Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / HTools / Cluster.hs @ bebe7a73

History | View | Annotate | Download (62 kB)

1 e4f08c46 Iustin Pop
{-| Implementation of cluster-wide logic.
2 e4f08c46 Iustin Pop
3 e4f08c46 Iustin Pop
This module holds all pure cluster-logic; I\/O related functionality
4 525bfb36 Iustin Pop
goes into the /Main/ module for the individual binaries.
5 e4f08c46 Iustin Pop
6 e4f08c46 Iustin Pop
-}
7 e4f08c46 Iustin Pop
8 e2fa2baf Iustin Pop
{-
9 e2fa2baf Iustin Pop
10 aa5b2f07 Iustin Pop
Copyright (C) 2009, 2010, 2011, 2012 Google Inc.
11 e2fa2baf Iustin Pop
12 e2fa2baf Iustin Pop
This program is free software; you can redistribute it and/or modify
13 e2fa2baf Iustin Pop
it under the terms of the GNU General Public License as published by
14 e2fa2baf Iustin Pop
the Free Software Foundation; either version 2 of the License, or
15 e2fa2baf Iustin Pop
(at your option) any later version.
16 e2fa2baf Iustin Pop
17 e2fa2baf Iustin Pop
This program is distributed in the hope that it will be useful, but
18 e2fa2baf Iustin Pop
WITHOUT ANY WARRANTY; without even the implied warranty of
19 e2fa2baf Iustin Pop
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20 e2fa2baf Iustin Pop
General Public License for more details.
21 e2fa2baf Iustin Pop
22 e2fa2baf Iustin Pop
You should have received a copy of the GNU General Public License
23 e2fa2baf Iustin Pop
along with this program; if not, write to the Free Software
24 e2fa2baf Iustin Pop
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25 e2fa2baf Iustin Pop
02110-1301, USA.
26 e2fa2baf Iustin Pop
27 e2fa2baf Iustin Pop
-}
28 e2fa2baf Iustin Pop
29 669d7e3d Iustin Pop
module Ganeti.HTools.Cluster
30 f23f21c3 Iustin Pop
  (
31 f23f21c3 Iustin Pop
    -- * Types
32 f23f21c3 Iustin Pop
    AllocSolution(..)
33 f23f21c3 Iustin Pop
  , EvacSolution(..)
34 f23f21c3 Iustin Pop
  , Table(..)
35 f23f21c3 Iustin Pop
  , CStats(..)
36 f23f21c3 Iustin Pop
  , AllocResult
37 f23f21c3 Iustin Pop
  , AllocMethod
38 f23f21c3 Iustin Pop
  -- * Generic functions
39 f23f21c3 Iustin Pop
  , totalResources
40 f23f21c3 Iustin Pop
  , computeAllocationDelta
41 f23f21c3 Iustin Pop
  -- * First phase functions
42 f23f21c3 Iustin Pop
  , computeBadItems
43 f23f21c3 Iustin Pop
  -- * Second phase functions
44 f23f21c3 Iustin Pop
  , printSolutionLine
45 f23f21c3 Iustin Pop
  , formatCmds
46 f23f21c3 Iustin Pop
  , involvedNodes
47 f23f21c3 Iustin Pop
  , splitJobs
48 f23f21c3 Iustin Pop
  -- * Display functions
49 f23f21c3 Iustin Pop
  , printNodes
50 f23f21c3 Iustin Pop
  , printInsts
51 f23f21c3 Iustin Pop
  -- * Balacing functions
52 f23f21c3 Iustin Pop
  , checkMove
53 f23f21c3 Iustin Pop
  , doNextBalance
54 f23f21c3 Iustin Pop
  , tryBalance
55 f23f21c3 Iustin Pop
  , compCV
56 f23f21c3 Iustin Pop
  , compCVNodes
57 f23f21c3 Iustin Pop
  , compDetailedCV
58 f23f21c3 Iustin Pop
  , printStats
59 f23f21c3 Iustin Pop
  , iMoveToJob
60 f23f21c3 Iustin Pop
  -- * IAllocator functions
61 f23f21c3 Iustin Pop
  , genAllocNodes
62 f23f21c3 Iustin Pop
  , tryAlloc
63 f23f21c3 Iustin Pop
  , tryMGAlloc
64 f23f21c3 Iustin Pop
  , tryNodeEvac
65 f23f21c3 Iustin Pop
  , tryChangeGroup
66 f23f21c3 Iustin Pop
  , collapseFailures
67 f23f21c3 Iustin Pop
  -- * Allocation functions
68 f23f21c3 Iustin Pop
  , iterateAlloc
69 f23f21c3 Iustin Pop
  , tieredAlloc
70 f23f21c3 Iustin Pop
  -- * Node group functions
71 f23f21c3 Iustin Pop
  , instanceGroup
72 f23f21c3 Iustin Pop
  , findSplitInstances
73 f23f21c3 Iustin Pop
  , splitCluster
74 f23f21c3 Iustin Pop
  ) where
75 e4f08c46 Iustin Pop
76 63a78055 Iustin Pop
import qualified Data.IntSet as IntSet
77 e4f08c46 Iustin Pop
import Data.List
78 129734d3 Iustin Pop
import Data.Maybe (fromJust, isNothing)
79 5182e970 Iustin Pop
import Data.Ord (comparing)
80 e4f08c46 Iustin Pop
import Text.Printf (printf)
81 e4f08c46 Iustin Pop
82 669d7e3d Iustin Pop
import qualified Ganeti.HTools.Container as Container
83 669d7e3d Iustin Pop
import qualified Ganeti.HTools.Instance as Instance
84 669d7e3d Iustin Pop
import qualified Ganeti.HTools.Node as Node
85 aec636b9 Iustin Pop
import qualified Ganeti.HTools.Group as Group
86 e4c5beaf Iustin Pop
import Ganeti.HTools.Types
87 669d7e3d Iustin Pop
import Ganeti.HTools.Utils
88 1adec4be Iustin Pop
import Ganeti.HTools.Compat
89 6b20875c Iustin Pop
import qualified Ganeti.OpCodes as OpCodes
90 e4f08c46 Iustin Pop
91 9188aeef Iustin Pop
-- * Types
92 9188aeef Iustin Pop
93 0c936d24 Iustin Pop
-- | Allocation\/relocation solution.
94 85d0ddc3 Iustin Pop
data AllocSolution = AllocSolution
95 129734d3 Iustin Pop
  { asFailures :: [FailMode]              -- ^ Failure counts
96 129734d3 Iustin Pop
  , asAllocs   :: Int                     -- ^ Good allocation count
97 129734d3 Iustin Pop
  , asSolution :: Maybe Node.AllocElement -- ^ The actual allocation result
98 129734d3 Iustin Pop
  , asLog      :: [String]                -- ^ Informational messages
99 85d0ddc3 Iustin Pop
  }
100 85d0ddc3 Iustin Pop
101 47eed3f4 Iustin Pop
-- | Node evacuation/group change iallocator result type. This result
102 47eed3f4 Iustin Pop
-- type consists of actual opcodes (a restricted subset) that are
103 47eed3f4 Iustin Pop
-- transmitted back to Ganeti.
104 47eed3f4 Iustin Pop
data EvacSolution = EvacSolution
105 f23f21c3 Iustin Pop
  { esMoved   :: [(Idx, Gdx, [Ndx])]  -- ^ Instances moved successfully
106 f23f21c3 Iustin Pop
  , esFailed  :: [(Idx, String)]      -- ^ Instances which were not
107 f23f21c3 Iustin Pop
                                      -- relocated
108 f23f21c3 Iustin Pop
  , esOpCodes :: [[OpCodes.OpCode]]   -- ^ List of jobs
109 6a855aaa Iustin Pop
  } deriving (Show)
110 47eed3f4 Iustin Pop
111 40ee14bc Iustin Pop
-- | Allocation results, as used in 'iterateAlloc' and 'tieredAlloc'.
112 40ee14bc Iustin Pop
type AllocResult = (FailStats, Node.List, Instance.List,
113 40ee14bc Iustin Pop
                    [Instance.Instance], [CStats])
114 40ee14bc Iustin Pop
115 6cb1649f Iustin Pop
-- | A type denoting the valid allocation mode/pairs.
116 525bfb36 Iustin Pop
--
117 b0631f10 Iustin Pop
-- For a one-node allocation, this will be a @Left ['Ndx']@, whereas
118 b0631f10 Iustin Pop
-- for a two-node allocation, this will be a @Right [('Ndx',
119 b0631f10 Iustin Pop
-- ['Ndx'])]@. In the latter case, the list is basically an
120 b0631f10 Iustin Pop
-- association list, grouped by primary node and holding the potential
121 b0631f10 Iustin Pop
-- secondary nodes in the sub-list.
122 b0631f10 Iustin Pop
type AllocNodes = Either [Ndx] [(Ndx, [Ndx])]
123 6cb1649f Iustin Pop
124 525bfb36 Iustin Pop
-- | The empty solution we start with when computing allocations.
125 97936d51 Iustin Pop
emptyAllocSolution :: AllocSolution
126 97936d51 Iustin Pop
emptyAllocSolution = AllocSolution { asFailures = [], asAllocs = 0
127 129734d3 Iustin Pop
                                   , asSolution = Nothing, asLog = [] }
128 78694255 Iustin Pop
129 47eed3f4 Iustin Pop
-- | The empty evac solution.
130 47eed3f4 Iustin Pop
emptyEvacSolution :: EvacSolution
131 47eed3f4 Iustin Pop
emptyEvacSolution = EvacSolution { esMoved = []
132 47eed3f4 Iustin Pop
                                 , esFailed = []
133 47eed3f4 Iustin Pop
                                 , esOpCodes = []
134 47eed3f4 Iustin Pop
                                 }
135 47eed3f4 Iustin Pop
136 525bfb36 Iustin Pop
-- | The complete state for the balancing solution.
137 262a08a2 Iustin Pop
data Table = Table Node.List Instance.List Score [Placement]
138 6bc39970 Iustin Pop
             deriving (Show, Read)
139 e4f08c46 Iustin Pop
140 179c0828 Iustin Pop
-- | Cluster statistics data type.
141 33e17565 Iustin Pop
data CStats = CStats
142 33e17565 Iustin Pop
  { csFmem :: Integer -- ^ Cluster free mem
143 33e17565 Iustin Pop
  , csFdsk :: Integer -- ^ Cluster free disk
144 33e17565 Iustin Pop
  , csAmem :: Integer -- ^ Cluster allocatable mem
145 33e17565 Iustin Pop
  , csAdsk :: Integer -- ^ Cluster allocatable disk
146 33e17565 Iustin Pop
  , csAcpu :: Integer -- ^ Cluster allocatable cpus
147 33e17565 Iustin Pop
  , csMmem :: Integer -- ^ Max node allocatable mem
148 33e17565 Iustin Pop
  , csMdsk :: Integer -- ^ Max node allocatable disk
149 33e17565 Iustin Pop
  , csMcpu :: Integer -- ^ Max node allocatable cpu
150 33e17565 Iustin Pop
  , csImem :: Integer -- ^ Instance used mem
151 33e17565 Iustin Pop
  , csIdsk :: Integer -- ^ Instance used disk
152 33e17565 Iustin Pop
  , csIcpu :: Integer -- ^ Instance used cpu
153 33e17565 Iustin Pop
  , csTmem :: Double  -- ^ Cluster total mem
154 33e17565 Iustin Pop
  , csTdsk :: Double  -- ^ Cluster total disk
155 33e17565 Iustin Pop
  , csTcpu :: Double  -- ^ Cluster total cpus
156 90c2f1e8 Iustin Pop
  , csVcpu :: Integer -- ^ Cluster total virtual cpus
157 90c2f1e8 Iustin Pop
  , csNcpu :: Double  -- ^ Equivalent to 'csIcpu' but in terms of
158 90c2f1e8 Iustin Pop
                      -- physical CPUs, i.e. normalised used phys CPUs
159 33e17565 Iustin Pop
  , csXmem :: Integer -- ^ Unnacounted for mem
160 33e17565 Iustin Pop
  , csNmem :: Integer -- ^ Node own memory
161 33e17565 Iustin Pop
  , csScore :: Score  -- ^ The cluster score
162 33e17565 Iustin Pop
  , csNinst :: Int    -- ^ The total number of instances
163 33e17565 Iustin Pop
  } deriving (Show, Read)
164 1a7eff0e Iustin Pop
165 7eda951b Iustin Pop
-- | A simple type for allocation functions.
166 7eda951b Iustin Pop
type AllocMethod =  Node.List           -- ^ Node list
167 7eda951b Iustin Pop
                 -> Instance.List       -- ^ Instance list
168 7eda951b Iustin Pop
                 -> Maybe Int           -- ^ Optional allocation limit
169 7eda951b Iustin Pop
                 -> Instance.Instance   -- ^ Instance spec for allocation
170 7eda951b Iustin Pop
                 -> AllocNodes          -- ^ Which nodes we should allocate on
171 7eda951b Iustin Pop
                 -> [Instance.Instance] -- ^ Allocated instances
172 7eda951b Iustin Pop
                 -> [CStats]            -- ^ Running cluster stats
173 7eda951b Iustin Pop
                 -> Result AllocResult  -- ^ Allocation result
174 7eda951b Iustin Pop
175 bebe7a73 Iustin Pop
-- | A simple type for the running solution of evacuations.
176 bebe7a73 Iustin Pop
type EvacInnerState =
177 bebe7a73 Iustin Pop
  Either String (Node.List, Instance.Instance, Score, Ndx)
178 bebe7a73 Iustin Pop
179 9188aeef Iustin Pop
-- * Utility functions
180 9188aeef Iustin Pop
181 e4f08c46 Iustin Pop
-- | Verifies the N+1 status and return the affected nodes.
182 e4f08c46 Iustin Pop
verifyN1 :: [Node.Node] -> [Node.Node]
183 9f6dcdea Iustin Pop
verifyN1 = filter Node.failN1
184 e4f08c46 Iustin Pop
185 9188aeef Iustin Pop
{-| Computes the pair of bad nodes and instances.
186 9188aeef Iustin Pop
187 9188aeef Iustin Pop
The bad node list is computed via a simple 'verifyN1' check, and the
188 9188aeef Iustin Pop
bad instance list is the list of primary and secondary instances of
189 9188aeef Iustin Pop
those nodes.
190 9188aeef Iustin Pop
191 9188aeef Iustin Pop
-}
192 9188aeef Iustin Pop
computeBadItems :: Node.List -> Instance.List ->
193 9188aeef Iustin Pop
                   ([Node.Node], [Instance.Instance])
194 9188aeef Iustin Pop
computeBadItems nl il =
195 dbba5246 Iustin Pop
  let bad_nodes = verifyN1 $ getOnline nl
196 5182e970 Iustin Pop
      bad_instances = map (`Container.find` il) .
197 9f6dcdea Iustin Pop
                      sort . nub $
198 2060348b Iustin Pop
                      concatMap (\ n -> Node.sList n ++ Node.pList n) bad_nodes
199 9188aeef Iustin Pop
  in
200 9188aeef Iustin Pop
    (bad_nodes, bad_instances)
201 9188aeef Iustin Pop
202 255f55a9 Iustin Pop
-- | Extracts the node pairs for an instance. This can fail if the
203 255f55a9 Iustin Pop
-- instance is single-homed. FIXME: this needs to be improved,
204 255f55a9 Iustin Pop
-- together with the general enhancement for handling non-DRBD moves.
205 255f55a9 Iustin Pop
instanceNodes :: Node.List -> Instance.Instance ->
206 255f55a9 Iustin Pop
                 (Ndx, Ndx, Node.Node, Node.Node)
207 255f55a9 Iustin Pop
instanceNodes nl inst =
208 255f55a9 Iustin Pop
  let old_pdx = Instance.pNode inst
209 255f55a9 Iustin Pop
      old_sdx = Instance.sNode inst
210 255f55a9 Iustin Pop
      old_p = Container.find old_pdx nl
211 255f55a9 Iustin Pop
      old_s = Container.find old_sdx nl
212 255f55a9 Iustin Pop
  in (old_pdx, old_sdx, old_p, old_s)
213 255f55a9 Iustin Pop
214 525bfb36 Iustin Pop
-- | Zero-initializer for the CStats type.
215 1a7eff0e Iustin Pop
emptyCStats :: CStats
216 90c2f1e8 Iustin Pop
emptyCStats = CStats 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
217 1a7eff0e Iustin Pop
218 525bfb36 Iustin Pop
-- | Update stats with data from a new node.
219 1a7eff0e Iustin Pop
updateCStats :: CStats -> Node.Node -> CStats
220 1a7eff0e Iustin Pop
updateCStats cs node =
221 f23f21c3 Iustin Pop
  let CStats { csFmem = x_fmem, csFdsk = x_fdsk,
222 f23f21c3 Iustin Pop
               csAmem = x_amem, csAcpu = x_acpu, csAdsk = x_adsk,
223 f23f21c3 Iustin Pop
               csMmem = x_mmem, csMdsk = x_mdsk, csMcpu = x_mcpu,
224 f23f21c3 Iustin Pop
               csImem = x_imem, csIdsk = x_idsk, csIcpu = x_icpu,
225 f23f21c3 Iustin Pop
               csTmem = x_tmem, csTdsk = x_tdsk, csTcpu = x_tcpu,
226 90c2f1e8 Iustin Pop
               csVcpu = x_vcpu, csNcpu = x_ncpu,
227 f23f21c3 Iustin Pop
               csXmem = x_xmem, csNmem = x_nmem, csNinst = x_ninst
228 f23f21c3 Iustin Pop
             }
229 f23f21c3 Iustin Pop
        = cs
230 f23f21c3 Iustin Pop
      inc_amem = Node.fMem node - Node.rMem node
231 f23f21c3 Iustin Pop
      inc_amem' = if inc_amem > 0 then inc_amem else 0
232 f23f21c3 Iustin Pop
      inc_adsk = Node.availDisk node
233 f23f21c3 Iustin Pop
      inc_imem = truncate (Node.tMem node) - Node.nMem node
234 f23f21c3 Iustin Pop
                 - Node.xMem node - Node.fMem node
235 f23f21c3 Iustin Pop
      inc_icpu = Node.uCpu node
236 f23f21c3 Iustin Pop
      inc_idsk = truncate (Node.tDsk node) - Node.fDsk node
237 f23f21c3 Iustin Pop
      inc_vcpu = Node.hiCpu node
238 f23f21c3 Iustin Pop
      inc_acpu = Node.availCpu node
239 90c2f1e8 Iustin Pop
      inc_ncpu = fromIntegral (Node.uCpu node) /
240 90c2f1e8 Iustin Pop
                 iPolicyVcpuRatio (Node.iPolicy node)
241 f23f21c3 Iustin Pop
  in cs { csFmem = x_fmem + fromIntegral (Node.fMem node)
242 f23f21c3 Iustin Pop
        , csFdsk = x_fdsk + fromIntegral (Node.fDsk node)
243 f23f21c3 Iustin Pop
        , csAmem = x_amem + fromIntegral inc_amem'
244 f23f21c3 Iustin Pop
        , csAdsk = x_adsk + fromIntegral inc_adsk
245 f23f21c3 Iustin Pop
        , csAcpu = x_acpu + fromIntegral inc_acpu
246 f23f21c3 Iustin Pop
        , csMmem = max x_mmem (fromIntegral inc_amem')
247 f23f21c3 Iustin Pop
        , csMdsk = max x_mdsk (fromIntegral inc_adsk)
248 f23f21c3 Iustin Pop
        , csMcpu = max x_mcpu (fromIntegral inc_acpu)
249 f23f21c3 Iustin Pop
        , csImem = x_imem + fromIntegral inc_imem
250 f23f21c3 Iustin Pop
        , csIdsk = x_idsk + fromIntegral inc_idsk
251 f23f21c3 Iustin Pop
        , csIcpu = x_icpu + fromIntegral inc_icpu
252 f23f21c3 Iustin Pop
        , csTmem = x_tmem + Node.tMem node
253 f23f21c3 Iustin Pop
        , csTdsk = x_tdsk + Node.tDsk node
254 f23f21c3 Iustin Pop
        , csTcpu = x_tcpu + Node.tCpu node
255 f23f21c3 Iustin Pop
        , csVcpu = x_vcpu + fromIntegral inc_vcpu
256 90c2f1e8 Iustin Pop
        , csNcpu = x_ncpu + inc_ncpu
257 f23f21c3 Iustin Pop
        , csXmem = x_xmem + fromIntegral (Node.xMem node)
258 f23f21c3 Iustin Pop
        , csNmem = x_nmem + fromIntegral (Node.nMem node)
259 f23f21c3 Iustin Pop
        , csNinst = x_ninst + length (Node.pList node)
260 f23f21c3 Iustin Pop
        }
261 1a7eff0e Iustin Pop
262 9188aeef Iustin Pop
-- | Compute the total free disk and memory in the cluster.
263 1a7eff0e Iustin Pop
totalResources :: Node.List -> CStats
264 de4ac2c2 Iustin Pop
totalResources nl =
265 f23f21c3 Iustin Pop
  let cs = foldl' updateCStats emptyCStats . Container.elems $ nl
266 f23f21c3 Iustin Pop
  in cs { csScore = compCV nl }
267 9188aeef Iustin Pop
268 9b8fac3d Iustin Pop
-- | Compute the delta between two cluster state.
269 9b8fac3d Iustin Pop
--
270 9b8fac3d Iustin Pop
-- This is used when doing allocations, to understand better the
271 e2436511 Iustin Pop
-- available cluster resources. The return value is a triple of the
272 e2436511 Iustin Pop
-- current used values, the delta that was still allocated, and what
273 e2436511 Iustin Pop
-- was left unallocated.
274 9b8fac3d Iustin Pop
computeAllocationDelta :: CStats -> CStats -> AllocStats
275 9b8fac3d Iustin Pop
computeAllocationDelta cini cfin =
276 80d7d8a1 Iustin Pop
  let CStats {csImem = i_imem, csIdsk = i_idsk, csIcpu = i_icpu,
277 80d7d8a1 Iustin Pop
              csNcpu = i_ncpu } = cini
278 f23f21c3 Iustin Pop
      CStats {csImem = f_imem, csIdsk = f_idsk, csIcpu = f_icpu,
279 80d7d8a1 Iustin Pop
              csTmem = t_mem, csTdsk = t_dsk, csVcpu = f_vcpu,
280 80d7d8a1 Iustin Pop
              csNcpu = f_ncpu, csTcpu = f_tcpu } = cfin
281 80d7d8a1 Iustin Pop
      rini = AllocInfo { allocInfoVCpus = fromIntegral i_icpu
282 80d7d8a1 Iustin Pop
                       , allocInfoNCpus = i_ncpu
283 80d7d8a1 Iustin Pop
                       , allocInfoMem   = fromIntegral i_imem
284 80d7d8a1 Iustin Pop
                       , allocInfoDisk  = fromIntegral i_idsk
285 80d7d8a1 Iustin Pop
                       }
286 80d7d8a1 Iustin Pop
      rfin = AllocInfo { allocInfoVCpus = fromIntegral (f_icpu - i_icpu)
287 80d7d8a1 Iustin Pop
                       , allocInfoNCpus = f_ncpu - i_ncpu
288 80d7d8a1 Iustin Pop
                       , allocInfoMem   = fromIntegral (f_imem - i_imem)
289 80d7d8a1 Iustin Pop
                       , allocInfoDisk  = fromIntegral (f_idsk - i_idsk)
290 80d7d8a1 Iustin Pop
                       }
291 80d7d8a1 Iustin Pop
      runa = AllocInfo { allocInfoVCpus = fromIntegral (f_vcpu - f_icpu)
292 80d7d8a1 Iustin Pop
                       , allocInfoNCpus = f_tcpu - f_ncpu
293 80d7d8a1 Iustin Pop
                       , allocInfoMem   = truncate t_mem - fromIntegral f_imem
294 80d7d8a1 Iustin Pop
                       , allocInfoDisk  = truncate t_dsk - fromIntegral f_idsk
295 80d7d8a1 Iustin Pop
                       }
296 f23f21c3 Iustin Pop
  in (rini, rfin, runa)
297 9b8fac3d Iustin Pop
298 525bfb36 Iustin Pop
-- | The names and weights of the individual elements in the CV list.
299 8a3b30ca Iustin Pop
detailedCVInfo :: [(Double, String)]
300 8a3b30ca Iustin Pop
detailedCVInfo = [ (1,  "free_mem_cv")
301 8a3b30ca Iustin Pop
                 , (1,  "free_disk_cv")
302 8a3b30ca Iustin Pop
                 , (1,  "n1_cnt")
303 8a3b30ca Iustin Pop
                 , (1,  "reserved_mem_cv")
304 8a3b30ca Iustin Pop
                 , (4,  "offline_all_cnt")
305 8a3b30ca Iustin Pop
                 , (16, "offline_pri_cnt")
306 8a3b30ca Iustin Pop
                 , (1,  "vcpu_ratio_cv")
307 8a3b30ca Iustin Pop
                 , (1,  "cpu_load_cv")
308 8a3b30ca Iustin Pop
                 , (1,  "mem_load_cv")
309 8a3b30ca Iustin Pop
                 , (1,  "disk_load_cv")
310 8a3b30ca Iustin Pop
                 , (1,  "net_load_cv")
311 306cccd5 Iustin Pop
                 , (2,  "pri_tags_score")
312 084565ac Iustin Pop
                 , (1,  "spindles_cv")
313 8a3b30ca Iustin Pop
                 ]
314 8a3b30ca Iustin Pop
315 179c0828 Iustin Pop
-- | Holds the weights used by 'compCVNodes' for each metric.
316 8a3b30ca Iustin Pop
detailedCVWeights :: [Double]
317 8a3b30ca Iustin Pop
detailedCVWeights = map fst detailedCVInfo
318 fca250e9 Iustin Pop
319 9188aeef Iustin Pop
-- | Compute the mem and disk covariance.
320 9bb5721c Iustin Pop
compDetailedCV :: [Node.Node] -> [Double]
321 9bb5721c Iustin Pop
compDetailedCV all_nodes =
322 f23f21c3 Iustin Pop
  let (offline, nodes) = partition Node.offline all_nodes
323 f23f21c3 Iustin Pop
      mem_l = map Node.pMem nodes
324 f23f21c3 Iustin Pop
      dsk_l = map Node.pDsk nodes
325 f23f21c3 Iustin Pop
      -- metric: memory covariance
326 f23f21c3 Iustin Pop
      mem_cv = stdDev mem_l
327 f23f21c3 Iustin Pop
      -- metric: disk covariance
328 f23f21c3 Iustin Pop
      dsk_cv = stdDev dsk_l
329 f23f21c3 Iustin Pop
      -- metric: count of instances living on N1 failing nodes
330 f23f21c3 Iustin Pop
      n1_score = fromIntegral . sum . map (\n -> length (Node.sList n) +
331 f23f21c3 Iustin Pop
                                                 length (Node.pList n)) .
332 f23f21c3 Iustin Pop
                 filter Node.failN1 $ nodes :: Double
333 f23f21c3 Iustin Pop
      res_l = map Node.pRem nodes
334 f23f21c3 Iustin Pop
      -- metric: reserved memory covariance
335 f23f21c3 Iustin Pop
      res_cv = stdDev res_l
336 f23f21c3 Iustin Pop
      -- offline instances metrics
337 f23f21c3 Iustin Pop
      offline_ipri = sum . map (length . Node.pList) $ offline
338 f23f21c3 Iustin Pop
      offline_isec = sum . map (length . Node.sList) $ offline
339 f23f21c3 Iustin Pop
      -- metric: count of instances on offline nodes
340 f23f21c3 Iustin Pop
      off_score = fromIntegral (offline_ipri + offline_isec)::Double
341 f23f21c3 Iustin Pop
      -- metric: count of primary instances on offline nodes (this
342 f23f21c3 Iustin Pop
      -- helps with evacuation/failover of primary instances on
343 f23f21c3 Iustin Pop
      -- 2-node clusters with one node offline)
344 f23f21c3 Iustin Pop
      off_pri_score = fromIntegral offline_ipri::Double
345 f23f21c3 Iustin Pop
      cpu_l = map Node.pCpu nodes
346 f23f21c3 Iustin Pop
      -- metric: covariance of vcpu/pcpu ratio
347 f23f21c3 Iustin Pop
      cpu_cv = stdDev cpu_l
348 f23f21c3 Iustin Pop
      -- metrics: covariance of cpu, memory, disk and network load
349 f23f21c3 Iustin Pop
      (c_load, m_load, d_load, n_load) =
350 f23f21c3 Iustin Pop
        unzip4 $ map (\n ->
351 f23f21c3 Iustin Pop
                      let DynUtil c1 m1 d1 n1 = Node.utilLoad n
352 f23f21c3 Iustin Pop
                          DynUtil c2 m2 d2 n2 = Node.utilPool n
353 f23f21c3 Iustin Pop
                      in (c1/c2, m1/m2, d1/d2, n1/n2)) nodes
354 f23f21c3 Iustin Pop
      -- metric: conflicting instance count
355 f23f21c3 Iustin Pop
      pri_tags_inst = sum $ map Node.conflictingPrimaries nodes
356 f23f21c3 Iustin Pop
      pri_tags_score = fromIntegral pri_tags_inst::Double
357 084565ac Iustin Pop
      -- metric: spindles %
358 084565ac Iustin Pop
      spindles_cv = map (\n -> Node.instSpindles n / Node.hiSpindles n) nodes
359 f23f21c3 Iustin Pop
  in [ mem_cv, dsk_cv, n1_score, res_cv, off_score, off_pri_score, cpu_cv
360 f23f21c3 Iustin Pop
     , stdDev c_load, stdDev m_load , stdDev d_load, stdDev n_load
361 084565ac Iustin Pop
     , pri_tags_score, stdDev spindles_cv ]
362 9188aeef Iustin Pop
363 9188aeef Iustin Pop
-- | Compute the /total/ variance.
364 9bb5721c Iustin Pop
compCVNodes :: [Node.Node] -> Double
365 9bb5721c Iustin Pop
compCVNodes = sum . zipWith (*) detailedCVWeights . compDetailedCV
366 9bb5721c Iustin Pop
367 9bb5721c Iustin Pop
-- | Wrapper over 'compCVNodes' for callers that have a 'Node.List'.
368 9188aeef Iustin Pop
compCV :: Node.List -> Double
369 9bb5721c Iustin Pop
compCV = compCVNodes . Container.elems
370 9bb5721c Iustin Pop
371 525bfb36 Iustin Pop
-- | Compute online nodes from a 'Node.List'.
372 dbba5246 Iustin Pop
getOnline :: Node.List -> [Node.Node]
373 dbba5246 Iustin Pop
getOnline = filter (not . Node.offline) . Container.elems
374 dbba5246 Iustin Pop
375 525bfb36 Iustin Pop
-- * Balancing functions
376 9188aeef Iustin Pop
377 9188aeef Iustin Pop
-- | Compute best table. Note that the ordering of the arguments is important.
378 9188aeef Iustin Pop
compareTables :: Table -> Table -> Table
379 9188aeef Iustin Pop
compareTables a@(Table _ _ a_cv _) b@(Table _ _ b_cv _ ) =
380 f23f21c3 Iustin Pop
  if a_cv > b_cv then b else a
381 9188aeef Iustin Pop
382 9188aeef Iustin Pop
-- | Applies an instance move to a given node list and instance.
383 262a08a2 Iustin Pop
applyMove :: Node.List -> Instance.Instance
384 8880d889 Iustin Pop
          -> IMove -> OpResult (Node.List, Instance.Instance, Ndx, Ndx)
385 00b51a14 Iustin Pop
-- Failover (f)
386 e4f08c46 Iustin Pop
applyMove nl inst Failover =
387 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
388 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
389 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
390 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
391 3603605a Iustin Pop
        new_p <- Node.addPriEx (Node.offline old_p) int_s inst
392 f23f21c3 Iustin Pop
        new_s <- Node.addSec int_p inst old_sdx
393 f23f21c3 Iustin Pop
        let new_inst = Instance.setBoth inst old_sdx old_pdx
394 f23f21c3 Iustin Pop
        return (Container.addTwo old_pdx new_s old_sdx new_p nl,
395 f23f21c3 Iustin Pop
                new_inst, old_sdx, old_pdx)
396 f23f21c3 Iustin Pop
  in new_nl
397 e4f08c46 Iustin Pop
398 00b51a14 Iustin Pop
-- Replace the primary (f:, r:np, f)
399 e4f08c46 Iustin Pop
applyMove nl inst (ReplacePrimary new_pdx) =
400 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
401 f23f21c3 Iustin Pop
      tgt_n = Container.find new_pdx nl
402 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
403 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
404 f23f21c3 Iustin Pop
      force_p = Node.offline old_p
405 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
406 f23f21c3 Iustin Pop
                  -- check that the current secondary can host the instance
407 f23f21c3 Iustin Pop
                  -- during the migration
408 f23f21c3 Iustin Pop
        tmp_s <- Node.addPriEx force_p int_s inst
409 f23f21c3 Iustin Pop
        let tmp_s' = Node.removePri tmp_s inst
410 f23f21c3 Iustin Pop
        new_p <- Node.addPriEx force_p tgt_n inst
411 f23f21c3 Iustin Pop
        new_s <- Node.addSecEx force_p tmp_s' inst new_pdx
412 f23f21c3 Iustin Pop
        let new_inst = Instance.setPri inst new_pdx
413 f23f21c3 Iustin Pop
        return (Container.add new_pdx new_p $
414 f23f21c3 Iustin Pop
                Container.addTwo old_pdx int_p old_sdx new_s nl,
415 f23f21c3 Iustin Pop
                new_inst, new_pdx, old_sdx)
416 f23f21c3 Iustin Pop
  in new_nl
417 e4f08c46 Iustin Pop
418 00b51a14 Iustin Pop
-- Replace the secondary (r:ns)
419 e4f08c46 Iustin Pop
applyMove nl inst (ReplaceSecondary new_sdx) =
420 f23f21c3 Iustin Pop
  let old_pdx = Instance.pNode inst
421 f23f21c3 Iustin Pop
      old_sdx = Instance.sNode inst
422 f23f21c3 Iustin Pop
      old_s = Container.find old_sdx nl
423 f23f21c3 Iustin Pop
      tgt_n = Container.find new_sdx nl
424 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
425 f23f21c3 Iustin Pop
      force_s = Node.offline old_s
426 f23f21c3 Iustin Pop
      new_inst = Instance.setSec inst new_sdx
427 f23f21c3 Iustin Pop
      new_nl = Node.addSecEx force_s tgt_n inst old_pdx >>=
428 f23f21c3 Iustin Pop
               \new_s -> return (Container.addTwo new_sdx
429 f23f21c3 Iustin Pop
                                 new_s old_sdx int_s nl,
430 f23f21c3 Iustin Pop
                                 new_inst, old_pdx, new_sdx)
431 f23f21c3 Iustin Pop
  in new_nl
432 e4f08c46 Iustin Pop
433 00b51a14 Iustin Pop
-- Replace the secondary and failover (r:np, f)
434 79ac6b6f Iustin Pop
applyMove nl inst (ReplaceAndFailover new_pdx) =
435 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
436 f23f21c3 Iustin Pop
      tgt_n = Container.find new_pdx nl
437 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
438 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
439 f23f21c3 Iustin Pop
      force_s = Node.offline old_s
440 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
441 f23f21c3 Iustin Pop
        new_p <- Node.addPri tgt_n inst
442 f23f21c3 Iustin Pop
        new_s <- Node.addSecEx force_s int_p inst new_pdx
443 f23f21c3 Iustin Pop
        let new_inst = Instance.setBoth inst new_pdx old_pdx
444 f23f21c3 Iustin Pop
        return (Container.add new_pdx new_p $
445 f23f21c3 Iustin Pop
                Container.addTwo old_pdx new_s old_sdx int_s nl,
446 f23f21c3 Iustin Pop
                new_inst, new_pdx, old_pdx)
447 f23f21c3 Iustin Pop
  in new_nl
448 79ac6b6f Iustin Pop
449 19493d33 Iustin Pop
-- Failver and replace the secondary (f, r:ns)
450 19493d33 Iustin Pop
applyMove nl inst (FailoverAndReplace new_sdx) =
451 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
452 f23f21c3 Iustin Pop
      tgt_n = Container.find new_sdx nl
453 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
454 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
455 f23f21c3 Iustin Pop
      force_p = Node.offline old_p
456 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
457 f23f21c3 Iustin Pop
        new_p <- Node.addPriEx force_p int_s inst
458 f23f21c3 Iustin Pop
        new_s <- Node.addSecEx force_p tgt_n inst old_sdx
459 f23f21c3 Iustin Pop
        let new_inst = Instance.setBoth inst old_sdx new_sdx
460 f23f21c3 Iustin Pop
        return (Container.add new_sdx new_s $
461 f23f21c3 Iustin Pop
                Container.addTwo old_sdx new_p old_pdx int_p nl,
462 f23f21c3 Iustin Pop
                new_inst, old_sdx, new_sdx)
463 f23f21c3 Iustin Pop
  in new_nl
464 19493d33 Iustin Pop
465 9188aeef Iustin Pop
-- | Tries to allocate an instance on one given node.
466 0d66ea67 Iustin Pop
allocateOnSingle :: Node.List -> Instance.Instance -> Ndx
467 1fe81531 Iustin Pop
                 -> OpResult Node.AllocElement
468 0d66ea67 Iustin Pop
allocateOnSingle nl inst new_pdx =
469 f23f21c3 Iustin Pop
  let p = Container.find new_pdx nl
470 f23f21c3 Iustin Pop
      new_inst = Instance.setBoth inst new_pdx Node.noSecondary
471 aa5b2f07 Iustin Pop
  in do
472 aa5b2f07 Iustin Pop
    Instance.instMatchesPolicy inst (Node.iPolicy p)
473 aa5b2f07 Iustin Pop
    new_p <- Node.addPri p inst
474 f23f21c3 Iustin Pop
    let new_nl = Container.add new_pdx new_p nl
475 f23f21c3 Iustin Pop
        new_score = compCV nl
476 f23f21c3 Iustin Pop
    return (new_nl, new_inst, [new_p], new_score)
477 5e15f460 Iustin Pop
478 9188aeef Iustin Pop
-- | Tries to allocate an instance on a given pair of nodes.
479 0d66ea67 Iustin Pop
allocateOnPair :: Node.List -> Instance.Instance -> Ndx -> Ndx
480 1fe81531 Iustin Pop
               -> OpResult Node.AllocElement
481 0d66ea67 Iustin Pop
allocateOnPair nl inst new_pdx new_sdx =
482 f23f21c3 Iustin Pop
  let tgt_p = Container.find new_pdx nl
483 f23f21c3 Iustin Pop
      tgt_s = Container.find new_sdx nl
484 f23f21c3 Iustin Pop
  in do
485 aa5b2f07 Iustin Pop
    Instance.instMatchesPolicy inst (Node.iPolicy tgt_p)
486 f23f21c3 Iustin Pop
    new_p <- Node.addPri tgt_p inst
487 f23f21c3 Iustin Pop
    new_s <- Node.addSec tgt_s inst new_pdx
488 f23f21c3 Iustin Pop
    let new_inst = Instance.setBoth inst new_pdx new_sdx
489 f23f21c3 Iustin Pop
        new_nl = Container.addTwo new_pdx new_p new_sdx new_s nl
490 f23f21c3 Iustin Pop
    return (new_nl, new_inst, [new_p, new_s], compCV new_nl)
491 4a340313 Iustin Pop
492 9188aeef Iustin Pop
-- | Tries to perform an instance move and returns the best table
493 9188aeef Iustin Pop
-- between the original one and the new one.
494 e4f08c46 Iustin Pop
checkSingleStep :: Table -- ^ The original table
495 e4f08c46 Iustin Pop
                -> Instance.Instance -- ^ The instance to move
496 e4f08c46 Iustin Pop
                -> Table -- ^ The current best table
497 e4f08c46 Iustin Pop
                -> IMove -- ^ The move to apply
498 e4f08c46 Iustin Pop
                -> Table -- ^ The final best table
499 e4f08c46 Iustin Pop
checkSingleStep ini_tbl target cur_tbl move =
500 f23f21c3 Iustin Pop
  let Table ini_nl ini_il _ ini_plc = ini_tbl
501 f23f21c3 Iustin Pop
      tmp_resu = applyMove ini_nl target move
502 f23f21c3 Iustin Pop
  in case tmp_resu of
503 f23f21c3 Iustin Pop
       OpFail _ -> cur_tbl
504 f23f21c3 Iustin Pop
       OpGood (upd_nl, new_inst, pri_idx, sec_idx) ->
505 f23f21c3 Iustin Pop
         let tgt_idx = Instance.idx target
506 f23f21c3 Iustin Pop
             upd_cvar = compCV upd_nl
507 f23f21c3 Iustin Pop
             upd_il = Container.add tgt_idx new_inst ini_il
508 f23f21c3 Iustin Pop
             upd_plc = (tgt_idx, pri_idx, sec_idx, move, upd_cvar):ini_plc
509 f23f21c3 Iustin Pop
             upd_tbl = Table upd_nl upd_il upd_cvar upd_plc
510 f23f21c3 Iustin Pop
         in compareTables cur_tbl upd_tbl
511 e4f08c46 Iustin Pop
512 c0501c69 Iustin Pop
-- | Given the status of the current secondary as a valid new node and
513 c0501c69 Iustin Pop
-- the current candidate target node, generate the possible moves for
514 c0501c69 Iustin Pop
-- a instance.
515 5f4464db Iustin Pop
possibleMoves :: MirrorType -- ^ The mirroring type of the instance
516 5f4464db Iustin Pop
              -> Bool       -- ^ Whether the secondary node is a valid new node
517 5f4464db Iustin Pop
              -> Bool       -- ^ Whether we can change the primary node
518 5f4464db Iustin Pop
              -> Ndx        -- ^ Target node candidate
519 5f4464db Iustin Pop
              -> [IMove]    -- ^ List of valid result moves
520 e08424a8 Guido Trotter
521 5f4464db Iustin Pop
possibleMoves MirrorNone _ _ _ = []
522 e08424a8 Guido Trotter
523 5f4464db Iustin Pop
possibleMoves MirrorExternal _ _ _ = []
524 5f4464db Iustin Pop
525 5f4464db Iustin Pop
possibleMoves MirrorInternal _ False tdx =
526 5f4464db Iustin Pop
  [ ReplaceSecondary tdx ]
527 5f4464db Iustin Pop
528 5f4464db Iustin Pop
possibleMoves MirrorInternal True True tdx =
529 f23f21c3 Iustin Pop
  [ ReplaceSecondary tdx
530 f23f21c3 Iustin Pop
  , ReplaceAndFailover tdx
531 f23f21c3 Iustin Pop
  , ReplacePrimary tdx
532 f23f21c3 Iustin Pop
  , FailoverAndReplace tdx
533 f23f21c3 Iustin Pop
  ]
534 40d4eba0 Iustin Pop
535 5f4464db Iustin Pop
possibleMoves MirrorInternal False True tdx =
536 f23f21c3 Iustin Pop
  [ ReplaceSecondary tdx
537 f23f21c3 Iustin Pop
  , ReplaceAndFailover tdx
538 f23f21c3 Iustin Pop
  ]
539 40d4eba0 Iustin Pop
540 40d4eba0 Iustin Pop
-- | Compute the best move for a given instance.
541 c0501c69 Iustin Pop
checkInstanceMove :: [Ndx]             -- ^ Allowed target node indices
542 c0501c69 Iustin Pop
                  -> Bool              -- ^ Whether disk moves are allowed
543 e08424a8 Guido Trotter
                  -> Bool              -- ^ Whether instance moves are allowed
544 c0501c69 Iustin Pop
                  -> Table             -- ^ Original table
545 c0501c69 Iustin Pop
                  -> Instance.Instance -- ^ Instance to move
546 c0501c69 Iustin Pop
                  -> Table             -- ^ Best new table for this instance
547 e08424a8 Guido Trotter
checkInstanceMove nodes_idx disk_moves inst_moves ini_tbl target =
548 f23f21c3 Iustin Pop
  let opdx = Instance.pNode target
549 f23f21c3 Iustin Pop
      osdx = Instance.sNode target
550 3603605a Iustin Pop
      bad_nodes = [opdx, osdx]
551 3603605a Iustin Pop
      nodes = filter (`notElem` bad_nodes) nodes_idx
552 5f4464db Iustin Pop
      mir_type = templateMirrorType $ Instance.diskTemplate target
553 f23f21c3 Iustin Pop
      use_secondary = elem osdx nodes_idx && inst_moves
554 5f4464db Iustin Pop
      aft_failover = if mir_type == MirrorInternal && use_secondary
555 5f4464db Iustin Pop
                       -- if drbd and allowed to failover
556 40d4eba0 Iustin Pop
                       then checkSingleStep ini_tbl target ini_tbl Failover
557 40d4eba0 Iustin Pop
                       else ini_tbl
558 5f4464db Iustin Pop
      all_moves =
559 5f4464db Iustin Pop
        if disk_moves
560 5f4464db Iustin Pop
          then concatMap (possibleMoves mir_type use_secondary inst_moves)
561 5f4464db Iustin Pop
               nodes
562 5f4464db Iustin Pop
          else []
563 4e25d1c2 Iustin Pop
    in
564 4e25d1c2 Iustin Pop
      -- iterate over the possible nodes for this instance
565 9dc6023f Iustin Pop
      foldl' (checkSingleStep ini_tbl target) aft_failover all_moves
566 4e25d1c2 Iustin Pop
567 e4f08c46 Iustin Pop
-- | Compute the best next move.
568 608efcce Iustin Pop
checkMove :: [Ndx]               -- ^ Allowed target node indices
569 c0501c69 Iustin Pop
          -> Bool                -- ^ Whether disk moves are allowed
570 e08424a8 Guido Trotter
          -> Bool                -- ^ Whether instance moves are allowed
571 256810de Iustin Pop
          -> Table               -- ^ The current solution
572 e4f08c46 Iustin Pop
          -> [Instance.Instance] -- ^ List of instances still to move
573 256810de Iustin Pop
          -> Table               -- ^ The new solution
574 e08424a8 Guido Trotter
checkMove nodes_idx disk_moves inst_moves ini_tbl victims =
575 f23f21c3 Iustin Pop
  let Table _ _ _ ini_plc = ini_tbl
576 f23f21c3 Iustin Pop
      -- we're using rwhnf from the Control.Parallel.Strategies
577 f23f21c3 Iustin Pop
      -- package; we don't need to use rnf as that would force too
578 f23f21c3 Iustin Pop
      -- much evaluation in single-threaded cases, and in
579 f23f21c3 Iustin Pop
      -- multi-threaded case the weak head normal form is enough to
580 f23f21c3 Iustin Pop
      -- spark the evaluation
581 f23f21c3 Iustin Pop
      tables = parMap rwhnf (checkInstanceMove nodes_idx disk_moves
582 f23f21c3 Iustin Pop
                             inst_moves ini_tbl)
583 f23f21c3 Iustin Pop
               victims
584 f23f21c3 Iustin Pop
      -- iterate over all instances, computing the best move
585 f23f21c3 Iustin Pop
      best_tbl = foldl' compareTables ini_tbl tables
586 f23f21c3 Iustin Pop
      Table _ _ _ best_plc = best_tbl
587 f23f21c3 Iustin Pop
  in if length best_plc == length ini_plc
588 a804261a Iustin Pop
       then ini_tbl -- no advancement
589 a804261a Iustin Pop
       else best_tbl
590 e4f08c46 Iustin Pop
591 525bfb36 Iustin Pop
-- | Check if we are allowed to go deeper in the balancing.
592 3fea6959 Iustin Pop
doNextBalance :: Table     -- ^ The starting table
593 3fea6959 Iustin Pop
              -> Int       -- ^ Remaining length
594 3fea6959 Iustin Pop
              -> Score     -- ^ Score at which to stop
595 3fea6959 Iustin Pop
              -> Bool      -- ^ The resulting table and commands
596 5ad86777 Iustin Pop
doNextBalance ini_tbl max_rounds min_score =
597 f23f21c3 Iustin Pop
  let Table _ _ ini_cv ini_plc = ini_tbl
598 f23f21c3 Iustin Pop
      ini_plc_len = length ini_plc
599 f23f21c3 Iustin Pop
  in (max_rounds < 0 || ini_plc_len < max_rounds) && ini_cv > min_score
600 5ad86777 Iustin Pop
601 525bfb36 Iustin Pop
-- | Run a balance move.
602 f25e5aac Iustin Pop
tryBalance :: Table       -- ^ The starting table
603 f25e5aac Iustin Pop
           -> Bool        -- ^ Allow disk moves
604 e08424a8 Guido Trotter
           -> Bool        -- ^ Allow instance moves
605 2e28ac32 Iustin Pop
           -> Bool        -- ^ Only evacuate moves
606 848b65c9 Iustin Pop
           -> Score       -- ^ Min gain threshold
607 848b65c9 Iustin Pop
           -> Score       -- ^ Min gain
608 f25e5aac Iustin Pop
           -> Maybe Table -- ^ The resulting table and commands
609 e08424a8 Guido Trotter
tryBalance ini_tbl disk_moves inst_moves evac_mode mg_limit min_gain =
610 5ad86777 Iustin Pop
    let Table ini_nl ini_il ini_cv _ = ini_tbl
611 5ad86777 Iustin Pop
        all_inst = Container.elems ini_il
612 73d12eab Iustin Pop
        all_nodes = Container.elems ini_nl
613 73d12eab Iustin Pop
        (offline_nodes, online_nodes) = partition Node.offline all_nodes
614 2e28ac32 Iustin Pop
        all_inst' = if evac_mode
615 73d12eab Iustin Pop
                      then let bad_nodes = map Node.idx offline_nodes
616 73d12eab Iustin Pop
                           in filter (any (`elem` bad_nodes) .
617 73d12eab Iustin Pop
                                          Instance.allNodes) all_inst
618 73d12eab Iustin Pop
                      else all_inst
619 c424cdc8 Iustin Pop
        reloc_inst = filter Instance.movable all_inst'
620 73d12eab Iustin Pop
        node_idx = map Node.idx online_nodes
621 e08424a8 Guido Trotter
        fin_tbl = checkMove node_idx disk_moves inst_moves ini_tbl reloc_inst
622 5ad86777 Iustin Pop
        (Table _ _ fin_cv _) = fin_tbl
623 f25e5aac Iustin Pop
    in
624 848b65c9 Iustin Pop
      if fin_cv < ini_cv && (ini_cv > mg_limit || ini_cv - fin_cv >= min_gain)
625 5ad86777 Iustin Pop
      then Just fin_tbl -- this round made success, return the new table
626 f25e5aac Iustin Pop
      else Nothing
627 f25e5aac Iustin Pop
628 478df686 Iustin Pop
-- * Allocation functions
629 478df686 Iustin Pop
630 525bfb36 Iustin Pop
-- | Build failure stats out of a list of failures.
631 478df686 Iustin Pop
collapseFailures :: [FailMode] -> FailStats
632 478df686 Iustin Pop
collapseFailures flst =
633 b4bae394 Iustin Pop
    map (\k -> (k, foldl' (\a e -> if e == k then a + 1 else a) 0 flst))
634 b4bae394 Iustin Pop
            [minBound..maxBound]
635 478df686 Iustin Pop
636 d7339c99 Iustin Pop
-- | Compares two Maybe AllocElement and chooses the besst score.
637 d7339c99 Iustin Pop
bestAllocElement :: Maybe Node.AllocElement
638 d7339c99 Iustin Pop
                 -> Maybe Node.AllocElement
639 d7339c99 Iustin Pop
                 -> Maybe Node.AllocElement
640 d7339c99 Iustin Pop
bestAllocElement a Nothing = a
641 d7339c99 Iustin Pop
bestAllocElement Nothing b = b
642 d7339c99 Iustin Pop
bestAllocElement a@(Just (_, _, _, ascore)) b@(Just (_, _, _, bscore)) =
643 9fc18384 Iustin Pop
  if ascore < bscore then a else b
644 d7339c99 Iustin Pop
645 478df686 Iustin Pop
-- | Update current Allocation solution and failure stats with new
646 525bfb36 Iustin Pop
-- elements.
647 1fe81531 Iustin Pop
concatAllocs :: AllocSolution -> OpResult Node.AllocElement -> AllocSolution
648 85d0ddc3 Iustin Pop
concatAllocs as (OpFail reason) = as { asFailures = reason : asFailures as }
649 478df686 Iustin Pop
650 d7339c99 Iustin Pop
concatAllocs as (OpGood ns) =
651 9fc18384 Iustin Pop
  let -- Choose the old or new solution, based on the cluster score
652 9fc18384 Iustin Pop
    cntok = asAllocs as
653 9fc18384 Iustin Pop
    osols = asSolution as
654 9fc18384 Iustin Pop
    nsols = bestAllocElement osols (Just ns)
655 9fc18384 Iustin Pop
    nsuc = cntok + 1
656 478df686 Iustin Pop
    -- Note: we force evaluation of nsols here in order to keep the
657 478df686 Iustin Pop
    -- memory profile low - we know that we will need nsols for sure
658 478df686 Iustin Pop
    -- in the next cycle, so we force evaluation of nsols, since the
659 478df686 Iustin Pop
    -- foldl' in the caller will only evaluate the tuple, but not the
660 7d11799b Iustin Pop
    -- elements of the tuple
661 9fc18384 Iustin Pop
  in nsols `seq` nsuc `seq` as { asAllocs = nsuc, asSolution = nsols }
662 dbba5246 Iustin Pop
663 f828f4aa Iustin Pop
-- | Sums two 'AllocSolution' structures.
664 f828f4aa Iustin Pop
sumAllocs :: AllocSolution -> AllocSolution -> AllocSolution
665 f828f4aa Iustin Pop
sumAllocs (AllocSolution aFails aAllocs aSols aLog)
666 f828f4aa Iustin Pop
          (AllocSolution bFails bAllocs bSols bLog) =
667 9fc18384 Iustin Pop
  -- note: we add b first, since usually it will be smaller; when
668 9fc18384 Iustin Pop
  -- fold'ing, a will grow and grow whereas b is the per-group
669 9fc18384 Iustin Pop
  -- result, hence smaller
670 9fc18384 Iustin Pop
  let nFails  = bFails ++ aFails
671 9fc18384 Iustin Pop
      nAllocs = aAllocs + bAllocs
672 9fc18384 Iustin Pop
      nSols   = bestAllocElement aSols bSols
673 9fc18384 Iustin Pop
      nLog    = bLog ++ aLog
674 9fc18384 Iustin Pop
  in AllocSolution nFails nAllocs nSols nLog
675 f828f4aa Iustin Pop
676 525bfb36 Iustin Pop
-- | Given a solution, generates a reasonable description for it.
677 859fc11d Iustin Pop
describeSolution :: AllocSolution -> String
678 859fc11d Iustin Pop
describeSolution as =
679 859fc11d Iustin Pop
  let fcnt = asFailures as
680 129734d3 Iustin Pop
      sols = asSolution as
681 859fc11d Iustin Pop
      freasons =
682 859fc11d Iustin Pop
        intercalate ", " . map (\(a, b) -> printf "%s: %d" (show a) b) .
683 859fc11d Iustin Pop
        filter ((> 0) . snd) . collapseFailures $ fcnt
684 129734d3 Iustin Pop
  in case sols of
685 129734d3 Iustin Pop
     Nothing -> "No valid allocation solutions, failure reasons: " ++
686 129734d3 Iustin Pop
                (if null fcnt then "unknown reasons" else freasons)
687 129734d3 Iustin Pop
     Just (_, _, nodes, cv) ->
688 129734d3 Iustin Pop
         printf ("score: %.8f, successes %d, failures %d (%s)" ++
689 129734d3 Iustin Pop
                 " for node(s) %s") cv (asAllocs as) (length fcnt) freasons
690 129734d3 Iustin Pop
               (intercalate "/" . map Node.name $ nodes)
691 859fc11d Iustin Pop
692 525bfb36 Iustin Pop
-- | Annotates a solution with the appropriate string.
693 859fc11d Iustin Pop
annotateSolution :: AllocSolution -> AllocSolution
694 859fc11d Iustin Pop
annotateSolution as = as { asLog = describeSolution as : asLog as }
695 859fc11d Iustin Pop
696 47eed3f4 Iustin Pop
-- | Reverses an evacuation solution.
697 47eed3f4 Iustin Pop
--
698 47eed3f4 Iustin Pop
-- Rationale: we always concat the results to the top of the lists, so
699 47eed3f4 Iustin Pop
-- for proper jobset execution, we should reverse all lists.
700 47eed3f4 Iustin Pop
reverseEvacSolution :: EvacSolution -> EvacSolution
701 47eed3f4 Iustin Pop
reverseEvacSolution (EvacSolution f m o) =
702 9fc18384 Iustin Pop
  EvacSolution (reverse f) (reverse m) (reverse o)
703 47eed3f4 Iustin Pop
704 6cb1649f Iustin Pop
-- | Generate the valid node allocation singles or pairs for a new instance.
705 6d0bc5ca Iustin Pop
genAllocNodes :: Group.List        -- ^ Group list
706 6d0bc5ca Iustin Pop
              -> Node.List         -- ^ The node map
707 6cb1649f Iustin Pop
              -> Int               -- ^ The number of nodes required
708 6d0bc5ca Iustin Pop
              -> Bool              -- ^ Whether to drop or not
709 6d0bc5ca Iustin Pop
                                   -- unallocable nodes
710 6cb1649f Iustin Pop
              -> Result AllocNodes -- ^ The (monadic) result
711 6d0bc5ca Iustin Pop
genAllocNodes gl nl count drop_unalloc =
712 9fc18384 Iustin Pop
  let filter_fn = if drop_unalloc
713 e4491427 Iustin Pop
                    then filter (Group.isAllocable .
714 e4491427 Iustin Pop
                                 flip Container.find gl . Node.group)
715 6d0bc5ca Iustin Pop
                    else id
716 9fc18384 Iustin Pop
      all_nodes = filter_fn $ getOnline nl
717 9fc18384 Iustin Pop
      all_pairs = [(Node.idx p,
718 9fc18384 Iustin Pop
                    [Node.idx s | s <- all_nodes,
719 9fc18384 Iustin Pop
                                       Node.idx p /= Node.idx s,
720 9fc18384 Iustin Pop
                                       Node.group p == Node.group s]) |
721 9fc18384 Iustin Pop
                   p <- all_nodes]
722 9fc18384 Iustin Pop
  in case count of
723 9fc18384 Iustin Pop
       1 -> Ok (Left (map Node.idx all_nodes))
724 9fc18384 Iustin Pop
       2 -> Ok (Right (filter (not . null . snd) all_pairs))
725 9fc18384 Iustin Pop
       _ -> Bad "Unsupported number of nodes, only one or two  supported"
726 6cb1649f Iustin Pop
727 dbba5246 Iustin Pop
-- | Try to allocate an instance on the cluster.
728 dbba5246 Iustin Pop
tryAlloc :: (Monad m) =>
729 dbba5246 Iustin Pop
            Node.List         -- ^ The node list
730 dbba5246 Iustin Pop
         -> Instance.List     -- ^ The instance list
731 dbba5246 Iustin Pop
         -> Instance.Instance -- ^ The instance to allocate
732 6cb1649f Iustin Pop
         -> AllocNodes        -- ^ The allocation targets
733 78694255 Iustin Pop
         -> m AllocSolution   -- ^ Possible solution list
734 1bf6d813 Iustin Pop
tryAlloc _  _ _    (Right []) = fail "Not enough online nodes"
735 6cb1649f Iustin Pop
tryAlloc nl _ inst (Right ok_pairs) =
736 9fc18384 Iustin Pop
  let psols = parMap rwhnf (\(p, ss) ->
737 9fc18384 Iustin Pop
                              foldl' (\cstate ->
738 9fc18384 Iustin Pop
                                        concatAllocs cstate .
739 9fc18384 Iustin Pop
                                        allocateOnPair nl inst p)
740 9fc18384 Iustin Pop
                              emptyAllocSolution ss) ok_pairs
741 9fc18384 Iustin Pop
      sols = foldl' sumAllocs emptyAllocSolution psols
742 9fc18384 Iustin Pop
  in return $ annotateSolution sols
743 dbba5246 Iustin Pop
744 1bf6d813 Iustin Pop
tryAlloc _  _ _    (Left []) = fail "No online nodes"
745 6cb1649f Iustin Pop
tryAlloc nl _ inst (Left all_nodes) =
746 9fc18384 Iustin Pop
  let sols = foldl' (\cstate ->
747 9fc18384 Iustin Pop
                       concatAllocs cstate . allocateOnSingle nl inst
748 9fc18384 Iustin Pop
                    ) emptyAllocSolution all_nodes
749 9fc18384 Iustin Pop
  in return $ annotateSolution sols
750 dbba5246 Iustin Pop
751 525bfb36 Iustin Pop
-- | Given a group/result, describe it as a nice (list of) messages.
752 aec636b9 Iustin Pop
solutionDescription :: Group.List -> (Gdx, Result AllocSolution) -> [String]
753 aec636b9 Iustin Pop
solutionDescription gl (groupId, result) =
754 9b1584fc Iustin Pop
  case result of
755 73206d0a Iustin Pop
    Ok solution -> map (printf "Group %s (%s): %s" gname pol) (asLog solution)
756 aec636b9 Iustin Pop
    Bad message -> [printf "Group %s: error %s" gname message]
757 73206d0a Iustin Pop
  where grp = Container.find groupId gl
758 73206d0a Iustin Pop
        gname = Group.name grp
759 5f828ce4 Agata Murawska
        pol = allocPolicyToRaw (Group.allocPolicy grp)
760 9b1584fc Iustin Pop
761 9b1584fc Iustin Pop
-- | From a list of possibly bad and possibly empty solutions, filter
762 88253d03 Iustin Pop
-- only the groups with a valid result. Note that the result will be
763 525bfb36 Iustin Pop
-- reversed compared to the original list.
764 73206d0a Iustin Pop
filterMGResults :: Group.List
765 73206d0a Iustin Pop
                -> [(Gdx, Result AllocSolution)]
766 73206d0a Iustin Pop
                -> [(Gdx, AllocSolution)]
767 88253d03 Iustin Pop
filterMGResults gl = foldl' fn []
768 9fc18384 Iustin Pop
  where unallocable = not . Group.isAllocable . flip Container.find gl
769 9fc18384 Iustin Pop
        fn accu (gdx, rasol) =
770 9fc18384 Iustin Pop
          case rasol of
771 9fc18384 Iustin Pop
            Bad _ -> accu
772 9fc18384 Iustin Pop
            Ok sol | isNothing (asSolution sol) -> accu
773 9fc18384 Iustin Pop
                   | unallocable gdx -> accu
774 9fc18384 Iustin Pop
                   | otherwise -> (gdx, sol):accu
775 9b1584fc Iustin Pop
776 525bfb36 Iustin Pop
-- | Sort multigroup results based on policy and score.
777 73206d0a Iustin Pop
sortMGResults :: Group.List
778 73206d0a Iustin Pop
             -> [(Gdx, AllocSolution)]
779 73206d0a Iustin Pop
             -> [(Gdx, AllocSolution)]
780 73206d0a Iustin Pop
sortMGResults gl sols =
781 9fc18384 Iustin Pop
  let extractScore (_, _, _, x) = x
782 9fc18384 Iustin Pop
      solScore (gdx, sol) = (Group.allocPolicy (Container.find gdx gl),
783 9fc18384 Iustin Pop
                             (extractScore . fromJust . asSolution) sol)
784 9fc18384 Iustin Pop
  in sortBy (comparing solScore) sols
785 73206d0a Iustin Pop
786 8fd09137 Iustin Pop
-- | Finds the best group for an instance on a multi-group cluster.
787 d72ff6c3 Iustin Pop
--
788 d72ff6c3 Iustin Pop
-- Only solutions in @preferred@ and @last_resort@ groups will be
789 d72ff6c3 Iustin Pop
-- accepted as valid, and additionally if the allowed groups parameter
790 d72ff6c3 Iustin Pop
-- is not null then allocation will only be run for those group
791 d72ff6c3 Iustin Pop
-- indices.
792 8fd09137 Iustin Pop
findBestAllocGroup :: Group.List           -- ^ The group list
793 8fd09137 Iustin Pop
                   -> Node.List            -- ^ The node list
794 8fd09137 Iustin Pop
                   -> Instance.List        -- ^ The instance list
795 d72ff6c3 Iustin Pop
                   -> Maybe [Gdx]          -- ^ The allowed groups
796 8fd09137 Iustin Pop
                   -> Instance.Instance    -- ^ The instance to allocate
797 8fd09137 Iustin Pop
                   -> Int                  -- ^ Required number of nodes
798 8fd09137 Iustin Pop
                   -> Result (Gdx, AllocSolution, [String])
799 d72ff6c3 Iustin Pop
findBestAllocGroup mggl mgnl mgil allowed_gdxs inst cnt =
800 9b1584fc Iustin Pop
  let groups = splitCluster mgnl mgil
801 d72ff6c3 Iustin Pop
      groups' = maybe groups (\gs -> filter ((`elem` gs) . fst) groups)
802 d72ff6c3 Iustin Pop
                allowed_gdxs
803 9b1584fc Iustin Pop
      sols = map (\(gid, (nl, il)) ->
804 6d0bc5ca Iustin Pop
                   (gid, genAllocNodes mggl nl cnt False >>=
805 6d0bc5ca Iustin Pop
                       tryAlloc nl il inst))
806 d72ff6c3 Iustin Pop
             groups'::[(Gdx, Result AllocSolution)]
807 aec636b9 Iustin Pop
      all_msgs = concatMap (solutionDescription mggl) sols
808 73206d0a Iustin Pop
      goodSols = filterMGResults mggl sols
809 73206d0a Iustin Pop
      sortedSols = sortMGResults mggl goodSols
810 9b1584fc Iustin Pop
  in if null sortedSols
811 6a855aaa Iustin Pop
       then if null groups'
812 6a855aaa Iustin Pop
              then Bad $ "no groups for evacuation: allowed groups was" ++
813 6a855aaa Iustin Pop
                     show allowed_gdxs ++ ", all groups: " ++
814 6a855aaa Iustin Pop
                     show (map fst groups)
815 6a855aaa Iustin Pop
              else Bad $ intercalate ", " all_msgs
816 9fc18384 Iustin Pop
       else let (final_group, final_sol) = head sortedSols
817 9fc18384 Iustin Pop
            in return (final_group, final_sol, all_msgs)
818 8fd09137 Iustin Pop
819 8fd09137 Iustin Pop
-- | Try to allocate an instance on a multi-group cluster.
820 8fd09137 Iustin Pop
tryMGAlloc :: Group.List           -- ^ The group list
821 8fd09137 Iustin Pop
           -> Node.List            -- ^ The node list
822 8fd09137 Iustin Pop
           -> Instance.List        -- ^ The instance list
823 8fd09137 Iustin Pop
           -> Instance.Instance    -- ^ The instance to allocate
824 8fd09137 Iustin Pop
           -> Int                  -- ^ Required number of nodes
825 8fd09137 Iustin Pop
           -> Result AllocSolution -- ^ Possible solution list
826 8fd09137 Iustin Pop
tryMGAlloc mggl mgnl mgil inst cnt = do
827 8fd09137 Iustin Pop
  (best_group, solution, all_msgs) <-
828 d72ff6c3 Iustin Pop
      findBestAllocGroup mggl mgnl mgil Nothing inst cnt
829 8fd09137 Iustin Pop
  let group_name = Group.name $ Container.find best_group mggl
830 8fd09137 Iustin Pop
      selmsg = "Selected group: " ++ group_name
831 8fd09137 Iustin Pop
  return $ solution { asLog = selmsg:all_msgs }
832 9b1584fc Iustin Pop
833 47eed3f4 Iustin Pop
-- | Function which fails if the requested mode is change secondary.
834 47eed3f4 Iustin Pop
--
835 47eed3f4 Iustin Pop
-- This is useful since except DRBD, no other disk template can
836 47eed3f4 Iustin Pop
-- execute change secondary; thus, we can just call this function
837 47eed3f4 Iustin Pop
-- instead of always checking for secondary mode. After the call to
838 47eed3f4 Iustin Pop
-- this function, whatever mode we have is just a primary change.
839 47eed3f4 Iustin Pop
failOnSecondaryChange :: (Monad m) => EvacMode -> DiskTemplate -> m ()
840 47eed3f4 Iustin Pop
failOnSecondaryChange ChangeSecondary dt =
841 9fc18384 Iustin Pop
  fail $ "Instances with disk template '" ++ diskTemplateToRaw dt ++
842 47eed3f4 Iustin Pop
         "' can't execute change secondary"
843 47eed3f4 Iustin Pop
failOnSecondaryChange _ _ = return ()
844 47eed3f4 Iustin Pop
845 47eed3f4 Iustin Pop
-- | Run evacuation for a single instance.
846 20b376ff Iustin Pop
--
847 20b376ff Iustin Pop
-- /Note:/ this function should correctly execute both intra-group
848 20b376ff Iustin Pop
-- evacuations (in all modes) and inter-group evacuations (in the
849 20b376ff Iustin Pop
-- 'ChangeAll' mode). Of course, this requires that the correct list
850 20b376ff Iustin Pop
-- of target nodes is passed.
851 47eed3f4 Iustin Pop
nodeEvacInstance :: Node.List         -- ^ The node list (cluster-wide)
852 47eed3f4 Iustin Pop
                 -> Instance.List     -- ^ Instance list (cluster-wide)
853 47eed3f4 Iustin Pop
                 -> EvacMode          -- ^ The evacuation mode
854 47eed3f4 Iustin Pop
                 -> Instance.Instance -- ^ The instance to be evacuated
855 a86fbf36 Iustin Pop
                 -> Gdx               -- ^ The group we're targetting
856 47eed3f4 Iustin Pop
                 -> [Ndx]             -- ^ The list of available nodes
857 47eed3f4 Iustin Pop
                                      -- for allocation
858 47eed3f4 Iustin Pop
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode])
859 47eed3f4 Iustin Pop
nodeEvacInstance _ _ mode (Instance.Instance
860 a86fbf36 Iustin Pop
                           {Instance.diskTemplate = dt@DTDiskless}) _ _ =
861 47eed3f4 Iustin Pop
                  failOnSecondaryChange mode dt >>
862 47eed3f4 Iustin Pop
                  fail "Diskless relocations not implemented yet"
863 47eed3f4 Iustin Pop
864 47eed3f4 Iustin Pop
nodeEvacInstance _ _ _ (Instance.Instance
865 a86fbf36 Iustin Pop
                        {Instance.diskTemplate = DTPlain}) _ _ =
866 47eed3f4 Iustin Pop
                  fail "Instances of type plain cannot be relocated"
867 47eed3f4 Iustin Pop
868 47eed3f4 Iustin Pop
nodeEvacInstance _ _ _ (Instance.Instance
869 a86fbf36 Iustin Pop
                        {Instance.diskTemplate = DTFile}) _ _ =
870 47eed3f4 Iustin Pop
                  fail "Instances of type file cannot be relocated"
871 47eed3f4 Iustin Pop
872 47eed3f4 Iustin Pop
nodeEvacInstance _ _ mode  (Instance.Instance
873 a86fbf36 Iustin Pop
                            {Instance.diskTemplate = dt@DTSharedFile}) _ _ =
874 47eed3f4 Iustin Pop
                  failOnSecondaryChange mode dt >>
875 47eed3f4 Iustin Pop
                  fail "Shared file relocations not implemented yet"
876 47eed3f4 Iustin Pop
877 47eed3f4 Iustin Pop
nodeEvacInstance _ _ mode (Instance.Instance
878 a86fbf36 Iustin Pop
                           {Instance.diskTemplate = dt@DTBlock}) _ _ =
879 47eed3f4 Iustin Pop
                  failOnSecondaryChange mode dt >>
880 47eed3f4 Iustin Pop
                  fail "Block device relocations not implemented yet"
881 47eed3f4 Iustin Pop
882 bdd6931c Guido Trotter
nodeEvacInstance _ _ mode  (Instance.Instance
883 bdd6931c Guido Trotter
                            {Instance.diskTemplate = dt@DTRbd}) _ _ =
884 bdd6931c Guido Trotter
                  failOnSecondaryChange mode dt >>
885 bdd6931c Guido Trotter
                  fail "Rbd relocations not implemented yet"
886 bdd6931c Guido Trotter
887 bef83fd1 Iustin Pop
nodeEvacInstance nl il ChangePrimary
888 a86fbf36 Iustin Pop
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
889 a86fbf36 Iustin Pop
                 _ _ =
890 bef83fd1 Iustin Pop
  do
891 bef83fd1 Iustin Pop
    (nl', inst', _, _) <- opToResult $ applyMove nl inst Failover
892 bef83fd1 Iustin Pop
    let idx = Instance.idx inst
893 bef83fd1 Iustin Pop
        il' = Container.add idx inst' il
894 bef83fd1 Iustin Pop
        ops = iMoveToJob nl' il' idx Failover
895 bef83fd1 Iustin Pop
    return (nl', il', ops)
896 bef83fd1 Iustin Pop
897 db56cfc4 Iustin Pop
nodeEvacInstance nl il ChangeSecondary
898 db56cfc4 Iustin Pop
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
899 a86fbf36 Iustin Pop
                 gdx avail_nodes =
900 db56cfc4 Iustin Pop
  do
901 db56cfc4 Iustin Pop
    (nl', inst', _, ndx) <- annotateResult "Can't find any good node" $
902 db56cfc4 Iustin Pop
                            eitherToResult $
903 db56cfc4 Iustin Pop
                            foldl' (evacDrbdSecondaryInner nl inst gdx)
904 db56cfc4 Iustin Pop
                            (Left "no nodes available") avail_nodes
905 db56cfc4 Iustin Pop
    let idx = Instance.idx inst
906 db56cfc4 Iustin Pop
        il' = Container.add idx inst' il
907 db56cfc4 Iustin Pop
        ops = iMoveToJob nl' il' idx (ReplaceSecondary ndx)
908 db56cfc4 Iustin Pop
    return (nl', il', ops)
909 db56cfc4 Iustin Pop
910 97da6b71 Iustin Pop
-- The algorithm for ChangeAll is as follows:
911 97da6b71 Iustin Pop
--
912 97da6b71 Iustin Pop
-- * generate all (primary, secondary) node pairs for the target groups
913 97da6b71 Iustin Pop
-- * for each pair, execute the needed moves (r:s, f, r:s) and compute
914 97da6b71 Iustin Pop
--   the final node list state and group score
915 97da6b71 Iustin Pop
-- * select the best choice via a foldl that uses the same Either
916 97da6b71 Iustin Pop
--   String solution as the ChangeSecondary mode
917 d52d41de Iustin Pop
nodeEvacInstance nl il ChangeAll
918 d52d41de Iustin Pop
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
919 a86fbf36 Iustin Pop
                 gdx avail_nodes =
920 d52d41de Iustin Pop
  do
921 97da6b71 Iustin Pop
    let no_nodes = Left "no nodes available"
922 97da6b71 Iustin Pop
        node_pairs = [(p,s) | p <- avail_nodes, s <- avail_nodes, p /= s]
923 97da6b71 Iustin Pop
    (nl', il', ops, _) <-
924 97da6b71 Iustin Pop
        annotateResult "Can't find any good nodes for relocation" $
925 d52d41de Iustin Pop
        eitherToResult $
926 97da6b71 Iustin Pop
        foldl'
927 97da6b71 Iustin Pop
        (\accu nodes -> case evacDrbdAllInner nl il inst gdx nodes of
928 97da6b71 Iustin Pop
                          Bad msg ->
929 97da6b71 Iustin Pop
                              case accu of
930 97da6b71 Iustin Pop
                                Right _ -> accu
931 97da6b71 Iustin Pop
                                -- we don't need more details (which
932 97da6b71 Iustin Pop
                                -- nodes, etc.) as we only selected
933 97da6b71 Iustin Pop
                                -- this group if we can allocate on
934 97da6b71 Iustin Pop
                                -- it, hence failures will not
935 97da6b71 Iustin Pop
                                -- propagate out of this fold loop
936 97da6b71 Iustin Pop
                                Left _ -> Left $ "Allocation failed: " ++ msg
937 97da6b71 Iustin Pop
                          Ok result@(_, _, _, new_cv) ->
938 97da6b71 Iustin Pop
                              let new_accu = Right result in
939 97da6b71 Iustin Pop
                              case accu of
940 97da6b71 Iustin Pop
                                Left _ -> new_accu
941 97da6b71 Iustin Pop
                                Right (_, _, _, old_cv) ->
942 97da6b71 Iustin Pop
                                    if old_cv < new_cv
943 97da6b71 Iustin Pop
                                    then accu
944 97da6b71 Iustin Pop
                                    else new_accu
945 97da6b71 Iustin Pop
        ) no_nodes node_pairs
946 97da6b71 Iustin Pop
947 97da6b71 Iustin Pop
    return (nl', il', ops)
948 47eed3f4 Iustin Pop
949 db56cfc4 Iustin Pop
-- | Inner fold function for changing secondary of a DRBD instance.
950 db56cfc4 Iustin Pop
--
951 97da6b71 Iustin Pop
-- The running solution is either a @Left String@, which means we
952 db56cfc4 Iustin Pop
-- don't have yet a working solution, or a @Right (...)@, which
953 db56cfc4 Iustin Pop
-- represents a valid solution; it holds the modified node list, the
954 db56cfc4 Iustin Pop
-- modified instance (after evacuation), the score of that solution,
955 db56cfc4 Iustin Pop
-- and the new secondary node index.
956 db56cfc4 Iustin Pop
evacDrbdSecondaryInner :: Node.List -- ^ Cluster node list
957 db56cfc4 Iustin Pop
                       -> Instance.Instance -- ^ Instance being evacuated
958 db56cfc4 Iustin Pop
                       -> Gdx -- ^ The group index of the instance
959 bebe7a73 Iustin Pop
                       -> EvacInnerState  -- ^ Current best solution
960 db56cfc4 Iustin Pop
                       -> Ndx  -- ^ Node we're evaluating as new secondary
961 bebe7a73 Iustin Pop
                       -> EvacInnerState -- ^ New best solution
962 db56cfc4 Iustin Pop
evacDrbdSecondaryInner nl inst gdx accu ndx =
963 9fc18384 Iustin Pop
  case applyMove nl inst (ReplaceSecondary ndx) of
964 9fc18384 Iustin Pop
    OpFail fm ->
965 9fc18384 Iustin Pop
      case accu of
966 9fc18384 Iustin Pop
        Right _ -> accu
967 9fc18384 Iustin Pop
        Left _ -> Left $ "Node " ++ Container.nameOf nl ndx ++
968 9fc18384 Iustin Pop
                  " failed: " ++ show fm
969 9fc18384 Iustin Pop
    OpGood (nl', inst', _, _) ->
970 9fc18384 Iustin Pop
      let nodes = Container.elems nl'
971 9fc18384 Iustin Pop
          -- The fromJust below is ugly (it can fail nastily), but
972 9fc18384 Iustin Pop
          -- at this point we should have any internal mismatches,
973 9fc18384 Iustin Pop
          -- and adding a monad here would be quite involved
974 9fc18384 Iustin Pop
          grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
975 9fc18384 Iustin Pop
          new_cv = compCVNodes grpnodes
976 9fc18384 Iustin Pop
          new_accu = Right (nl', inst', new_cv, ndx)
977 9fc18384 Iustin Pop
      in case accu of
978 9fc18384 Iustin Pop
           Left _ -> new_accu
979 9fc18384 Iustin Pop
           Right (_, _, old_cv, _) ->
980 9fc18384 Iustin Pop
             if old_cv < new_cv
981 9fc18384 Iustin Pop
               then accu
982 9fc18384 Iustin Pop
               else new_accu
983 db56cfc4 Iustin Pop
984 97da6b71 Iustin Pop
-- | Compute result of changing all nodes of a DRBD instance.
985 97da6b71 Iustin Pop
--
986 97da6b71 Iustin Pop
-- Given the target primary and secondary node (which might be in a
987 97da6b71 Iustin Pop
-- different group or not), this function will 'execute' all the
988 97da6b71 Iustin Pop
-- required steps and assuming all operations succceed, will return
989 97da6b71 Iustin Pop
-- the modified node and instance lists, the opcodes needed for this
990 97da6b71 Iustin Pop
-- and the new group score.
991 97da6b71 Iustin Pop
evacDrbdAllInner :: Node.List         -- ^ Cluster node list
992 97da6b71 Iustin Pop
                 -> Instance.List     -- ^ Cluster instance list
993 97da6b71 Iustin Pop
                 -> Instance.Instance -- ^ The instance to be moved
994 97da6b71 Iustin Pop
                 -> Gdx               -- ^ The target group index
995 97da6b71 Iustin Pop
                                      -- (which can differ from the
996 97da6b71 Iustin Pop
                                      -- current group of the
997 97da6b71 Iustin Pop
                                      -- instance)
998 97da6b71 Iustin Pop
                 -> (Ndx, Ndx)        -- ^ Tuple of new
999 97da6b71 Iustin Pop
                                      -- primary\/secondary nodes
1000 97da6b71 Iustin Pop
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode], Score)
1001 9fc18384 Iustin Pop
evacDrbdAllInner nl il inst gdx (t_pdx, t_sdx) = do
1002 9fc18384 Iustin Pop
  let primary = Container.find (Instance.pNode inst) nl
1003 9fc18384 Iustin Pop
      idx = Instance.idx inst
1004 9fc18384 Iustin Pop
  -- if the primary is offline, then we first failover
1005 9fc18384 Iustin Pop
  (nl1, inst1, ops1) <-
1006 9fc18384 Iustin Pop
    if Node.offline primary
1007 9fc18384 Iustin Pop
      then do
1008 9fc18384 Iustin Pop
        (nl', inst', _, _) <-
1009 9fc18384 Iustin Pop
          annotateResult "Failing over to the secondary" $
1010 9fc18384 Iustin Pop
          opToResult $ applyMove nl inst Failover
1011 9fc18384 Iustin Pop
        return (nl', inst', [Failover])
1012 9fc18384 Iustin Pop
      else return (nl, inst, [])
1013 9fc18384 Iustin Pop
  let (o1, o2, o3) = (ReplaceSecondary t_pdx,
1014 9fc18384 Iustin Pop
                      Failover,
1015 9fc18384 Iustin Pop
                      ReplaceSecondary t_sdx)
1016 9fc18384 Iustin Pop
  -- we now need to execute a replace secondary to the future
1017 9fc18384 Iustin Pop
  -- primary node
1018 9fc18384 Iustin Pop
  (nl2, inst2, _, _) <-
1019 9fc18384 Iustin Pop
    annotateResult "Changing secondary to new primary" $
1020 9fc18384 Iustin Pop
    opToResult $
1021 9fc18384 Iustin Pop
    applyMove nl1 inst1 o1
1022 9fc18384 Iustin Pop
  let ops2 = o1:ops1
1023 9fc18384 Iustin Pop
  -- we now execute another failover, the primary stays fixed now
1024 9fc18384 Iustin Pop
  (nl3, inst3, _, _) <- annotateResult "Failing over to new primary" $
1025 9fc18384 Iustin Pop
                        opToResult $ applyMove nl2 inst2 o2
1026 9fc18384 Iustin Pop
  let ops3 = o2:ops2
1027 9fc18384 Iustin Pop
  -- and finally another replace secondary, to the final secondary
1028 9fc18384 Iustin Pop
  (nl4, inst4, _, _) <-
1029 9fc18384 Iustin Pop
    annotateResult "Changing secondary to final secondary" $
1030 9fc18384 Iustin Pop
    opToResult $
1031 9fc18384 Iustin Pop
    applyMove nl3 inst3 o3
1032 9fc18384 Iustin Pop
  let ops4 = o3:ops3
1033 9fc18384 Iustin Pop
      il' = Container.add idx inst4 il
1034 9fc18384 Iustin Pop
      ops = concatMap (iMoveToJob nl4 il' idx) $ reverse ops4
1035 9fc18384 Iustin Pop
  let nodes = Container.elems nl4
1036 9fc18384 Iustin Pop
      -- The fromJust below is ugly (it can fail nastily), but
1037 9fc18384 Iustin Pop
      -- at this point we should have any internal mismatches,
1038 9fc18384 Iustin Pop
      -- and adding a monad here would be quite involved
1039 9fc18384 Iustin Pop
      grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
1040 9fc18384 Iustin Pop
      new_cv = compCVNodes grpnodes
1041 9fc18384 Iustin Pop
  return (nl4, il', ops, new_cv)
1042 97da6b71 Iustin Pop
1043 c9a9b853 Iustin Pop
-- | Computes the nodes in a given group which are available for
1044 c9a9b853 Iustin Pop
-- allocation.
1045 c9a9b853 Iustin Pop
availableGroupNodes :: [(Gdx, [Ndx])] -- ^ Group index/node index assoc list
1046 c9a9b853 Iustin Pop
                    -> IntSet.IntSet  -- ^ Nodes that are excluded
1047 c9a9b853 Iustin Pop
                    -> Gdx            -- ^ The group for which we
1048 c9a9b853 Iustin Pop
                                      -- query the nodes
1049 c9a9b853 Iustin Pop
                    -> Result [Ndx]   -- ^ List of available node indices
1050 c9a9b853 Iustin Pop
availableGroupNodes group_nodes excl_ndx gdx = do
1051 47eed3f4 Iustin Pop
  local_nodes <- maybe (Bad $ "Can't find group with index " ++ show gdx)
1052 47eed3f4 Iustin Pop
                 Ok (lookup gdx group_nodes)
1053 47eed3f4 Iustin Pop
  let avail_nodes = filter (not . flip IntSet.member excl_ndx) local_nodes
1054 47eed3f4 Iustin Pop
  return avail_nodes
1055 47eed3f4 Iustin Pop
1056 47eed3f4 Iustin Pop
-- | Updates the evac solution with the results of an instance
1057 47eed3f4 Iustin Pop
-- evacuation.
1058 47eed3f4 Iustin Pop
updateEvacSolution :: (Node.List, Instance.List, EvacSolution)
1059 5440c877 Iustin Pop
                   -> Idx
1060 47eed3f4 Iustin Pop
                   -> Result (Node.List, Instance.List, [OpCodes.OpCode])
1061 47eed3f4 Iustin Pop
                   -> (Node.List, Instance.List, EvacSolution)
1062 5440c877 Iustin Pop
updateEvacSolution (nl, il, es) idx (Bad msg) =
1063 9fc18384 Iustin Pop
  (nl, il, es { esFailed = (idx, msg):esFailed es})
1064 5440c877 Iustin Pop
updateEvacSolution (_, _, es) idx (Ok (nl, il, opcodes)) =
1065 9fc18384 Iustin Pop
  (nl, il, es { esMoved = new_elem:esMoved es
1066 9fc18384 Iustin Pop
              , esOpCodes = opcodes:esOpCodes es })
1067 9fc18384 Iustin Pop
    where inst = Container.find idx il
1068 9fc18384 Iustin Pop
          new_elem = (idx,
1069 9fc18384 Iustin Pop
                      instancePriGroup nl inst,
1070 9fc18384 Iustin Pop
                      Instance.allNodes inst)
1071 47eed3f4 Iustin Pop
1072 47eed3f4 Iustin Pop
-- | Node-evacuation IAllocator mode main function.
1073 47eed3f4 Iustin Pop
tryNodeEvac :: Group.List    -- ^ The cluster groups
1074 47eed3f4 Iustin Pop
            -> Node.List     -- ^ The node list (cluster-wide, not per group)
1075 47eed3f4 Iustin Pop
            -> Instance.List -- ^ Instance list (cluster-wide)
1076 47eed3f4 Iustin Pop
            -> EvacMode      -- ^ The evacuation mode
1077 47eed3f4 Iustin Pop
            -> [Idx]         -- ^ List of instance (indices) to be evacuated
1078 4036f63a Iustin Pop
            -> Result (Node.List, Instance.List, EvacSolution)
1079 47eed3f4 Iustin Pop
tryNodeEvac _ ini_nl ini_il mode idxs =
1080 9fc18384 Iustin Pop
  let evac_ndx = nodesToEvacuate ini_il mode idxs
1081 9fc18384 Iustin Pop
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1082 9fc18384 Iustin Pop
      excl_ndx = foldl' (flip IntSet.insert) evac_ndx offline
1083 9fc18384 Iustin Pop
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1084 9fc18384 Iustin Pop
                                           (Container.elems nl))) $
1085 9fc18384 Iustin Pop
                  splitCluster ini_nl ini_il
1086 9fc18384 Iustin Pop
      (fin_nl, fin_il, esol) =
1087 9fc18384 Iustin Pop
        foldl' (\state@(nl, il, _) inst ->
1088 9fc18384 Iustin Pop
                  let gdx = instancePriGroup nl inst
1089 9fc18384 Iustin Pop
                      pdx = Instance.pNode inst in
1090 9fc18384 Iustin Pop
                  updateEvacSolution state (Instance.idx inst) $
1091 9fc18384 Iustin Pop
                  availableGroupNodes group_ndx
1092 9fc18384 Iustin Pop
                    (IntSet.insert pdx excl_ndx) gdx >>=
1093 9fc18384 Iustin Pop
                      nodeEvacInstance nl il mode inst gdx
1094 9fc18384 Iustin Pop
               )
1095 9fc18384 Iustin Pop
        (ini_nl, ini_il, emptyEvacSolution)
1096 9fc18384 Iustin Pop
        (map (`Container.find` ini_il) idxs)
1097 9fc18384 Iustin Pop
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1098 47eed3f4 Iustin Pop
1099 20b376ff Iustin Pop
-- | Change-group IAllocator mode main function.
1100 20b376ff Iustin Pop
--
1101 20b376ff Iustin Pop
-- This is very similar to 'tryNodeEvac', the only difference is that
1102 20b376ff Iustin Pop
-- we don't choose as target group the current instance group, but
1103 20b376ff Iustin Pop
-- instead:
1104 20b376ff Iustin Pop
--
1105 20b376ff Iustin Pop
--   1. at the start of the function, we compute which are the target
1106 20b376ff Iustin Pop
--   groups; either no groups were passed in, in which case we choose
1107 20b376ff Iustin Pop
--   all groups out of which we don't evacuate instance, or there were
1108 20b376ff Iustin Pop
--   some groups passed, in which case we use those
1109 20b376ff Iustin Pop
--
1110 20b376ff Iustin Pop
--   2. for each instance, we use 'findBestAllocGroup' to choose the
1111 20b376ff Iustin Pop
--   best group to hold the instance, and then we do what
1112 20b376ff Iustin Pop
--   'tryNodeEvac' does, except for this group instead of the current
1113 20b376ff Iustin Pop
--   instance group.
1114 20b376ff Iustin Pop
--
1115 20b376ff Iustin Pop
-- Note that the correct behaviour of this function relies on the
1116 20b376ff Iustin Pop
-- function 'nodeEvacInstance' to be able to do correctly both
1117 20b376ff Iustin Pop
-- intra-group and inter-group moves when passed the 'ChangeAll' mode.
1118 20b376ff Iustin Pop
tryChangeGroup :: Group.List    -- ^ The cluster groups
1119 20b376ff Iustin Pop
               -> Node.List     -- ^ The node list (cluster-wide)
1120 20b376ff Iustin Pop
               -> Instance.List -- ^ Instance list (cluster-wide)
1121 20b376ff Iustin Pop
               -> [Gdx]         -- ^ Target groups; if empty, any
1122 20b376ff Iustin Pop
                                -- groups not being evacuated
1123 20b376ff Iustin Pop
               -> [Idx]         -- ^ List of instance (indices) to be evacuated
1124 4036f63a Iustin Pop
               -> Result (Node.List, Instance.List, EvacSolution)
1125 20b376ff Iustin Pop
tryChangeGroup gl ini_nl ini_il gdxs idxs =
1126 9fc18384 Iustin Pop
  let evac_gdxs = nub $ map (instancePriGroup ini_nl .
1127 9fc18384 Iustin Pop
                             flip Container.find ini_il) idxs
1128 9fc18384 Iustin Pop
      target_gdxs = (if null gdxs
1129 20b376ff Iustin Pop
                       then Container.keys gl
1130 20b376ff Iustin Pop
                       else gdxs) \\ evac_gdxs
1131 9fc18384 Iustin Pop
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1132 9fc18384 Iustin Pop
      excl_ndx = foldl' (flip IntSet.insert) IntSet.empty offline
1133 9fc18384 Iustin Pop
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1134 9fc18384 Iustin Pop
                                           (Container.elems nl))) $
1135 9fc18384 Iustin Pop
                  splitCluster ini_nl ini_il
1136 9fc18384 Iustin Pop
      (fin_nl, fin_il, esol) =
1137 9fc18384 Iustin Pop
        foldl' (\state@(nl, il, _) inst ->
1138 9fc18384 Iustin Pop
                  let solution = do
1139 9fc18384 Iustin Pop
                        let ncnt = Instance.requiredNodes $
1140 9fc18384 Iustin Pop
                                   Instance.diskTemplate inst
1141 9fc18384 Iustin Pop
                        (gdx, _, _) <- findBestAllocGroup gl nl il
1142 9fc18384 Iustin Pop
                                       (Just target_gdxs) inst ncnt
1143 9fc18384 Iustin Pop
                        av_nodes <- availableGroupNodes group_ndx
1144 9fc18384 Iustin Pop
                                    excl_ndx gdx
1145 9fc18384 Iustin Pop
                        nodeEvacInstance nl il ChangeAll inst gdx av_nodes
1146 9fc18384 Iustin Pop
                  in updateEvacSolution state (Instance.idx inst) solution
1147 9fc18384 Iustin Pop
               )
1148 9fc18384 Iustin Pop
        (ini_nl, ini_il, emptyEvacSolution)
1149 9fc18384 Iustin Pop
        (map (`Container.find` ini_il) idxs)
1150 9fc18384 Iustin Pop
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1151 20b376ff Iustin Pop
1152 7eda951b Iustin Pop
-- | Standard-sized allocation method.
1153 7eda951b Iustin Pop
--
1154 7eda951b Iustin Pop
-- This places instances of the same size on the cluster until we're
1155 7eda951b Iustin Pop
-- out of space. The result will be a list of identically-sized
1156 7eda951b Iustin Pop
-- instances.
1157 7eda951b Iustin Pop
iterateAlloc :: AllocMethod
1158 8f48f67d Iustin Pop
iterateAlloc nl il limit newinst allocnodes ixes cstats =
1159 9fc18384 Iustin Pop
  let depth = length ixes
1160 9fc18384 Iustin Pop
      newname = printf "new-%d" depth::String
1161 dce9bbb3 Iustin Pop
      newidx = Container.size il
1162 9fc18384 Iustin Pop
      newi2 = Instance.setIdx (Instance.setName newinst newname) newidx
1163 9fc18384 Iustin Pop
      newlimit = fmap (flip (-) 1) limit
1164 9fc18384 Iustin Pop
  in case tryAlloc nl il newi2 allocnodes of
1165 9fc18384 Iustin Pop
       Bad s -> Bad s
1166 9fc18384 Iustin Pop
       Ok (AllocSolution { asFailures = errs, asSolution = sols3 }) ->
1167 9fc18384 Iustin Pop
         let newsol = Ok (collapseFailures errs, nl, il, ixes, cstats) in
1168 9fc18384 Iustin Pop
         case sols3 of
1169 9fc18384 Iustin Pop
           Nothing -> newsol
1170 9fc18384 Iustin Pop
           Just (xnl, xi, _, _) ->
1171 9fc18384 Iustin Pop
             if limit == Just 0
1172 9fc18384 Iustin Pop
               then newsol
1173 9fc18384 Iustin Pop
               else iterateAlloc xnl (Container.add newidx xi il)
1174 9fc18384 Iustin Pop
                      newlimit newinst allocnodes (xi:ixes)
1175 9fc18384 Iustin Pop
                      (totalResources xnl:cstats)
1176 3ce8009a Iustin Pop
1177 7eda951b Iustin Pop
-- | Tiered allocation method.
1178 7eda951b Iustin Pop
--
1179 7eda951b Iustin Pop
-- This places instances on the cluster, and decreases the spec until
1180 7eda951b Iustin Pop
-- we can allocate again. The result will be a list of decreasing
1181 7eda951b Iustin Pop
-- instance specs.
1182 7eda951b Iustin Pop
tieredAlloc :: AllocMethod
1183 8f48f67d Iustin Pop
tieredAlloc nl il limit newinst allocnodes ixes cstats =
1184 9fc18384 Iustin Pop
  case iterateAlloc nl il limit newinst allocnodes ixes cstats of
1185 9fc18384 Iustin Pop
    Bad s -> Bad s
1186 9fc18384 Iustin Pop
    Ok (errs, nl', il', ixes', cstats') ->
1187 9fc18384 Iustin Pop
      let newsol = Ok (errs, nl', il', ixes', cstats')
1188 9fc18384 Iustin Pop
          ixes_cnt = length ixes'
1189 9fc18384 Iustin Pop
          (stop, newlimit) = case limit of
1190 9fc18384 Iustin Pop
                               Nothing -> (False, Nothing)
1191 9fc18384 Iustin Pop
                               Just n -> (n <= ixes_cnt,
1192 9fc18384 Iustin Pop
                                            Just (n - ixes_cnt)) in
1193 9fc18384 Iustin Pop
      if stop then newsol else
1194 3ce8009a Iustin Pop
          case Instance.shrinkByType newinst . fst . last $
1195 3ce8009a Iustin Pop
               sortBy (comparing snd) errs of
1196 8f48f67d Iustin Pop
            Bad _ -> newsol
1197 8f48f67d Iustin Pop
            Ok newinst' -> tieredAlloc nl' il' newlimit
1198 8f48f67d Iustin Pop
                           newinst' allocnodes ixes' cstats'
1199 3ce8009a Iustin Pop
1200 9188aeef Iustin Pop
-- * Formatting functions
1201 e4f08c46 Iustin Pop
1202 e4f08c46 Iustin Pop
-- | Given the original and final nodes, computes the relocation description.
1203 c9926b22 Iustin Pop
computeMoves :: Instance.Instance -- ^ The instance to be moved
1204 c9926b22 Iustin Pop
             -> String -- ^ The instance name
1205 668c03b3 Iustin Pop
             -> IMove  -- ^ The move being performed
1206 e4f08c46 Iustin Pop
             -> String -- ^ New primary
1207 e4f08c46 Iustin Pop
             -> String -- ^ New secondary
1208 e4f08c46 Iustin Pop
             -> (String, [String])
1209 e4f08c46 Iustin Pop
                -- ^ Tuple of moves and commands list; moves is containing
1210 e4f08c46 Iustin Pop
                -- either @/f/@ for failover or @/r:name/@ for replace
1211 e4f08c46 Iustin Pop
                -- secondary, while the command list holds gnt-instance
1212 e4f08c46 Iustin Pop
                -- commands (without that prefix), e.g \"@failover instance1@\"
1213 668c03b3 Iustin Pop
computeMoves i inam mv c d =
1214 9fc18384 Iustin Pop
  case mv of
1215 9fc18384 Iustin Pop
    Failover -> ("f", [mig])
1216 9fc18384 Iustin Pop
    FailoverAndReplace _ -> (printf "f r:%s" d, [mig, rep d])
1217 9fc18384 Iustin Pop
    ReplaceSecondary _ -> (printf "r:%s" d, [rep d])
1218 9fc18384 Iustin Pop
    ReplaceAndFailover _ -> (printf "r:%s f" c, [rep c, mig])
1219 9fc18384 Iustin Pop
    ReplacePrimary _ -> (printf "f r:%s f" c, [mig, rep c, mig])
1220 7959cbb9 Iustin Pop
  where morf = if Instance.isRunning i then "migrate" else "failover"
1221 9fc18384 Iustin Pop
        mig = printf "%s -f %s" morf inam::String
1222 9fc18384 Iustin Pop
        rep n = printf "replace-disks -n %s %s" n inam
1223 e4f08c46 Iustin Pop
1224 9188aeef Iustin Pop
-- | Converts a placement to string format.
1225 9188aeef Iustin Pop
printSolutionLine :: Node.List     -- ^ The node list
1226 9188aeef Iustin Pop
                  -> Instance.List -- ^ The instance list
1227 9188aeef Iustin Pop
                  -> Int           -- ^ Maximum node name length
1228 9188aeef Iustin Pop
                  -> Int           -- ^ Maximum instance name length
1229 9188aeef Iustin Pop
                  -> Placement     -- ^ The current placement
1230 9188aeef Iustin Pop
                  -> Int           -- ^ The index of the placement in
1231 9188aeef Iustin Pop
                                   -- the solution
1232 db1bcfe8 Iustin Pop
                  -> (String, [String])
1233 db1bcfe8 Iustin Pop
printSolutionLine nl il nmlen imlen plc pos =
1234 9fc18384 Iustin Pop
  let pmlen = (2*nmlen + 1)
1235 9fc18384 Iustin Pop
      (i, p, s, mv, c) = plc
1236 e85444d0 Iustin Pop
      old_sec = Instance.sNode inst
1237 9fc18384 Iustin Pop
      inst = Container.find i il
1238 9fc18384 Iustin Pop
      inam = Instance.alias inst
1239 9fc18384 Iustin Pop
      npri = Node.alias $ Container.find p nl
1240 9fc18384 Iustin Pop
      nsec = Node.alias $ Container.find s nl
1241 9fc18384 Iustin Pop
      opri = Node.alias $ Container.find (Instance.pNode inst) nl
1242 e85444d0 Iustin Pop
      osec = Node.alias $ Container.find old_sec nl
1243 9fc18384 Iustin Pop
      (moves, cmds) =  computeMoves inst inam mv npri nsec
1244 e85444d0 Iustin Pop
      -- FIXME: this should check instead/also the disk template
1245 e85444d0 Iustin Pop
      ostr = if old_sec == Node.noSecondary
1246 e85444d0 Iustin Pop
               then printf "%s" opri
1247 e85444d0 Iustin Pop
               else printf "%s:%s" opri osec
1248 e85444d0 Iustin Pop
      nstr = if s == Node.noSecondary
1249 e85444d0 Iustin Pop
               then printf "%s" npri
1250 e85444d0 Iustin Pop
               else printf "%s:%s" npri nsec
1251 255d140d Iustin Pop
  in (printf "  %3d. %-*s %-*s => %-*s %12.8f a=%s"
1252 e85444d0 Iustin Pop
      pos imlen inam pmlen (ostr::String)
1253 e85444d0 Iustin Pop
      pmlen (nstr::String) c moves,
1254 9fc18384 Iustin Pop
      cmds)
1255 ca8258d9 Iustin Pop
1256 0e8ae201 Iustin Pop
-- | Return the instance and involved nodes in an instance move.
1257 77ecfa82 Iustin Pop
--
1258 77ecfa82 Iustin Pop
-- Note that the output list length can vary, and is not required nor
1259 77ecfa82 Iustin Pop
-- guaranteed to be of any specific length.
1260 77ecfa82 Iustin Pop
involvedNodes :: Instance.List -- ^ Instance list, used for retrieving
1261 77ecfa82 Iustin Pop
                               -- the instance from its index; note
1262 77ecfa82 Iustin Pop
                               -- that this /must/ be the original
1263 77ecfa82 Iustin Pop
                               -- instance list, so that we can
1264 77ecfa82 Iustin Pop
                               -- retrieve the old nodes
1265 77ecfa82 Iustin Pop
              -> Placement     -- ^ The placement we're investigating,
1266 77ecfa82 Iustin Pop
                               -- containing the new nodes and
1267 77ecfa82 Iustin Pop
                               -- instance index
1268 77ecfa82 Iustin Pop
              -> [Ndx]         -- ^ Resulting list of node indices
1269 0e8ae201 Iustin Pop
involvedNodes il plc =
1270 9fc18384 Iustin Pop
  let (i, np, ns, _, _) = plc
1271 9fc18384 Iustin Pop
      inst = Container.find i il
1272 9fc18384 Iustin Pop
  in nub $ [np, ns] ++ Instance.allNodes inst
1273 0e8ae201 Iustin Pop
1274 0e8ae201 Iustin Pop
-- | Inner function for splitJobs, that either appends the next job to
1275 0e8ae201 Iustin Pop
-- the current jobset, or starts a new jobset.
1276 0e8ae201 Iustin Pop
mergeJobs :: ([JobSet], [Ndx]) -> MoveJob -> ([JobSet], [Ndx])
1277 924f9c16 Iustin Pop
mergeJobs ([], _) n@(ndx, _, _, _) = ([[n]], ndx)
1278 924f9c16 Iustin Pop
mergeJobs (cjs@(j:js), nbuf) n@(ndx, _, _, _)
1279 9fc18384 Iustin Pop
  | null (ndx `intersect` nbuf) = ((n:j):js, ndx ++ nbuf)
1280 9fc18384 Iustin Pop
  | otherwise = ([n]:cjs, ndx)
1281 0e8ae201 Iustin Pop
1282 0e8ae201 Iustin Pop
-- | Break a list of moves into independent groups. Note that this
1283 0e8ae201 Iustin Pop
-- will reverse the order of jobs.
1284 0e8ae201 Iustin Pop
splitJobs :: [MoveJob] -> [JobSet]
1285 0e8ae201 Iustin Pop
splitJobs = fst . foldl mergeJobs ([], [])
1286 0e8ae201 Iustin Pop
1287 0e8ae201 Iustin Pop
-- | Given a list of commands, prefix them with @gnt-instance@ and
1288 0e8ae201 Iustin Pop
-- also beautify the display a little.
1289 0e8ae201 Iustin Pop
formatJob :: Int -> Int -> (Int, MoveJob) -> [String]
1290 924f9c16 Iustin Pop
formatJob jsn jsl (sn, (_, _, _, cmds)) =
1291 9fc18384 Iustin Pop
  let out =
1292 9fc18384 Iustin Pop
        printf "  echo job %d/%d" jsn sn:
1293 9fc18384 Iustin Pop
        printf "  check":
1294 9fc18384 Iustin Pop
        map ("  gnt-instance " ++) cmds
1295 9fc18384 Iustin Pop
  in if sn == 1
1296 0e8ae201 Iustin Pop
       then ["", printf "echo jobset %d, %d jobs" jsn jsl] ++ out
1297 0e8ae201 Iustin Pop
       else out
1298 0e8ae201 Iustin Pop
1299 9188aeef Iustin Pop
-- | Given a list of commands, prefix them with @gnt-instance@ and
1300 9188aeef Iustin Pop
-- also beautify the display a little.
1301 0e8ae201 Iustin Pop
formatCmds :: [JobSet] -> String
1302 9f6dcdea Iustin Pop
formatCmds =
1303 9fc18384 Iustin Pop
  unlines .
1304 9fc18384 Iustin Pop
  concatMap (\(jsn, js) -> concatMap (formatJob jsn (length js))
1305 9fc18384 Iustin Pop
                           (zip [1..] js)) .
1306 9fc18384 Iustin Pop
  zip [1..]
1307 142538ff Iustin Pop
1308 e4f08c46 Iustin Pop
-- | Print the node list.
1309 e98fb766 Iustin Pop
printNodes :: Node.List -> [String] -> String
1310 e98fb766 Iustin Pop
printNodes nl fs =
1311 9fc18384 Iustin Pop
  let fields = case fs of
1312 9fc18384 Iustin Pop
                 [] -> Node.defaultFields
1313 9fc18384 Iustin Pop
                 "+":rest -> Node.defaultFields ++ rest
1314 9fc18384 Iustin Pop
                 _ -> fs
1315 9fc18384 Iustin Pop
      snl = sortBy (comparing Node.idx) (Container.elems nl)
1316 9fc18384 Iustin Pop
      (header, isnum) = unzip $ map Node.showHeader fields
1317 c3024b7e René Nussbaumer
  in printTable "" header (map (Node.list fields) snl) isnum
1318 e4f08c46 Iustin Pop
1319 507fda3f Iustin Pop
-- | Print the instance list.
1320 507fda3f Iustin Pop
printInsts :: Node.List -> Instance.List -> String
1321 507fda3f Iustin Pop
printInsts nl il =
1322 9fc18384 Iustin Pop
  let sil = sortBy (comparing Instance.idx) (Container.elems il)
1323 7959cbb9 Iustin Pop
      helper inst = [ if Instance.isRunning inst then "R" else " "
1324 9fc18384 Iustin Pop
                    , Instance.name inst
1325 9fc18384 Iustin Pop
                    , Container.nameOf nl (Instance.pNode inst)
1326 9fc18384 Iustin Pop
                    , let sdx = Instance.sNode inst
1327 9fc18384 Iustin Pop
                      in if sdx == Node.noSecondary
1328 5182e970 Iustin Pop
                           then  ""
1329 5182e970 Iustin Pop
                           else Container.nameOf nl sdx
1330 9fc18384 Iustin Pop
                    , if Instance.autoBalance inst then "Y" else "N"
1331 9fc18384 Iustin Pop
                    , printf "%3d" $ Instance.vcpus inst
1332 9fc18384 Iustin Pop
                    , printf "%5d" $ Instance.mem inst
1333 9fc18384 Iustin Pop
                    , printf "%5d" $ Instance.dsk inst `div` 1024
1334 9fc18384 Iustin Pop
                    , printf "%5.3f" lC
1335 9fc18384 Iustin Pop
                    , printf "%5.3f" lM
1336 9fc18384 Iustin Pop
                    , printf "%5.3f" lD
1337 9fc18384 Iustin Pop
                    , printf "%5.3f" lN
1338 9fc18384 Iustin Pop
                    ]
1339 9fc18384 Iustin Pop
          where DynUtil lC lM lD lN = Instance.util inst
1340 9fc18384 Iustin Pop
      header = [ "F", "Name", "Pri_node", "Sec_node", "Auto_bal"
1341 9fc18384 Iustin Pop
               , "vcpu", "mem" , "dsk", "lCpu", "lMem", "lDsk", "lNet" ]
1342 9fc18384 Iustin Pop
      isnum = False:False:False:False:False:repeat True
1343 c3024b7e René Nussbaumer
  in printTable "" header (map helper sil) isnum
1344 507fda3f Iustin Pop
1345 9188aeef Iustin Pop
-- | Shows statistics for a given node list.
1346 2922d2c5 René Nussbaumer
printStats :: String -> Node.List -> String
1347 2922d2c5 René Nussbaumer
printStats lp nl =
1348 9fc18384 Iustin Pop
  let dcvs = compDetailedCV $ Container.elems nl
1349 9fc18384 Iustin Pop
      (weights, names) = unzip detailedCVInfo
1350 9fc18384 Iustin Pop
      hd = zip3 (weights ++ repeat 1) (names ++ repeat "unknown") dcvs
1351 2922d2c5 René Nussbaumer
      header = [ "Field", "Value", "Weight" ]
1352 2922d2c5 René Nussbaumer
      formatted = map (\(w, h, val) ->
1353 2922d2c5 René Nussbaumer
                         [ h
1354 2922d2c5 René Nussbaumer
                         , printf "%.8f" val
1355 2922d2c5 René Nussbaumer
                         , printf "x%.2f" w
1356 2922d2c5 René Nussbaumer
                         ]) hd
1357 c3024b7e René Nussbaumer
  in printTable lp header formatted $ False:repeat True
1358 6b20875c Iustin Pop
1359 6b20875c Iustin Pop
-- | Convert a placement into a list of OpCodes (basically a job).
1360 179c0828 Iustin Pop
iMoveToJob :: Node.List        -- ^ The node list; only used for node
1361 179c0828 Iustin Pop
                               -- names, so any version is good
1362 179c0828 Iustin Pop
                               -- (before or after the operation)
1363 179c0828 Iustin Pop
           -> Instance.List    -- ^ The instance list; also used for
1364 179c0828 Iustin Pop
                               -- names only
1365 179c0828 Iustin Pop
           -> Idx              -- ^ The index of the instance being
1366 179c0828 Iustin Pop
                               -- moved
1367 179c0828 Iustin Pop
           -> IMove            -- ^ The actual move to be described
1368 179c0828 Iustin Pop
           -> [OpCodes.OpCode] -- ^ The list of opcodes equivalent to
1369 179c0828 Iustin Pop
                               -- the given move
1370 3e4480e0 Iustin Pop
iMoveToJob nl il idx move =
1371 9fc18384 Iustin Pop
  let inst = Container.find idx il
1372 9fc18384 Iustin Pop
      iname = Instance.name inst
1373 9fc18384 Iustin Pop
      lookNode  = Just . Container.nameOf nl
1374 9fc18384 Iustin Pop
      opF = OpCodes.OpInstanceMigrate iname True False True Nothing
1375 9fc18384 Iustin Pop
      opR n = OpCodes.OpInstanceReplaceDisks iname (lookNode n)
1376 9fc18384 Iustin Pop
              OpCodes.ReplaceNewSecondary [] Nothing
1377 9fc18384 Iustin Pop
  in case move of
1378 9fc18384 Iustin Pop
       Failover -> [ opF ]
1379 9fc18384 Iustin Pop
       ReplacePrimary np -> [ opF, opR np, opF ]
1380 9fc18384 Iustin Pop
       ReplaceSecondary ns -> [ opR ns ]
1381 9fc18384 Iustin Pop
       ReplaceAndFailover np -> [ opR np, opF ]
1382 9fc18384 Iustin Pop
       FailoverAndReplace ns -> [ opF, opR ns ]
1383 32b8d9c0 Iustin Pop
1384 949397c8 Iustin Pop
-- * Node group functions
1385 949397c8 Iustin Pop
1386 525bfb36 Iustin Pop
-- | Computes the group of an instance.
1387 10ef6b4e Iustin Pop
instanceGroup :: Node.List -> Instance.Instance -> Result Gdx
1388 32b8d9c0 Iustin Pop
instanceGroup nl i =
1389 32b8d9c0 Iustin Pop
  let sidx = Instance.sNode i
1390 32b8d9c0 Iustin Pop
      pnode = Container.find (Instance.pNode i) nl
1391 32b8d9c0 Iustin Pop
      snode = if sidx == Node.noSecondary
1392 32b8d9c0 Iustin Pop
              then pnode
1393 32b8d9c0 Iustin Pop
              else Container.find sidx nl
1394 10ef6b4e Iustin Pop
      pgroup = Node.group pnode
1395 10ef6b4e Iustin Pop
      sgroup = Node.group snode
1396 10ef6b4e Iustin Pop
  in if pgroup /= sgroup
1397 9fc18384 Iustin Pop
       then fail ("Instance placed accross two node groups, primary " ++
1398 9fc18384 Iustin Pop
                  show pgroup ++ ", secondary " ++ show sgroup)
1399 9fc18384 Iustin Pop
       else return pgroup
1400 32b8d9c0 Iustin Pop
1401 525bfb36 Iustin Pop
-- | Computes the group of an instance per the primary node.
1402 4bc33d60 Iustin Pop
instancePriGroup :: Node.List -> Instance.Instance -> Gdx
1403 4bc33d60 Iustin Pop
instancePriGroup nl i =
1404 4bc33d60 Iustin Pop
  let pnode = Container.find (Instance.pNode i) nl
1405 4bc33d60 Iustin Pop
  in  Node.group pnode
1406 4bc33d60 Iustin Pop
1407 32b8d9c0 Iustin Pop
-- | Compute the list of badly allocated instances (split across node
1408 525bfb36 Iustin Pop
-- groups).
1409 32b8d9c0 Iustin Pop
findSplitInstances :: Node.List -> Instance.List -> [Instance.Instance]
1410 2a8e2dc9 Iustin Pop
findSplitInstances nl =
1411 2a8e2dc9 Iustin Pop
  filter (not . isOk . instanceGroup nl) . Container.elems
1412 f4161783 Iustin Pop
1413 525bfb36 Iustin Pop
-- | Splits a cluster into the component node groups.
1414 f4161783 Iustin Pop
splitCluster :: Node.List -> Instance.List ->
1415 10ef6b4e Iustin Pop
                [(Gdx, (Node.List, Instance.List))]
1416 f4161783 Iustin Pop
splitCluster nl il =
1417 f4161783 Iustin Pop
  let ngroups = Node.computeGroups (Container.elems nl)
1418 f4161783 Iustin Pop
  in map (\(guuid, nodes) ->
1419 f4161783 Iustin Pop
           let nidxs = map Node.idx nodes
1420 f4161783 Iustin Pop
               nodes' = zip nidxs nodes
1421 f4161783 Iustin Pop
               instances = Container.filter ((`elem` nidxs) . Instance.pNode) il
1422 cb0c77ff Iustin Pop
           in (guuid, (Container.fromList nodes', instances))) ngroups
1423 1f4ae205 Iustin Pop
1424 63a78055 Iustin Pop
-- | Compute the list of nodes that are to be evacuated, given a list
1425 63a78055 Iustin Pop
-- of instances and an evacuation mode.
1426 63a78055 Iustin Pop
nodesToEvacuate :: Instance.List -- ^ The cluster-wide instance list
1427 63a78055 Iustin Pop
                -> EvacMode      -- ^ The evacuation mode we're using
1428 63a78055 Iustin Pop
                -> [Idx]         -- ^ List of instance indices being evacuated
1429 63a78055 Iustin Pop
                -> IntSet.IntSet -- ^ Set of node indices
1430 63a78055 Iustin Pop
nodesToEvacuate il mode =
1431 9fc18384 Iustin Pop
  IntSet.delete Node.noSecondary .
1432 9fc18384 Iustin Pop
  foldl' (\ns idx ->
1433 9fc18384 Iustin Pop
            let i = Container.find idx il
1434 9fc18384 Iustin Pop
                pdx = Instance.pNode i
1435 9fc18384 Iustin Pop
                sdx = Instance.sNode i
1436 9fc18384 Iustin Pop
                dt = Instance.diskTemplate i
1437 9fc18384 Iustin Pop
                withSecondary = case dt of
1438 9fc18384 Iustin Pop
                                  DTDrbd8 -> IntSet.insert sdx ns
1439 9fc18384 Iustin Pop
                                  _ -> ns
1440 9fc18384 Iustin Pop
            in case mode of
1441 9fc18384 Iustin Pop
                 ChangePrimary   -> IntSet.insert pdx ns
1442 9fc18384 Iustin Pop
                 ChangeSecondary -> withSecondary
1443 9fc18384 Iustin Pop
                 ChangeAll       -> IntSet.insert pdx withSecondary
1444 9fc18384 Iustin Pop
         ) IntSet.empty