A Python Module for NETCONF
Clients

Shikhar Bhushan

Computer Science

Jacobs University Bremen
Campus Ring 1

28759 Bremen

Germany

Type: Guided Research Proposal
Date: March 8, 2009
Supervisor: Prof. |. Schonwiilder

Executive Summary

Networks have rapidly increased in size, complexity, and the number of
services dependent on them. However, network management tools have
not kept pace with this dizzying growth.

NETCONF is an answer to the problems of heterogeneity and scale inher-
ent in computer networks. It is a new network management protocol, de-
veloped with broad participation of the industry. It provides secure and
robust facilities for automating configuration operations. Network services
providers have much to gain by the realization of economies around NET-
CONE

In this document, I propose developing a free software library for NET-
CONF in the Python programming language. The deliverable will be mod-
ular and extensible. It will abstract protocol details and expose an intuitive,
object-oriented Application Programming Interface (API) for the develop-
ment of network management applications.

1 Summary

The Network Configuration protocol (NETCONF) is a network manage-
ment protocol developed by the Netconf Working Group [1] of the IETE. It
is a proposed internet standard since December 2006. [2, RFC 4741]

[NETCONF] provides mechanisms to install, manipulate, and
delete the configuration of network devices. It uses an Extensi-
ble Markup Language (XML)-based data encoding for the con-
figuration data as well as the protocol messages. The NET-
CONF protocol operations are realized on top of a simple Re-
mote Procedure Call (RPC) layer. [2]

NETCONF has quickly positioned itself as the superior standard for net-
work configuration. There has been good industry adoption of the pro-
tocol, and most network equipment vendors have either implemented or
plan to implement it. It is a significant improvement over proprietary com-
mand line interfaces commonly used for configuring network devices. Ef-
forts are underway to create standard data models for NETCONF and data
manipulated by it. [3] This will enable a degree of interoperability that has
not been possible so far.

I herein propose the the development of a Python module for NETCONF
clients. Python is already in common use as a scripting language in net-
worked environments, as well as within the NETCONF community, e.g.
EnSuite [4], Yang [5].

2 Statement and Motivation of Research

The Simple Network Management Protocol (SNMP) is an early network
management standard has served important monitoring functions. How-
ever, its configuration facilities are rarely utilized in practice and users have
preferred working with proprietary command line interfaces. Despite its
name, SNMP is not a simple protocol to implement.

I find the following text, emanating from an internet draft of the Netmod
Working Group, to be a fitting quote:

Networks are increasing in complexity and capacity, as well
as the density of the services deployed upon them. Uptime,
reliability, and predictable latency requirements drive the need
for automation.

The problems with network management are not simple.
They are complex and intricate. But these problems must be

solved for networks to meet the stability needs of existing ser-
vices while incorporating new services in a world where the
growth of the networks is exhausting the supply of qualified
networking engineers. We need to move from a CLI world into
a world of automation, but that automation must be robust and
trustworthy. [6]

The NETCONF protocol is designed for robust and trustworthy automa-
tion. It is a secure, connection-oriented protocol. Its use of XML as a data
encoding language gives a “rich, flexible, hierarchical, standard represen-
tation of data that matches the needs of networking devices.” [6]

The Netconf Working Group has focused its efforts on defining the base
NETCONF standard, explicitly leaving out of its charter data modeling is-
sues. The Netmod Working Group came about to fill in this gap, and has
developed YANG, a language “to model configuration and state data ma-
nipulated by the NETCONF protocol, NETCONF remote procedure calls,
and NETCONF notifications.” [7]]

The realization of NETCONF’s promise would be greatly aided by a soft-
ware library that makes it easy to create network management applications
around it. Through this guided research project, I want to address this with
an open source implementation in Python. My aim for this project is that it
should be easy to write a simple script that deploys a configuration change
across routers from different vendors, and at the same time possible to im-
plement more complex applications like web interfaces and management
consoles.

In the time span of this project, it will not be possible to incorporate data
modeling features. My primary focus will be creating an intuitive, stable
API for the base NETCONF specification set out in RFC 4741 [2].

It is worthwhile to note that there has already been a free software imple-
mentation of NETCONF in Python called EnSuite [4]. Besides a NET-
CONIFF server, EnSuite includes a client called YencaP Manager. How-
ever, this is geared towards a web-based management interface. I deter-
mined that adapting YencaP Manager towards this project’s aims would
require refactoring or rewriting major sections of the code, and consequently
I propose to start from scratch with a cleaner architecture.

Proprietary implementations of NETCONF clients include a Java imple-
mentation from Tail-f Systems called ConfM and a Windows-only applica-
tion called NETCONF Client GUI from Cisco Systems, Inc. The latter is
intended for didactic purposes rather than use in production. Juniper Net-
works documents a Perl module Net : :Netconf: :Manager on its web-
site, but download access is restricted to Juniper customers.

3 Planned Approach

Figure 1: NETCONF protocol overview [2]

Layer Example
o + o —————— +
(4) | Content | | Configuration data
Fomm + o +
| |
- + ——_— +
(3) | Operations | | <get-config>, <edit-config> |
e + e +
| |
e + e +
(2) | RPC | | <rpc>, <rpc-reply>
o + ——_——— +
| |
fomm + o +
(1) | Transport | | BEEP, SSH, SSL, console
| Protocol | | |
e + ——_—— +

Figure (1| illustrates how NETCONF may be conceptually partitioned into
logical layers. This is in fact an excellent architecture for our purpose. It
mirrors the actual protocol and minimizes the degree of coupling between
the different layers.

The ncclient module will be organized into three submodules based on
these layers: session, operations and content.

The high-level API will start with the creation of a Manager object. This
will provide syntactic sugar that abstracts how the different modules in-
teract. For more direct control, it will be possible to compose the modules
manually.

Code listing [I|and [2| are illustrative of the general API that I would like to
work towards.

3.1 Capabilities

Capabilities introduce new protocol operations and modify existing oper-
ations, when mutually understood by server and client. In addition to the
:base NETCONEF capability, the capabilities listed in Table [1] will be sup-
ported. A plug-in manner to support additional capabilities will be inves-
tigated and implemented.

Code Listing 1: A simple example using Manager

import ncclient

config = ""

using the new with..as s ax Iintroduced in I n 2.
passwd="x") as device:

with ncclient.Manager (host="10.0.0.1", user="x",
try:
config = device.getConfig(source="running")
except RPCError as e:
print (e.message)

Code Listing 2: Manually composing different modules

import ncclient
from ncclient import session, operations, content

try:

s = session.SSH(host="10.0.0.1", port=99)

try:
by default use local key files / ssh agent
s.connect (ncclient.capabilities)
assert (":url" in session.peerCapabilities)
op = operations.CopyConfig ()
op.params["source"] = "running"
op.params["target"] = "https://user@example.com:passphrase/backup"
op.responseHandler = content.ResponseHandler
op.execute (s)

except RPCError as e:

pass 7 handle
except UnknownHost as e:
pass # h ile
finally:
operations.CloseSession () .execute (s)

3.2 Submodules
session

NETCONEF is designed to be independent of session-layer and transport.

Currently NETCONF has transport mappings defined for SSH [9, RFC 4742],
SOAP [10, RFC 4743] and BEEP [11, RFC 4744]. Of these, a NETCONF

server has to mandatorily implement SSH. [2] This, and the ubiquity of

SSH, makes it the best choice for initial development.

Programmatically establishing and utilizing a SSH session would be prefer-
able to forking a ssh subprocess, since this gives finer control over authen-
tication and host verification. paramiko [12] is a SSH library for Python
that was evaluated and found to be very suitable for this purpose. RFC
4742 [9] makes note of several security considerations which will be taken

Table 1: Planned capability support

Capability Description

:writable-running [2] <running/> configuration can
be directly modified.

:candidate [2] Utilize <candidate/> configu-

ration database.

:confirmed-commit [2] Server waits for a timeout pe-
riod for client’s confirmation be-
fore committing.

:rollback-on-error [2] | "All-or-nothing” edit mode.

:startup [2] Distinct <startup/> configura-
tion database.

:url [2] URL permissible as source or tar-
get of operations.

:validate [2] Request validation of configura-
tion data.

:xpath [2] Filtering using XPath expressions.

:notification [8] NETCONEF event notifications.

:interleave [§] Interleave active notification sub-

scription with other operations.

into account.

Extensibility with respect to other transport protocol mappings will be en-
sured by creating a base class that implements and exposes common func-
tionality. Effort will be made to limit the protocol-specific APL

Only supporting blocking operation would greatly reduce the benefits of
this library. It is important that the transport channel is used asynchronously
to take advantage of NETCONF’s pipelining support. Asynchronous oper-
ation is also required for supporting the : interleave capability. There-
fore, all transport layer code will run in a separate thread. Doing this
“right” will be challenging, but with the payoff that there will be a sound
base for application development.

Functions

¢ Establish session: authentication, host verification, and capability ex-
change.

¢ Pipelining of requests.

¢ Distinguish incoming messages.

¢ Tearing down the session.

operations

This module corresponds to the RPC and Operations layers in Figure
Each NETCONF operation will correspond to an Operation object. All
the operations specified in RFC 4741 [2] and RFC 5277 [8] will be imple-
mented.

Functions
¢ Interact with session layer.
¢ Wrap operations as RPC requests taking into account available capa-
bilities.

* Map response or notification to pertinent Operation object.

content

This module will have the most to do with XML processing. A suitable
XML library remains to be determined. I expect that the Python standard
library’s facilities for XML should prove sufficient. Going this route will
also reduce external dependencies.

As a rule of thumb, everything that involves looking into NECONF mes-
sages will be handled by this module. It will provide generic classes that
may be extended.

Functions
¢ Interact with operations layer.

¢ Provide facilities for creating valid XML documents and parsing re-
sponses/notifications.

It is proposed that data modeling features be taken up at a future date once
the ground for YANG [7] is set. This will be facilitated by the existence of a
Python module for YANG that is actively developed. [5]

3.3 Licensing and Distribution

All code will be licensed under the BSD license. A permissive license was
chosen to remove barriers for the use and future development of this li-
brary. The module will be packaged using the Python distribution utilities.

3.4 Testing
Each module will have unit tests that make use of the Python unit testing
framework.

Interoperability testing is also important in light of the fact that there can
be many different implementations of NETCONF servers. ncclient will
be thoroughly tested against the Cisco, Juniper and Tail-f implementations.

3.5 Network-wide configuration

The above discussion has focused on configuring individual network de-
vices. The true potential of NETCONF is realized in configuring entire net-
works of heterogeneous devices. To this end a MultiManager class will
be implemented on top of the ncclient module. This will also serve as
sample code of APl usage.

4 Evaluation criteria

The deliverable is a Python module that makes it easy to develop configu-
ration network management applications for NETCONF. Thus the criteria
for evaluation is rather subjective.

Architecture Sound code organization and object-oriented design, expo-
sure of an intuitive and flexible high-level APL

Code quality Idiomatic Python.
Distributability Conformance to standard packaging practice.
Documentation Quality of documentation and provision of sample code.

Extensibility Ease of implementing new functionality without requiring
rewrites.

Standards-compliance With regard to requirements and recommendations
of relevant standards - RFC 4741 [2], RFC 4742 [9], and RFC 5277 [8]].

Testing Tested to work, what it works with, and test coverage.

5 Work plan

There are essentially 6 weeks available for the execution of the project. Here
I describe how long I expect to spend on various aspects.

March 17 - 31, 2009 Implement and test session module.

April 1-10,2009 Implement and test operations and content mod-
ules.

April 10 - 30, 2009 Integration, interoperability testing, Mult iManager, and
documentation.

References

[1] Network Configuration (netconf) Charter. http://www.ietf.org/
html.charters/netconf-charter.htmll

[2] R. Enns (Ed.). NETCONF Configuration Protocol. RFC 4741, Internet
Engineering Task Force, December 2006.

[3] NETCONF Data Modelling Language (netmod) Charter. http://

www.letf.org/html.charters/netmod-charter.html.

[4]]J. Bourdellon V. Cridlig, H. Abdelnur and R. State. A NetConf Net-
work Management Suite: ENSUITE. In 5th IEEE International Work-
shop on IP Operations & Management, volume 3751 of Lecture Notes in
Computer Science, pages 152-161. Springer, October 2005.

[5] pyang - An extensible YANG validator and converter in Python.
http://code.google.com/p/pyang/.

[6] P. Shafer. An Architecture for Network Management. Internet draft,
Internet Engineering Task Force, March 2009. Work in progress.

[7] YANG - A data modeling language for NETCONF. Internet draft,
Internet Engineering Task Force, March 2009. Work in progress.

[8] S. Chisholm and H. Trevino. NETCONF Event Notifications. RFC
5277, Internet Engineering Task Force, July 2008.

[9] M. Wasserman and T. Goddard. Using the NETCONF Configuration
Protocol over Secure SHell (SSH). RFC 4742, Internet Engineering Task
Force, December 2006.

[10] T. Goddard. Using NETCONEF over the Simple Object Access Protocol
(SOAP). RFC 4742, Internet Engineering Task Force, December 2006.

[11] E. Lear and K. Crozier. Using the NETCONF Protocol over the Blocks
Extensible Exchange Protocol (BEEP). RFC 4744, Internet Engineering
Task Force, December 2006.

[12] paramiko - SSH2 protocol for Python. |http://www.lag.net/
paramiko/.

http://www.ietf.org/html.charters/netconf-charter.html
http://www.ietf.org/html.charters/netconf-charter.html
http://www.ietf.org/html.charters/netmod-charter.html
http://www.ietf.org/html.charters/netmod-charter.html
http://code.google.com/p/pyang/
http://www.lag.net/paramiko/
http://www.lag.net/paramiko/

	Summary
	Statement and Motivation of Research
	Planned Approach
	Capabilities
	Submodules
	Licensing and Distribution
	Testing
	Network-wide configuration

	Evaluation criteria
	Work plan

