## root / htest / Test / Ganeti / BasicTypes.hs @ 61899e64

History | View | Annotate | Download (5.1 kB)

1 |
{-# LANGUAGE TemplateHaskell, FlexibleInstances, TypeSynonymInstances #-} |
---|---|

2 |
{-# OPTIONS_GHC -fno-warn-orphans #-} |

3 | |

4 |
{-| Unittests for ganeti-htools. |

5 | |

6 |
-} |

7 | |

8 |
{- |

9 | |

10 |
Copyright (C) 2009, 2010, 2011, 2012 Google Inc. |

11 | |

12 |
This program is free software; you can redistribute it and/or modify |

13 |
it under the terms of the GNU General Public License as published by |

14 |
the Free Software Foundation; either version 2 of the License, or |

15 |
(at your option) any later version. |

16 | |

17 |
This program is distributed in the hope that it will be useful, but |

18 |
WITHOUT ANY WARRANTY; without even the implied warranty of |

19 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |

20 |
General Public License for more details. |

21 | |

22 |
You should have received a copy of the GNU General Public License |

23 |
along with this program; if not, write to the Free Software |

24 |
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |

25 |
02110-1301, USA. |

26 | |

27 |
-} |

28 | |

29 |
module Test.Ganeti.BasicTypes (testBasicTypes) where |

30 | |

31 |
import Test.QuickCheck hiding (Result) |

32 |
import Test.QuickCheck.Function |

33 | |

34 |
import Control.Applicative |

35 |
import Control.Monad |

36 | |

37 |
import Test.Ganeti.TestHelper |

38 |
import Test.Ganeti.TestCommon |

39 | |

40 |
import Ganeti.BasicTypes |

41 | |

42 |
-- Since we actually want to test these, don't tell us not to use them :) |

43 | |

44 |
{-# ANN module "HLint: ignore Functor law" #-} |

45 |
{-# ANN module "HLint: ignore Monad law, left identity" #-} |

46 |
{-# ANN module "HLint: ignore Monad law, right identity" #-} |

47 |
{-# ANN module "HLint: ignore Use >=>" #-} |

48 |
{-# ANN module "HLint: ignore Use ." #-} |

49 | |

50 |
-- * Arbitrary instances |

51 | |

52 |
instance (Arbitrary a) => Arbitrary (Result a) where |

53 |
arbitrary = oneof [ Bad <$> arbitrary |

54 |
, Ok <$> arbitrary |

55 |
] |

56 | |

57 |
-- * Test cases |

58 | |

59 |
-- | Tests the functor identity law (fmap id == id). |

60 |
prop_functor_id :: Result Int -> Property |

61 |
prop_functor_id ri = |

62 |
fmap id ri ==? ri |

63 | |

64 |
-- | Tests the functor composition law (fmap (f . g) == fmap f . fmap g). |

65 |
prop_functor_composition :: Result Int |

66 |
-> Fun Int Int -> Fun Int Int -> Property |

67 |
prop_functor_composition ri (Fun _ f) (Fun _ g) = |

68 |
fmap (f . g) ri ==? (fmap f . fmap g) ri |

69 | |

70 |
-- | Tests the applicative identity law (pure id <*> v = v). |

71 |
prop_applicative_identity :: Result Int -> Property |

72 |
prop_applicative_identity v = |

73 |
pure id <*> v ==? v |

74 | |

75 |
-- | Tests the applicative composition law (pure (.) <*> u <*> v <*> w |

76 |
-- = u <*> (v <*> w)). |

77 |
prop_applicative_composition :: Result (Fun Int Int) |

78 |
-> Result (Fun Int Int) |

79 |
-> Result Int |

80 |
-> Property |

81 |
prop_applicative_composition u v w = |

82 |
let u' = fmap apply u |

83 |
v' = fmap apply v |

84 |
in pure (.) <*> u' <*> v' <*> w ==? u' <*> (v' <*> w) |

85 | |

86 |
-- | Tests the applicative homomorphism law (pure f <*> pure x = pure (f x)). |

87 |
prop_applicative_homomorphism :: Fun Int Int -> Int -> Property |

88 |
prop_applicative_homomorphism (Fun _ f) x = |

89 |
((pure f <*> pure x)::Result Int) ==? pure (f x) |

90 | |

91 |
-- | Tests the applicative interchange law (u <*> pure y = pure ($ y) <*> u). |

92 |
prop_applicative_interchange :: Result (Fun Int Int) |

93 |
-> Int -> Property |

94 |
prop_applicative_interchange f y = |

95 |
let u = fmap apply f -- need to extract the actual function from Fun |

96 |
in u <*> pure y ==? pure ($ y) <*> u |

97 | |

98 |
-- | Tests the applicative\/functor correspondence (fmap f x = pure f <*> x). |

99 |
prop_applicative_functor :: Fun Int Int -> Result Int -> Property |

100 |
prop_applicative_functor (Fun _ f) x = |

101 |
fmap f x ==? pure f <*> x |

102 | |

103 |
-- | Tests the applicative\/monad correspondence (pure = return and |

104 |
-- (<*>) = ap). |

105 |
prop_applicative_monad :: Int -> Result (Fun Int Int) -> Property |

106 |
prop_applicative_monad v f = |

107 |
let v' = pure v :: Result Int |

108 |
f' = fmap apply f -- need to extract the actual function from Fun |

109 |
in v' ==? return v .&&. (f' <*> v') ==? f' `ap` v' |

110 | |

111 |
-- | Tests the monad laws (return a >>= k == k a, m >>= return == m, m |

112 |
-- >>= (\x -> k x >>= h) == (m >>= k) >>= h). |

113 |
prop_monad_laws :: Int -> Result Int |

114 |
-> Fun Int (Result Int) |

115 |
-> Fun Int (Result Int) |

116 |
-> Property |

117 |
prop_monad_laws a m (Fun _ k) (Fun _ h) = |

118 |
conjoin |

119 |
[ printTestCase "return a >>= k == k a" ((return a >>= k) ==? k a) |

120 |
, printTestCase "m >>= return == m" ((m >>= return) ==? m) |

121 |
, printTestCase "m >>= (\\x -> k x >>= h) == (m >>= k) >>= h)" |

122 |
((m >>= (\x -> k x >>= h)) ==? ((m >>= k) >>= h)) |

123 |
] |

124 | |

125 |
-- | Tests the monad plus laws ( mzero >>= f = mzero, v >> mzero = mzero). |

126 |
prop_monadplus_mzero :: Result Int -> Fun Int (Result Int) -> Property |

127 |
prop_monadplus_mzero v (Fun _ f) = |

128 |
printTestCase "mzero >>= f = mzero" ((mzero >>= f) ==? mzero) .&&. |

129 |
-- FIXME: since we have "many" mzeros, we can't test for equality, |

130 |
-- just that we got back a 'Bad' value; I'm not sure if this means |

131 |
-- our MonadPlus instance is not sound or not... |

132 |
printTestCase "v >> mzero = mzero" (isBad (v >> mzero)) |

133 | |

134 |
testSuite "BasicTypes" |

135 |
[ 'prop_functor_id |

136 |
, 'prop_functor_composition |

137 |
, 'prop_applicative_identity |

138 |
, 'prop_applicative_composition |

139 |
, 'prop_applicative_homomorphism |

140 |
, 'prop_applicative_interchange |

141 |
, 'prop_applicative_functor |

142 |
, 'prop_applicative_monad |

143 |
, 'prop_monad_laws |

144 |
, 'prop_monadplus_mzero |

145 |
] |