Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / THH.hs @ 72bb6b4e

History | View | Annotate | Download (13.8 kB)

1
{-# LANGUAGE TemplateHaskell, QuasiQuotes #-}
2

    
3
{-| TemplateHaskell helper for HTools.
4

    
5
As TemplateHaskell require that splices be defined in a separate
6
module, we combine all the TemplateHaskell functionality that HTools
7
needs in this module (except the one for unittests).
8

    
9
-}
10

    
11
{-
12

    
13
Copyright (C) 2011 Google Inc.
14

    
15
This program is free software; you can redistribute it and/or modify
16
it under the terms of the GNU General Public License as published by
17
the Free Software Foundation; either version 2 of the License, or
18
(at your option) any later version.
19

    
20
This program is distributed in the hope that it will be useful, but
21
WITHOUT ANY WARRANTY; without even the implied warranty of
22
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23
General Public License for more details.
24

    
25
You should have received a copy of the GNU General Public License
26
along with this program; if not, write to the Free Software
27
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
28
02110-1301, USA.
29

    
30
-}
31

    
32
module Ganeti.THH ( declareSADT
33
                  , makeJSONInstance
34
                  , genOpID
35
                  , genOpCode
36
                  , noDefault
37
                  ) where
38

    
39
import Control.Monad (liftM)
40
import Data.Char
41
import Data.List
42
import Language.Haskell.TH
43

    
44
import qualified Text.JSON as JSON
45

    
46
-- | Ensure first letter is lowercase.
47
--
48
-- Used to convert type name to function prefix, e.g. in @data Aa ->
49
-- aaToString@.
50
ensureLower :: String -> String
51
ensureLower [] = []
52
ensureLower (x:xs) = toLower x:xs
53

    
54
-- | ToString function name.
55
toStrName :: String -> Name
56
toStrName = mkName . (++ "ToString") . ensureLower
57

    
58
-- | FromString function name.
59
fromStrName :: String -> Name
60
fromStrName = mkName . (++ "FromString") . ensureLower
61

    
62
-- | Converts a name to it's varE/litE representations.
63
--
64
reprE :: Either String Name -> Q Exp
65
reprE (Left name) = litE (StringL name)
66
reprE (Right name) = varE name
67

    
68
-- | Generates a data type declaration.
69
--
70
-- The type will have a fixed list of instances.
71
strADTDecl :: Name -> [String] -> Dec
72
strADTDecl name constructors =
73
    DataD [] name []
74
              (map (flip NormalC [] . mkName) constructors)
75
              [''Show, ''Read, ''Eq, ''Enum, ''Bounded, ''Ord]
76

    
77
-- | Generates a toString function.
78
--
79
-- This generates a simple function of the form:
80
--
81
-- @
82
-- nameToString :: Name -> String
83
-- nameToString Cons1 = var1
84
-- nameToString Cons2 = \"value2\"
85
-- @
86
genToString :: Name -> Name -> [(String, Either String Name)] -> Q [Dec]
87
genToString fname tname constructors = do
88
  sigt <- [t| $(conT tname) -> String |]
89
  -- the body clauses, matching on the constructor and returning the
90
  -- string value
91
  clauses <- mapM  (\(c, v) -> clause [recP (mkName c) []]
92
                             (normalB (reprE v)) []) constructors
93
  return [SigD fname sigt, FunD fname clauses]
94

    
95
-- | Generates a fromString function.
96
--
97
-- The function generated is monadic and can fail parsing the
98
-- string. It is of the form:
99
--
100
-- @
101
-- nameFromString :: (Monad m) => String -> m Name
102
-- nameFromString s | s == var1       = Cons1
103
--                  | s == \"value2\" = Cons2
104
--                  | otherwise = fail /.../
105
-- @
106
genFromString :: Name -> Name -> [(String, Name)] -> Q [Dec]
107
genFromString fname tname constructors = do
108
  -- signature of form (Monad m) => String -> m $name
109
  sigt <- [t| (Monad m) => String -> m $(conT tname) |]
110
  -- clauses for a guarded pattern
111
  let varp = mkName "s"
112
      varpe = varE varp
113
  clauses <- mapM (\(c, v) -> do
114
                     -- the clause match condition
115
                     g <- normalG [| $varpe == $(varE v) |]
116
                     -- the clause result
117
                     r <- [| return $(conE (mkName c)) |]
118
                     return (g, r)) constructors
119
  -- the otherwise clause (fallback)
120
  oth_clause <- do
121
    g <- normalG [| otherwise |]
122
    r <- [|fail ("Invalid string value for type " ++
123
                 $(litE (stringL (nameBase tname))) ++ ": " ++ $varpe) |]
124
    return (g, r)
125
  let fun = FunD fname [Clause [VarP varp]
126
                        (GuardedB (clauses++[oth_clause])) []]
127
  return [SigD fname sigt, fun]
128

    
129
-- | Generates a data type from a given string format.
130
--
131
-- The format is expected to multiline. The first line contains the
132
-- type name, and the rest of the lines must contain two words: the
133
-- constructor name and then the string representation of the
134
-- respective constructor.
135
--
136
-- The function will generate the data type declaration, and then two
137
-- functions:
138
--
139
-- * /name/ToString, which converts the type to a string
140
--
141
-- * /name/FromString, which (monadically) converts from a string to the type
142
--
143
-- Note that this is basically just a custom show/read instance,
144
-- nothing else.
145
declareSADT :: String -> [(String, Name)] -> Q [Dec]
146
declareSADT sname cons = do
147
  let name = mkName sname
148
      ddecl = strADTDecl name (map fst cons)
149
      -- process cons in the format expected by genToString
150
      cons' = map (\(a, b) -> (a, Right b)) cons
151
  tostr <- genToString (toStrName sname) name cons'
152
  fromstr <- genFromString (fromStrName sname) name cons
153
  return $ ddecl:tostr ++ fromstr
154

    
155

    
156
-- | Creates the showJSON member of a JSON instance declaration.
157
--
158
-- This will create what is the equivalent of:
159
--
160
-- @
161
-- showJSON = showJSON . /name/ToString
162
-- @
163
--
164
-- in an instance JSON /name/ declaration
165
genShowJSON :: String -> Q [Dec]
166
genShowJSON name = [d| showJSON = JSON.showJSON . $(varE (toStrName name)) |]
167

    
168
-- | Creates the readJSON member of a JSON instance declaration.
169
--
170
-- This will create what is the equivalent of:
171
--
172
-- @
173
-- readJSON s = case readJSON s of
174
--                Ok s' -> /name/FromString s'
175
--                Error e -> Error /description/
176
-- @
177
--
178
-- in an instance JSON /name/ declaration
179
genReadJSON :: String -> Q Dec
180
genReadJSON name = do
181
  let s = mkName "s"
182
  body <- [| case JSON.readJSON $(varE s) of
183
               JSON.Ok s' -> $(varE (fromStrName name)) s'
184
               JSON.Error e ->
185
                   JSON.Error $ "Can't parse string value for type " ++
186
                           $(litE (StringL name)) ++ ": " ++ e
187
           |]
188
  return $ FunD (mkName "readJSON") [Clause [VarP s] (NormalB body) []]
189

    
190
-- | Generates a JSON instance for a given type.
191
--
192
-- This assumes that the /name/ToString and /name/FromString functions
193
-- have been defined as by the 'declareSADT' function.
194
makeJSONInstance :: Name -> Q [Dec]
195
makeJSONInstance name = do
196
  let base = nameBase name
197
  showJ <- genShowJSON base
198
  readJ <- genReadJSON base
199
  return [InstanceD [] (AppT (ConT ''JSON.JSON) (ConT name)) (readJ:showJ)]
200

    
201
-- | Transforms a CamelCase string into an_underscore_based_one.
202
deCamelCase :: String -> String
203
deCamelCase =
204
    intercalate "_" . map (map toUpper) . groupBy (\_ b -> not $ isUpper b)
205

    
206
-- | Computes the name of a given constructor
207
constructorName :: Con -> Q Name
208
constructorName (NormalC name _) = return name
209
constructorName (RecC name _)    = return name
210
constructorName x                = fail $ "Unhandled constructor " ++ show x
211

    
212
-- | Builds the constructor-to-string function.
213
--
214
-- This generates a simple function of the following form:
215
--
216
-- @
217
-- fname (ConStructorOne {}) = "CON_STRUCTOR_ONE"
218
-- fname (ConStructorTwo {}) = "CON_STRUCTOR_TWO"
219
-- @
220
--
221
-- This builds a custom list of name/string pairs and then uses
222
-- 'genToString' to actually generate the function
223
genOpID :: Name -> String -> Q [Dec]
224
genOpID name fname = do
225
  TyConI (DataD _ _ _ cons _) <- reify name
226
  cnames <- mapM (liftM nameBase . constructorName) cons
227
  let svalues = map (Left . deCamelCase) cnames
228
  genToString (mkName fname) name $ zip cnames svalues
229

    
230

    
231
-- | OpCode parameter (field) type
232
type OpParam = (String, Q Type, Q Exp)
233

    
234
-- | Generates the OpCode data type.
235
--
236
-- This takes an opcode logical definition, and builds both the
237
-- datatype and the JSON serialisation out of it. We can't use a
238
-- generic serialisation since we need to be compatible with Ganeti's
239
-- own, so we have a few quirks to work around.
240
--
241
-- There are three things to be defined for each parameter:
242
--
243
-- * name
244
--
245
-- * type; if this is 'Maybe', will only be serialised if it's a
246
--   'Just' value
247
--
248
-- * default; if missing, won't raise an exception, but will instead
249
--   use the default
250
--
251
genOpCode :: String                -- ^ Type name to use
252
          -> [(String, [OpParam])] -- ^ Constructor name and parameters
253
          -> Q [Dec]
254
genOpCode name cons = do
255
  decl_d <- mapM (\(cname, fields) -> do
256
                    -- we only need the type of the field, without Q
257
                    fields' <- mapM (\(_, qt, _) ->
258
                                         qt >>= \t -> return (NotStrict, t))
259
                               fields
260
                    return $ NormalC (mkName cname) fields')
261
            cons
262
  let declD = DataD [] (mkName name) [] decl_d [''Show, ''Read, ''Eq]
263

    
264
  (savesig, savefn) <- genSaveOpCode cons
265
  (loadsig, loadfn) <- genLoadOpCode cons
266
  return [declD, loadsig, loadfn, savesig, savefn]
267

    
268
-- | Checks whether a given parameter is options
269
--
270
-- This requires that it's a 'Maybe'.
271
isOptional :: Type -> Bool
272
isOptional (AppT (ConT dt) _) | dt == ''Maybe = True
273
isOptional _ = False
274

    
275
-- | Generates the \"save\" expression for a single opcode parameter.
276
--
277
-- There is only one special handling mode: if the parameter is of
278
-- 'Maybe' type, then we only save it if it's a 'Just' value,
279
-- otherwise we skip it.
280
saveField :: Name    -- ^ The name of variable that contains the value
281
          -> OpParam -- ^ Parameter definition
282
          -> Q Exp
283
saveField fvar (fname, qt, _) = do
284
  t <- qt
285
  let showJ = varE (mkName "showJSON")
286
      fnexp = litE (stringL fname)
287
      fvare = varE fvar
288
  (if isOptional t
289
   then [| case $fvare of
290
             Just v' -> [( $fnexp, $showJ v')]
291
             Nothing -> []
292
         |]
293
   else [| [( $fnexp, $showJ $fvare )] |])
294

    
295
-- | Generates the \"save\" clause for an entire opcode constructor.
296
--
297
-- This matches the opcode with variables named the same as the
298
-- constructor fields (just so that the spliced in code looks nicer),
299
-- and passes those name plus the parameter definition to 'saveField'.
300
saveConstructor :: String    -- ^ The constructor name
301
                -> [OpParam] -- ^ The parameter definitions for this
302
                             -- constructor
303
                -> Q Clause  -- ^ Resulting clause
304
saveConstructor sname fields = do
305
  let cname = mkName sname
306
  let fnames = map (\(n, _, _) -> mkName n) fields
307
  let pat = conP cname (map varP fnames)
308
  let felems = map (uncurry saveField) (zip fnames fields)
309
      -- now build the OP_ID serialisation
310
      opid = [| [( $(litE (stringL "OP_ID")),
311
                   $(varE (mkName "showJSON"))
312
                        $(litE . stringL . deCamelCase $ sname) )] |]
313
      flist = listE (opid:felems)
314
      -- and finally convert all this to a json object
315
      flist' = [| $(varE (mkName "makeObj")) (concat $flist) |]
316
  clause [pat] (normalB flist') []
317

    
318
-- | Generates the main save opcode function.
319
--
320
-- This builds a per-constructor match clause that contains the
321
-- respective constructor-serialisation code.
322
genSaveOpCode :: [(String, [OpParam])] -> Q (Dec, Dec)
323
genSaveOpCode opdefs = do
324
  cclauses <- mapM (uncurry saveConstructor) opdefs
325
  let fname = mkName "saveOpCode"
326
  sigt <- [t| $(conT (mkName "OpCode")) -> JSON.JSValue |]
327
  return $ (SigD fname sigt, FunD fname cclauses)
328

    
329
-- | Generates the \"load\" field for a single parameter.
330
--
331
-- There is custom handling, depending on how the parameter is
332
-- specified. For a 'Maybe' type parameter, we allow that it is not
333
-- present (via 'Utils.maybeFromObj'). Otherwise, if there is a
334
-- default value, we allow the parameter to be abset, and finally if
335
-- there is no default value, we require its presence.
336
loadField :: OpParam -> Q (Name, Stmt)
337
loadField (fname, qt, qdefa) = do
338
  let fvar = mkName fname
339
  t <- qt
340
  defa <- qdefa
341
  -- these are used in all patterns below
342
  let objvar = varE (mkName "o")
343
      objfield = litE (StringL fname)
344
  bexp <- if isOptional t
345
          then [| $((varE (mkName "maybeFromObj"))) $objvar $objfield |]
346
          else case defa of
347
                 AppE (ConE dt) defval | dt == 'Just ->
348
                   -- but has a default value
349
                   [| $(varE (mkName "fromObjWithDefault"))
350
                      $objvar $objfield $(return defval) |]
351
                 ConE dt | dt == 'Nothing ->
352
                     [| $(varE (mkName "fromObj")) $objvar $objfield |]
353
                 s -> fail $ "Invalid default value " ++ show s ++
354
                      ", expecting either 'Nothing' or a 'Just defval'"
355
  return (fvar, BindS (VarP fvar) bexp)
356

    
357
loadConstructor :: String -> [OpParam] -> Q Exp
358
loadConstructor sname fields = do
359
  let name = mkName sname
360
  fbinds <- mapM loadField fields
361
  let (fnames, fstmts) = unzip fbinds
362
  let cval = foldl (\accu fn -> AppE accu (VarE fn)) (ConE name) fnames
363
      fstmts' = fstmts ++ [NoBindS (AppE (VarE 'return) cval)]
364
  return $ DoE fstmts'
365

    
366
genLoadOpCode :: [(String, [OpParam])] -> Q (Dec, Dec)
367
genLoadOpCode opdefs = do
368
  let fname = mkName "loadOpCode"
369
      arg1 = mkName "v"
370
      objname = mkName "o"
371
      opid = mkName "op_id"
372
  st1 <- bindS (varP objname) [| liftM JSON.fromJSObject
373
                                 (JSON.readJSON $(varE arg1)) |]
374
  st2 <- bindS (varP opid) [| $(varE (mkName "fromObj"))
375
                              $(varE objname) $(litE (stringL "OP_ID")) |]
376
  -- the match results (per-constructor blocks)
377
  mexps <- mapM (uncurry loadConstructor) opdefs
378
  fails <- [| fail $ "Unknown opcode " ++ $(varE opid) |]
379
  let mpats = map (\(me, c) ->
380
                       let mp = LitP . StringL . deCamelCase . fst $ c
381
                       in Match mp (NormalB me) []
382
                  ) $ zip mexps opdefs
383
      defmatch = Match WildP (NormalB fails) []
384
      cst = NoBindS $ CaseE (VarE opid) $ mpats++[defmatch]
385
      body = DoE [st1, st2, cst]
386
  sigt <- [t| JSON.JSValue -> JSON.Result $(conT (mkName "OpCode")) |]
387
  return $ (SigD fname sigt, FunD fname [Clause [VarP arg1] (NormalB body) []])
388

    
389
-- | No default type.
390
noDefault :: Q Exp
391
noDefault = conE 'Nothing