Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / THH.hs @ ffbd9592

History | View | Annotate | Download (28.7 kB)

1
{-# LANGUAGE TemplateHaskell #-}
2

    
3
{-| TemplateHaskell helper for HTools.
4

    
5
As TemplateHaskell require that splices be defined in a separate
6
module, we combine all the TemplateHaskell functionality that HTools
7
needs in this module (except the one for unittests).
8

    
9
-}
10

    
11
{-
12

    
13
Copyright (C) 2011, 2012 Google Inc.
14

    
15
This program is free software; you can redistribute it and/or modify
16
it under the terms of the GNU General Public License as published by
17
the Free Software Foundation; either version 2 of the License, or
18
(at your option) any later version.
19

    
20
This program is distributed in the hope that it will be useful, but
21
WITHOUT ANY WARRANTY; without even the implied warranty of
22
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23
General Public License for more details.
24

    
25
You should have received a copy of the GNU General Public License
26
along with this program; if not, write to the Free Software
27
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
28
02110-1301, USA.
29

    
30
-}
31

    
32
module Ganeti.THH ( declareSADT
33
                  , declareIADT
34
                  , makeJSONInstance
35
                  , genOpID
36
                  , genOpCode
37
                  , genStrOfOp
38
                  , genStrOfKey
39
                  , genLuxiOp
40
                  , Field
41
                  , simpleField
42
                  , defaultField
43
                  , optionalField
44
                  , renameField
45
                  , containerField
46
                  , customField
47
                  , timeStampFields
48
                  , uuidFields
49
                  , serialFields
50
                  , buildObject
51
                  , buildObjectSerialisation
52
                  , buildParam
53
                  , Container
54
                  ) where
55

    
56
import Control.Arrow
57
import Control.Monad (liftM, liftM2)
58
import Data.Char
59
import Data.List
60
import qualified Data.Map as M
61
import Language.Haskell.TH
62

    
63
import qualified Text.JSON as JSON
64

    
65
import Ganeti.HTools.JSON
66

    
67
-- * Exported types
68

    
69
type Container = M.Map String
70

    
71
-- | Serialised field data type.
72
data Field = Field { fieldName        :: String
73
                   , fieldType        :: Q Type
74
                   , fieldRead        :: Maybe (Q Exp)
75
                   , fieldShow        :: Maybe (Q Exp)
76
                   , fieldDefault     :: Maybe (Q Exp)
77
                   , fieldConstr      :: Maybe String
78
                   , fieldIsContainer :: Bool
79
                   , fieldIsOptional  :: Bool
80
                   }
81

    
82
-- | Generates a simple field.
83
simpleField :: String -> Q Type -> Field
84
simpleField fname ftype =
85
  Field { fieldName        = fname
86
        , fieldType        = ftype
87
        , fieldRead        = Nothing
88
        , fieldShow        = Nothing
89
        , fieldDefault     = Nothing
90
        , fieldConstr      = Nothing
91
        , fieldIsContainer = False
92
        , fieldIsOptional  = False
93
        }
94

    
95
-- | Sets the renamed constructor field.
96
renameField :: String -> Field -> Field
97
renameField constrName field = field { fieldConstr = Just constrName }
98

    
99
-- | Sets the default value on a field (makes it optional with a
100
-- default value).
101
defaultField :: Q Exp -> Field -> Field
102
defaultField defval field = field { fieldDefault = Just defval }
103

    
104
-- | Marks a field optional (turning its base type into a Maybe).
105
optionalField :: Field -> Field
106
optionalField field = field { fieldIsOptional = True }
107

    
108
-- | Marks a field as a container.
109
containerField :: Field -> Field
110
containerField field = field { fieldIsContainer = True }
111

    
112
-- | Sets custom functions on a field.
113
customField :: Q Exp -> Q Exp -> Field -> Field
114
customField readfn showfn field =
115
  field { fieldRead = Just readfn, fieldShow = Just showfn }
116

    
117
fieldRecordName :: Field -> String
118
fieldRecordName (Field { fieldName = name, fieldConstr = alias }) =
119
  maybe (camelCase name) id alias
120

    
121
-- | Computes the preferred variable name to use for the value of this
122
-- field. If the field has a specific constructor name, then we use a
123
-- first-letter-lowercased version of that; otherwise, we simply use
124
-- the field name. See also 'fieldRecordName'.
125
fieldVariable :: Field -> String
126
fieldVariable f =
127
  case (fieldConstr f) of
128
    Just name -> ensureLower name
129
    _ -> fieldName f
130

    
131
actualFieldType :: Field -> Q Type
132
actualFieldType f | fieldIsContainer f = [t| Container $t |]
133
                  | fieldIsOptional f  = [t| Maybe $t     |]
134
                  | otherwise = t
135
                  where t = fieldType f
136

    
137
checkNonOptDef :: (Monad m) => Field -> m ()
138
checkNonOptDef (Field { fieldIsOptional = True, fieldName = name }) =
139
  fail $ "Optional field " ++ name ++ " used in parameter declaration"
140
checkNonOptDef (Field { fieldDefault = (Just _), fieldName = name }) =
141
  fail $ "Default field " ++ name ++ " used in parameter declaration"
142
checkNonOptDef _ = return ()
143

    
144
loadFn :: Field -> Q Exp -> Q Exp
145
loadFn (Field { fieldIsContainer = True }) expr = [| $expr >>= readContainer |]
146
loadFn (Field { fieldRead = Just readfn }) expr = [| $expr >>= $readfn |]
147
loadFn _ expr = expr
148

    
149
saveFn :: Field -> Q Exp -> Q Exp
150
saveFn (Field { fieldIsContainer = True }) expr = [| showContainer $expr |]
151
saveFn (Field { fieldRead = Just readfn }) expr = [| $readfn $expr |]
152
saveFn _ expr = expr
153

    
154
-- * Common field declarations
155

    
156
timeStampFields :: [Field]
157
timeStampFields =
158
    [ defaultField [| 0::Double |] $ simpleField "ctime" [t| Double |]
159
    , defaultField [| 0::Double |] $ simpleField "mtime" [t| Double |]
160
    ]
161

    
162
serialFields :: [Field]
163
serialFields =
164
    [ renameField  "Serial" $ simpleField "serial_no" [t| Int |] ]
165

    
166
uuidFields :: [Field]
167
uuidFields = [ simpleField "uuid" [t| String |] ]
168

    
169
-- * Helper functions
170

    
171
-- | Ensure first letter is lowercase.
172
--
173
-- Used to convert type name to function prefix, e.g. in @data Aa ->
174
-- aaToRaw@.
175
ensureLower :: String -> String
176
ensureLower [] = []
177
ensureLower (x:xs) = toLower x:xs
178

    
179
-- | Ensure first letter is uppercase.
180
--
181
-- Used to convert constructor name to component
182
ensureUpper :: String -> String
183
ensureUpper [] = []
184
ensureUpper (x:xs) = toUpper x:xs
185

    
186
-- | Helper for quoted expressions.
187
varNameE :: String -> Q Exp
188
varNameE = varE . mkName
189

    
190
-- | showJSON as an expression, for reuse.
191
showJSONE :: Q Exp
192
showJSONE = varNameE "showJSON"
193

    
194
-- | ToRaw function name.
195
toRawName :: String -> Name
196
toRawName = mkName . (++ "ToRaw") . ensureLower
197

    
198
-- | FromRaw function name.
199
fromRawName :: String -> Name
200
fromRawName = mkName . (++ "FromRaw") . ensureLower
201

    
202
-- | Converts a name to it's varE/litE representations.
203
--
204
reprE :: Either String Name -> Q Exp
205
reprE = either stringE varE
206

    
207
-- | Smarter function application.
208
--
209
-- This does simply f x, except that if is 'id', it will skip it, in
210
-- order to generate more readable code when using -ddump-splices.
211
appFn :: Exp -> Exp -> Exp
212
appFn f x | f == VarE 'id = x
213
          | otherwise = AppE f x
214

    
215
-- | Container loader
216
readContainer :: (Monad m, JSON.JSON a) =>
217
                 JSON.JSObject JSON.JSValue -> m (Container a)
218
readContainer obj = do
219
  let kjvlist = JSON.fromJSObject obj
220
  kalist <- mapM (\(k, v) -> fromKeyValue k v >>= \a -> return (k, a)) kjvlist
221
  return $ M.fromList kalist
222

    
223
-- | Container dumper
224
showContainer :: (JSON.JSON a) => Container a -> JSON.JSValue
225
showContainer = JSON.makeObj . map (second JSON.showJSON) . M.toList
226

    
227
-- * Template code for simple raw type-equivalent ADTs
228

    
229
-- | Generates a data type declaration.
230
--
231
-- The type will have a fixed list of instances.
232
strADTDecl :: Name -> [String] -> Dec
233
strADTDecl name constructors =
234
  DataD [] name []
235
          (map (flip NormalC [] . mkName) constructors)
236
          [''Show, ''Read, ''Eq, ''Enum, ''Bounded, ''Ord]
237

    
238
-- | Generates a toRaw function.
239
--
240
-- This generates a simple function of the form:
241
--
242
-- @
243
-- nameToRaw :: Name -> /traw/
244
-- nameToRaw Cons1 = var1
245
-- nameToRaw Cons2 = \"value2\"
246
-- @
247
genToRaw :: Name -> Name -> Name -> [(String, Either String Name)] -> Q [Dec]
248
genToRaw traw fname tname constructors = do
249
  sigt <- [t| $(conT tname) -> $(conT traw) |]
250
  -- the body clauses, matching on the constructor and returning the
251
  -- raw value
252
  clauses <- mapM  (\(c, v) -> clause [recP (mkName c) []]
253
                             (normalB (reprE v)) []) constructors
254
  return [SigD fname sigt, FunD fname clauses]
255

    
256
-- | Generates a fromRaw function.
257
--
258
-- The function generated is monadic and can fail parsing the
259
-- raw value. It is of the form:
260
--
261
-- @
262
-- nameFromRaw :: (Monad m) => /traw/ -> m Name
263
-- nameFromRaw s | s == var1       = Cons1
264
--               | s == \"value2\" = Cons2
265
--               | otherwise = fail /.../
266
-- @
267
genFromRaw :: Name -> Name -> Name -> [(String, Name)] -> Q [Dec]
268
genFromRaw traw fname tname constructors = do
269
  -- signature of form (Monad m) => String -> m $name
270
  sigt <- [t| (Monad m) => $(conT traw) -> m $(conT tname) |]
271
  -- clauses for a guarded pattern
272
  let varp = mkName "s"
273
      varpe = varE varp
274
  clauses <- mapM (\(c, v) -> do
275
                     -- the clause match condition
276
                     g <- normalG [| $varpe == $(varE v) |]
277
                     -- the clause result
278
                     r <- [| return $(conE (mkName c)) |]
279
                     return (g, r)) constructors
280
  -- the otherwise clause (fallback)
281
  oth_clause <- do
282
    g <- normalG [| otherwise |]
283
    r <- [|fail ("Invalid string value for type " ++
284
                 $(litE (stringL (nameBase tname))) ++ ": " ++ show $varpe) |]
285
    return (g, r)
286
  let fun = FunD fname [Clause [VarP varp]
287
                        (GuardedB (clauses++[oth_clause])) []]
288
  return [SigD fname sigt, fun]
289

    
290
-- | Generates a data type from a given raw format.
291
--
292
-- The format is expected to multiline. The first line contains the
293
-- type name, and the rest of the lines must contain two words: the
294
-- constructor name and then the string representation of the
295
-- respective constructor.
296
--
297
-- The function will generate the data type declaration, and then two
298
-- functions:
299
--
300
-- * /name/ToRaw, which converts the type to a raw type
301
--
302
-- * /name/FromRaw, which (monadically) converts from a raw type to the type
303
--
304
-- Note that this is basically just a custom show/read instance,
305
-- nothing else.
306
declareADT :: Name -> String -> [(String, Name)] -> Q [Dec]
307
declareADT traw sname cons = do
308
  let name = mkName sname
309
      ddecl = strADTDecl name (map fst cons)
310
      -- process cons in the format expected by genToRaw
311
      cons' = map (\(a, b) -> (a, Right b)) cons
312
  toraw <- genToRaw traw (toRawName sname) name cons'
313
  fromraw <- genFromRaw traw (fromRawName sname) name cons
314
  return $ ddecl:toraw ++ fromraw
315

    
316
declareIADT :: String -> [(String, Name)] -> Q [Dec]
317
declareIADT = declareADT ''Int
318

    
319
declareSADT :: String -> [(String, Name)] -> Q [Dec]
320
declareSADT = declareADT ''String
321

    
322
-- | Creates the showJSON member of a JSON instance declaration.
323
--
324
-- This will create what is the equivalent of:
325
--
326
-- @
327
-- showJSON = showJSON . /name/ToRaw
328
-- @
329
--
330
-- in an instance JSON /name/ declaration
331
genShowJSON :: String -> Q Dec
332
genShowJSON name = do
333
  body <- [| JSON.showJSON . $(varE (toRawName name)) |]
334
  return $ FunD (mkName "showJSON") [Clause [] (NormalB body) []]
335

    
336
-- | Creates the readJSON member of a JSON instance declaration.
337
--
338
-- This will create what is the equivalent of:
339
--
340
-- @
341
-- readJSON s = case readJSON s of
342
--                Ok s' -> /name/FromRaw s'
343
--                Error e -> Error /description/
344
-- @
345
--
346
-- in an instance JSON /name/ declaration
347
genReadJSON :: String -> Q Dec
348
genReadJSON name = do
349
  let s = mkName "s"
350
  body <- [| case JSON.readJSON $(varE s) of
351
               JSON.Ok s' -> $(varE (fromRawName name)) s'
352
               JSON.Error e ->
353
                   JSON.Error $ "Can't parse raw value for type " ++
354
                           $(stringE name) ++ ": " ++ e ++ " from " ++
355
                           show $(varE s)
356
           |]
357
  return $ FunD (mkName "readJSON") [Clause [VarP s] (NormalB body) []]
358

    
359
-- | Generates a JSON instance for a given type.
360
--
361
-- This assumes that the /name/ToRaw and /name/FromRaw functions
362
-- have been defined as by the 'declareSADT' function.
363
makeJSONInstance :: Name -> Q [Dec]
364
makeJSONInstance name = do
365
  let base = nameBase name
366
  showJ <- genShowJSON base
367
  readJ <- genReadJSON base
368
  return [InstanceD [] (AppT (ConT ''JSON.JSON) (ConT name)) [readJ,showJ]]
369

    
370
-- * Template code for opcodes
371

    
372
-- | Transforms a CamelCase string into an_underscore_based_one.
373
deCamelCase :: String -> String
374
deCamelCase =
375
    intercalate "_" . map (map toUpper) . groupBy (\_ b -> not $ isUpper b)
376

    
377
-- | Transform an underscore_name into a CamelCase one.
378
camelCase :: String -> String
379
camelCase = concatMap (ensureUpper . drop 1) .
380
            groupBy (\_ b -> b /= '_') . ('_':)
381

    
382
-- | Computes the name of a given constructor.
383
constructorName :: Con -> Q Name
384
constructorName (NormalC name _) = return name
385
constructorName (RecC name _)    = return name
386
constructorName x                = fail $ "Unhandled constructor " ++ show x
387

    
388
-- | Builds the generic constructor-to-string function.
389
--
390
-- This generates a simple function of the following form:
391
--
392
-- @
393
-- fname (ConStructorOne {}) = trans_fun("ConStructorOne")
394
-- fname (ConStructorTwo {}) = trans_fun("ConStructorTwo")
395
-- @
396
--
397
-- This builds a custom list of name/string pairs and then uses
398
-- 'genToRaw' to actually generate the function
399
genConstrToStr :: (String -> String) -> Name -> String -> Q [Dec]
400
genConstrToStr trans_fun name fname = do
401
  TyConI (DataD _ _ _ cons _) <- reify name
402
  cnames <- mapM (liftM nameBase . constructorName) cons
403
  let svalues = map (Left . trans_fun) cnames
404
  genToRaw ''String (mkName fname) name $ zip cnames svalues
405

    
406
-- | Constructor-to-string for OpCode.
407
genOpID :: Name -> String -> Q [Dec]
408
genOpID = genConstrToStr deCamelCase
409

    
410
-- | OpCode parameter (field) type.
411
type OpParam = (String, Q Type, Q Exp)
412

    
413
-- | Generates the OpCode data type.
414
--
415
-- This takes an opcode logical definition, and builds both the
416
-- datatype and the JSON serialisation out of it. We can't use a
417
-- generic serialisation since we need to be compatible with Ganeti's
418
-- own, so we have a few quirks to work around.
419
genOpCode :: String                -- ^ Type name to use
420
          -> [(String, [Field])]   -- ^ Constructor name and parameters
421
          -> Q [Dec]
422
genOpCode name cons = do
423
  decl_d <- mapM (\(cname, fields) -> do
424
                    -- we only need the type of the field, without Q
425
                    fields' <- mapM actualFieldType fields
426
                    let fields'' = zip (repeat NotStrict) fields'
427
                    return $ NormalC (mkName cname) fields'')
428
            cons
429
  let declD = DataD [] (mkName name) [] decl_d [''Show, ''Read, ''Eq]
430

    
431
  (savesig, savefn) <- genSaveOpCode cons
432
  (loadsig, loadfn) <- genLoadOpCode cons
433
  return [declD, loadsig, loadfn, savesig, savefn]
434

    
435
-- | Checks whether a given parameter is options.
436
--
437
-- This requires that it's a 'Maybe'.
438
isOptional :: Type -> Bool
439
isOptional (AppT (ConT dt) _) | dt == ''Maybe = True
440
isOptional _ = False
441

    
442
-- | Generates the \"save\" clause for an entire opcode constructor.
443
--
444
-- This matches the opcode with variables named the same as the
445
-- constructor fields (just so that the spliced in code looks nicer),
446
-- and passes those name plus the parameter definition to 'saveObjectField'.
447
saveConstructor :: String    -- ^ The constructor name
448
                -> [Field]   -- ^ The parameter definitions for this
449
                             -- constructor
450
                -> Q Clause  -- ^ Resulting clause
451
saveConstructor sname fields = do
452
  let cname = mkName sname
453
  let fnames = map (mkName . fieldVariable) fields
454
  let pat = conP cname (map varP fnames)
455
  let felems = map (uncurry saveObjectField) (zip fnames fields)
456
      -- now build the OP_ID serialisation
457
      opid = [| [( $(stringE "OP_ID"),
458
                   JSON.showJSON $(stringE . deCamelCase $ sname) )] |]
459
      flist = listE (opid:felems)
460
      -- and finally convert all this to a json object
461
      flist' = [| $(varNameE "makeObj") (concat $flist) |]
462
  clause [pat] (normalB flist') []
463

    
464
-- | Generates the main save opcode function.
465
--
466
-- This builds a per-constructor match clause that contains the
467
-- respective constructor-serialisation code.
468
genSaveOpCode :: [(String, [Field])] -> Q (Dec, Dec)
469
genSaveOpCode opdefs = do
470
  cclauses <- mapM (uncurry saveConstructor) opdefs
471
  let fname = mkName "saveOpCode"
472
  sigt <- [t| $(conT (mkName "OpCode")) -> JSON.JSValue |]
473
  return $ (SigD fname sigt, FunD fname cclauses)
474

    
475
loadConstructor :: String -> [Field] -> Q Exp
476
loadConstructor sname fields = do
477
  let name = mkName sname
478
  fbinds <- mapM loadObjectField fields
479
  let (fnames, fstmts) = unzip fbinds
480
  let cval = foldl (\accu fn -> AppE accu (VarE fn)) (ConE name) fnames
481
      fstmts' = fstmts ++ [NoBindS (AppE (VarE 'return) cval)]
482
  return $ DoE fstmts'
483

    
484
genLoadOpCode :: [(String, [Field])] -> Q (Dec, Dec)
485
genLoadOpCode opdefs = do
486
  let fname = mkName "loadOpCode"
487
      arg1 = mkName "v"
488
      objname = mkName "o"
489
      opid = mkName "op_id"
490
  st1 <- bindS (varP objname) [| liftM JSON.fromJSObject
491
                                 (JSON.readJSON $(varE arg1)) |]
492
  st2 <- bindS (varP opid) [| $(varNameE "fromObj")
493
                              $(varE objname) $(stringE "OP_ID") |]
494
  -- the match results (per-constructor blocks)
495
  mexps <- mapM (uncurry loadConstructor) opdefs
496
  fails <- [| fail $ "Unknown opcode " ++ $(varE opid) |]
497
  let mpats = map (\(me, c) ->
498
                       let mp = LitP . StringL . deCamelCase . fst $ c
499
                       in Match mp (NormalB me) []
500
                  ) $ zip mexps opdefs
501
      defmatch = Match WildP (NormalB fails) []
502
      cst = NoBindS $ CaseE (VarE opid) $ mpats++[defmatch]
503
      body = DoE [st1, st2, cst]
504
  sigt <- [t| JSON.JSValue -> JSON.Result $(conT (mkName "OpCode")) |]
505
  return $ (SigD fname sigt, FunD fname [Clause [VarP arg1] (NormalB body) []])
506

    
507
-- * Template code for luxi
508

    
509
-- | Constructor-to-string for LuxiOp.
510
genStrOfOp :: Name -> String -> Q [Dec]
511
genStrOfOp = genConstrToStr id
512

    
513
-- | Constructor-to-string for MsgKeys.
514
genStrOfKey :: Name -> String -> Q [Dec]
515
genStrOfKey = genConstrToStr ensureLower
516

    
517
-- | LuxiOp parameter type.
518
type LuxiParam = (String, Q Type, Q Exp)
519

    
520
-- | Generates the LuxiOp data type.
521
--
522
-- This takes a Luxi operation definition and builds both the
523
-- datatype and the function trnasforming the arguments to JSON.
524
-- We can't use anything less generic, because the way different
525
-- operations are serialized differs on both parameter- and top-level.
526
--
527
-- There are three things to be defined for each parameter:
528
--
529
-- * name
530
--
531
-- * type
532
--
533
-- * operation; this is the operation performed on the parameter before
534
--   serialization
535
--
536
genLuxiOp :: String -> [(String, [LuxiParam])] -> Q [Dec]
537
genLuxiOp name cons = do
538
  decl_d <- mapM (\(cname, fields) -> do
539
                    fields' <- mapM (\(_, qt, _) ->
540
                                         qt >>= \t -> return (NotStrict, t))
541
                               fields
542
                    return $ NormalC (mkName cname) fields')
543
            cons
544
  let declD = DataD [] (mkName name) [] decl_d [''Show, ''Read]
545
  (savesig, savefn) <- genSaveLuxiOp cons
546
  return [declD, savesig, savefn]
547

    
548
-- | Generates the \"save\" expression for a single luxi parameter.
549
saveLuxiField :: Name -> LuxiParam -> Q Exp
550
saveLuxiField fvar (_, qt, fn) =
551
    [| JSON.showJSON ( $(liftM2 appFn fn $ varE fvar) ) |]
552

    
553
-- | Generates the \"save\" clause for entire LuxiOp constructor.
554
saveLuxiConstructor :: (String, [LuxiParam]) -> Q Clause
555
saveLuxiConstructor (sname, fields) = do
556
  let cname = mkName sname
557
      fnames = map (\(nm, _, _) -> mkName nm) fields
558
      pat = conP cname (map varP fnames)
559
      flist = map (uncurry saveLuxiField) (zip fnames fields)
560
      finval = if null flist
561
               then [| JSON.showJSON ()    |]
562
               else [| JSON.showJSON $(listE flist) |]
563
  clause [pat] (normalB finval) []
564

    
565
-- | Generates the main save LuxiOp function.
566
genSaveLuxiOp :: [(String, [LuxiParam])]-> Q (Dec, Dec)
567
genSaveLuxiOp opdefs = do
568
  sigt <- [t| $(conT (mkName "LuxiOp")) -> JSON.JSValue |]
569
  let fname = mkName "opToArgs"
570
  cclauses <- mapM saveLuxiConstructor opdefs
571
  return $ (SigD fname sigt, FunD fname cclauses)
572

    
573
-- * "Objects" functionality
574

    
575
-- | Extract the field's declaration from a Field structure.
576
fieldTypeInfo :: String -> Field -> Q (Name, Strict, Type)
577
fieldTypeInfo field_pfx fd = do
578
  t <- actualFieldType fd
579
  let n = mkName . (field_pfx ++) . fieldRecordName $ fd
580
  return (n, NotStrict, t)
581

    
582
-- | Build an object declaration.
583
buildObject :: String -> String -> [Field] -> Q [Dec]
584
buildObject sname field_pfx fields = do
585
  let name = mkName sname
586
  fields_d <- mapM (fieldTypeInfo field_pfx) fields
587
  let decl_d = RecC name fields_d
588
  let declD = DataD [] name [] [decl_d] [''Show, ''Read, ''Eq]
589
  ser_decls <- buildObjectSerialisation sname fields
590
  return $ declD:ser_decls
591

    
592
buildObjectSerialisation :: String -> [Field] -> Q [Dec]
593
buildObjectSerialisation sname fields = do
594
  let name = mkName sname
595
  savedecls <- genSaveObject saveObjectField sname fields
596
  (loadsig, loadfn) <- genLoadObject loadObjectField sname fields
597
  shjson <- objectShowJSON sname
598
  rdjson <- objectReadJSON sname
599
  let instdecl = InstanceD [] (AppT (ConT ''JSON.JSON) (ConT name))
600
                 [rdjson, shjson]
601
  return $ savedecls ++ [loadsig, loadfn, instdecl]
602

    
603
genSaveObject :: (Name -> Field -> Q Exp)
604
              -> String -> [Field] -> Q [Dec]
605
genSaveObject save_fn sname fields = do
606
  let name = mkName sname
607
  let fnames = map (mkName . fieldVariable) fields
608
  let pat = conP name (map varP fnames)
609
  let tdname = mkName ("toDict" ++ sname)
610
  tdsigt <- [t| $(conT name) -> [(String, JSON.JSValue)] |]
611

    
612
  let felems = map (uncurry save_fn) (zip fnames fields)
613
      flist = listE felems
614
      -- and finally convert all this to a json object
615
      tdlist = [| concat $flist |]
616
      iname = mkName "i"
617
  tclause <- clause [pat] (normalB tdlist) []
618
  cclause <- [| $(varNameE "makeObj") . $(varE tdname) |]
619
  let fname = mkName ("save" ++ sname)
620
  sigt <- [t| $(conT name) -> JSON.JSValue |]
621
  return [SigD tdname tdsigt, FunD tdname [tclause],
622
          SigD fname sigt, ValD (VarP fname) (NormalB cclause) []]
623

    
624
saveObjectField :: Name -> Field -> Q Exp
625
saveObjectField fvar field
626
  | isContainer = [| [( $nameE , JSON.showJSON . showContainer $ $fvarE)] |]
627
  | fisOptional = [| case $(varE fvar) of
628
                      Nothing -> []
629
                      Just v -> [( $nameE, JSON.showJSON v)]
630
                  |]
631
  | otherwise = case fieldShow field of
632
      Nothing -> [| [( $nameE, JSON.showJSON $fvarE)] |]
633
      Just fn -> [| [( $nameE, JSON.showJSON . $fn $ $fvarE)] |]
634
  where isContainer = fieldIsContainer field
635
        fisOptional  = fieldIsOptional field
636
        nameE = stringE (fieldName field)
637
        fvarE = varE fvar
638

    
639
objectShowJSON :: String -> Q Dec
640
objectShowJSON name = do
641
  body <- [| JSON.showJSON . $(varE . mkName $ "save" ++ name) |]
642
  return $ FunD (mkName "showJSON") [Clause [] (NormalB body) []]
643

    
644
genLoadObject :: (Field -> Q (Name, Stmt))
645
              -> String -> [Field] -> Q (Dec, Dec)
646
genLoadObject load_fn sname fields = do
647
  let name = mkName sname
648
      funname = mkName $ "load" ++ sname
649
      arg1 = mkName "v"
650
      objname = mkName "o"
651
      opid = mkName "op_id"
652
  st1 <- bindS (varP objname) [| liftM JSON.fromJSObject
653
                                 (JSON.readJSON $(varE arg1)) |]
654
  fbinds <- mapM load_fn fields
655
  let (fnames, fstmts) = unzip fbinds
656
  let cval = foldl (\accu fn -> AppE accu (VarE fn)) (ConE name) fnames
657
      fstmts' = st1:fstmts ++ [NoBindS (AppE (VarE 'return) cval)]
658
  sigt <- [t| JSON.JSValue -> JSON.Result $(conT name) |]
659
  return $ (SigD funname sigt,
660
            FunD funname [Clause [VarP arg1] (NormalB (DoE fstmts')) []])
661

    
662
loadObjectField :: Field -> Q (Name, Stmt)
663
loadObjectField field = do
664
  let name = fieldVariable field
665
      fvar = mkName name
666
  -- these are used in all patterns below
667
  let objvar = varNameE "o"
668
      objfield = stringE (fieldName field)
669
      loadexp =
670
        if fieldIsOptional field
671
          then [| $(varNameE "maybeFromObj") $objvar $objfield |]
672
          else case fieldDefault field of
673
                 Just defv ->
674
                   [| $(varNameE "fromObjWithDefault") $objvar
675
                      $objfield $defv |]
676
                 Nothing -> [| $(varNameE "fromObj") $objvar $objfield |]
677
  bexp <- loadFn field loadexp
678

    
679
  return (fvar, BindS (VarP fvar) bexp)
680

    
681
objectReadJSON :: String -> Q Dec
682
objectReadJSON name = do
683
  let s = mkName "s"
684
  body <- [| case JSON.readJSON $(varE s) of
685
               JSON.Ok s' -> $(varE .mkName $ "load" ++ name) s'
686
               JSON.Error e ->
687
                 JSON.Error $ "Can't parse value for type " ++
688
                       $(stringE name) ++ ": " ++ e
689
           |]
690
  return $ FunD (mkName "readJSON") [Clause [VarP s] (NormalB body) []]
691

    
692
-- * Inheritable parameter tables implementation
693

    
694
-- | Compute parameter type names.
695
paramTypeNames :: String -> (String, String)
696
paramTypeNames root = ("Filled"  ++ root ++ "Params",
697
                       "Partial" ++ root ++ "Params")
698

    
699
-- | Compute information about the type of a parameter field.
700
paramFieldTypeInfo :: String -> Field -> Q (Name, Strict, Type)
701
paramFieldTypeInfo field_pfx fd = do
702
  t <- actualFieldType fd
703
  let n = mkName . (++ "P") . (field_pfx ++) .
704
          fieldRecordName $ fd
705
  return (n, NotStrict, AppT (ConT ''Maybe) t)
706

    
707
-- | Build a parameter declaration.
708
--
709
-- This function builds two different data structures: a /filled/ one,
710
-- in which all fields are required, and a /partial/ one, in which all
711
-- fields are optional. Due to the current record syntax issues, the
712
-- fields need to be named differrently for the two structures, so the
713
-- partial ones get a /P/ suffix.
714
buildParam :: String -> String -> [Field] -> Q [Dec]
715
buildParam sname field_pfx fields = do
716
  let (sname_f, sname_p) = paramTypeNames sname
717
      name_f = mkName sname_f
718
      name_p = mkName sname_p
719
  fields_f <- mapM (fieldTypeInfo field_pfx) fields
720
  fields_p <- mapM (paramFieldTypeInfo field_pfx) fields
721
  let decl_f = RecC name_f fields_f
722
      decl_p = RecC name_p fields_p
723
  let declF = DataD [] name_f [] [decl_f] [''Show, ''Read, ''Eq]
724
      declP = DataD [] name_p [] [decl_p] [''Show, ''Read, ''Eq]
725
  ser_decls_f <- buildObjectSerialisation sname_f fields
726
  ser_decls_p <- buildPParamSerialisation sname_p fields
727
  fill_decls <- fillParam sname field_pfx fields
728
  return $ [declF, declP] ++ ser_decls_f ++ ser_decls_p ++ fill_decls
729

    
730
buildPParamSerialisation :: String -> [Field] -> Q [Dec]
731
buildPParamSerialisation sname fields = do
732
  let name = mkName sname
733
  savedecls <- genSaveObject savePParamField sname fields
734
  (loadsig, loadfn) <- genLoadObject loadPParamField sname fields
735
  shjson <- objectShowJSON sname
736
  rdjson <- objectReadJSON sname
737
  let instdecl = InstanceD [] (AppT (ConT ''JSON.JSON) (ConT name))
738
                 [rdjson, shjson]
739
  return $ savedecls ++ [loadsig, loadfn, instdecl]
740

    
741
savePParamField :: Name -> Field -> Q Exp
742
savePParamField fvar field = do
743
  checkNonOptDef field
744
  let actualVal = mkName "v"
745
  normalexpr <- saveObjectField actualVal field
746
  -- we have to construct the block here manually, because we can't
747
  -- splice-in-splice
748
  return $ CaseE (VarE fvar) [ Match (ConP 'Nothing [])
749
                                       (NormalB (ConE '[])) []
750
                             , Match (ConP 'Just [VarP actualVal])
751
                                       (NormalB normalexpr) []
752
                             ]
753
loadPParamField :: Field -> Q (Name, Stmt)
754
loadPParamField field = do
755
  checkNonOptDef field
756
  let name = fieldName field
757
      fvar = mkName name
758
  -- these are used in all patterns below
759
  let objvar = varNameE "o"
760
      objfield = stringE name
761
      loadexp = [| $(varNameE "maybeFromObj") $objvar $objfield |]
762
  bexp <- loadFn field loadexp
763
  return (fvar, BindS (VarP fvar) bexp)
764

    
765
-- | Builds a simple declaration of type @n_x = fromMaybe f_x p_x@.
766
buildFromMaybe :: String -> Q Dec
767
buildFromMaybe fname =
768
  valD (varP (mkName $ "n_" ++ fname))
769
         (normalB [| $(varNameE "fromMaybe")
770
                        $(varNameE $ "f_" ++ fname)
771
                        $(varNameE $ "p_" ++ fname) |]) []
772

    
773
fillParam :: String -> String -> [Field] -> Q [Dec]
774
fillParam sname field_pfx fields = do
775
  let fnames = map (\fd -> field_pfx ++ fieldRecordName fd) fields
776
      (sname_f, sname_p) = paramTypeNames sname
777
      oname_f = "fobj"
778
      oname_p = "pobj"
779
      name_f = mkName sname_f
780
      name_p = mkName sname_p
781
      fun_name = mkName $ "fill" ++ sname ++ "Params"
782
      le_full = ValD (ConP name_f (map (VarP . mkName . ("f_" ++)) fnames))
783
                (NormalB . VarE . mkName $ oname_f) []
784
      le_part = ValD (ConP name_p (map (VarP . mkName . ("p_" ++)) fnames))
785
                (NormalB . VarE . mkName $ oname_p) []
786
      obj_new = foldl (\accu vname -> AppE accu (VarE vname)) (ConE name_f)
787
                $ map (mkName . ("n_" ++)) fnames
788
  le_new <- mapM buildFromMaybe fnames
789
  funt <- [t| $(conT name_f) -> $(conT name_p) -> $(conT name_f) |]
790
  let sig = SigD fun_name funt
791
      fclause = Clause [VarP (mkName oname_f), VarP (mkName oname_p)]
792
                (NormalB $ LetE (le_full:le_part:le_new) obj_new) []
793
      fun = FunD fun_name [fclause]
794
  return [sig, fun]