Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / HTools / Cluster.hs @ c7d249d0

History | View | Annotate | Download (66.1 kB)

1
{-| Implementation of cluster-wide logic.
2

    
3
This module holds all pure cluster-logic; I\/O related functionality
4
goes into the /Main/ module for the individual binaries.
5

    
6
-}
7

    
8
{-
9

    
10
Copyright (C) 2009, 2010, 2011, 2012 Google Inc.
11

    
12
This program is free software; you can redistribute it and/or modify
13
it under the terms of the GNU General Public License as published by
14
the Free Software Foundation; either version 2 of the License, or
15
(at your option) any later version.
16

    
17
This program is distributed in the hope that it will be useful, but
18
WITHOUT ANY WARRANTY; without even the implied warranty of
19
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20
General Public License for more details.
21

    
22
You should have received a copy of the GNU General Public License
23
along with this program; if not, write to the Free Software
24
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25
02110-1301, USA.
26

    
27
-}
28

    
29
module Ganeti.HTools.Cluster
30
  (
31
    -- * Types
32
    AllocSolution(..)
33
  , EvacSolution(..)
34
  , Table(..)
35
  , CStats(..)
36
  , AllocResult
37
  , AllocMethod
38
  , AllocSolutionList
39
  -- * Generic functions
40
  , totalResources
41
  , computeAllocationDelta
42
  -- * First phase functions
43
  , computeBadItems
44
  -- * Second phase functions
45
  , printSolutionLine
46
  , formatCmds
47
  , involvedNodes
48
  , splitJobs
49
  -- * Display functions
50
  , printNodes
51
  , printInsts
52
  -- * Balacing functions
53
  , checkMove
54
  , doNextBalance
55
  , tryBalance
56
  , compCV
57
  , compCVNodes
58
  , compDetailedCV
59
  , printStats
60
  , iMoveToJob
61
  -- * IAllocator functions
62
  , genAllocNodes
63
  , tryAlloc
64
  , tryMGAlloc
65
  , tryNodeEvac
66
  , tryChangeGroup
67
  , collapseFailures
68
  , allocList
69
  -- * Allocation functions
70
  , iterateAlloc
71
  , tieredAlloc
72
  -- * Node group functions
73
  , instanceGroup
74
  , findSplitInstances
75
  , splitCluster
76
  ) where
77

    
78
import qualified Data.IntSet as IntSet
79
import Data.List
80
import Data.Maybe (fromJust, isNothing)
81
import Data.Ord (comparing)
82
import Text.Printf (printf)
83

    
84
import Ganeti.BasicTypes
85
import qualified Ganeti.HTools.Container as Container
86
import qualified Ganeti.HTools.Instance as Instance
87
import qualified Ganeti.HTools.Node as Node
88
import qualified Ganeti.HTools.Group as Group
89
import Ganeti.HTools.Types
90
import Ganeti.Compat
91
import qualified Ganeti.OpCodes as OpCodes
92
import Ganeti.Utils
93
import Ganeti.Types (mkNonEmpty)
94

    
95
-- * Types
96

    
97
-- | Allocation\/relocation solution.
98
data AllocSolution = AllocSolution
99
  { asFailures :: [FailMode]              -- ^ Failure counts
100
  , asAllocs   :: Int                     -- ^ Good allocation count
101
  , asSolution :: Maybe Node.AllocElement -- ^ The actual allocation result
102
  , asLog      :: [String]                -- ^ Informational messages
103
  }
104

    
105
-- | Node evacuation/group change iallocator result type. This result
106
-- type consists of actual opcodes (a restricted subset) that are
107
-- transmitted back to Ganeti.
108
data EvacSolution = EvacSolution
109
  { esMoved   :: [(Idx, Gdx, [Ndx])]  -- ^ Instances moved successfully
110
  , esFailed  :: [(Idx, String)]      -- ^ Instances which were not
111
                                      -- relocated
112
  , esOpCodes :: [[OpCodes.OpCode]]   -- ^ List of jobs
113
  } deriving (Show)
114

    
115
-- | Allocation results, as used in 'iterateAlloc' and 'tieredAlloc'.
116
type AllocResult = (FailStats, Node.List, Instance.List,
117
                    [Instance.Instance], [CStats])
118

    
119
-- | Type alias for easier handling.
120
type AllocSolutionList = [(Instance.Instance, AllocSolution)]
121

    
122
-- | A type denoting the valid allocation mode/pairs.
123
--
124
-- For a one-node allocation, this will be a @Left ['Ndx']@, whereas
125
-- for a two-node allocation, this will be a @Right [('Ndx',
126
-- ['Ndx'])]@. In the latter case, the list is basically an
127
-- association list, grouped by primary node and holding the potential
128
-- secondary nodes in the sub-list.
129
type AllocNodes = Either [Ndx] [(Ndx, [Ndx])]
130

    
131
-- | The empty solution we start with when computing allocations.
132
emptyAllocSolution :: AllocSolution
133
emptyAllocSolution = AllocSolution { asFailures = [], asAllocs = 0
134
                                   , asSolution = Nothing, asLog = [] }
135

    
136
-- | The empty evac solution.
137
emptyEvacSolution :: EvacSolution
138
emptyEvacSolution = EvacSolution { esMoved = []
139
                                 , esFailed = []
140
                                 , esOpCodes = []
141
                                 }
142

    
143
-- | The complete state for the balancing solution.
144
data Table = Table Node.List Instance.List Score [Placement]
145
             deriving (Show, Read)
146

    
147
-- | Cluster statistics data type.
148
data CStats = CStats
149
  { csFmem :: Integer -- ^ Cluster free mem
150
  , csFdsk :: Integer -- ^ Cluster free disk
151
  , csAmem :: Integer -- ^ Cluster allocatable mem
152
  , csAdsk :: Integer -- ^ Cluster allocatable disk
153
  , csAcpu :: Integer -- ^ Cluster allocatable cpus
154
  , csMmem :: Integer -- ^ Max node allocatable mem
155
  , csMdsk :: Integer -- ^ Max node allocatable disk
156
  , csMcpu :: Integer -- ^ Max node allocatable cpu
157
  , csImem :: Integer -- ^ Instance used mem
158
  , csIdsk :: Integer -- ^ Instance used disk
159
  , csIcpu :: Integer -- ^ Instance used cpu
160
  , csTmem :: Double  -- ^ Cluster total mem
161
  , csTdsk :: Double  -- ^ Cluster total disk
162
  , csTcpu :: Double  -- ^ Cluster total cpus
163
  , csVcpu :: Integer -- ^ Cluster total virtual cpus
164
  , csNcpu :: Double  -- ^ Equivalent to 'csIcpu' but in terms of
165
                      -- physical CPUs, i.e. normalised used phys CPUs
166
  , csXmem :: Integer -- ^ Unnacounted for mem
167
  , csNmem :: Integer -- ^ Node own memory
168
  , csScore :: Score  -- ^ The cluster score
169
  , csNinst :: Int    -- ^ The total number of instances
170
  } deriving (Show, Read)
171

    
172
-- | A simple type for allocation functions.
173
type AllocMethod =  Node.List           -- ^ Node list
174
                 -> Instance.List       -- ^ Instance list
175
                 -> Maybe Int           -- ^ Optional allocation limit
176
                 -> Instance.Instance   -- ^ Instance spec for allocation
177
                 -> AllocNodes          -- ^ Which nodes we should allocate on
178
                 -> [Instance.Instance] -- ^ Allocated instances
179
                 -> [CStats]            -- ^ Running cluster stats
180
                 -> Result AllocResult  -- ^ Allocation result
181

    
182
-- | A simple type for the running solution of evacuations.
183
type EvacInnerState =
184
  Either String (Node.List, Instance.Instance, Score, Ndx)
185

    
186
-- * Utility functions
187

    
188
-- | Verifies the N+1 status and return the affected nodes.
189
verifyN1 :: [Node.Node] -> [Node.Node]
190
verifyN1 = filter Node.failN1
191

    
192
{-| Computes the pair of bad nodes and instances.
193

    
194
The bad node list is computed via a simple 'verifyN1' check, and the
195
bad instance list is the list of primary and secondary instances of
196
those nodes.
197

    
198
-}
199
computeBadItems :: Node.List -> Instance.List ->
200
                   ([Node.Node], [Instance.Instance])
201
computeBadItems nl il =
202
  let bad_nodes = verifyN1 $ getOnline nl
203
      bad_instances = map (`Container.find` il) .
204
                      sort . nub $
205
                      concatMap (\ n -> Node.sList n ++ Node.pList n) bad_nodes
206
  in
207
    (bad_nodes, bad_instances)
208

    
209
-- | Extracts the node pairs for an instance. This can fail if the
210
-- instance is single-homed. FIXME: this needs to be improved,
211
-- together with the general enhancement for handling non-DRBD moves.
212
instanceNodes :: Node.List -> Instance.Instance ->
213
                 (Ndx, Ndx, Node.Node, Node.Node)
214
instanceNodes nl inst =
215
  let old_pdx = Instance.pNode inst
216
      old_sdx = Instance.sNode inst
217
      old_p = Container.find old_pdx nl
218
      old_s = Container.find old_sdx nl
219
  in (old_pdx, old_sdx, old_p, old_s)
220

    
221
-- | Zero-initializer for the CStats type.
222
emptyCStats :: CStats
223
emptyCStats = CStats 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
224

    
225
-- | Update stats with data from a new node.
226
updateCStats :: CStats -> Node.Node -> CStats
227
updateCStats cs node =
228
  let CStats { csFmem = x_fmem, csFdsk = x_fdsk,
229
               csAmem = x_amem, csAcpu = x_acpu, csAdsk = x_adsk,
230
               csMmem = x_mmem, csMdsk = x_mdsk, csMcpu = x_mcpu,
231
               csImem = x_imem, csIdsk = x_idsk, csIcpu = x_icpu,
232
               csTmem = x_tmem, csTdsk = x_tdsk, csTcpu = x_tcpu,
233
               csVcpu = x_vcpu, csNcpu = x_ncpu,
234
               csXmem = x_xmem, csNmem = x_nmem, csNinst = x_ninst
235
             }
236
        = cs
237
      inc_amem = Node.fMem node - Node.rMem node
238
      inc_amem' = if inc_amem > 0 then inc_amem else 0
239
      inc_adsk = Node.availDisk node
240
      inc_imem = truncate (Node.tMem node) - Node.nMem node
241
                 - Node.xMem node - Node.fMem node
242
      inc_icpu = Node.uCpu node
243
      inc_idsk = truncate (Node.tDsk node) - Node.fDsk node
244
      inc_vcpu = Node.hiCpu node
245
      inc_acpu = Node.availCpu node
246
      inc_ncpu = fromIntegral (Node.uCpu node) /
247
                 iPolicyVcpuRatio (Node.iPolicy node)
248
  in cs { csFmem = x_fmem + fromIntegral (Node.fMem node)
249
        , csFdsk = x_fdsk + fromIntegral (Node.fDsk node)
250
        , csAmem = x_amem + fromIntegral inc_amem'
251
        , csAdsk = x_adsk + fromIntegral inc_adsk
252
        , csAcpu = x_acpu + fromIntegral inc_acpu
253
        , csMmem = max x_mmem (fromIntegral inc_amem')
254
        , csMdsk = max x_mdsk (fromIntegral inc_adsk)
255
        , csMcpu = max x_mcpu (fromIntegral inc_acpu)
256
        , csImem = x_imem + fromIntegral inc_imem
257
        , csIdsk = x_idsk + fromIntegral inc_idsk
258
        , csIcpu = x_icpu + fromIntegral inc_icpu
259
        , csTmem = x_tmem + Node.tMem node
260
        , csTdsk = x_tdsk + Node.tDsk node
261
        , csTcpu = x_tcpu + Node.tCpu node
262
        , csVcpu = x_vcpu + fromIntegral inc_vcpu
263
        , csNcpu = x_ncpu + inc_ncpu
264
        , csXmem = x_xmem + fromIntegral (Node.xMem node)
265
        , csNmem = x_nmem + fromIntegral (Node.nMem node)
266
        , csNinst = x_ninst + length (Node.pList node)
267
        }
268

    
269
-- | Compute the total free disk and memory in the cluster.
270
totalResources :: Node.List -> CStats
271
totalResources nl =
272
  let cs = foldl' updateCStats emptyCStats . Container.elems $ nl
273
  in cs { csScore = compCV nl }
274

    
275
-- | Compute the delta between two cluster state.
276
--
277
-- This is used when doing allocations, to understand better the
278
-- available cluster resources. The return value is a triple of the
279
-- current used values, the delta that was still allocated, and what
280
-- was left unallocated.
281
computeAllocationDelta :: CStats -> CStats -> AllocStats
282
computeAllocationDelta cini cfin =
283
  let CStats {csImem = i_imem, csIdsk = i_idsk, csIcpu = i_icpu,
284
              csNcpu = i_ncpu } = cini
285
      CStats {csImem = f_imem, csIdsk = f_idsk, csIcpu = f_icpu,
286
              csTmem = t_mem, csTdsk = t_dsk, csVcpu = f_vcpu,
287
              csNcpu = f_ncpu, csTcpu = f_tcpu } = cfin
288
      rini = AllocInfo { allocInfoVCpus = fromIntegral i_icpu
289
                       , allocInfoNCpus = i_ncpu
290
                       , allocInfoMem   = fromIntegral i_imem
291
                       , allocInfoDisk  = fromIntegral i_idsk
292
                       }
293
      rfin = AllocInfo { allocInfoVCpus = fromIntegral (f_icpu - i_icpu)
294
                       , allocInfoNCpus = f_ncpu - i_ncpu
295
                       , allocInfoMem   = fromIntegral (f_imem - i_imem)
296
                       , allocInfoDisk  = fromIntegral (f_idsk - i_idsk)
297
                       }
298
      runa = AllocInfo { allocInfoVCpus = fromIntegral (f_vcpu - f_icpu)
299
                       , allocInfoNCpus = f_tcpu - f_ncpu
300
                       , allocInfoMem   = truncate t_mem - fromIntegral f_imem
301
                       , allocInfoDisk  = truncate t_dsk - fromIntegral f_idsk
302
                       }
303
  in (rini, rfin, runa)
304

    
305
-- | The names and weights of the individual elements in the CV list.
306
detailedCVInfo :: [(Double, String)]
307
detailedCVInfo = [ (1,  "free_mem_cv")
308
                 , (1,  "free_disk_cv")
309
                 , (1,  "n1_cnt")
310
                 , (1,  "reserved_mem_cv")
311
                 , (4,  "offline_all_cnt")
312
                 , (16, "offline_pri_cnt")
313
                 , (1,  "vcpu_ratio_cv")
314
                 , (1,  "cpu_load_cv")
315
                 , (1,  "mem_load_cv")
316
                 , (1,  "disk_load_cv")
317
                 , (1,  "net_load_cv")
318
                 , (2,  "pri_tags_score")
319
                 , (1,  "spindles_cv")
320
                 ]
321

    
322
-- | Holds the weights used by 'compCVNodes' for each metric.
323
detailedCVWeights :: [Double]
324
detailedCVWeights = map fst detailedCVInfo
325

    
326
-- | Compute the mem and disk covariance.
327
compDetailedCV :: [Node.Node] -> [Double]
328
compDetailedCV all_nodes =
329
  let (offline, nodes) = partition Node.offline all_nodes
330
      mem_l = map Node.pMem nodes
331
      dsk_l = map Node.pDsk nodes
332
      -- metric: memory covariance
333
      mem_cv = stdDev mem_l
334
      -- metric: disk covariance
335
      dsk_cv = stdDev dsk_l
336
      -- metric: count of instances living on N1 failing nodes
337
      n1_score = fromIntegral . sum . map (\n -> length (Node.sList n) +
338
                                                 length (Node.pList n)) .
339
                 filter Node.failN1 $ nodes :: Double
340
      res_l = map Node.pRem nodes
341
      -- metric: reserved memory covariance
342
      res_cv = stdDev res_l
343
      -- offline instances metrics
344
      offline_ipri = sum . map (length . Node.pList) $ offline
345
      offline_isec = sum . map (length . Node.sList) $ offline
346
      -- metric: count of instances on offline nodes
347
      off_score = fromIntegral (offline_ipri + offline_isec)::Double
348
      -- metric: count of primary instances on offline nodes (this
349
      -- helps with evacuation/failover of primary instances on
350
      -- 2-node clusters with one node offline)
351
      off_pri_score = fromIntegral offline_ipri::Double
352
      cpu_l = map Node.pCpu nodes
353
      -- metric: covariance of vcpu/pcpu ratio
354
      cpu_cv = stdDev cpu_l
355
      -- metrics: covariance of cpu, memory, disk and network load
356
      (c_load, m_load, d_load, n_load) =
357
        unzip4 $ map (\n ->
358
                      let DynUtil c1 m1 d1 n1 = Node.utilLoad n
359
                          DynUtil c2 m2 d2 n2 = Node.utilPool n
360
                      in (c1/c2, m1/m2, d1/d2, n1/n2)) nodes
361
      -- metric: conflicting instance count
362
      pri_tags_inst = sum $ map Node.conflictingPrimaries nodes
363
      pri_tags_score = fromIntegral pri_tags_inst::Double
364
      -- metric: spindles %
365
      spindles_cv = map (\n -> Node.instSpindles n / Node.hiSpindles n) nodes
366
  in [ mem_cv, dsk_cv, n1_score, res_cv, off_score, off_pri_score, cpu_cv
367
     , stdDev c_load, stdDev m_load , stdDev d_load, stdDev n_load
368
     , pri_tags_score, stdDev spindles_cv ]
369

    
370
-- | Compute the /total/ variance.
371
compCVNodes :: [Node.Node] -> Double
372
compCVNodes = sum . zipWith (*) detailedCVWeights . compDetailedCV
373

    
374
-- | Wrapper over 'compCVNodes' for callers that have a 'Node.List'.
375
compCV :: Node.List -> Double
376
compCV = compCVNodes . Container.elems
377

    
378
-- | Compute online nodes from a 'Node.List'.
379
getOnline :: Node.List -> [Node.Node]
380
getOnline = filter (not . Node.offline) . Container.elems
381

    
382
-- * Balancing functions
383

    
384
-- | Compute best table. Note that the ordering of the arguments is important.
385
compareTables :: Table -> Table -> Table
386
compareTables a@(Table _ _ a_cv _) b@(Table _ _ b_cv _ ) =
387
  if a_cv > b_cv then b else a
388

    
389
-- | Applies an instance move to a given node list and instance.
390
applyMove :: Node.List -> Instance.Instance
391
          -> IMove -> OpResult (Node.List, Instance.Instance, Ndx, Ndx)
392
-- Failover (f)
393
applyMove nl inst Failover =
394
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
395
      int_p = Node.removePri old_p inst
396
      int_s = Node.removeSec old_s inst
397
      new_nl = do -- Maybe monad
398
        new_p <- Node.addPriEx (Node.offline old_p) int_s inst
399
        new_s <- Node.addSec int_p inst old_sdx
400
        let new_inst = Instance.setBoth inst old_sdx old_pdx
401
        return (Container.addTwo old_pdx new_s old_sdx new_p nl,
402
                new_inst, old_sdx, old_pdx)
403
  in new_nl
404

    
405
-- Failover to any (fa)
406
applyMove nl inst (FailoverToAny new_pdx) = do
407
  let (old_pdx, old_sdx, old_pnode, _) = instanceNodes nl inst
408
      new_pnode = Container.find new_pdx nl
409
      force_failover = Node.offline old_pnode
410
  new_pnode' <- Node.addPriEx force_failover new_pnode inst
411
  let old_pnode' = Node.removePri old_pnode inst
412
      inst' = Instance.setPri inst new_pdx
413
      nl' = Container.addTwo old_pdx old_pnode' new_pdx new_pnode' nl
414
  return (nl', inst', new_pdx, old_sdx)
415

    
416
-- Replace the primary (f:, r:np, f)
417
applyMove nl inst (ReplacePrimary new_pdx) =
418
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
419
      tgt_n = Container.find new_pdx nl
420
      int_p = Node.removePri old_p inst
421
      int_s = Node.removeSec old_s inst
422
      force_p = Node.offline old_p
423
      new_nl = do -- Maybe monad
424
                  -- check that the current secondary can host the instance
425
                  -- during the migration
426
        tmp_s <- Node.addPriEx force_p int_s inst
427
        let tmp_s' = Node.removePri tmp_s inst
428
        new_p <- Node.addPriEx force_p tgt_n inst
429
        new_s <- Node.addSecEx force_p tmp_s' inst new_pdx
430
        let new_inst = Instance.setPri inst new_pdx
431
        return (Container.add new_pdx new_p $
432
                Container.addTwo old_pdx int_p old_sdx new_s nl,
433
                new_inst, new_pdx, old_sdx)
434
  in new_nl
435

    
436
-- Replace the secondary (r:ns)
437
applyMove nl inst (ReplaceSecondary new_sdx) =
438
  let old_pdx = Instance.pNode inst
439
      old_sdx = Instance.sNode inst
440
      old_s = Container.find old_sdx nl
441
      tgt_n = Container.find new_sdx nl
442
      int_s = Node.removeSec old_s inst
443
      force_s = Node.offline old_s
444
      new_inst = Instance.setSec inst new_sdx
445
      new_nl = Node.addSecEx force_s tgt_n inst old_pdx >>=
446
               \new_s -> return (Container.addTwo new_sdx
447
                                 new_s old_sdx int_s nl,
448
                                 new_inst, old_pdx, new_sdx)
449
  in new_nl
450

    
451
-- Replace the secondary and failover (r:np, f)
452
applyMove nl inst (ReplaceAndFailover new_pdx) =
453
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
454
      tgt_n = Container.find new_pdx nl
455
      int_p = Node.removePri old_p inst
456
      int_s = Node.removeSec old_s inst
457
      force_s = Node.offline old_s
458
      new_nl = do -- Maybe monad
459
        new_p <- Node.addPri tgt_n inst
460
        new_s <- Node.addSecEx force_s int_p inst new_pdx
461
        let new_inst = Instance.setBoth inst new_pdx old_pdx
462
        return (Container.add new_pdx new_p $
463
                Container.addTwo old_pdx new_s old_sdx int_s nl,
464
                new_inst, new_pdx, old_pdx)
465
  in new_nl
466

    
467
-- Failver and replace the secondary (f, r:ns)
468
applyMove nl inst (FailoverAndReplace new_sdx) =
469
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
470
      tgt_n = Container.find new_sdx nl
471
      int_p = Node.removePri old_p inst
472
      int_s = Node.removeSec old_s inst
473
      force_p = Node.offline old_p
474
      new_nl = do -- Maybe monad
475
        new_p <- Node.addPriEx force_p int_s inst
476
        new_s <- Node.addSecEx force_p tgt_n inst old_sdx
477
        let new_inst = Instance.setBoth inst old_sdx new_sdx
478
        return (Container.add new_sdx new_s $
479
                Container.addTwo old_sdx new_p old_pdx int_p nl,
480
                new_inst, old_sdx, new_sdx)
481
  in new_nl
482

    
483
-- | Tries to allocate an instance on one given node.
484
allocateOnSingle :: Node.List -> Instance.Instance -> Ndx
485
                 -> OpResult Node.AllocElement
486
allocateOnSingle nl inst new_pdx =
487
  let p = Container.find new_pdx nl
488
      new_inst = Instance.setBoth inst new_pdx Node.noSecondary
489
  in do
490
    Instance.instMatchesPolicy inst (Node.iPolicy p)
491
    new_p <- Node.addPri p inst
492
    let new_nl = Container.add new_pdx new_p nl
493
        new_score = compCV new_nl
494
    return (new_nl, new_inst, [new_p], new_score)
495

    
496
-- | Tries to allocate an instance on a given pair of nodes.
497
allocateOnPair :: Node.List -> Instance.Instance -> Ndx -> Ndx
498
               -> OpResult Node.AllocElement
499
allocateOnPair nl inst new_pdx new_sdx =
500
  let tgt_p = Container.find new_pdx nl
501
      tgt_s = Container.find new_sdx nl
502
  in do
503
    Instance.instMatchesPolicy inst (Node.iPolicy tgt_p)
504
    new_p <- Node.addPri tgt_p inst
505
    new_s <- Node.addSec tgt_s inst new_pdx
506
    let new_inst = Instance.setBoth inst new_pdx new_sdx
507
        new_nl = Container.addTwo new_pdx new_p new_sdx new_s nl
508
    return (new_nl, new_inst, [new_p, new_s], compCV new_nl)
509

    
510
-- | Tries to perform an instance move and returns the best table
511
-- between the original one and the new one.
512
checkSingleStep :: Table -- ^ The original table
513
                -> Instance.Instance -- ^ The instance to move
514
                -> Table -- ^ The current best table
515
                -> IMove -- ^ The move to apply
516
                -> Table -- ^ The final best table
517
checkSingleStep ini_tbl target cur_tbl move =
518
  let Table ini_nl ini_il _ ini_plc = ini_tbl
519
      tmp_resu = applyMove ini_nl target move
520
  in case tmp_resu of
521
       Bad _ -> cur_tbl
522
       Ok (upd_nl, new_inst, pri_idx, sec_idx) ->
523
         let tgt_idx = Instance.idx target
524
             upd_cvar = compCV upd_nl
525
             upd_il = Container.add tgt_idx new_inst ini_il
526
             upd_plc = (tgt_idx, pri_idx, sec_idx, move, upd_cvar):ini_plc
527
             upd_tbl = Table upd_nl upd_il upd_cvar upd_plc
528
         in compareTables cur_tbl upd_tbl
529

    
530
-- | Given the status of the current secondary as a valid new node and
531
-- the current candidate target node, generate the possible moves for
532
-- a instance.
533
possibleMoves :: MirrorType -- ^ The mirroring type of the instance
534
              -> Bool       -- ^ Whether the secondary node is a valid new node
535
              -> Bool       -- ^ Whether we can change the primary node
536
              -> Ndx        -- ^ Target node candidate
537
              -> [IMove]    -- ^ List of valid result moves
538

    
539
possibleMoves MirrorNone _ _ _ = []
540

    
541
possibleMoves MirrorExternal _ False _ = []
542

    
543
possibleMoves MirrorExternal _ True tdx =
544
  [ FailoverToAny tdx ]
545

    
546
possibleMoves MirrorInternal _ False tdx =
547
  [ ReplaceSecondary tdx ]
548

    
549
possibleMoves MirrorInternal True True tdx =
550
  [ ReplaceSecondary tdx
551
  , ReplaceAndFailover tdx
552
  , ReplacePrimary tdx
553
  , FailoverAndReplace tdx
554
  ]
555

    
556
possibleMoves MirrorInternal False True tdx =
557
  [ ReplaceSecondary tdx
558
  , ReplaceAndFailover tdx
559
  ]
560

    
561
-- | Compute the best move for a given instance.
562
checkInstanceMove :: [Ndx]             -- ^ Allowed target node indices
563
                  -> Bool              -- ^ Whether disk moves are allowed
564
                  -> Bool              -- ^ Whether instance moves are allowed
565
                  -> Table             -- ^ Original table
566
                  -> Instance.Instance -- ^ Instance to move
567
                  -> Table             -- ^ Best new table for this instance
568
checkInstanceMove nodes_idx disk_moves inst_moves ini_tbl target =
569
  let opdx = Instance.pNode target
570
      osdx = Instance.sNode target
571
      bad_nodes = [opdx, osdx]
572
      nodes = filter (`notElem` bad_nodes) nodes_idx
573
      mir_type = Instance.mirrorType target
574
      use_secondary = elem osdx nodes_idx && inst_moves
575
      aft_failover = if mir_type == MirrorInternal && use_secondary
576
                       -- if drbd and allowed to failover
577
                       then checkSingleStep ini_tbl target ini_tbl Failover
578
                       else ini_tbl
579
      all_moves =
580
        if disk_moves
581
          then concatMap (possibleMoves mir_type use_secondary inst_moves)
582
               nodes
583
          else []
584
    in
585
      -- iterate over the possible nodes for this instance
586
      foldl' (checkSingleStep ini_tbl target) aft_failover all_moves
587

    
588
-- | Compute the best next move.
589
checkMove :: [Ndx]               -- ^ Allowed target node indices
590
          -> Bool                -- ^ Whether disk moves are allowed
591
          -> Bool                -- ^ Whether instance moves are allowed
592
          -> Table               -- ^ The current solution
593
          -> [Instance.Instance] -- ^ List of instances still to move
594
          -> Table               -- ^ The new solution
595
checkMove nodes_idx disk_moves inst_moves ini_tbl victims =
596
  let Table _ _ _ ini_plc = ini_tbl
597
      -- we're using rwhnf from the Control.Parallel.Strategies
598
      -- package; we don't need to use rnf as that would force too
599
      -- much evaluation in single-threaded cases, and in
600
      -- multi-threaded case the weak head normal form is enough to
601
      -- spark the evaluation
602
      tables = parMap rwhnf (checkInstanceMove nodes_idx disk_moves
603
                             inst_moves ini_tbl)
604
               victims
605
      -- iterate over all instances, computing the best move
606
      best_tbl = foldl' compareTables ini_tbl tables
607
      Table _ _ _ best_plc = best_tbl
608
  in if length best_plc == length ini_plc
609
       then ini_tbl -- no advancement
610
       else best_tbl
611

    
612
-- | Check if we are allowed to go deeper in the balancing.
613
doNextBalance :: Table     -- ^ The starting table
614
              -> Int       -- ^ Remaining length
615
              -> Score     -- ^ Score at which to stop
616
              -> Bool      -- ^ The resulting table and commands
617
doNextBalance ini_tbl max_rounds min_score =
618
  let Table _ _ ini_cv ini_plc = ini_tbl
619
      ini_plc_len = length ini_plc
620
  in (max_rounds < 0 || ini_plc_len < max_rounds) && ini_cv > min_score
621

    
622
-- | Run a balance move.
623
tryBalance :: Table       -- ^ The starting table
624
           -> Bool        -- ^ Allow disk moves
625
           -> Bool        -- ^ Allow instance moves
626
           -> Bool        -- ^ Only evacuate moves
627
           -> Score       -- ^ Min gain threshold
628
           -> Score       -- ^ Min gain
629
           -> Maybe Table -- ^ The resulting table and commands
630
tryBalance ini_tbl disk_moves inst_moves evac_mode mg_limit min_gain =
631
    let Table ini_nl ini_il ini_cv _ = ini_tbl
632
        all_inst = Container.elems ini_il
633
        all_nodes = Container.elems ini_nl
634
        (offline_nodes, online_nodes) = partition Node.offline all_nodes
635
        all_inst' = if evac_mode
636
                      then let bad_nodes = map Node.idx offline_nodes
637
                           in filter (any (`elem` bad_nodes) .
638
                                          Instance.allNodes) all_inst
639
                      else all_inst
640
        reloc_inst = filter Instance.movable all_inst'
641
        node_idx = map Node.idx online_nodes
642
        fin_tbl = checkMove node_idx disk_moves inst_moves ini_tbl reloc_inst
643
        (Table _ _ fin_cv _) = fin_tbl
644
    in
645
      if fin_cv < ini_cv && (ini_cv > mg_limit || ini_cv - fin_cv >= min_gain)
646
      then Just fin_tbl -- this round made success, return the new table
647
      else Nothing
648

    
649
-- * Allocation functions
650

    
651
-- | Build failure stats out of a list of failures.
652
collapseFailures :: [FailMode] -> FailStats
653
collapseFailures flst =
654
    map (\k -> (k, foldl' (\a e -> if e == k then a + 1 else a) 0 flst))
655
            [minBound..maxBound]
656

    
657
-- | Compares two Maybe AllocElement and chooses the besst score.
658
bestAllocElement :: Maybe Node.AllocElement
659
                 -> Maybe Node.AllocElement
660
                 -> Maybe Node.AllocElement
661
bestAllocElement a Nothing = a
662
bestAllocElement Nothing b = b
663
bestAllocElement a@(Just (_, _, _, ascore)) b@(Just (_, _, _, bscore)) =
664
  if ascore < bscore then a else b
665

    
666
-- | Update current Allocation solution and failure stats with new
667
-- elements.
668
concatAllocs :: AllocSolution -> OpResult Node.AllocElement -> AllocSolution
669
concatAllocs as (Bad reason) = as { asFailures = reason : asFailures as }
670

    
671
concatAllocs as (Ok ns) =
672
  let -- Choose the old or new solution, based on the cluster score
673
    cntok = asAllocs as
674
    osols = asSolution as
675
    nsols = bestAllocElement osols (Just ns)
676
    nsuc = cntok + 1
677
    -- Note: we force evaluation of nsols here in order to keep the
678
    -- memory profile low - we know that we will need nsols for sure
679
    -- in the next cycle, so we force evaluation of nsols, since the
680
    -- foldl' in the caller will only evaluate the tuple, but not the
681
    -- elements of the tuple
682
  in nsols `seq` nsuc `seq` as { asAllocs = nsuc, asSolution = nsols }
683

    
684
-- | Sums two 'AllocSolution' structures.
685
sumAllocs :: AllocSolution -> AllocSolution -> AllocSolution
686
sumAllocs (AllocSolution aFails aAllocs aSols aLog)
687
          (AllocSolution bFails bAllocs bSols bLog) =
688
  -- note: we add b first, since usually it will be smaller; when
689
  -- fold'ing, a will grow and grow whereas b is the per-group
690
  -- result, hence smaller
691
  let nFails  = bFails ++ aFails
692
      nAllocs = aAllocs + bAllocs
693
      nSols   = bestAllocElement aSols bSols
694
      nLog    = bLog ++ aLog
695
  in AllocSolution nFails nAllocs nSols nLog
696

    
697
-- | Given a solution, generates a reasonable description for it.
698
describeSolution :: AllocSolution -> String
699
describeSolution as =
700
  let fcnt = asFailures as
701
      sols = asSolution as
702
      freasons =
703
        intercalate ", " . map (\(a, b) -> printf "%s: %d" (show a) b) .
704
        filter ((> 0) . snd) . collapseFailures $ fcnt
705
  in case sols of
706
     Nothing -> "No valid allocation solutions, failure reasons: " ++
707
                (if null fcnt then "unknown reasons" else freasons)
708
     Just (_, _, nodes, cv) ->
709
         printf ("score: %.8f, successes %d, failures %d (%s)" ++
710
                 " for node(s) %s") cv (asAllocs as) (length fcnt) freasons
711
               (intercalate "/" . map Node.name $ nodes)
712

    
713
-- | Annotates a solution with the appropriate string.
714
annotateSolution :: AllocSolution -> AllocSolution
715
annotateSolution as = as { asLog = describeSolution as : asLog as }
716

    
717
-- | Reverses an evacuation solution.
718
--
719
-- Rationale: we always concat the results to the top of the lists, so
720
-- for proper jobset execution, we should reverse all lists.
721
reverseEvacSolution :: EvacSolution -> EvacSolution
722
reverseEvacSolution (EvacSolution f m o) =
723
  EvacSolution (reverse f) (reverse m) (reverse o)
724

    
725
-- | Generate the valid node allocation singles or pairs for a new instance.
726
genAllocNodes :: Group.List        -- ^ Group list
727
              -> Node.List         -- ^ The node map
728
              -> Int               -- ^ The number of nodes required
729
              -> Bool              -- ^ Whether to drop or not
730
                                   -- unallocable nodes
731
              -> Result AllocNodes -- ^ The (monadic) result
732
genAllocNodes gl nl count drop_unalloc =
733
  let filter_fn = if drop_unalloc
734
                    then filter (Group.isAllocable .
735
                                 flip Container.find gl . Node.group)
736
                    else id
737
      all_nodes = filter_fn $ getOnline nl
738
      all_pairs = [(Node.idx p,
739
                    [Node.idx s | s <- all_nodes,
740
                                       Node.idx p /= Node.idx s,
741
                                       Node.group p == Node.group s]) |
742
                   p <- all_nodes]
743
  in case count of
744
       1 -> Ok (Left (map Node.idx all_nodes))
745
       2 -> Ok (Right (filter (not . null . snd) all_pairs))
746
       _ -> Bad "Unsupported number of nodes, only one or two  supported"
747

    
748
-- | Try to allocate an instance on the cluster.
749
tryAlloc :: (Monad m) =>
750
            Node.List         -- ^ The node list
751
         -> Instance.List     -- ^ The instance list
752
         -> Instance.Instance -- ^ The instance to allocate
753
         -> AllocNodes        -- ^ The allocation targets
754
         -> m AllocSolution   -- ^ Possible solution list
755
tryAlloc _  _ _    (Right []) = fail "Not enough online nodes"
756
tryAlloc nl _ inst (Right ok_pairs) =
757
  let psols = parMap rwhnf (\(p, ss) ->
758
                              foldl' (\cstate ->
759
                                        concatAllocs cstate .
760
                                        allocateOnPair nl inst p)
761
                              emptyAllocSolution ss) ok_pairs
762
      sols = foldl' sumAllocs emptyAllocSolution psols
763
  in return $ annotateSolution sols
764

    
765
tryAlloc _  _ _    (Left []) = fail "No online nodes"
766
tryAlloc nl _ inst (Left all_nodes) =
767
  let sols = foldl' (\cstate ->
768
                       concatAllocs cstate . allocateOnSingle nl inst
769
                    ) emptyAllocSolution all_nodes
770
  in return $ annotateSolution sols
771

    
772
-- | Given a group/result, describe it as a nice (list of) messages.
773
solutionDescription :: Group.List -> (Gdx, Result AllocSolution) -> [String]
774
solutionDescription gl (groupId, result) =
775
  case result of
776
    Ok solution -> map (printf "Group %s (%s): %s" gname pol) (asLog solution)
777
    Bad message -> [printf "Group %s: error %s" gname message]
778
  where grp = Container.find groupId gl
779
        gname = Group.name grp
780
        pol = allocPolicyToRaw (Group.allocPolicy grp)
781

    
782
-- | From a list of possibly bad and possibly empty solutions, filter
783
-- only the groups with a valid result. Note that the result will be
784
-- reversed compared to the original list.
785
filterMGResults :: Group.List
786
                -> [(Gdx, Result AllocSolution)]
787
                -> [(Gdx, AllocSolution)]
788
filterMGResults gl = foldl' fn []
789
  where unallocable = not . Group.isAllocable . flip Container.find gl
790
        fn accu (gdx, rasol) =
791
          case rasol of
792
            Bad _ -> accu
793
            Ok sol | isNothing (asSolution sol) -> accu
794
                   | unallocable gdx -> accu
795
                   | otherwise -> (gdx, sol):accu
796

    
797
-- | Sort multigroup results based on policy and score.
798
sortMGResults :: Group.List
799
             -> [(Gdx, AllocSolution)]
800
             -> [(Gdx, AllocSolution)]
801
sortMGResults gl sols =
802
  let extractScore (_, _, _, x) = x
803
      solScore (gdx, sol) = (Group.allocPolicy (Container.find gdx gl),
804
                             (extractScore . fromJust . asSolution) sol)
805
  in sortBy (comparing solScore) sols
806

    
807
-- | Finds the best group for an instance on a multi-group cluster.
808
--
809
-- Only solutions in @preferred@ and @last_resort@ groups will be
810
-- accepted as valid, and additionally if the allowed groups parameter
811
-- is not null then allocation will only be run for those group
812
-- indices.
813
findBestAllocGroup :: Group.List           -- ^ The group list
814
                   -> Node.List            -- ^ The node list
815
                   -> Instance.List        -- ^ The instance list
816
                   -> Maybe [Gdx]          -- ^ The allowed groups
817
                   -> Instance.Instance    -- ^ The instance to allocate
818
                   -> Int                  -- ^ Required number of nodes
819
                   -> Result (Gdx, AllocSolution, [String])
820
findBestAllocGroup mggl mgnl mgil allowed_gdxs inst cnt =
821
  let groups = splitCluster mgnl mgil
822
      groups' = maybe groups (\gs -> filter ((`elem` gs) . fst) groups)
823
                allowed_gdxs
824
      sols = map (\(gid, (nl, il)) ->
825
                   (gid, genAllocNodes mggl nl cnt False >>=
826
                       tryAlloc nl il inst))
827
             groups'::[(Gdx, Result AllocSolution)]
828
      all_msgs = concatMap (solutionDescription mggl) sols
829
      goodSols = filterMGResults mggl sols
830
      sortedSols = sortMGResults mggl goodSols
831
  in if null sortedSols
832
       then Bad $ if null groups'
833
                    then "no groups for evacuation: allowed groups was" ++
834
                         show allowed_gdxs ++ ", all groups: " ++
835
                         show (map fst groups)
836
                    else intercalate ", " all_msgs
837
       else let (final_group, final_sol) = head sortedSols
838
            in return (final_group, final_sol, all_msgs)
839

    
840
-- | Try to allocate an instance on a multi-group cluster.
841
tryMGAlloc :: Group.List           -- ^ The group list
842
           -> Node.List            -- ^ The node list
843
           -> Instance.List        -- ^ The instance list
844
           -> Instance.Instance    -- ^ The instance to allocate
845
           -> Int                  -- ^ Required number of nodes
846
           -> Result AllocSolution -- ^ Possible solution list
847
tryMGAlloc mggl mgnl mgil inst cnt = do
848
  (best_group, solution, all_msgs) <-
849
      findBestAllocGroup mggl mgnl mgil Nothing inst cnt
850
  let group_name = Group.name $ Container.find best_group mggl
851
      selmsg = "Selected group: " ++ group_name
852
  return $ solution { asLog = selmsg:all_msgs }
853

    
854
-- | Calculate the new instance list after allocation solution.
855
updateIl :: Instance.List           -- ^ The original instance list
856
         -> Maybe Node.AllocElement -- ^ The result of the allocation attempt
857
         -> Instance.List           -- ^ The updated instance list
858
updateIl il Nothing = il
859
updateIl il (Just (_, xi, _, _)) = Container.add (Container.size il) xi il
860

    
861
-- | Extract the the new node list from the allocation solution.
862
extractNl :: Node.List               -- ^ The original node list
863
          -> Maybe Node.AllocElement -- ^ The result of the allocation attempt
864
          -> Node.List               -- ^ The new node list
865
extractNl nl Nothing = nl
866
extractNl _ (Just (xnl, _, _, _)) = xnl
867

    
868
-- | Try to allocate a list of instances on a multi-group cluster.
869
allocList :: Group.List                  -- ^ The group list
870
          -> Node.List                   -- ^ The node list
871
          -> Instance.List               -- ^ The instance list
872
          -> [(Instance.Instance, Int)]  -- ^ The instance to allocate
873
          -> AllocSolutionList           -- ^ Possible solution list
874
          -> Result (Node.List, Instance.List,
875
                     AllocSolutionList)  -- ^ The final solution list
876
allocList _  nl il [] result = Ok (nl, il, result)
877
allocList gl nl il ((xi, xicnt):xies) result = do
878
  ares <- tryMGAlloc gl nl il xi xicnt
879
  let sol = asSolution ares
880
      nl' = extractNl nl sol
881
      il' = updateIl il sol
882
  allocList gl nl' il' xies ((xi, ares):result)
883

    
884
-- | Function which fails if the requested mode is change secondary.
885
--
886
-- This is useful since except DRBD, no other disk template can
887
-- execute change secondary; thus, we can just call this function
888
-- instead of always checking for secondary mode. After the call to
889
-- this function, whatever mode we have is just a primary change.
890
failOnSecondaryChange :: (Monad m) => EvacMode -> DiskTemplate -> m ()
891
failOnSecondaryChange ChangeSecondary dt =
892
  fail $ "Instances with disk template '" ++ diskTemplateToRaw dt ++
893
         "' can't execute change secondary"
894
failOnSecondaryChange _ _ = return ()
895

    
896
-- | Run evacuation for a single instance.
897
--
898
-- /Note:/ this function should correctly execute both intra-group
899
-- evacuations (in all modes) and inter-group evacuations (in the
900
-- 'ChangeAll' mode). Of course, this requires that the correct list
901
-- of target nodes is passed.
902
nodeEvacInstance :: Node.List         -- ^ The node list (cluster-wide)
903
                 -> Instance.List     -- ^ Instance list (cluster-wide)
904
                 -> EvacMode          -- ^ The evacuation mode
905
                 -> Instance.Instance -- ^ The instance to be evacuated
906
                 -> Gdx               -- ^ The group we're targetting
907
                 -> [Ndx]             -- ^ The list of available nodes
908
                                      -- for allocation
909
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode])
910
nodeEvacInstance nl il mode inst@(Instance.Instance
911
                                  {Instance.diskTemplate = dt@DTDiskless})
912
                 gdx avail_nodes =
913
                   failOnSecondaryChange mode dt >>
914
                   evacOneNodeOnly nl il inst gdx avail_nodes
915

    
916
nodeEvacInstance _ _ _ (Instance.Instance
917
                        {Instance.diskTemplate = DTPlain}) _ _ =
918
                  fail "Instances of type plain cannot be relocated"
919

    
920
nodeEvacInstance _ _ _ (Instance.Instance
921
                        {Instance.diskTemplate = DTFile}) _ _ =
922
                  fail "Instances of type file cannot be relocated"
923

    
924
nodeEvacInstance nl il mode inst@(Instance.Instance
925
                                  {Instance.diskTemplate = dt@DTSharedFile})
926
                 gdx avail_nodes =
927
                   failOnSecondaryChange mode dt >>
928
                   evacOneNodeOnly nl il inst gdx avail_nodes
929

    
930
nodeEvacInstance nl il mode inst@(Instance.Instance
931
                                  {Instance.diskTemplate = dt@DTBlock})
932
                 gdx avail_nodes =
933
                   failOnSecondaryChange mode dt >>
934
                   evacOneNodeOnly nl il inst gdx avail_nodes
935

    
936
nodeEvacInstance nl il mode inst@(Instance.Instance
937
                                  {Instance.diskTemplate = dt@DTRbd})
938
                 gdx avail_nodes =
939
                   failOnSecondaryChange mode dt >>
940
                   evacOneNodeOnly nl il inst gdx avail_nodes
941

    
942
nodeEvacInstance nl il ChangePrimary
943
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
944
                 _ _ =
945
  do
946
    (nl', inst', _, _) <- opToResult $ applyMove nl inst Failover
947
    let idx = Instance.idx inst
948
        il' = Container.add idx inst' il
949
        ops = iMoveToJob nl' il' idx Failover
950
    return (nl', il', ops)
951

    
952
nodeEvacInstance nl il ChangeSecondary
953
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
954
                 gdx avail_nodes =
955
  evacOneNodeOnly nl il inst gdx avail_nodes
956

    
957
-- The algorithm for ChangeAll is as follows:
958
--
959
-- * generate all (primary, secondary) node pairs for the target groups
960
-- * for each pair, execute the needed moves (r:s, f, r:s) and compute
961
--   the final node list state and group score
962
-- * select the best choice via a foldl that uses the same Either
963
--   String solution as the ChangeSecondary mode
964
nodeEvacInstance nl il ChangeAll
965
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
966
                 gdx avail_nodes =
967
  do
968
    let no_nodes = Left "no nodes available"
969
        node_pairs = [(p,s) | p <- avail_nodes, s <- avail_nodes, p /= s]
970
    (nl', il', ops, _) <-
971
        annotateResult "Can't find any good nodes for relocation" .
972
        eitherToResult $
973
        foldl'
974
        (\accu nodes -> case evacDrbdAllInner nl il inst gdx nodes of
975
                          Bad msg ->
976
                              case accu of
977
                                Right _ -> accu
978
                                -- we don't need more details (which
979
                                -- nodes, etc.) as we only selected
980
                                -- this group if we can allocate on
981
                                -- it, hence failures will not
982
                                -- propagate out of this fold loop
983
                                Left _ -> Left $ "Allocation failed: " ++ msg
984
                          Ok result@(_, _, _, new_cv) ->
985
                              let new_accu = Right result in
986
                              case accu of
987
                                Left _ -> new_accu
988
                                Right (_, _, _, old_cv) ->
989
                                    if old_cv < new_cv
990
                                    then accu
991
                                    else new_accu
992
        ) no_nodes node_pairs
993

    
994
    return (nl', il', ops)
995

    
996
-- | Generic function for changing one node of an instance.
997
--
998
-- This is similar to 'nodeEvacInstance' but will be used in a few of
999
-- its sub-patterns. It folds the inner function 'evacOneNodeInner'
1000
-- over the list of available nodes, which results in the best choice
1001
-- for relocation.
1002
evacOneNodeOnly :: Node.List         -- ^ The node list (cluster-wide)
1003
                -> Instance.List     -- ^ Instance list (cluster-wide)
1004
                -> Instance.Instance -- ^ The instance to be evacuated
1005
                -> Gdx               -- ^ The group we're targetting
1006
                -> [Ndx]             -- ^ The list of available nodes
1007
                                      -- for allocation
1008
                -> Result (Node.List, Instance.List, [OpCodes.OpCode])
1009
evacOneNodeOnly nl il inst gdx avail_nodes = do
1010
  op_fn <- case Instance.mirrorType inst of
1011
             MirrorNone -> Bad "Can't relocate/evacuate non-mirrored instances"
1012
             MirrorInternal -> Ok ReplaceSecondary
1013
             MirrorExternal -> Ok FailoverToAny
1014
  (nl', inst', _, ndx) <- annotateResult "Can't find any good node" .
1015
                          eitherToResult $
1016
                          foldl' (evacOneNodeInner nl inst gdx op_fn)
1017
                          (Left "no nodes available") avail_nodes
1018
  let idx = Instance.idx inst
1019
      il' = Container.add idx inst' il
1020
      ops = iMoveToJob nl' il' idx (op_fn ndx)
1021
  return (nl', il', ops)
1022

    
1023
-- | Inner fold function for changing one node of an instance.
1024
--
1025
-- Depending on the instance disk template, this will either change
1026
-- the secondary (for DRBD) or the primary node (for shared
1027
-- storage). However, the operation is generic otherwise.
1028
--
1029
-- The running solution is either a @Left String@, which means we
1030
-- don't have yet a working solution, or a @Right (...)@, which
1031
-- represents a valid solution; it holds the modified node list, the
1032
-- modified instance (after evacuation), the score of that solution,
1033
-- and the new secondary node index.
1034
evacOneNodeInner :: Node.List         -- ^ Cluster node list
1035
                 -> Instance.Instance -- ^ Instance being evacuated
1036
                 -> Gdx               -- ^ The group index of the instance
1037
                 -> (Ndx -> IMove)    -- ^ Operation constructor
1038
                 -> EvacInnerState    -- ^ Current best solution
1039
                 -> Ndx               -- ^ Node we're evaluating as target
1040
                 -> EvacInnerState    -- ^ New best solution
1041
evacOneNodeInner nl inst gdx op_fn accu ndx =
1042
  case applyMove nl inst (op_fn ndx) of
1043
    Bad fm -> let fail_msg = "Node " ++ Container.nameOf nl ndx ++
1044
                             " failed: " ++ show fm
1045
              in either (const $ Left fail_msg) (const accu) accu
1046
    Ok (nl', inst', _, _) ->
1047
      let nodes = Container.elems nl'
1048
          -- The fromJust below is ugly (it can fail nastily), but
1049
          -- at this point we should have any internal mismatches,
1050
          -- and adding a monad here would be quite involved
1051
          grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
1052
          new_cv = compCVNodes grpnodes
1053
          new_accu = Right (nl', inst', new_cv, ndx)
1054
      in case accu of
1055
           Left _ -> new_accu
1056
           Right (_, _, old_cv, _) ->
1057
             if old_cv < new_cv
1058
               then accu
1059
               else new_accu
1060

    
1061
-- | Compute result of changing all nodes of a DRBD instance.
1062
--
1063
-- Given the target primary and secondary node (which might be in a
1064
-- different group or not), this function will 'execute' all the
1065
-- required steps and assuming all operations succceed, will return
1066
-- the modified node and instance lists, the opcodes needed for this
1067
-- and the new group score.
1068
evacDrbdAllInner :: Node.List         -- ^ Cluster node list
1069
                 -> Instance.List     -- ^ Cluster instance list
1070
                 -> Instance.Instance -- ^ The instance to be moved
1071
                 -> Gdx               -- ^ The target group index
1072
                                      -- (which can differ from the
1073
                                      -- current group of the
1074
                                      -- instance)
1075
                 -> (Ndx, Ndx)        -- ^ Tuple of new
1076
                                      -- primary\/secondary nodes
1077
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode], Score)
1078
evacDrbdAllInner nl il inst gdx (t_pdx, t_sdx) = do
1079
  let primary = Container.find (Instance.pNode inst) nl
1080
      idx = Instance.idx inst
1081
  -- if the primary is offline, then we first failover
1082
  (nl1, inst1, ops1) <-
1083
    if Node.offline primary
1084
      then do
1085
        (nl', inst', _, _) <-
1086
          annotateResult "Failing over to the secondary" .
1087
          opToResult $ applyMove nl inst Failover
1088
        return (nl', inst', [Failover])
1089
      else return (nl, inst, [])
1090
  let (o1, o2, o3) = (ReplaceSecondary t_pdx,
1091
                      Failover,
1092
                      ReplaceSecondary t_sdx)
1093
  -- we now need to execute a replace secondary to the future
1094
  -- primary node
1095
  (nl2, inst2, _, _) <-
1096
    annotateResult "Changing secondary to new primary" .
1097
    opToResult $
1098
    applyMove nl1 inst1 o1
1099
  let ops2 = o1:ops1
1100
  -- we now execute another failover, the primary stays fixed now
1101
  (nl3, inst3, _, _) <- annotateResult "Failing over to new primary" .
1102
                        opToResult $ applyMove nl2 inst2 o2
1103
  let ops3 = o2:ops2
1104
  -- and finally another replace secondary, to the final secondary
1105
  (nl4, inst4, _, _) <-
1106
    annotateResult "Changing secondary to final secondary" .
1107
    opToResult $
1108
    applyMove nl3 inst3 o3
1109
  let ops4 = o3:ops3
1110
      il' = Container.add idx inst4 il
1111
      ops = concatMap (iMoveToJob nl4 il' idx) $ reverse ops4
1112
  let nodes = Container.elems nl4
1113
      -- The fromJust below is ugly (it can fail nastily), but
1114
      -- at this point we should have any internal mismatches,
1115
      -- and adding a monad here would be quite involved
1116
      grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
1117
      new_cv = compCVNodes grpnodes
1118
  return (nl4, il', ops, new_cv)
1119

    
1120
-- | Computes the nodes in a given group which are available for
1121
-- allocation.
1122
availableGroupNodes :: [(Gdx, [Ndx])] -- ^ Group index/node index assoc list
1123
                    -> IntSet.IntSet  -- ^ Nodes that are excluded
1124
                    -> Gdx            -- ^ The group for which we
1125
                                      -- query the nodes
1126
                    -> Result [Ndx]   -- ^ List of available node indices
1127
availableGroupNodes group_nodes excl_ndx gdx = do
1128
  local_nodes <- maybe (Bad $ "Can't find group with index " ++ show gdx)
1129
                 Ok (lookup gdx group_nodes)
1130
  let avail_nodes = filter (not . flip IntSet.member excl_ndx) local_nodes
1131
  return avail_nodes
1132

    
1133
-- | Updates the evac solution with the results of an instance
1134
-- evacuation.
1135
updateEvacSolution :: (Node.List, Instance.List, EvacSolution)
1136
                   -> Idx
1137
                   -> Result (Node.List, Instance.List, [OpCodes.OpCode])
1138
                   -> (Node.List, Instance.List, EvacSolution)
1139
updateEvacSolution (nl, il, es) idx (Bad msg) =
1140
  (nl, il, es { esFailed = (idx, msg):esFailed es})
1141
updateEvacSolution (_, _, es) idx (Ok (nl, il, opcodes)) =
1142
  (nl, il, es { esMoved = new_elem:esMoved es
1143
              , esOpCodes = opcodes:esOpCodes es })
1144
    where inst = Container.find idx il
1145
          new_elem = (idx,
1146
                      instancePriGroup nl inst,
1147
                      Instance.allNodes inst)
1148

    
1149
-- | Node-evacuation IAllocator mode main function.
1150
tryNodeEvac :: Group.List    -- ^ The cluster groups
1151
            -> Node.List     -- ^ The node list (cluster-wide, not per group)
1152
            -> Instance.List -- ^ Instance list (cluster-wide)
1153
            -> EvacMode      -- ^ The evacuation mode
1154
            -> [Idx]         -- ^ List of instance (indices) to be evacuated
1155
            -> Result (Node.List, Instance.List, EvacSolution)
1156
tryNodeEvac _ ini_nl ini_il mode idxs =
1157
  let evac_ndx = nodesToEvacuate ini_il mode idxs
1158
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1159
      excl_ndx = foldl' (flip IntSet.insert) evac_ndx offline
1160
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1161
                                           (Container.elems nl))) $
1162
                  splitCluster ini_nl ini_il
1163
      (fin_nl, fin_il, esol) =
1164
        foldl' (\state@(nl, il, _) inst ->
1165
                  let gdx = instancePriGroup nl inst
1166
                      pdx = Instance.pNode inst in
1167
                  updateEvacSolution state (Instance.idx inst) $
1168
                  availableGroupNodes group_ndx
1169
                    (IntSet.insert pdx excl_ndx) gdx >>=
1170
                      nodeEvacInstance nl il mode inst gdx
1171
               )
1172
        (ini_nl, ini_il, emptyEvacSolution)
1173
        (map (`Container.find` ini_il) idxs)
1174
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1175

    
1176
-- | Change-group IAllocator mode main function.
1177
--
1178
-- This is very similar to 'tryNodeEvac', the only difference is that
1179
-- we don't choose as target group the current instance group, but
1180
-- instead:
1181
--
1182
--   1. at the start of the function, we compute which are the target
1183
--   groups; either no groups were passed in, in which case we choose
1184
--   all groups out of which we don't evacuate instance, or there were
1185
--   some groups passed, in which case we use those
1186
--
1187
--   2. for each instance, we use 'findBestAllocGroup' to choose the
1188
--   best group to hold the instance, and then we do what
1189
--   'tryNodeEvac' does, except for this group instead of the current
1190
--   instance group.
1191
--
1192
-- Note that the correct behaviour of this function relies on the
1193
-- function 'nodeEvacInstance' to be able to do correctly both
1194
-- intra-group and inter-group moves when passed the 'ChangeAll' mode.
1195
tryChangeGroup :: Group.List    -- ^ The cluster groups
1196
               -> Node.List     -- ^ The node list (cluster-wide)
1197
               -> Instance.List -- ^ Instance list (cluster-wide)
1198
               -> [Gdx]         -- ^ Target groups; if empty, any
1199
                                -- groups not being evacuated
1200
               -> [Idx]         -- ^ List of instance (indices) to be evacuated
1201
               -> Result (Node.List, Instance.List, EvacSolution)
1202
tryChangeGroup gl ini_nl ini_il gdxs idxs =
1203
  let evac_gdxs = nub $ map (instancePriGroup ini_nl .
1204
                             flip Container.find ini_il) idxs
1205
      target_gdxs = (if null gdxs
1206
                       then Container.keys gl
1207
                       else gdxs) \\ evac_gdxs
1208
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1209
      excl_ndx = foldl' (flip IntSet.insert) IntSet.empty offline
1210
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1211
                                           (Container.elems nl))) $
1212
                  splitCluster ini_nl ini_il
1213
      (fin_nl, fin_il, esol) =
1214
        foldl' (\state@(nl, il, _) inst ->
1215
                  let solution = do
1216
                        let ncnt = Instance.requiredNodes $
1217
                                   Instance.diskTemplate inst
1218
                        (gdx, _, _) <- findBestAllocGroup gl nl il
1219
                                       (Just target_gdxs) inst ncnt
1220
                        av_nodes <- availableGroupNodes group_ndx
1221
                                    excl_ndx gdx
1222
                        nodeEvacInstance nl il ChangeAll inst gdx av_nodes
1223
                  in updateEvacSolution state (Instance.idx inst) solution
1224
               )
1225
        (ini_nl, ini_il, emptyEvacSolution)
1226
        (map (`Container.find` ini_il) idxs)
1227
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1228

    
1229
-- | Standard-sized allocation method.
1230
--
1231
-- This places instances of the same size on the cluster until we're
1232
-- out of space. The result will be a list of identically-sized
1233
-- instances.
1234
iterateAlloc :: AllocMethod
1235
iterateAlloc nl il limit newinst allocnodes ixes cstats =
1236
  let depth = length ixes
1237
      newname = printf "new-%d" depth::String
1238
      newidx = Container.size il
1239
      newi2 = Instance.setIdx (Instance.setName newinst newname) newidx
1240
      newlimit = fmap (flip (-) 1) limit
1241
  in case tryAlloc nl il newi2 allocnodes of
1242
       Bad s -> Bad s
1243
       Ok (AllocSolution { asFailures = errs, asSolution = sols3 }) ->
1244
         let newsol = Ok (collapseFailures errs, nl, il, ixes, cstats) in
1245
         case sols3 of
1246
           Nothing -> newsol
1247
           Just (xnl, xi, _, _) ->
1248
             if limit == Just 0
1249
               then newsol
1250
               else iterateAlloc xnl (Container.add newidx xi il)
1251
                      newlimit newinst allocnodes (xi:ixes)
1252
                      (totalResources xnl:cstats)
1253

    
1254
-- | Tiered allocation method.
1255
--
1256
-- This places instances on the cluster, and decreases the spec until
1257
-- we can allocate again. The result will be a list of decreasing
1258
-- instance specs.
1259
tieredAlloc :: AllocMethod
1260
tieredAlloc nl il limit newinst allocnodes ixes cstats =
1261
  case iterateAlloc nl il limit newinst allocnodes ixes cstats of
1262
    Bad s -> Bad s
1263
    Ok (errs, nl', il', ixes', cstats') ->
1264
      let newsol = Ok (errs, nl', il', ixes', cstats')
1265
          ixes_cnt = length ixes'
1266
          (stop, newlimit) = case limit of
1267
                               Nothing -> (False, Nothing)
1268
                               Just n -> (n <= ixes_cnt,
1269
                                            Just (n - ixes_cnt)) in
1270
      if stop then newsol else
1271
          case Instance.shrinkByType newinst . fst . last $
1272
               sortBy (comparing snd) errs of
1273
            Bad _ -> newsol
1274
            Ok newinst' -> tieredAlloc nl' il' newlimit
1275
                           newinst' allocnodes ixes' cstats'
1276

    
1277
-- * Formatting functions
1278

    
1279
-- | Given the original and final nodes, computes the relocation description.
1280
computeMoves :: Instance.Instance -- ^ The instance to be moved
1281
             -> String -- ^ The instance name
1282
             -> IMove  -- ^ The move being performed
1283
             -> String -- ^ New primary
1284
             -> String -- ^ New secondary
1285
             -> (String, [String])
1286
                -- ^ Tuple of moves and commands list; moves is containing
1287
                -- either @/f/@ for failover or @/r:name/@ for replace
1288
                -- secondary, while the command list holds gnt-instance
1289
                -- commands (without that prefix), e.g \"@failover instance1@\"
1290
computeMoves i inam mv c d =
1291
  case mv of
1292
    Failover -> ("f", [mig])
1293
    FailoverToAny _ -> (printf "fa:%s" c, [mig_any])
1294
    FailoverAndReplace _ -> (printf "f r:%s" d, [mig, rep d])
1295
    ReplaceSecondary _ -> (printf "r:%s" d, [rep d])
1296
    ReplaceAndFailover _ -> (printf "r:%s f" c, [rep c, mig])
1297
    ReplacePrimary _ -> (printf "f r:%s f" c, [mig, rep c, mig])
1298
  where morf = if Instance.isRunning i then "migrate" else "failover"
1299
        mig = printf "%s -f %s" morf inam::String
1300
        mig_any = printf "%s -f -n %s %s" morf c inam::String
1301
        rep n = printf "replace-disks -n %s %s" n inam::String
1302

    
1303
-- | Converts a placement to string format.
1304
printSolutionLine :: Node.List     -- ^ The node list
1305
                  -> Instance.List -- ^ The instance list
1306
                  -> Int           -- ^ Maximum node name length
1307
                  -> Int           -- ^ Maximum instance name length
1308
                  -> Placement     -- ^ The current placement
1309
                  -> Int           -- ^ The index of the placement in
1310
                                   -- the solution
1311
                  -> (String, [String])
1312
printSolutionLine nl il nmlen imlen plc pos =
1313
  let pmlen = (2*nmlen + 1)
1314
      (i, p, s, mv, c) = plc
1315
      old_sec = Instance.sNode inst
1316
      inst = Container.find i il
1317
      inam = Instance.alias inst
1318
      npri = Node.alias $ Container.find p nl
1319
      nsec = Node.alias $ Container.find s nl
1320
      opri = Node.alias $ Container.find (Instance.pNode inst) nl
1321
      osec = Node.alias $ Container.find old_sec nl
1322
      (moves, cmds) =  computeMoves inst inam mv npri nsec
1323
      -- FIXME: this should check instead/also the disk template
1324
      ostr = if old_sec == Node.noSecondary
1325
               then printf "%s" opri::String
1326
               else printf "%s:%s" opri osec::String
1327
      nstr = if s == Node.noSecondary
1328
               then printf "%s" npri::String
1329
               else printf "%s:%s" npri nsec::String
1330
  in (printf "  %3d. %-*s %-*s => %-*s %12.8f a=%s"
1331
      pos imlen inam pmlen ostr pmlen nstr c moves,
1332
      cmds)
1333

    
1334
-- | Return the instance and involved nodes in an instance move.
1335
--
1336
-- Note that the output list length can vary, and is not required nor
1337
-- guaranteed to be of any specific length.
1338
involvedNodes :: Instance.List -- ^ Instance list, used for retrieving
1339
                               -- the instance from its index; note
1340
                               -- that this /must/ be the original
1341
                               -- instance list, so that we can
1342
                               -- retrieve the old nodes
1343
              -> Placement     -- ^ The placement we're investigating,
1344
                               -- containing the new nodes and
1345
                               -- instance index
1346
              -> [Ndx]         -- ^ Resulting list of node indices
1347
involvedNodes il plc =
1348
  let (i, np, ns, _, _) = plc
1349
      inst = Container.find i il
1350
  in nub $ [np, ns] ++ Instance.allNodes inst
1351

    
1352
-- | Inner function for splitJobs, that either appends the next job to
1353
-- the current jobset, or starts a new jobset.
1354
mergeJobs :: ([JobSet], [Ndx]) -> MoveJob -> ([JobSet], [Ndx])
1355
mergeJobs ([], _) n@(ndx, _, _, _) = ([[n]], ndx)
1356
mergeJobs (cjs@(j:js), nbuf) n@(ndx, _, _, _)
1357
  | null (ndx `intersect` nbuf) = ((n:j):js, ndx ++ nbuf)
1358
  | otherwise = ([n]:cjs, ndx)
1359

    
1360
-- | Break a list of moves into independent groups. Note that this
1361
-- will reverse the order of jobs.
1362
splitJobs :: [MoveJob] -> [JobSet]
1363
splitJobs = fst . foldl mergeJobs ([], [])
1364

    
1365
-- | Given a list of commands, prefix them with @gnt-instance@ and
1366
-- also beautify the display a little.
1367
formatJob :: Int -> Int -> (Int, MoveJob) -> [String]
1368
formatJob jsn jsl (sn, (_, _, _, cmds)) =
1369
  let out =
1370
        printf "  echo job %d/%d" jsn sn:
1371
        printf "  check":
1372
        map ("  gnt-instance " ++) cmds
1373
  in if sn == 1
1374
       then ["", printf "echo jobset %d, %d jobs" jsn jsl] ++ out
1375
       else out
1376

    
1377
-- | Given a list of commands, prefix them with @gnt-instance@ and
1378
-- also beautify the display a little.
1379
formatCmds :: [JobSet] -> String
1380
formatCmds =
1381
  unlines .
1382
  concatMap (\(jsn, js) -> concatMap (formatJob jsn (length js))
1383
                           (zip [1..] js)) .
1384
  zip [1..]
1385

    
1386
-- | Print the node list.
1387
printNodes :: Node.List -> [String] -> String
1388
printNodes nl fs =
1389
  let fields = case fs of
1390
                 [] -> Node.defaultFields
1391
                 "+":rest -> Node.defaultFields ++ rest
1392
                 _ -> fs
1393
      snl = sortBy (comparing Node.idx) (Container.elems nl)
1394
      (header, isnum) = unzip $ map Node.showHeader fields
1395
  in printTable "" header (map (Node.list fields) snl) isnum
1396

    
1397
-- | Print the instance list.
1398
printInsts :: Node.List -> Instance.List -> String
1399
printInsts nl il =
1400
  let sil = sortBy (comparing Instance.idx) (Container.elems il)
1401
      helper inst = [ if Instance.isRunning inst then "R" else " "
1402
                    , Instance.name inst
1403
                    , Container.nameOf nl (Instance.pNode inst)
1404
                    , let sdx = Instance.sNode inst
1405
                      in if sdx == Node.noSecondary
1406
                           then  ""
1407
                           else Container.nameOf nl sdx
1408
                    , if Instance.autoBalance inst then "Y" else "N"
1409
                    , printf "%3d" $ Instance.vcpus inst
1410
                    , printf "%5d" $ Instance.mem inst
1411
                    , printf "%5d" $ Instance.dsk inst `div` 1024
1412
                    , printf "%5.3f" lC
1413
                    , printf "%5.3f" lM
1414
                    , printf "%5.3f" lD
1415
                    , printf "%5.3f" lN
1416
                    ]
1417
          where DynUtil lC lM lD lN = Instance.util inst
1418
      header = [ "F", "Name", "Pri_node", "Sec_node", "Auto_bal"
1419
               , "vcpu", "mem" , "dsk", "lCpu", "lMem", "lDsk", "lNet" ]
1420
      isnum = False:False:False:False:False:repeat True
1421
  in printTable "" header (map helper sil) isnum
1422

    
1423
-- | Shows statistics for a given node list.
1424
printStats :: String -> Node.List -> String
1425
printStats lp nl =
1426
  let dcvs = compDetailedCV $ Container.elems nl
1427
      (weights, names) = unzip detailedCVInfo
1428
      hd = zip3 (weights ++ repeat 1) (names ++ repeat "unknown") dcvs
1429
      header = [ "Field", "Value", "Weight" ]
1430
      formatted = map (\(w, h, val) ->
1431
                         [ h
1432
                         , printf "%.8f" val
1433
                         , printf "x%.2f" w
1434
                         ]) hd
1435
  in printTable lp header formatted $ False:repeat True
1436

    
1437
-- | Convert a placement into a list of OpCodes (basically a job).
1438
iMoveToJob :: Node.List        -- ^ The node list; only used for node
1439
                               -- names, so any version is good
1440
                               -- (before or after the operation)
1441
           -> Instance.List    -- ^ The instance list; also used for
1442
                               -- names only
1443
           -> Idx              -- ^ The index of the instance being
1444
                               -- moved
1445
           -> IMove            -- ^ The actual move to be described
1446
           -> [OpCodes.OpCode] -- ^ The list of opcodes equivalent to
1447
                               -- the given move
1448
iMoveToJob nl il idx move =
1449
  let inst = Container.find idx il
1450
      iname = Instance.name inst
1451
      lookNode  n = case mkNonEmpty (Container.nameOf nl n) of
1452
                      -- FIXME: convert htools codebase to non-empty strings
1453
                      Bad msg -> error $ "Empty node name for idx " ++
1454
                                 show n ++ ": " ++ msg ++ "??"
1455
                      Ok ne -> Just ne
1456
      opF = OpCodes.OpInstanceMigrate iname True False True Nothing
1457
      opFA n = OpCodes.OpInstanceMigrate iname True False True (lookNode n)
1458
      opR n = OpCodes.OpInstanceReplaceDisks iname (lookNode n)
1459
              OpCodes.ReplaceNewSecondary [] Nothing
1460
  in case move of
1461
       Failover -> [ opF ]
1462
       FailoverToAny np -> [ opFA np ]
1463
       ReplacePrimary np -> [ opF, opR np, opF ]
1464
       ReplaceSecondary ns -> [ opR ns ]
1465
       ReplaceAndFailover np -> [ opR np, opF ]
1466
       FailoverAndReplace ns -> [ opF, opR ns ]
1467

    
1468
-- * Node group functions
1469

    
1470
-- | Computes the group of an instance.
1471
instanceGroup :: Node.List -> Instance.Instance -> Result Gdx
1472
instanceGroup nl i =
1473
  let sidx = Instance.sNode i
1474
      pnode = Container.find (Instance.pNode i) nl
1475
      snode = if sidx == Node.noSecondary
1476
              then pnode
1477
              else Container.find sidx nl
1478
      pgroup = Node.group pnode
1479
      sgroup = Node.group snode
1480
  in if pgroup /= sgroup
1481
       then fail ("Instance placed accross two node groups, primary " ++
1482
                  show pgroup ++ ", secondary " ++ show sgroup)
1483
       else return pgroup
1484

    
1485
-- | Computes the group of an instance per the primary node.
1486
instancePriGroup :: Node.List -> Instance.Instance -> Gdx
1487
instancePriGroup nl i =
1488
  let pnode = Container.find (Instance.pNode i) nl
1489
  in  Node.group pnode
1490

    
1491
-- | Compute the list of badly allocated instances (split across node
1492
-- groups).
1493
findSplitInstances :: Node.List -> Instance.List -> [Instance.Instance]
1494
findSplitInstances nl =
1495
  filter (not . isOk . instanceGroup nl) . Container.elems
1496

    
1497
-- | Splits a cluster into the component node groups.
1498
splitCluster :: Node.List -> Instance.List ->
1499
                [(Gdx, (Node.List, Instance.List))]
1500
splitCluster nl il =
1501
  let ngroups = Node.computeGroups (Container.elems nl)
1502
  in map (\(guuid, nodes) ->
1503
           let nidxs = map Node.idx nodes
1504
               nodes' = zip nidxs nodes
1505
               instances = Container.filter ((`elem` nidxs) . Instance.pNode) il
1506
           in (guuid, (Container.fromList nodes', instances))) ngroups
1507

    
1508
-- | Compute the list of nodes that are to be evacuated, given a list
1509
-- of instances and an evacuation mode.
1510
nodesToEvacuate :: Instance.List -- ^ The cluster-wide instance list
1511
                -> EvacMode      -- ^ The evacuation mode we're using
1512
                -> [Idx]         -- ^ List of instance indices being evacuated
1513
                -> IntSet.IntSet -- ^ Set of node indices
1514
nodesToEvacuate il mode =
1515
  IntSet.delete Node.noSecondary .
1516
  foldl' (\ns idx ->
1517
            let i = Container.find idx il
1518
                pdx = Instance.pNode i
1519
                sdx = Instance.sNode i
1520
                dt = Instance.diskTemplate i
1521
                withSecondary = case dt of
1522
                                  DTDrbd8 -> IntSet.insert sdx ns
1523
                                  _ -> ns
1524
            in case mode of
1525
                 ChangePrimary   -> IntSet.insert pdx ns
1526
                 ChangeSecondary -> withSecondary
1527
                 ChangeAll       -> IntSet.insert pdx withSecondary
1528
         ) IntSet.empty