inst new_pdx old_pdx
440
        return (Container.add new_pdx new_p $
441
                Container.addTwo old_pdx new_s old_sdx int_s nl,
442
                new_inst, new_pdx, old_pdx)
443
  in new_nl
444

    
445
-- Failver and replace the secondary (f, r:ns)
446
applyMove nl inst (FailoverAndReplace new_sdx) =
447
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
448
      tgt_n = Container.find new_sdx nl
449
      int_p = Node.removePri old_p inst
450
      int_s = Node.removeSec old_s inst
451
      force_p = Node.offline old_p
452
      new_nl = do -- Maybe monad
453
        new_p <- Node.addPriEx force_p int_s inst
454
        new_s <- Node.addSecEx force_p tgt_n inst old_sdx
455
        let new_inst = Instance.setBoth inst old_sdx new_sdx
456
        return (Container.add new_sdx new_s $
457
                Container.addTwo old_sdx new_p old_pdx int_p nl,
458
                new_inst, old_sdx, new_sdx)
459
  in new_nl
460

    
461
-- | Tries to allocate an instance on one given node.
462
allocateOnSingle :: Node.List -> Instance.Instance -> Ndx
463
                 -> OpResult Node.AllocElement
464
allocateOnSingle nl inst new_pdx =
465
  let p = Container.find new_pdx nl
466
      new_inst = Instance.setBoth inst new_pdx Node.noSecondary
467
  in do
468
    Instance.instMatchesPolicy inst (Node.iPolicy p)
469
    new_p <- Node.addPri p inst
470
    let new_nl = Container.add new_pdx new_p nl
471
        new_score = compCV nl
472
    return (new_nl, new_inst, [new_p], new_score)
473

    
474
-- | Tries to allocate an instance on a given pair of nodes.
475
allocateOnPair :: Node.List -> Instance.Instance -> Ndx -> Ndx
476
               -> OpResult Node.AllocElement
477
allocateOnPair nl inst new_pdx new_sdx =
478
  let tgt_p = Container.find new_pdx nl
479
      tgt_s = Container.find new_sdx nl
480
  in do
481
    Instance.instMatchesPolicy inst (Node.iPolicy tgt_p)
482
    new_p <- Node.addPri tgt_p inst
483
    new_s <- Node.addSec tgt_s inst new_pdx
484
    let new_inst = Instance.setBoth inst new_pdx new_sdx
485
        new_nl = Container.addTwo new_pdx new_p new_sdx new_s nl
486
    return (new_nl, new_inst, [new_p, new_s], compCV new_nl)
487

    
488
-- | Tries to perform an instance move and returns the best table
489
-- between the original one and the new one.
490
checkSingleStep :: Table -- ^ The original table
491
                -> Instance.Instance -- ^ The instance to move
492
                -> Table -- ^ The current best table
493
                -> IMove -- ^ The move to apply
494
                -> Table -- ^ The final best table
495
checkSingleStep ini_tbl target cur_tbl move =
496
  let Table ini_nl ini_il _ ini_plc = ini_tbl
497
      tmp_resu = applyMove ini_nl target move
498
  in case tmp_resu of
499
       OpFail _ -> cur_tbl
500
       OpGood (upd_nl, new_inst, pri_idx, sec_idx) ->
501
         let tgt_idx = Instance.idx target
502
             upd_cvar = compCV upd_nl
503
             upd_il = Container.add tgt_idx new_inst ini_il
504
             upd_plc = (tgt_idx, pri_idx, sec_idx, move, upd_cvar):ini_plc
505
             upd_tbl = Table upd_nl upd_il upd_cvar upd_plc
506
         in compareTables cur_tbl upd_tbl
507

    
508
-- | Given the status of the current secondary as a valid new node and
509
-- the current candidate target node, generate the possible moves for
510
-- a instance.
511
possibleMoves :: MirrorType -- ^ The mirroring type of the instance
512
              -> Bool       -- ^ Whether the secondary node is a valid new node
513
              -> Bool       -- ^ Whether we can change the primary node
514
              -> Ndx        -- ^ Target node candidate
515
              -> [IMove]    -- ^ List of valid result moves
516

    
517
possibleMoves MirrorNone _ _ _ = []
518

    
519
possibleMoves MirrorExternal _ _ _ = []
520

    
521
possibleMoves MirrorInternal _ False tdx =
522
  [ ReplaceSecondary tdx ]
523

    
524
possibleMoves MirrorInternal True True tdx =
525
  [ ReplaceSecondary tdx
526
  , ReplaceAndFailover tdx
527
  , ReplacePrimary tdx
528
  , FailoverAndReplace tdx
529
  ]
530

    
531
possibleMoves MirrorInternal False True tdx =
532
  [ ReplaceSecondary tdx
533
  , ReplaceAndFailover tdx
534
  ]
535

    
536
-- | Compute the best move for a given instance.
537
checkInstanceMove :: [Ndx]             -- ^ Allowed target node indices
538
                  -> Bool              -- ^ Whether disk moves are allowed
539
                  -> Bool              -- ^ Whether instance moves are allowed
540
                  -> Table             -- ^ Original table
541
                  -> Instance.Instance -- ^ Instance to move
542
                  -> Table             -- ^ Best new table for this instance
543
checkInstanceMove nodes_idx disk_moves inst_moves ini_tbl target =
544
  let opdx = Instance.pNode target
545
      osdx = Instance.sNode target
546
      bad_nodes = [opdx, osdx]
547
      nodes = filter (`notElem` bad_nodes) nodes_idx
548
      mir_type = templateMirrorType $ Instance.diskTemplate target
549
      use_secondary = elem osdx nodes_idx && inst_moves
550
      aft_failover = if mir_type == MirrorInternal && use_secondary
551
                       -- if drbd and allowed to failover
552
                       then checkSingleStep ini_tbl target ini_tbl Failover
553
                       else ini_tbl
554
      all_moves =
555
        if disk_moves
556
          then concatMap (possibleMoves mir_type use_secondary inst_moves)
557
               nodes
558
          else []
559
    in
560
      -- iterate over the possible nodes for this instance
561
      foldl' (checkSingleStep ini_tbl target) aft_failover all_moves
562

    
563
-- | Compute the best next move.
564
checkMove :: [Ndx]               -- ^ Allowed target node indices
565
          -> Bool                -- ^ Whether disk moves are allowed
566
          -> Bool                -- ^ Whether instance moves are allowed
567
          -> Table               -- ^ The current solution
568
          -> [Instance.Instance] -- ^ List of instances still to move
569
          -> Table               -- ^ The new solution
570
checkMove nodes_idx disk_moves inst_moves ini_tbl victims =
571
  let Table _ _ _ ini_plc = ini_tbl
572
      -- we're using rwhnf from the Control.Parallel.Strategies
573
      -- package; we don't need to use rnf as that would force too
574
      -- much evaluation in single-threaded cases, and in
575
      -- multi-threaded case the weak head normal form is enough to
576
      -- spark the evaluation
577
      tables = parMap rwhnf (checkInstanceMove nodes_idx disk_moves
578
                             inst_moves ini_tbl)
579
               victims
580
      -- iterate over all instances, computing the best move
581
      best_tbl = foldl' compareTables ini_tbl tables
582
      Table _ _ _ best_plc = best_tbl
583
  in if length best_plc == length ini_plc
584
       then ini_tbl -- no advancement
585
       else best_tbl
586

    
587
-- | Check if we are allowed to go deeper in the balancing.
588
doNextBalance :: Table     -- ^ The starting table
589
              -> Int       -- ^ Remaining length
590
              -> Score     -- ^ Score at which to stop
591
              -> Bool      -- ^ The resulting table and commands
592
doNextBalance ini_tbl max_rounds min_score =
593
  let Table _ _ ini_cv ini_plc = ini_tbl
594
      ini_plc_len = length ini_plc
595
  in (max_rounds < 0 || ini_plc_len < max_rounds) && ini_cv > min_score
596

    
597
-- | Run a balance move.
598
tryBalance :: Table       -- ^ The starting table
599
           -> Bool        -- ^ Allow disk moves
600
           -> Bool        -- ^ Allow instance moves
601
           -> Bool        -- ^ Only evacuate moves
602
           -> Score       -- ^ Min gain threshold
603
           -> Score       -- ^ Min gain
604
           -> Maybe Table -- ^ The resulting table and commands
605
tryBalance ini_tbl disk_moves inst_moves evac_mode mg_limit min_gain =
606
    let Table ini_nl ini_il ini_cv _ = ini_tbl
607
        all_inst = Container.elems ini_il
608
        all_nodes = Container.elems ini_nl
609
        (offline_nodes, online_nodes) = partition Node.offline all_nodes
610
        all_inst' = if evac_mode
611
                      then let bad_nodes = map Node.idx offline_nodes
612
                           in filter (any (`elem` bad_nodes) .
613
                                          Instance.allNodes) all_inst
614
                      else all_inst
615
        reloc_inst = filter Instance.movable all_inst'
616
        node_idx = map Node.idx online_nodes
617
        fin_tbl = checkMove node_idx disk_moves inst_moves ini_tbl reloc_inst
618
        (Table _ _ fin_cv _) = fin_tbl
619
    in
620
      if fin_cv < ini_cv && (ini_cv > mg_limit || ini_cv - fin_cv >= min_gain)
621
      then Just fin_tbl -- this round made success, return the new table
622
      else Nothing
623

    
624
-- * Allocation functions
625

    
626
-- | Build failure stats out of a list of failures.
627
collapseFailures :: [FailMode] -> FailStats
628
collapseFailures flst =
629
    map (\k -> (k, foldl' (\a e -> if e == k then a + 1 else a) 0 flst))
630
            [minBound..maxBound]
631

    
632
-- | Compares two Maybe AllocElement and chooses the besst score.
633
bestAllocElement :: Maybe Node.AllocElement
634
                 -> Maybe Node.AllocElement
635
                 -> Maybe Node.AllocElement
636
bestAllocElement a Nothing = a
637
bestAllocElement Nothing b = b
638
bestAllocElement a@(Just (_, _, _, ascore)) b@(Just (_, _, _, bscore)) =
639
  if ascore < bscore then a else b
640

    
641
-- | Update current Allocation solution and failure stats with new
642
-- elements.
643
concatAllocs :: AllocSolution -> OpResult Node.AllocElement -> AllocSolution
644
concatAllocs as (OpFail reason) = as { asFailures = reason : asFailures as }
645

    
646
concatAllocs as (OpGood ns) =
647
  let -- Choose the old or new solution, based on the cluster score
648
    cntok = asAllocs as
649
    osols = asSolution as
650
    nsols = bestAllocElement osols (Just ns)
651
    nsuc = cntok + 1
652
    -- Note: we force evaluation of nsols here in order to keep the
653
    -- memory profile low - we know that we will need nsols for sure
654
    -- in the next cycle, so we force evaluation of nsols, since the
655
    -- foldl' in the caller will only evaluate the tuple, but not the
656
    -- elements of the tuple
657
  in nsols `seq` nsuc `seq` as { asAllocs = nsuc, asSolution = nsols }
658

    
659
-- | Sums two 'AllocSolution' structures.
660
sumAllocs :: AllocSolution -> AllocSolution -> AllocSolution
661
sumAllocs (AllocSolution aFails aAllocs aSols aLog)
662
          (AllocSolution bFails bAllocs bSols bLog) =
663
  -- note: we add b first, since usually it will be smaller; when
664
  -- fold'ing, a will grow and grow whereas b is the per-group
665
  -- result, hence smaller
666
  let nFails  = bFails ++ aFails
667
      nAllocs = aAllocs + bAllocs
668
      nSols   = bestAllocElement aSols bSols
669
      nLog    = bLog ++ aLog
670
  in AllocSolution nFails nAllocs nSols nLog
671

    
672
-- | Given a solution, generates a reasonable description for it.
673
describeSolution :: AllocSolution -> String
674
describeSolution as =
675
  let fcnt = asFailures as
676
      sols = asSolution as
677
      freasons =
678
        intercalate ", " . map (\(a, b) -> printf "%s: %d" (show a) b) .
679
        filter ((> 0) . snd) . collapseFailures $ fcnt
680
  in case sols of
681
     Nothing -> "No valid allocation solutions, failure reasons: " ++
682
                (if null fcnt then "unknown reasons" else freasons)
683
     Just (_, _, nodes, cv) ->
684
         printf ("score: %.8f, successes %d, failures %d (%s)" ++
685
                 " for node(s) %s") cv (asAllocs as) (length fcnt) freasons
686
               (intercalate "/" . map Node.name $ nodes)
687

    
688
-- | Annotates a solution with the appropriate string.
689
annotateSolution :: AllocSolution -> AllocSolution
690
annotateSolution as = as { asLog = describeSolution as : asLog as }
691

    
692
-- | Reverses an evacuation solution.
693
--
694
-- Rationale: we always concat the results to the top of the lists, so
695
-- for proper jobset execution, we should reverse all lists.
696
reverseEvacSolution :: EvacSolution -> EvacSolution
697
reverseEvacSolution (EvacSolution f m o) =
698
  EvacSolution (reverse f) (reverse m) (reverse o)
699

    
700
-- | Generate the valid node allocation singles or pairs for a new instance.
701
genAllocNodes :: Group.List        -- ^ Group list
702
              -> Node.List         -- ^ The node map
703
              -> Int               -- ^ The number of nodes required
704
              -> Bool              -- ^ Whether to drop or not
705
                                   -- unallocable nodes
706
              -> Result AllocNodes -- ^ The (monadic) result
707
genAllocNodes gl nl count drop_unalloc =
708
  let filter_fn = if drop_unalloc
709
                    then filter (Group.isAllocable .
710
                                 flip Container.find gl . Node.group)
711
                    else id
712
      all_nodes = filter_fn $ getOnline nl
713
      all_pairs = [(Node.idx p,
714
                    [Node.idx s | s <- all_nodes,
715
                                       Node.idx p /= Node.idx s,
716
                                       Node.group p == Node.group s]) |
717
                   p <- all_nodes]
718
  in case count of
719
       1 -> Ok (Left (map Node.idx all_nodes))
720
       2 -> Ok (Right (filter (not . null . snd) all_pairs))
721
       _ -> Bad "Unsupported number of nodes, only one or two  supported"
722

    
723
-- | Try to allocate an instance on the cluster.
724
tryAlloc :: (Monad m) =>
725
            Node.List         -- ^ The node list
726
         -> Instance.List     -- ^ The instance list
727
         -> Instance.Instance -- ^ The instance to allocate
728
         -> AllocNodes        -- ^ The allocation targets
729
         -> m AllocSolution   -- ^ Possible solution list
730
tryAlloc _  _ _    (Right []) = fail "Not enough online nodes"
731
tryAlloc nl _ inst (Right ok_pairs) =
732
  let psols = parMap rwhnf (\(p, ss) ->
733
                              foldl' (\cstate ->
734
                                        concatAllocs cstate .
735
                                        allocateOnPair nl inst p)
736
                              emptyAllocSolution ss) ok_pairs
737
      sols = foldl' sumAllocs emptyAllocSolution psols
738
  in return $ annotateSolution sols
739

    
740
tryAlloc _  _ _    (Left []) = fail "No online nodes"
741
tryAlloc nl _ inst (Left all_nodes) =
742
  let sols = foldl' (\cstate ->
743
                       concatAllocs cstate . allocateOnSingle nl inst
744
                    ) emptyAllocSolution all_nodes
745
  in return $ annotateSolution sols
746

    
747
-- | Given a group/result, describe it as a nice (list of) messages.
748
solutionDescription :: Group.List -> (Gdx, Result AllocSolution) -> [String]
749
solutionDescription gl (groupId, result) =
750
  case result of
751
    Ok solution -> map (printf "Group %s (%s): %s" gname pol) (asLog solution)
752
    Bad message -> [printf "Group %s: error %s" gname message]
753
  where grp = Container.find groupId gl
754
        gname = Group.name grp
755
        pol = allocPolicyToRaw (Group.allocPolicy grp)
756

    
757
-- | From a list of possibly bad and possibly empty solutions, filter
758
-- only the groups with a valid result. Note that the result will be
759
-- reversed compared to the original list.
760
filterMGResults :: Group.List
761
                -> [(Gdx, Result AllocSolution)]
762
                -> [(Gdx, AllocSolution)]
763
filterMGResults gl = foldl' fn []
764
  where unallocable = not . Group.isAllocable . flip Container.find gl
765
        fn accu (gdx, rasol) =
766
          case rasol of
767
            Bad _ -> accu
768
            Ok sol | isNothing (asSolution sol) -> accu
769
                   | unallocable gdx -> accu
770
                   | otherwise -> (gdx, sol):accu
771

    
772
-- | Sort multigroup results based on policy and score.
773
sortMGResults :: Group.List
774
             -> [(Gdx, AllocSolution)]
775
             -> [(Gdx, AllocSolution)]
776
sortMGResults gl sols =
777
  let extractScore (_, _, _, x) = x
778
      solScore (gdx, sol) = (Group.allocPolicy (Container.find gdx gl),
779
                             (extractScore . fromJust . asSolution) sol)
780
  in sortBy (comparing solScore) sols
781

    
782
-- | Finds the best group for an instance on a multi-group cluster.
783
--
784
-- Only solutions in @preferred@ and @last_resort@ groups will be
785
-- accepted as valid, and additionally if the allowed groups parameter
786
-- is not null then allocation will only be run for those group
787
-- indices.
788
findBestAllocGroup :: Group.List           -- ^ The group list
789
                   -> Node.List            -- ^ The node list
790
                   -> Instance.List        -- ^ The instance list
791
                   -> Maybe [Gdx]          -- ^ The allowed groups
792
                   -> Instance.Instance    -- ^ The instance to allocate
793
                   -> Int                  -- ^ Required number of nodes
794
                   -> Result (Gdx, AllocSolution, [String])
795
findBestAllocGroup mggl mgnl mgil allowed_gdxs inst cnt =
796
  let groups = splitCluster mgnl mgil
797
      groups' = maybe groups (\gs -> filter ((`elem` gs) . fst) groups)
798
                allowed_gdxs
799
      sols = map (\(gid, (nl, il)) ->
800
                   (gid, genAllocNodes mggl nl cnt False >>=
801
                       tryAlloc nl il inst))
802
             groups'::[(Gdx, Result AllocSolution)]
803
      all_msgs = concatMap (solutionDescription mggl) sols
804
      goodSols = filterMGResults mggl sols
805
      sortedSols = sortMGResults mggl goodSols
806
  in if null sortedSols
807
       then if null groups'
808
              then Bad $ "no groups for evacuation: allowed groups was" ++
809
                     show allowed_gdxs ++ ", all groups: " ++
810
                     show (map fst groups)
811
              else Bad $ intercalate ", " all_msgs
812
       else let (final_group, final_sol) = head sortedSols
813
            in return (final_group, final_sol, all_msgs)
814

    
815
-- | Try to allocate an instance on a multi-group cluster.
816
tryMGAlloc :: Group.List           -- ^ The group list
817
           -> Node.List            -- ^ The node list
818
           -> Instance.List        -- ^ The instance list
819
           -> Instance.Instance    -- ^ The instance to allocate
820
           -> Int                  -- ^ Required number of nodes
821
           -> Result AllocSolution -- ^ Possible solution list
822
tryMGAlloc mggl mgnl mgil inst cnt = do
823
  (best_group, solution, all_msgs) <-
824
      findBestAllocGroup mggl mgnl mgil Nothing inst cnt
825
  let group_name = Group.name $ Container.find best_group mggl
826
      selmsg = "Selected group: " ++ group_name
827
  return $ solution { asLog = selmsg:all_msgs }
828

    
829
-- | Function which fails if the requested mode is change secondary.
830
--
831
-- This is useful since except DRBD, no other disk template can
832
-- execute change secondary; thus, we can just call this function
833
-- instead of always checking for secondary mode. After the call to
834
-- this function, whatever mode we have is just a primary change.
835
failOnSecondaryChange :: (Monad m) => EvacMode -> DiskTemplate -> m ()
836
failOnSecondaryChange ChangeSecondary dt =
837
  fail $ "Instances with disk template '" ++ diskTemplateToRaw dt ++
838
         "' can't execute change secondary"
839
failOnSecondaryChange _ _ = return ()
840

    
841
-- | Run evacuation for a single instance.
842
--
843
-- /Note:/ this function should correctly execute both intra-group
844
-- evacuations (in all modes) and inter-group evacuations (in the
845
-- 'ChangeAll' mode). Of course, this requires that the correct list
846
-- of target nodes is passed.
847
nodeEvacInstance :: Node.List         -- ^ The node list (cluster-wide)
848
                 -> Instance.List     -- ^ Instance list (cluster-wide)
849
                 -> EvacMode          -- ^ The evacuation mode
850
                 -> Instance.Instance -- ^ The instance to be evacuated
851
                 -> Gdx               -- ^ The group we're targetting
852
                 -> [Ndx]             -- ^ The list of available nodes
853
                                      -- for allocation
854
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode])
855
nodeEvacInstance _ _ mode (Instance.Instance
856
                           {Instance.diskTemplate = dt@DTDiskless}) _ _ =
857
                  failOnSecondaryChange mode dt >>
858
                  fail "Diskless relocations not implemented yet"
859

    
860
nodeEvacInstance _ _ _ (Instance.Instance
861
                        {Instance.diskTemplate = DTPlain}) _ _ =
862
                  fail "Instances of type plain cannot be relocated"
863

    
864
nodeEvacInstance _ _ _ (Instance.Instance
865
                        {Instance.diskTemplate = DTFile}) _ _ =
866
                  fail "Instances of type file cannot be relocated"
867

    
868
nodeEvacInstance _ _ mode  (Instance.Instance
869
                            {Instance.diskTemplate = dt@DTSharedFile}) _ _ =
870
                  failOnSecondaryChange mode dt >>
871
                  fail "Shared file relocations not implemented yet"
872

    
873
nodeEvacInstance _ _ mode (Instance.Instance
874
                           {Instance.diskTemplate = dt@DTBlock}) _ _ =
875
                  failOnSecondaryChange mode dt >>
876
                  fail "Block device relocations not implemented yet"
877

    
878
nodeEvacInstance _ _ mode  (Instance.Instance
879
                            {Instance.diskTemplate = dt@DTRbd}) _ _ =
880
                  failOnSecondaryChange mode dt >>
881
                  fail "Rbd relocations not implemented yet"
882

    
883
nodeEvacInstance nl il ChangePrimary
884
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
885
                 _ _ =
886
  do
887
    (nl', inst', _, _) <- opToResult $ applyMove nl inst Failover
888
    let idx = Instance.idx inst
889
        il' = Container.add idx inst' il
890
        ops = iMoveToJob nl' il' idx Failover
891
    return (nl', il', ops)
892

    
893
nodeEvacInstance nl il ChangeSecondary
894
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
895
                 gdx avail_nodes =
896
  do
897
    (nl', inst', _, ndx) <- annotateResult "Can't find any good node" $
898
                            eitherToResult $
899
                            foldl' (evacDrbdSecondaryInner nl inst gdx)
900
                            (Left "no nodes available") avail_nodes
901
    let idx = Instance.idx inst
902
        il' = Container.add idx inst' il
903
        ops = iMoveToJob nl' il' idx (ReplaceSecondary ndx)
904
    return (nl', il', ops)
905

    
906
-- The algorithm for ChangeAll is as follows:
907
--
908
-- * generate all (primary, secondary) node pairs for the target groups
909
-- * for each pair, execute the needed moves (r:s, f, r:s) and compute
910
--   the final node list state and group score
911
-- * select the best choice via a foldl that uses the same Either
912
--   String solution as the ChangeSecondary mode
913
nodeEvacInstance nl il ChangeAll
914
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
915
                 gdx avail_nodes =
916
  do
917
    let no_nodes = Left "no nodes available"
918
        node_pairs = [(p,s) | p <- avail_nodes, s <- avail_nodes, p /= s]
919
    (nl', il', ops, _) <-
920
        annotateResult "Can't find any good nodes for relocation" $
921
        eitherToResult $
922
        foldl'
923
        (\accu nodes -> case evacDrbdAllInner nl il inst gdx nodes of
924
                          Bad msg ->
925
                              case accu of
926
                                Right _ -> accu
927
                                -- we don't need more details (which
928
                                -- nodes, etc.) as we only selected
929
                                -- this group if we can allocate on
930
                                -- it, hence failures will not
931
                                -- propagate out of this fold loop
932
                                Left _ -> Left $ "Allocation failed: " ++ msg
933
                          Ok result@(_, _, _, new_cv) ->
934
                              let new_accu = Right result in
935
                              case accu of
936
                                Left _ -> new_accu
937
                                Right (_, _, _, old_cv) ->
938
                                    if old_cv < new_cv
939
                                    then accu
940
                                    else new_accu
941
        ) no_nodes node_pairs
942

    
943
    return (nl', il', ops)
944

    
945
-- | Inner fold function for changing secondary of a DRBD instance.
946
--
947
-- The running solution is either a @Left String@, which means we
948
-- don't have yet a working solution, or a @Right (...)@, which
949
-- represents a valid solution; it holds the modified node list, the
950
-- modified instance (after evacuation), the score of that solution,
951
-- and the new secondary node index.
952
evacDrbdSecondaryInner :: Node.List -- ^ Cluster node list
953
                       -> Instance.Instance -- ^ Instance being evacuated
954
                       -> Gdx -- ^ The group index of the instance
955
                       -> Either String ( Node.List
956
                                        , Instance.Instance
957
                                        , Score
958
                                        , Ndx)  -- ^ Current best solution
959
                       -> Ndx  -- ^ Node we're evaluating as new secondary
960
                       -> Either String ( Node.List
961
                                        , Instance.Instance
962
                                        , Score
963
                                        , Ndx) -- ^ New best solution
964
evacDrbdSecondaryInner nl inst gdx accu ndx =
965
  case applyMove nl inst (ReplaceSecondary ndx) of
966
    OpFail fm ->
967
      case accu of
968
        Right _ -> accu
969
        Left _ -> Left $ "Node " ++ Container.nameOf nl ndx ++
970
                  " failed: " ++ show fm
971
    OpGood (nl', inst', _, _) ->
972
      let nodes = Container.elems nl'
973
          -- The fromJust below is ugly (it can fail nastily), but
974
          -- at this point we should have any internal mismatches,
975
          -- and adding a monad here would be quite involved
976
          grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
977
          new_cv = compCVNodes grpnodes
978
          new_accu = Right (nl', inst', new_cv, ndx)
979
      in case accu of
980
           Left _ -> new_accu
981
           Right (_, _, old_cv, _) ->
982
             if old_cv < new_cv
983
               then accu
984
               else new_accu
985

    
986
-- | Compute result of changing all nodes of a DRBD instance.
987
--
988
-- Given the target primary and secondary node (which might be in a
989
-- different group or not), this function will 'execute' all the
990
-- required steps and assuming all operations succceed, will return
991
-- the modified node and instance lists, the opcodes needed for this
992
-- and the new group score.
993
evacDrbdAllInner :: Node.List         -- ^ Cluster node list
994
                 -> Instance.List     -- ^ Cluster instance list
995
                 -> Instance.Instance -- ^ The instance to be moved
996
                 -> Gdx               -- ^ The target group index
997
                                      -- (which can differ from the
998
                                      -- current group of the
999
                                      -- instance)
1000
                 -> (Ndx, Ndx)        -- ^ Tuple of new
1001
                                      -- primary\/secondary nodes
1002
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode], Score)
1003
evacDrbdAllInner nl il inst gdx (t_pdx, t_sdx) = do
1004
  let primary = Container.find (Instance.pNode inst) nl
1005
      idx = Instance.idx inst
1006
  -- if the primary is offline, then we first failover
1007
  (nl1, inst1, ops1) <-
1008
    if Node.offline primary
1009
      then do
1010
        (nl', inst', _, _) <-
1011
          annotateResult "Failing over to the secondary" $
1012
          opToResult $ applyMove nl inst Failover
1013
        return (nl', inst', [Failover])
1014
      else return (nl, inst, [])
1015
  let (o1, o2, o3) = (ReplaceSecondary t_pdx,
1016
                      Failover,
1017
                      ReplaceSecondary t_sdx)
1018
  -- we now need to execute a replace secondary to the future
1019
  -- primary node
1020
  (nl2, inst2, _, _) <-
1021
    annotateResult "Changing secondary to new primary" $
1022
    opToResult $
1023
    applyMove nl1 inst1 o1
1024
  let ops2 = o1:ops1
1025
  -- we now execute another failover, the primary stays fixed now
1026
  (nl3, inst3, _, _) <- annotateResult "Failing over to new primary" $
1027
                        opToResult $ applyMove nl2 inst2 o2
1028
  let ops3 = o2:ops2
1029
  -- and finally another replace secondary, to the final secondary
1030
  (nl4, inst4, _, _) <-
1031
    annotateResult "Changing secondary to final secondary" $
1032
    opToResult $
1033
    applyMove nl3 inst3 o3
1034
  let ops4 = o3:ops3
1035
      il' = Container.add idx inst4 il
1036
      ops = concatMap (iMoveToJob nl4 il' idx) $ reverse ops4
1037
  let nodes = Container.elems nl4
1038
      -- The fromJust below is ugly (it can fail nastily), but
1039
      -- at this point we should have any internal mismatches,
1040
      -- and adding a monad here would be quite involved
1041
      grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
1042
      new_cv = compCVNodes grpnodes
1043
  return (nl4, il', ops, new_cv)
1044

    
1045
-- | Computes the nodes in a given group which are available for
1046
-- allocation.
1047
availableGroupNodes :: [(Gdx, [Ndx])] -- ^ Group index/node index assoc list
1048
                    -> IntSet.IntSet  -- ^ Nodes that are excluded
1049
                    -> Gdx            -- ^ The group for which we
1050
                                      -- query the nodes
1051
                    -> Result [Ndx]   -- ^ List of available node indices
1052
availableGroupNodes group_nodes excl_ndx gdx = do
1053
  local_nodes <- maybe (Bad $ "Can't find group with index " ++ show gdx)
1054
                 Ok (lookup gdx group_nodes)
1055
  let avail_nodes = filter (not . flip IntSet.member excl_ndx) local_nodes
1056
  return avail_nodes
1057

    
1058
-- | Updates the evac solution with the results of an instance
1059
-- evacuation.
1060
updateEvacSolution :: (Node.List, Instance.List, EvacSolution)
1061
                   -> Idx
1062
                   -> Result (Node.List, Instance.List, [OpCodes.OpCode])
1063
                   -> (Node.List, Instance.List, EvacSolution)
1064
updateEvacSolution (nl, il, es) idx (Bad msg) =
1065
  (nl, il, es { esFailed = (idx, msg):esFailed es})
1066
updateEvacSolution (_, _, es) idx (Ok (nl, il, opcodes)) =
1067
  (nl, il, es { esMoved = new_elem:esMoved es
1068
              , esOpCodes = opcodes:esOpCodes es })
1069
    where inst = Container.find idx il
1070
          new_elem = (idx,
1071
                      instancePriGroup nl inst,
1072
                      Instance.allNodes inst)
1073

    
1074
-- | Node-evacuation IAllocator mode main function.
1075
tryNodeEvac :: Group.List    -- ^ The cluster groups
1076
            -> Node.List     -- ^ The node list (cluster-wide, not per group)
1077
            -> Instance.List -- ^ Instance list (cluster-wide)
1078
            -> EvacMode      -- ^ The evacuation mode
1079
            -> [Idx]         -- ^ List of instance (indices) to be evacuated
1080
            -> Result (Node.List, Instance.List, EvacSolution)
1081
tryNodeEvac _ ini_nl ini_il mode idxs =
1082
  let evac_ndx = nodesToEvacuate ini_il mode idxs
1083
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1084
      excl_ndx = foldl' (flip IntSet.insert) evac_ndx offline
1085
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1086
                                           (Container.elems nl))) $
1087
                  splitCluster ini_nl ini_il
1088
      (fin_nl, fin_il, esol) =
1089
        foldl' (\state@(nl, il, _) inst ->
1090
                  let gdx = instancePriGroup nl inst
1091
                      pdx = Instance.pNode inst in
1092
                  updateEvacSolution state (Instance.idx inst) $
1093
                  availableGroupNodes group_ndx
1094
                    (IntSet.insert pdx excl_ndx) gdx >>=
1095
                      nodeEvacInstance nl il mode inst gdx
1096
               )
1097
        (ini_nl, ini_il, emptyEvacSolution)
1098
        (map (`Container.find` ini_il) idxs)
1099
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1100

    
1101
-- | Change-group IAllocator mode main function.
1102
--
1103
-- This is very similar to 'tryNodeEvac', the only difference is that
1104
-- we don't choose as target group the current instance group, but
1105
-- instead:
1106
--
1107
--   1. at the start of the function, we compute which are the target
1108
--   groups; either no groups were passed in, in which case we choose
1109
--   all groups out of which we don't evacuate instance, or there were
1110
--   some groups passed, in which case we use those
1111
--
1112
--   2. for each instance, we use 'findBestAllocGroup' to choose the
1113
--   best group to hold the instance, and then we do what
1114
--   'tryNodeEvac' does, except for this group instead of the current
1115
--   instance group.
1116
--
1117
-- Note that the correct behaviour of this function relies on the
1118
-- function 'nodeEvacInstance' to be able to do correctly both
1119
-- intra-group and inter-group moves when passed the 'ChangeAll' mode.
1120
tryChangeGroup :: Group.List    -- ^ The cluster groups
1121
               -> Node.List     -- ^ The node list (cluster-wide)
1122
               -> Instance.List -- ^ Instance list (cluster-wide)
1123
               -> [Gdx]         -- ^ Target groups; if empty, any
1124
                                -- groups not being evacuated
1125
               -> [Idx]         -- ^ List of instance (indices) to be evacuated
1126
               -> Result (Node.List, Instance.List, EvacSolution)
1127
tryChangeGroup gl ini_nl ini_il gdxs idxs =
1128
  let evac_gdxs = nub $ map (instancePriGroup ini_nl .
1129
                             flip Container.find ini_il) idxs
1130
      target_gdxs = (if null gdxs
1131
                       then Container.keys gl
1132
                       else gdxs) \\ evac_gdxs
1133
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1134
      excl_ndx = foldl' (flip IntSet.insert) IntSet.empty offline
1135
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1136
                                           (Container.elems nl))) $
1137
                  splitCluster ini_nl ini_il
1138
      (fin_nl, fin_il, esol) =
1139
        foldl' (\state@(nl, il, _) inst ->
1140
                  let solution = do
1141
                        let ncnt = Instance.requiredNodes $
1142
                                   Instance.diskTemplate inst
1143
                        (gdx, _, _) <- findBestAllocGroup gl nl il
1144
                                       (Just target_gdxs) inst ncnt
1145
                        av_nodes <- availableGroupNodes group_ndx
1146
                                    excl_ndx gdx
1147
                        nodeEvacInstance nl il ChangeAll inst gdx av_nodes
1148
                  in updateEvacSolution state (Instance.idx inst) solution
1149
               )
1150
        (ini_nl, ini_il, emptyEvacSolution)
1151
        (map (`Container.find` ini_il) idxs)
1152
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1153

    
1154
-- | Standard-sized allocation method.
1155
--
1156
-- This places instances of the same size on the cluster until we're
1157
-- out of space. The result will be a list of identically-sized
1158
-- instances.
1159
iterateAlloc :: AllocMethod
1160
iterateAlloc nl il limit newinst allocnodes ixes cstats =
1161
  let depth = length ixes
1162
      newname = printf "new-%d" depth::String
1163
      newidx = Container.size il
1164
      newi2 = Instance.setIdx (Instance.setName newinst newname) newidx
1165
      newlimit = fmap (flip (-) 1) limit
1166
  in case tryAlloc nl il newi2 allocnodes of
1167
       Bad s -> Bad s
1168
       Ok (AllocSolution { asFailures = errs, asSolution = sols3 }) ->
1169
         let newsol = Ok (collapseFailures errs, nl, il, ixes, cstats) in
1170
         case sols3 of
1171
           Nothing -> newsol
1172
           Just (xnl, xi, _, _) ->
1173
             if limit == Just 0
1174
               then newsol
1175
               else iterateAlloc xnl (Container.add newidx xi il)
1176
                      newlimit newinst allocnodes (xi:ixes)
1177
                      (totalResources xnl:cstats)
1178

    
1179
-- | Tiered allocation method.
1180
--
1181
-- This places instances on the cluster, and decreases the spec until
1182
-- we can allocate again. The result will be a list of decreasing
1183
-- instance specs.
1184
tieredAlloc :: AllocMethod
1185
tieredAlloc nl il limit newinst allocnodes ixes cstats =
1186
  case iterateAlloc nl il limit newinst allocnodes ixes cstats of
1187
    Bad s -> Bad s
1188
    Ok (errs, nl', il', ixes', cstats') ->
1189
      let newsol = Ok (errs, nl', il', ixes', cstats')
1190
          ixes_cnt = length ixes'
1191
          (stop, newlimit) = case limit of
1192
                               Nothing -> (False, Nothing)
1193
                               Just n -> (n <= ixes_cnt,
1194
                                            Just (n - ixes_cnt)) in
1195
      if stop then newsol else
1196
          case Instance.shrinkByType newinst . fst . last $
1197
               sortBy (comparing snd) errs of
1198
            Bad _ -> newsol
1199
            Ok newinst' -> tieredAlloc nl' il' newlimit
1200
                           newinst' allocnodes ixes' cstats'
1201

    
1202
-- * Formatting functions
1203

    
1204
-- | Given the original and final nodes, computes the relocation description.
1205
computeMoves :: Instance.Instance -- ^ The instance to be moved
1206
             -> String -- ^ The instance name
1207
             -> IMove  -- ^ The move being performed
1208
             -> String -- ^ New primary
1209
             -> String -- ^ New secondary
1210
             -> (String, [String])
1211
                -- ^ Tuple of moves and commands list; moves is containing
1212
                -- either @/f/@ for failover or @/r:name/@ for replace
1213
                -- secondary, while the command list holds gnt-instance
1214
                -- commands (without that prefix), e.g \"@failover instance1@\"
1215
computeMoves i inam mv c d =
1216
  case mv of
1217
    Failover -> ("f", [mig])
1218
    FailoverAndReplace _ -> (printf "f r:%s" d, [mig, rep d])
1219
    ReplaceSecondary _ -> (printf "r:%s" d, [rep d])
1220
    ReplaceAndFailover _ -> (printf "r:%s f" c, [rep c, mig])
1221
    ReplacePrimary _ -> (printf "f r:%s f" c, [mig, rep c, mig])
1222
  where morf = if Instance.isRunning i then "migrate" else "failover"
1223
        mig = printf "%s -f %s" morf inam::String
1224
        rep n = printf "replace-disks -n %s %s" n inam
1225

    
1226
-- | Converts a placement to string format.
1227
printSolutionLine :: Node.List     -- ^ The node list
1228
                  -> Instance.List -- ^ The instance list
1229
                  -> Int           -- ^ Maximum node name length
1230
                  -> Int           -- ^ Maximum instance name length
1231
                  -> Placement     -- ^ The current placement
1232
                  -> Int           -- ^ The index of the placement in
1233
                                   -- the solution
1234
                  -> (String, [String])
1235
printSolutionLine nl il nmlen imlen plc pos =
1236
  let pmlen = (2*nmlen + 1)
1237
      (i, p, s, mv, c) = plc
1238
      old_sec = Instance.sNode inst
1239
      inst = Container.find i il
1240
      inam = Instance.alias inst
1241
      npri = Node.alias $ Container.find p nl
1242
      nsec = Node.alias $ Container.find s nl
1243
      opri = Node.alias $ Container.find (Instance.pNode inst) nl
1244
      osec = Node.alias $ Container.find old_sec nl
1245
      (moves, cmds) =  computeMoves inst inam mv npri nsec
1246
      -- FIXME: this should check instead/also the disk template
1247
      ostr = if old_sec == Node.noSecondary
1248
               then printf "%s" opri
1249
               else printf "%s:%s" opri osec
1250
      nstr = if s == Node.noSecondary
1251
               then printf "%s" npri
1252
               else printf "%s:%s" npri nsec
1253
  in (printf "  %3d. %-*s %-*s => %-*s %12.8f a=%s"
1254
      pos imlen inam pmlen (ostr::String)
1255
      pmlen (nstr::String) c moves,
1256
      cmds)
1257

    
1258
-- | Return the instance and involved nodes in an instance move.
1259
--
1260
-- Note that the output list length can vary, and is not required nor
1261
-- guaranteed to be of any specific length.
1262
involvedNodes :: Instance.List -- ^ Instance list, used for retrieving
1263
                               -- the instance from its index; note
1264
                               -- that this /must/ be the original
1265
                               -- instance list, so that we can
1266
                               -- retrieve the old nodes
1267
              -> Placement     -- ^ The placement we're investigating,
1268
                               -- containing the new nodes and
1269
                               -- instance index
1270
              -> [Ndx]         -- ^ Resulting list of node indices
1271
involvedNodes il plc =
1272
  let (i, np, ns, _, _) = plc
1273
      inst = Container.find i il
1274
  in nub $ [np, ns] ++ Instance.allNodes inst
1275

    
1276
-- | Inner function for splitJobs, that either appends the next job to
1277
-- the current jobset, or starts a new jobset.
1278
mergeJobs :: ([JobSet], [Ndx]) -> MoveJob -> ([JobSet], [Ndx])
1279
mergeJobs ([], _) n@(ndx, _, _, _) = ([[n]], ndx)
1280
mergeJobs (cjs@(j:js), nbuf) n@(ndx, _, _, _)
1281
  | null (ndx `intersect` nbuf) = ((n:j):js, ndx ++ nbuf)
1282
  | otherwise = ([n]:cjs, ndx)
1283

    
1284
-- | Break a list of moves into independent groups. Note that this
1285
-- will reverse the order of jobs.
1286
splitJobs :: [MoveJob] -> [JobSet]
1287
splitJobs = fst . foldl mergeJobs ([], [])
1288

    
1289
-- | Given a list of commands, prefix them with @gnt-instance@ and
1290
-- also beautify the display a little.
1291
formatJob :: Int -> Int -> (Int, MoveJob) -> [String]
1292
formatJob jsn jsl (sn, (_, _, _, cmds)) =
1293
  let out =
1294
        printf "  echo job %d/%d" jsn sn:
1295
        printf "  check":
1296
        map ("  gnt-instance " ++) cmds
1297
  in if sn == 1
1298
       then ["", printf "echo jobset %d, %d jobs" jsn jsl] ++ out
1299
       else out
1300

    
1301
-- | Given a list of commands, prefix them with @gnt-instance@ and
1302
-- also beautify the display a little.
1303
formatCmds :: [JobSet] -> String
1304
formatCmds =
1305
  unlines .
1306
  concatMap (\(jsn, js) -> concatMap (formatJob jsn (length js))
1307
                           (zip [1..] js)) .
1308
  zip [1..]
1309

    
1310
-- | Print the node list.
1311
printNodes :: Node.List -> [String] -> String
1312
printNodes nl fs =
1313
  let fields = case fs of
1314
                 [] -> Node.defaultFields
1315
                 "+":rest -> Node.defaultFields ++ rest
1316
                 _ -> fs
1317
      snl = sortBy (comparing Node.idx) (Container.elems nl)
1318
      (header, isnum) = unzip $ map Node.showHeader fields
1319
  in printTable "" header (map (Node.list fields) snl) isnum
1320

    
1321
-- | Print the instance list.
1322
printInsts :: Node.List -> Instance.List -> String
1323
printInsts nl il =
1324
  let sil = sortBy (comparing Instance.idx) (Container.elems il)
1325
      helper inst = [ if Instance.isRunning inst then "R" else " "
1326
                    , Instance.name inst
1327
                    , Container.nameOf nl (Instance.pNode inst)
1328
                    , let sdx = Instance.sNode inst
1329
                      in if sdx == Node.noSecondary
1330
                           then  ""
1331
                           else Container.nameOf nl sdx
1332
                    , if Instance.autoBalance inst then "Y" else "N"
1333
                    , printf "%3d" $ Instance.vcpus inst
1334
                    , printf "%5d" $ Instance.mem inst
1335
                    , printf "%5d" $ Instance.dsk inst `div` 1024
1336
                    , printf "%5.3f" lC
1337
                    , printf "%5.3f" lM
1338
                    , printf "%5.3f" lD
1339
                    , printf "%5.3f" lN
1340
                    ]
1341
          where DynUtil lC lM lD lN = Instance.util inst
1342
      header = [ "F", "Name", "Pri_node", "Sec_node", "Auto_bal"
1343
               , "vcpu", "mem" , "dsk", "lCpu", "lMem", "lDsk", "lNet" ]
1344
      isnum = False:False:False:False:False:repeat True
1345
  in printTable "" header (map helper sil) isnum
1346

    
1347
-- | Shows statistics for a given node list.
1348
printStats :: String -> Node.List -> String
1349
printStats lp nl =
1350
  let dcvs = compDetailedCV $ Container.elems nl
1351
      (weights, names) = unzip detailedCVInfo
1352
      hd = zip3 (weights ++ repeat 1) (names ++ repeat "unknown") dcvs
1353
      header = [ "Field", "Value", "Weight" ]
1354
      formatted = map (\(w, h, val) ->
1355
                         [ h
1356
                         , printf "%.8f" val
1357
                         , printf "x%.2f" w
1358
                         ]) hd
1359
  in printTable lp header formatted $ False:repeat True
1360

    
1361
-- | Convert a placement into a list of OpCodes (basically a job).
1362
iMoveToJob :: Node.List        -- ^ The node list; only used for node
1363
                               -- names, so any version is good
1364
                               -- (before or after the operation)
1365
           -> Instance.List    -- ^ The instance list; also used for
1366
                               -- names only
1367
           -> Idx              -- ^ The index of the instance being
1368
                               -- moved
1369
           -> IMove            -- ^ The actual move to be described
1370
           -> [OpCodes.OpCode] -- ^ The list of opcodes equivalent to
1371
                               -- the given move
1372
iMoveToJob nl il idx move =
1373
  let inst = Container.find idx il
1374
      iname = Instance.name inst
1375
      lookNode  = Just . Container.nameOf nl
1376
      opF = OpCodes.OpInstanceMigrate iname True False True Nothing
1377
      opR n = OpCodes.OpInstanceReplaceDisks iname (lookNode n)
1378
              OpCodes.ReplaceNewSecondary [] Nothing
1379
  in case move of
1380
       Failover -> [ opF ]
1381
       ReplacePrimary np -> [ opF, opR np, opF ]
1382
       ReplaceSecondary ns -> [ opR ns ]
1383
       ReplaceAndFailover np -> [ opR np, opF ]
1384
       FailoverAndReplace ns -> [ opF, opR ns ]
1385

    
1386
-- * Node group functions
1387

    
1388
-- | Computes the group of an instance.
1389
instanceGroup :: Node.List -> Instance.Instance -> Result Gdx
1390
instanceGroup nl i =
1391
  let sidx = Instance.sNode i
1392
      pnode = Container.find (Instance.pNode i) nl
1393
      snode = if sidx == Node.noSecondary
1394
              then pnode
1395
              else Container.find sidx nl
1396
      pgroup = Node.group pnode
1397
      sgroup = Node.group snode
1398
  in if pgroup /= sgroup
1399
       then fail ("Instance placed accross two node groups, primary " ++
1400
                  show pgroup ++ ", secondary " ++ show sgroup)
1401
       else return pgroup
1402

    
1403
-- | Computes the group of an instance per the primary node.
1404
instancePriGroup :: Node.List -> Instance.Instance -> Gdx
1405
instancePriGroup nl i =
1406
  let pnode = Container.find (Instance.pNode i) nl
1407
  in  Node.group pnode
1408

    
1409
-- | Compute the list of badly allocated instances (split across node
1410
-- groups).
1411
findSplitInstances :: Node.List -> Instance.List -> [Instance.Instance]
1412
findSplitInstances nl =
1413
  filter (not . isOk . instanceGroup nl) . Container.elems
1414

    
1415
-- | Splits a cluster into the component node groups.
1416
splitCluster :: Node.List -> Instance.List ->
1417
                [(Gdx, (Node.List, Instance.List))]
1418
splitCluster nl il =
1419
  let ngroups = Node.computeGroups (Container.elems nl)
1420
  in map (\(guuid, nodes) ->
1421
           let nidxs = map Node.idx nodes
1422
               nodes' = zip nidxs nodes
1423
               instances = Container.filter ((`elem` nidxs) . Instance.pNode) il
1424
           in (guuid, (Container.fromList nodes', instances))) ngroups
1425

    
1426
-- | Compute the list of nodes that are to be evacuated, given a list
1427
-- of instances and an evacuation mode.
1428
nodesToEvacuate :: Instance.List -- ^ The cluster-wide instance list
1429
                -> EvacMode      -- ^ The evacuation mode we're using
1430
                -> [Idx]         -- ^ List of instance indices being evacuated
1431
                -> IntSet.IntSet -- ^ Set of node indices
1432
nodesToEvacuate il mode =
1433
  IntSet.delete Node.noSecondary .
1434
  foldl' (\ns idx ->
1435
            let i = Container.find idx il
1436
                pdx = Instance.pNode i
1437
                sdx = Instance.sNode i
1438
                dt = Instance.diskTemplate i
1439
                withSecondary = case dt of
1440
                                  DTDrbd8 -> IntSet.insert sdx ns
1441
                                  _ -> ns
1442
            in case mode of
1443
                 ChangePrimary   -> IntSet.insert pdx ns
1444
                 ChangeSecondary -> withSecondary
1445
                 ChangeAll       -> IntSet.insert pdx withSecondary
1446
         ) IntSet.empty