
http://docs.rackspacecloud.com/api
http://docs.rackspacecloud.com/api/

Cloud Files™ Developer Guide May 24, 2011 API v1

ii

Cloud Files™ Developer Guide
API v1 (2011-05-24)
Copyright © 2009-2011 Rackspace US, Inc. All rights reserved.

This document is intended for software developers interested in developing applications using the Rackspace Cloud Files™ Application
Programming Interface (API). The document is for informational purposes only and is provided “AS IS.”

RACKSPACE MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, AS TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS DOCUMENT AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND
PRODUCT/SERVICES DESCRIPTION AT ANY TIME WITHOUT NOTICE. RACKSPACE SERVICES OFFERINGS ARE SUBJECT TO CHANGE
WITHOUT NOTICE. USERS MUST TAKE FULL RESPONSIBILITY FOR APPLICATION OF ANY SERVICES MENTIONED HEREIN. EXCEPT
AS SET FORTH IN RACKSPACE GENERAL TERMS AND CONDITIONS AND/OR CLOUD TERMS OF SERVICE, RACKSPACE ASSUMES NO
LIABILITY WHATSOEVER, AND DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO ITS SERVICES INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT.

Except as expressly provided in any written license agreement from Rackspace, the furnishing of this document does not give you any
license to patents, trademarks, copyrights, or other intellectual property.

Rackspace®, Rackspace logo and Fanatical Support® are registered service marks of Rackspace US, Inc. All other product names and
trademarks used in this document are for identification purposes only and are property of their respective owners.

Cloud Files™ Developer Guide May 24, 2011 API v1

iii

Table of Contents
1. Overview ... 1

1.1. Intended Audience ... 1
1.2. Document Change History .. 2
1.3. Additional Resources .. 2

2. Concepts ... 3
2.1. Accounts .. 3
2.2. Authentication ... 3
2.3. Permissions ... 3
2.4. Containers .. 3
2.5. Objects ... 4
2.6. Operations ... 4
2.7. CDN-Enabled Containers ... 4
2.8. Language-Specific API Bindings ... 5

3. General API Information ... 7
3.1. Authentication ... 7
3.2. Overview of API Operations ... 9

4. API Operations for Storage Services ... 11
4.1. Storage Account Services .. 11

4.1.1. List Containers ... 11
4.1.2. Retrieve Account Metadata ... 14

4.2. Storage Container Services .. 15
4.2.1. List Objects .. 15
4.2.2. Create Container ... 20
4.2.3. Delete Container .. 21
4.2.4. Retrieve Container Metadata ... 22

4.3. Storage Object Services .. 22
4.3.1. Retrieve Object .. 23
4.3.2. Create/Update Object .. 24
4.3.3. Copy Object ... 28
4.3.4. Delete Object .. 29
4.3.5. Retrieve Object Metadata .. 29
4.3.6. Update Object Metadata ... 30

5. API Operations for CDN Services ... 31
5.1. CDN Account Operations .. 31

5.1.1. List CDN-Enabled Containers .. 31
5.2. CDN Container Services .. 34

5.2.1. CDN-Enabled Container ... 34
5.2.2. List CDN-Enabled Container Metadata ... 35
5.2.3. Purge CDN-Enabled Containers or Objects .. 35
5.2.4. Update CDN-Enabled Container Metadata ... 36
5.2.5. CDN-Enabled Containers Served via SSL .. 37

6. Troubleshooting .. 39
6.1. Using cURL ... 39

6.1.1. Authentication ... 39
6.1.2. Determining Storage Usage ... 40
6.1.3. Creating a Storage Container ... 40
6.1.4. Uploading a Storage Object ... 41
6.1.5. CDN-Enabling the Container .. 41

Cloud Files™ Developer Guide May 24, 2011 API v1

iv

6.1.6. Other cURL Commands .. 42

Cloud Files™ Developer Guide May 24, 2011 API v1

v

List of Figures
3.1. Cloud Files System Interfaces .. 10

Cloud Files™ Developer Guide May 24, 2011 API v1

vi

List of Examples
3.1. Authentication Request (US-Based Account) ... 7
3.2. Authentication Response .. 8
4.1. Storage Account HTTP Request: General Structure .. 11
4.2. Containers List Request .. 11
4.3. Containers List Response .. 12
4.4. Containers Details Request: JSON ... 12
4.5. Containers Details Response: JSON ... 12
4.6. Containers Details Request: XML .. 12
4.7. Containers Details Response: XML .. 12
4.8. List Large Number of Containers .. 13
4.9. Account Metadata Request .. 14
4.10. Account Metadata Response .. 14
4.11. Storage Container HTTP Request: General Structure .. 15
4.12. Objects List Request .. 15
4.13. Objects List Response ... 16
4.14. Objects Details Request: JSON .. 16
4.15. Objects Details Response: JSON .. 16
4.16. Objects Details Request: XML ... 17
4.17. Objects Details Request: XML ... 17
4.18. List Large Number of Objects ... 18
4.19. Pseudo-Hierarchical Folders/Directories ... 19
4.20. Container Create Request ... 20
4.21. Container Create Response ... 21
4.22. Container Create Request with Metadata ... 21
4.23. Container Create Response ... 21
4.24. Container Delete Request ... 21
4.25. Container Delete Response ... 22
4.26. Container Metadata Request .. 22
4.27. Container Metadata Response .. 22
4.28. Retrieve Object Request .. 23
4.29. Retrieve Object Response ... 23
4.30. Create/Update Object Request ... 24
4.31. Create/Update Object Response ... 24
4.32. Upload Segment of a Large Object ... 25
4.33. Upload Next Segment of the Large Object .. 25
4.34. Upload Manifest ... 26
4.35. Upload Unspecified Quantity of Content ... 26
4.36. Assign CORS Header ... 27
4.37. Content-Encoding Header Example ... 27
4.38. Content-Disposition Header Example .. 28
4.39. Object Delete Request .. 29
4.40. Object Delete Response .. 29
4.41. Object Metadata Request ... 29
4.42. Object Metadata Response ... 30
4.43. Update Object Metadata Request ... 30
4.44. Update Object Metadata Response ... 30
5.1. CDN HTTP Request: General Structure .. 31
5.2. CDN-Enabled Containers List Request .. 32

Cloud Files™ Developer Guide May 24, 2011 API v1

vii

5.3. CDN-Enabled Containers List Response ... 32
5.4. CDN-Enabled Containers Details Request: JSON ... 32
5.5. CDN-Enabled Containers Details Response: JSON ... 32
5.6. CDN-Enabled Containers Details Request: XML .. 33
5.7. CDN-Enabled Containers Details Response: XML .. 33
5.8. CDN-Enabled Container HTTP Request: General Structure .. 34
5.9. Container CDN-Enable Request ... 34
5.10. Container CDN-Enable Response ... 35
5.11. CDN-Enabled Container Metadata Request ... 35
5.12. CDN-Enabled Container Metadata Response ... 35
5.13. Purge CDN-Enabled Object ... 36
5.14. Purge CDN-Enabled Container .. 36
5.15. Purge CDN-Enabled Container or Object Response .. 36
5.16. Update CDN-Enabled Container Metadata Request ... 36
5.17. Update CDN-Enabled Container Metadata Response ... 37
5.18. CDN-Enabled Container Metadata Requests with SSL .. 37
5.19. CDN-Enabled Container Metadata with SSL ... 37
6.1. cURL Authenticate .. 39
6.2. cURL Get Storage Space ... 40
6.3. cURL Create Storage Container ... 40
6.4. cURL Upload Storage Object .. 41
6.5. cURL CDN-Enable Container .. 41
6.6. cURL Download a File ... 42

Cloud Files™ Developer Guide May 24, 2011 API v1

1

1. Overview
Rackspace Cloud Files™ is an affordable, redundant, scalable, and dynamic storage service
offering. The core storage system is designed to provide a safe, secure, automatically re-
sizing and network accessible way to store data. You can store an unlimited quantity of
files and each file can be as large as 5 gigabytes. Users can store as much as they want and
pay only for storage space they actually use.

Additionally, Cloud Files provides a simple yet powerful way to publish and distribute
content behind a Content Distribution Network. Cloud Files users get access to this network
automatically without having to worry about contracts, additional costs, or technical
hurdles.

Cloud Files allows users to store and retrieve files and CDN-enabled content via a simple
Web Service (ReST: Representational State Transfer) interface. There are also language-
specific APIs that utilize the ReSTful API but make it much easier for developers to integrate
into their applications.

For more details on the Cloud Files service, please refer to http://
www.rackspacecloud.com/cloud_hosting_products/files

We welcome feedback, comments, and bug reports at support@rackspacecloud.com.

1.1. Intended Audience
This guide is intended to assist software developers who want to develop applications
using the Rackspace Cloud Files API. It fully documents the ReST application programming
interface (API) that allows developers to interact with the storage and CDN components
of the Cloud Files system. To use the information provided here, you should first have a
general understanding of the Rackspace Cloud Files service and have access to an active
Rackspace Cloud Files account. You should also be familiar with:

• ReSTful web services
• HTTP/1.1

Rackspace also provides Rackspace-supported, language-specific APIs in several popular
programming languages. Currently, the supported APIs ares C#/.NET, Java, PHP, Python,
and Ruby. These APIs utilize the ReST API and are provided to help developers rapidly
integrate Cloud Files support into their applications without needing to write at the ReST
interface. Each API includes its own documentation in its native format. For example, the
Java API includes JavaDocs and the C#/.NET API includes a CHM file.

System administrators and other users who are interested in the storage and CDN benefits
of Cloud Files should consider using the File Manager interface within the Rackspace Cloud
Control Panel, Jungle Disk, or third party tools such as Fileuploader, Cyberduck, or Cloud
Files Manager. The control panel provides an easy to use web-based interface for uploading
and downloading content to and from Cloud Files.

http://www.rackspacecloud.com/cloud_hosting_products/files
http://www.rackspacecloud.com/cloud_hosting_products/files
mailto:support@rackspacecloud.com
http://www.jungledisk.com/
http://www.fireuploader.com/
http://www.cyberduck.ch/
http://cloudfilesmanager.com/
http://cloudfilesmanager.com/

Cloud Files™ Developer Guide May 24, 2011 API v1

2

1.2. Document Change History
This version of the Developer Guide replaces and obsoletes all previous versions. The most
recent changes are described in the table below:

Revision Date Summary of Changes

May 24, 2011 • Added information about new headers including CORS headers.

Apr. 20, 2011 • HEAD returns 200 instead of 204 on an object metadata request.
• TTL maximum value is now 50 years instead of 3 days, the minimum TTL is now 15 minutes

(900 seconds), and the default is now 72 hours instead of 24 hours.

Mar. 25, 2011 • Added information about large object support.

Mar. 17, 2011 • Added information about container metadata.

Mar. 10, 2011 • Added a section about retrieving an SSL URI for CDN-enabled containers that are using https
protocol.

• Updated examples to contain SSL as appropriate.

Feb. 25, 2011 • Added information about the edge purge capability for CDN-enabled containers and
objects.

Feb. 18, 2011 • Fixed error in the header range example that stated first instead of last when fetching a
portion of the data.

• Updated CDN URLs to match new format.
• Fixed error referring to X-Auth-User instead of X-Auth-Key.

Jan. 12, 2011 • Removed references to ACL (Access Control List).
• Fixed error in examples referring to X-Auth-Key where it should be X-Auth-Token.
• Added section numbers.

Jan. 4, 2011 • Expanded authentication information for UK release.
• Added "delimiter" as a Query Parameter and server-side object copy example.

May 5, 2008 • Initial release.

1.3. Additional Resources
You can download the most current version of this document from the Rackspace Cloud
website at http://docs.rackspacecloud.com/files/api/cf-devguide-latest.pdf.

For more details about the Cloud Files service, please refer to http://
www.rackspacecloud.com/cloud_hosting_products/files. Related documents are available
at the same site, as are links to Rackspace's official support channels, including knowledge
base articles, forums, phone, chat, and email.

You can also follow updates and announcements via twitter at http://www.twitter.com/
rackcloud

http://docs.rackspacecloud.com/files/api/cf-devguide-latest.pdf
http://www.rackspacecloud.com/cloud_hosting_products/files
http://www.rackspacecloud.com/cloud_hosting_products/files
http://www.twitter.com/rackcloud
http://www.twitter.com/rackcloud

Cloud Files™ Developer Guide May 24, 2011 API v1

3

2. Concepts
Cloud Files is not a file system in the traditional sense. You will not be able to map or
mount virtual disk drives like you can with other forms of storage such as a SAN or NAS.
Since Cloud Files is a different way of thinking when it comes to storage, you should take a
few moments to review the key concepts listed below.

2.1. Accounts
The Cloud Files system is designed to be used by many different customers. Your user
account is your portion of the Cloud Files system. A user must identify themselves with
their Rackspace Cloud username and API Access Key and once authenticated, that user
has full read/write access to the files stored under that user account. Please visit http://
www.rackspacecloud.com/signup to obtain a Cloud Files account and enable your API
Access Key.

2.2. Authentication
The language and ReST APIs below describe how to authenticate against the
Authentication service to receive Cloud Files connection parameters and an authentication
token. The token must be passed in for all subsequent container/object operations.

Note

The language-specific APIs handle authentication, token passing, and HTTPS
request/response communication.

2.3. Permissions
In Cloud Files, each user has their own storage account and has full access to that account.
Users must authenticate with their credentials as described above, but once authenticated
they can create/delete containers and objects within that account.

2.4. Containers
A container is a storage compartment for your data and provides a way for you to organize
your data. You can think of a container as a folder in Windows® or a directory in UNIX®.
The primary difference between a container and these other file system concepts is that
containers cannot be nested. You can, however, create an unlimited number of containers
within your account. Data must be stored in a container so you must have at least one
container defined in your account prior to uploading data.

The only restrictions on container names is that they cannot contain a forward slash (/)
and must be less than 256 bytes in length. Please note that the length restriction applies to
the name after it has been URL encoded. For example, a container name of Course Docs
would be URL encoded as Course%20Docs and therefore be 13 bytes in length rather
than the expected 11.

http://www.rackspacecloud.com/signup
http://www.rackspacecloud.com/signup

Cloud Files™ Developer Guide May 24, 2011 API v1

4

2.5. Objects
An object is the basic storage entity and any optional metadata that represents the files
you store in the Cloud Files system. When you upload data to Cloud Files, the data is stored
as-is (no compression or encryption) and consists of a location (container), the object's
name, and any metadata consisting of key/value pairs. For instance, you may chose to store
a backup of your digital photos and organize them into albums. In this case, each object
could be tagged with metadata such as Album : Caribbean Cruise or Album :
Aspen Ski Trip.

The only restriction on object names is that they must be less than 1024 bytes in length
after URL encoding. For example, an object name of C++final(v2).txt should be URL
encoded as C%2B%2Bfinal%28v2%29.txt and therefore be 24 bytes in length rather
than the expected 16.

Cloud Files has a limit on the size of a single uploaded object; by default this is 5 GB.
However, the download size of a single object is virtually unlimited with the concept of
segmentation. Segments of the larger object are uploaded and a special manifest file is
created that, when downloaded, sends all the segments concatenated as a single object.
This also offers much greater upload speed with the possibility of parallel uploads of the
segments.

For metadata, you should not exceed 90 individual key/value pairs for any one object and
the total byte length of all key/value pairs should not exceed 4KB (4096 bytes).

2.6. Operations
Operations are the actions you perform within your account. Creating or deleting
containers, uploading or downloading objects, etc. The full list of operations is documented
in the ReST API section. Operations may be performed via the ReST web service API or a
language-specific API; currently, we support Python, PHP, Java, Ruby, and C#/.NET.

Important

All operations must include a valid authorization token.

2.7. CDN-Enabled Containers
To publish data that is to be served by a Content Distribution Network (CDN), containers
which house the data must be CDN-enabled. When a container is CDN-enabled, any files
within the container are publicly accessible and do not require an authentication token for
read access. Uploading content into a CDN-enabled container is a secure operation and
requires a valid authentication token.

Each CDN-enabled container has a unique Uniform Resource Locator (URL) that can be
combined with its object names and openly distributed in web pages, emails, or other
applications.

For example, a CDN-enabled container named photos might be referenced as http://
c10171.r71.cf0.rackcdn.com. If that container houses a screenshot called wow1.jpg, then

http://c10171.r71.cf0.rackcdn.com
http://c10171.r71.cf0.rackcdn.com

Cloud Files™ Developer Guide May 24, 2011 API v1

5

that image can be served by a CDN with the full URL of http://c10171.r71.cf0.rackcdn.com/
wow1.jpg. This URL can be embedded in HTML pages, email messages, blog posts,
etc. When that URL is accessed, a copy of that image is fetched from the Cloud Files
storage system and cached in a CDN and served from there for all subsequent requests
for a configurable cache time to live (TTL) value. Setting the TTL of a CDN-enabled
container translates to setting the Expires and Cache-Control HTTP headers. Cloud
Files continues to serve content via the CDN until it receives a delete request, although
extremely long TTL values do not guarantee that an object is served from a CDN edge
location. When the TTL expires, the CDN checks Cloud Files to ensure that it has the most
up-to-date content. A purge request forces the CDN to check with Cloud Files for the most
up-to-date version of the file.

Containers tracked in the CDN management service are completely separate and distinct
from the containers defined in the storage service. It is possible for a container to be CDN-
enabled even if it doesn't exist in the storage system. Users may want the ability to pre-
generate CDN URLs before actually uploading content and this separation gives them that
ability.

However, for the content to be served from the CDN, the container names MUST match in
both the CDN management service and the storage service. For example, you could CDN-
enable a container called images and be assigned the CDN URL, but you also need to
create a container called images in the storage service.

2.8. Language-Specific API Bindings
A set of supported API bindings in several popular languages are available to help put
Cloud Files in the hands of developers. These bindings provide a layer of abstraction on top
of the base ReST API, allowing programmers to work with a container and object model
instead of working directly with HTTP requests and responses. These bindings are free (as
in beer and as in speech) to download, use, and modify. They are all licensed under the MIT
License as described in the COPYING file packaged with each binding. If you do make any
improvements to an API, you are encouraged (but not required) to submit those changes
back to us.

The API bindings are hosted at http://github.com/rackspace. Feel free to
coordinate your changes through github or, if you prefer, send your changes to
cloudfiles@rackspacecloud.com. Just make sure to indicate which language and version you
modified and send us a unified diff.

Each binding includes its own documentation (either HTML, PDF, or CHM). They also
include code snippets and examples to help you get started. The currently supported API
binding for Cloud Files are:

• PHP (requires 5.x and the modules: cURL, FileInfo, mbstring)

• Python (requires 2.4 or newer)

• Java (requires JRE v1.5 or newer)

• C#/.NET (requires .NET Framework v3.5)

• Ruby (requires 1.8 or newer and mime-tools module)

http://c10171.r71.cf0.rackcdn.com/wow1.jpg
http://c10171.r71.cf0.rackcdn.com/wow1.jpg
http://github.com/rackspace
mailto:cloudfiles@rackspacecloud.com

Cloud Files™ Developer Guide May 24, 2011 API v1

6

There are no other supported language-specific bindings at this time. You are welcome
to create your own language API bindings and we will help answer any questions during
development, host your code if you like, and give you full credit for your work.

Cloud Files™ Developer Guide May 24, 2011 API v1

7

3. General API Information

3.1. Authentication
Client authentication is provided via a ReST interface using the GET method, with v1.0
supplied as the path. Additionally, two headers are required, X-Auth-User and X-Auth-
Key with values for the username and API Access Key respectively.

Each ReST request against the Cloud Files system requires the inclusion of a specific
authorization token HTTP x-header, defined as X-Auth-Token. Clients obtain this token,
along with the Cloud Servers API URL, by first using the Rackspace Cloud Authentication
Service and supplying a valid username and API access key.

The Rackspace Cloud Authentication Service is a ReSTful web service. It is the entry point to
all Rackspace Cloud APIs.

To access the Authentication Service, you must know whether your account is US-based or
UK-based:

• US-based accounts authenticate through https://auth.api.rackspacecloud.com/v1.0.
• UK-based accounts authenticate through https://lon.auth.api.rackspacecloud.com/v1.0.

Your account may be based in either the US or the UK; this is not determined by your
physical location but by the location of the Rackspace retail site which was used to create
your account:

• If your account was created via http://www.rackspacecloud.com, it is a US-based
account.

• If your account was created via http:/www.rackspace.co.uk, it is a UK-based account.

If you are unsure how your account was created, use the Rackspace contact information at
either site to ask for help.

Request

To authenticate, you must supply your username and API access key in x-headers:

• Use your Rackspace Cloud username as the username for the API. Place it in the X-
Auth-User x-header.

• Obtain your API access key from the Rackspace Cloud Control Panel in the Your Account
| API Access section. Place it in the X-Auth-Key x-header.

Example 3.1. Authentication Request (US-Based Account)

GET /v1.0 HTTP/1.1
Host: auth.api.rackspacecloud.com
X-Auth-User: jdoe
X-Auth-Key: a86850deb2742ec3cb41518e26aa2d89

https://auth.api.rackspacecloud.com/v1.0
https://lon.auth.api.rackspacecloud.com/v1.0
http://www.rackspacecloud.com
http:/www.rackspace.co.uk

Cloud Files™ Developer Guide May 24, 2011 API v1

8

Response

When authentication is successful, an HTTP status 204 (No Content) is returned with
the X-Storage-Url, X-CDN-Management-Url, and X-Auth-Token headers. Any
2xx response is a good response. For example, a 202 response means the request has
been accepted. Also, additional X- headers may be returned. These additional headers
are related to other Rackspace services and can be ignored. An HTTP status of 401
(Unauthorized) is returned upon authentication failure. All subsequent container/object
operations against Cloud Files should be made against the URI specified in X-Storage-
Url or X-CDN-Management-Url and must include the X-Auth-Token header.

Example 3.2. Authentication Response

 HTTP/1.1 204 No Content
 Date: Mon, 12 Nov 2007 15:32:21 GMT
 Server: Apache
 X-Storage-Url: https://storage.clouddrive.com/v1/CF_xer7_34
 X-CDN-Management-Url: https://cdn.clouddrive.com/v1/CF_xer7_34
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Content-Length: 0
 Content-Type: text/plain; charset=UTF-8

The X-Storage-Url and X-CDN-Management-Url will need to be parsed and used
in the connection and request line of all subsequent requests against Cloud Files. In the
example response above, users connecting to Cloud Files would send most container/object
requests with a host header of storage.clouddrive.com and the request line's version
and account as /v1/CF_xer7_34. To CDN-enable Containers or adjust CDN attributes,
ReST requests should be sent to cdn.clouddrive.com. Note that authentication tokens
are valid for a 24 hour period.

Cloud Files™ Developer Guide May 24, 2011 API v1

9

3.2. Overview of API Operations
The Cloud Files API is implemented as a set of ReSTful (Representational State Transfer)
web services. All authentication and container/object operations can be performed with
standard HTTP calls. See the Wikipedia article for more information about ReST.

The following constraints apply to the ReST API's HTTP requests:

• Maximum number of HTTP headers per request: 90

• Maximum length of all HTTP headers: 4096 bytes

• Maximum length per HTTP request line: 8192 bytes

• Maximum length of HTTP request: 5 gigabytes

• Maximum length of container name: 256 bytes

• Maximum length of object name: 1024 bytes

Container and object names should be properly URL-encoded prior to interacting with the
ReST interface (the language APIs handle URL encoding/decoding). The length restrictions
should be checked against the URL encoded string.

Each ReST request against the Cloud Files system requires the inclusion of a specific
authorization token HTTP header defined as X-Auth-Token. Clients obtain this token,
along with the Cloud Files URIs, by first using the Authentication service and supplying a
valid Username and API Access Key.

There are actually two different sets of ReST services that make up the full Cloud Files
product. The first ReST service identified with X-Storage-Url is used for managing
the data stored in the system. Example operations are creating containers and uploading
objects. The second ReST service is for managing the CDN feature of Cloud Files and is
identified by X-CDN-Management-Url.

In the following sections, the purpose of each HTTP method depends upon which service
the call is made against. For example, a PUT request against X-Storage-Url can be
used to create a container or upload an object, while a PUT request against the X-CDN-
Management-Url is used to CDN-enable a container.

The language-specific APIs mask this system separation from the programmer. They simply
create a container and mark it public and it handles calling out to the appropriate back-end
services using the appropriate ReST API.

Note

All requests to authenticate and operate against Cloud Files are performed
using SSL over HTTP (HTTPS) on TCP port 443.

http://en.wikipedia.org/wiki/Representational_State_Transfer

Cloud Files™ Developer Guide May 24, 2011 API v1

10

The following diagram illustrates the various system interfaces and the ease with which
content can be distributed over the CDN. The process is simple: authenticate, create a
container, upload objects, mark the container as public, and begin serving that content
from a powerful CDN.

Figure 3.1. Cloud Files System Interfaces

1 . Aut hent icat e

2 . St ore Object s

3 . Share Cont a iners

CDN M anagem ent
Service

St orage
Service

Rackspace Cloud
 Aut hent icat ion

 Service

4 . Serve Cont ent

Cloud Files™ Developer Guide May 24, 2011 API v1

11

4. API Operations for Storage Services
The following section describes the ReST API for interacting with the storage component of
Cloud Files. All requests will be directed to the host and URL described in the X-Storage-
Url HTTP header obtained during successful authentication.

The following are some pointers for the use of the storage services:

• Container names cannot exceed 256 bytes and cannot contain a '/' character

• Object names cannot exceed 1024 bytes and have no character restrictions

• Object and container names must be URL-encoded

4.1. Storage Account Services
The following operations can be performed at the account level of the URI. For example,
the URI for the requests below will end with the Cloud Files account string:

Example 4.1. Storage Account HTTP Request: General Structure

 METHOD /v1/<account> HTTP/1.1

4.1.1. List Containers

GET operations against the X-Storage-Url for an account are performed to retrieve a
list of existing storage containers ordered by name. The following list describes the optional
query parameters that are supported with this request.

Query Parameters

limit For an integer value n, limits the number of results to at most n values.

marker Given a string value x, return object names greater in value than the specified
marker.

format Specify either json or xml to return the respective serialized response.

At this time, a prefix query parameter is not supported at the account level.

Example 4.2. Containers List Request

 GET /<api version>/<account> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

A list of containers is returned in the response body, one container per line. A 204 (No
Content) HTTP return code will be passed back if the account has no containers.

Cloud Files™ Developer Guide May 24, 2011 API v1

12

Example 4.3. Containers List Response

 HTTP/1.1 200 Ok
 Date: Thu, 07 Jun 2007 18:57:07 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8
 Content-Length: 32

 images
 movies
 documents
 backups

4.1.1.1. Serialized List Output

If a format=xml or format=json argument is appended to the storage account URL,
the service will serve extended container information serialized in the chosen format. The
sample responses below are formatted for readability.

Example 4.4. Containers Details Request: JSON

 GET /<api version>/<account>?format=json HTTP/1.1
 Host: storage.clouddrive.com
 Content-Length: 0
 X-Storage-Token: 182f9c0af0e828cfe3281767d29d19f4

Example 4.5. Containers Details Response: JSON

 HTTP/1.1 200 OK
 Date: Tue, 25 Nov 2008 19:39:13 GMT
 Server: Apache
 Content-Type: application/json; charset=utf-8

 [
 {"name":"test_container_1", "count":2, "bytes":78},
 {"name":"test_container_2", "count":1, "bytes":17}
]

Example 4.6. Containers Details Request: XML

 GET /<api version>/<account>?format=xml HTTP/1.1
 Host: storage.clouddrive.com
 Content-Length: 0
 X-Storage-Token: 182f9c0af0e828cfe3281767d29d19f4

Example 4.7. Containers Details Response: XML

Cloud Files™ Developer Guide May 24, 2011 API v1

13

 HTTP/1.1 200 OK
 Date: Tue, 25 Nov 2008 19:42:35 GMT
 Server: Apache
 Content-Type: application/xml; charset=utf-8

 <?xml version="1.0" encoding="UTF-8"?>

 <account name="MichaelBarton">
 <container>
 <name>test_container_1</name>
 <count>2</count>
 <bytes>78</bytes>
 </container>
 <container>
 <name>test_container_2</name>
 <count>1</count>
 <bytes>17</bytes>
 </container>
 </account>

4.1.1.2. List Large Number of Containers

The system will return a maximum of 10,000 container names per request. To retrieve
subsequent container names, another request must be made with a 'marker' parameter.
The marker indicates where the last list left off; the system will return container names
greater than this marker, up to 10,000 again. Note that the ‘marker’ value should be URL-
encoded prior to sending the HTTP request.

If 10,000 is larger than desired, a 'limit' parameter may be given.

If the number of container names returned equals the limit given (or 10,000 if no limit is
given), it can be assumed there are more container names to be listed. If the container
name list is exactly divisible by the limit, the last request will simply have no content.

Example 4.8. List Large Number of Containers

For example, let's use a listing of five container names

 apples
 bananas
 kiwis
 oranges
 pears

We'll use a limit of two to show how things work:

 GET /<api version>/<account>?limit=2
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

Cloud Files™ Developer Guide May 24, 2011 API v1

14

 apples
 bananas

Since we received two items back, we can assume there are more container names to list,
so we make another request with a marker of the last item returned:

 GET /<api version>/<account>?limit=2&marker=bananas
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 kiwis
 oranges

Again, two items are returned; there may be more:

 GET /<api version>/<account>?limit=2&marker=oranges
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 pears

With this one-item response we received less than the limit number of container names,
indicating that this is the end of the list.

4.1.2. Retrieve Account Metadata

HEAD operations against an account are performed to retrieve the number of containers
and the total bytes stored in Cloud Files for the account. This information is returned in two
custom headers, X-Account-Container-Count and X-Account-Bytes-Used. Since
the storage system is designed to store large amounts of data, care should be taken when
representing the total bytes response as an integer; when possible, convert it to a 64-bit
unsigned integer if your platform supports that primitive type.

Example 4.9. Account Metadata Request

 HEAD /<api version>/<account> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

The HTTP return code will be 204 (No Content) if the request succeeds. A 401
(Unauthorized) will be returned for an invalid account or access key.

Example 4.10. Account Metadata Response

 HTTP/1.1 204 No Content
 Date: Thu, 07 Jun 2007 18:57:07 GMT

Cloud Files™ Developer Guide May 24, 2011 API v1

15

 Server: Apache
 X-Account-Container-Count: 3
 X-Account-Total-Bytes-Used: 323479

4.2. Storage Container Services
This section documents the ReST operations that can be performed on containers. All
operations are valid HTTP request methods and will resemble this format:

Example 4.11. Storage Container HTTP Request: General Structure

 METHOD /v1/<account>/<container> HTTP/1.1

4.2.1. List Objects

GET operations against a storage container name are performed to retrieve a list of objects
stored in the container. Additionally, there are a number of optional query parameters that
can be used to refine the list results.

A request with no query parameters will return the full list of object names stored in the
container, up to 10,000 names. Optionally specifying the query parameters will filter the full
list and return a subset of objects.

Query Parameters

limit For an integer value n, limits the number of results to at most n values.

marker Given a string value x, return object names greater in value than the
specified marker.

prefix For a string value x, causes the results to be limited to object names
beginning with the substring x.

format Specify either json or xml to return the respective serialized response.

path For a string value x, return the object names nested in the pseudo path
(assuming preconditions are met - see below).

delimiter For a character c, return all the object names nested in the container
(without the need for the directory marker objects).

Example 4.12. Objects List Request

 GET /<api version>/<account>/<container>[?parm=value] HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

A list of objects is returned in the response body, one object name per line. A 204 (No
Content) HTTP return code will be passed back if the container is empty or does not exist

Cloud Files™ Developer Guide May 24, 2011 API v1

16

for the specified account. If an incorrect account is specified, the HTTP return code will be
404 (Not Found).

Example 4.13. Objects List Response

 HTTP/1.1 200 Ok
 Date: Thu, 07 Jun 2007 18:50:19 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8
 Content-Length: 171

 kate_beckinsale.jpg
 How To Win Friends And Influence People.pdf
 moms_birthday.jpg
 poodle_strut.mov
 Disturbed - Down With The Sickness.mp3
 army_of_darkness.avi
 the_mad.avi

4.2.1.1. Serialized List Output

If a format=xml or format=json argument is appended to the storage account URL,
the service will serve extended object information serialized in the chosen format. Other
than the ?format=xml|json parameter, it will return the same status/errors codes. The
sample responses below are formatted for readability.

Example 4.14. Objects Details Request: JSON

 GET /<api version>/<account>/<container>?format=json HTTP/1.1
 Host: storage.clouddrive.com
 Content-Length: 0
 X-Storage-Token: 182f9c0af0e828cfe3281767d29d19f4

Example 4.15. Objects Details Response: JSON

 HTTP/1.1 200 OK
 Date: Tue, 25 Nov 2008 19:39:13 GMT
 Server: Apache
 Content-Length: 387
 Content-Type: application/json; charset=utf-8

 [
 {"name":"test_obj_1",
 "hash":"4281c348eaf83e70ddce0e07221c3d28",
 "bytes":14,
 "content_type":"application\/octet-stream",
 "last_modified":"2009-02-03T05:26:32.612278"},
 {"name":"test_obj_2",
 "hash":"b039efe731ad111bc1b0ef221c3849d0",

Cloud Files™ Developer Guide May 24, 2011 API v1

17

 "bytes":64,
 "content_type":"application\/octet-stream",
 "last_modified":"2009-02-03T05:26:32.612278"},
]

Example 4.16. Objects Details Request: XML

 GET /<api version>/<account>/<container>?format=xml HTTP/1.1
 Host: storage.clouddrive.com
 X-Storage-Token: 182f9c0af0e828cfe3281767d29d19f4

Example 4.17. Objects Details Request: XML

 HTTP/1.1 200 OK
 Date: Tue, 25 Nov 2008 19:42:35 GMT
 Server: Apache
 Content-Length: 643
 Content-Type: application/xml; charset=utf-8

 <?xml version="1.0" encoding="UTF-8"?>

 <container name="test_container_1">
 <object>
 <name>test_object_1</name>
 <hash>4281c348eaf83e70ddce0e07221c3d28</hash>
 <bytes>14</bytes>
 <content_type>application/octet-stream</content_type>
 <last_modified>2009-02-03T05:26:32.612278</last_modified>
 </object>
 <object>
 <name>test_object_2</name>
 <hash>b039efe731ad111bc1b0ef221c3849d0</hash>
 <bytes>64</bytes>
 <content_type>application/octet-stream</content_type>
 <last_modified>2009-02-03T05:26:32.612278</last_modified>
 </object>
 </container>

4.2.1.2. List Large Number of Objects

The system will return a maximum of 10,000 object names per request. To retrieve
subsequent object names, another request must be made with a 'marker' parameter. The
marker indicates where the last list left off and the system will return object names greater
than this marker, up to 10,000 again. Note that the ‘marker’ value should be URL encoded
prior to sending the HTTP request.

If 10,000 is larger than desired, a 'limit' parameter may be given.

If the number of object names returned equals the limit given (or 10,000 if no limit is
given), it can be assumed there are more object names to be listed. If the container name
list is exactly divisible by the limit, the last request will simply have no content.

Cloud Files™ Developer Guide May 24, 2011 API v1

18

Example 4.18. List Large Number of Objects

For an example, let's use a listing of five object names:

 gala
 grannysmith
 honeycrisp
 jonagold
 reddelicious

We'll use a limit of two to show how things work:

 GET /<api version>/<account>/<container>?limit=2
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 gala
 grannysmith

Since we received two items back, we can assume there are more object names to list. So,
we make another request with a marker of the last item returned:

 GET /<api version>/<account>/<container>?limit=2&marker=grannysmith
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 honeycrisp
 jonagold

Again we have two items returned; there may be more:

 GET /<api version>/<account>/<container>?limit=2&marker=oranges
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 reddelicious

Now we received less than the limit number of container names, indicating that we have
the complete list.

4.2.1.3. Pseudo-Hierarchical Folders/Directories

You can simulate a hierarchical structure in Cloud Files by following a few guidelines. Object
names must contain the forward slash character / as a path element separator and also

Cloud Files™ Developer Guide May 24, 2011 API v1

19

create directory marker objects; then they will be able to traverse this nested structure with
the new path query parameter. This can best be illustrated by example:

Note

For the purposes of this example, the container where the objects reside is
called backups. All objects in this example start with a prefix of photos and
should NOT be confused with the container name. In the example, the full URI
of the me.jpg file would be https://storage.clouddrive.com/v1/
CF_xer7_343/backups/photos/me.jpg

Example 4.19. Pseudo-Hierarchical Folders/Directories

In the example, the following real objects are uploaded to the storage system with names
representing their full filesystem path:

 photos/animals/dogs/poodle.jpg
 photos/animals/dogs/terrier.jpg
 photos/animals/cats/persian.jpg
 photos/animals/cats/siamese.jpg
 photos/plants/fern.jpg
 photos/plants/rose.jpg
 photos/me.jpg

To take advantage of this feature, the directory marker objects must also be created to
represent the appropriate directories. The following additional objects need to be created.
A good convention would be to create these as zero- or one-byte files with a Content-Type
of application/directory.

 photos/animals/dogs
 photos/animals/cats
 photos/animals
 photos/plants
 photos

Now issuing a GET request against the container name coupled with the path query
parameter of the directory to list can traverse these directories. Only the request line and
results are depicted below excluding other request/response headers.

 GET /v1/AccountString/backups?path=photos HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 photos/animals
 photos/cats
 photos/me.jpg

To traverse down into the animals directory, specify that path.

Cloud Files™ Developer Guide May 24, 2011 API v1

20

 GET /v1/AccountString/backups?path=photos/animals
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

 photos/animals/dogs
 photos/animals/cats

By combining this path query parameter with the format query parameter, users will
be able to easily distinguish between virtual folders/directories by Content-Type and build
interfaces that allow traversal of the pseudo-nested structure.

You can also use a delimiter parameter to represent a nested directory hierarchy without
the need for the directory marker objects. You can use any single character as a delimiter.
The listings can return virtual directories - they are virtual in that they don't actually
represent real objects. like the directory markers, though, they will have a content-type of
application/directory and be in a subdir section of json and xml results.

If you have the following objects—photos/photo1, photos/photo2, movieobject, videos/
movieobj4—in a container, your delimiter parameter query using slash (/) would give you
photos, movieobject, videos.

GET /v1/acct/container?delimiter=/
Host: storage.clouddrive.com
X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

4.2.2. Create Container

PUT operations against a storage container are used to create that container.

Containers are storage compartments for your data. The URL encoded name must be less
than 256 bytes and cannot contain a forward slash '/' character.

Containers can be assigned custom metadata by including additional HTTP headers on the
PUT request. The custom metadata is assigned to a container via HTTP headers identified
with the X-Container-Meta- prefix.

Example 4.20. Container Create Request

 PUT /<api version>/<account>/<container> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

No content is returned. A status code of 201 (Created) indicates that the container
was created as requested. Container PUT requests are idempotent and a code of 202
(Accepted) is returned when the container already existed. If you request a PUT to a
container with an X-Container-Meta- prefix in the header, your GET/HEAD request
responses carry the metadata prefix from the container in subsequent requests.

Cloud Files™ Developer Guide May 24, 2011 API v1

21

Example 4.21. Container Create Response

 HTTP/1.1 201 Created
 Date: Thu, 07 Jun 2007 18:50:19 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8

Using custom container metadata, you can create information in the header to effectively
"tag" a container with metadata. The container metadata restrictions are the same
as object metadata, you can have 4096 bytes maximum overall metadata, 90 distinct
metadata items at the most. Each may have a 128 character name length with a 256 max
value length each. Any valid UTF8 http header value is allowed for metadata, however we
recommend that you URL-encode any non-ASCII values using a "%" symbol, followed by the
two-digit hexadecimal representation of the ISO-Latin code for the character.

Example 4.22. Container Create Request with Metadata

 PUT /<api version>/<account>/<container> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 X-Container-Meta-InspectedBy: JackWolf

No content is returned. A status code of 201 (Created) indicates that the container
was created as requested. Container PUT requests are idempotent and a code of 202
(Accepted) is returned when the container already existed. If you request a PUT to a
container with an X-Container-Meta- prefix in the header, your GET/HEAD request
responses carry the metadata prefix from the container in subsequent requests.

Example 4.23. Container Create Response

 HTTP/1.1 201 Created
 Date: Thu, 07 Jun 2010 18:50:19 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8

4.2.3. Delete Container

DELETE operations against a storage container are used to permanently remove that
container. The container must be empty before it can be deleted.

A HEAD request against the container can be used to determine if it contains any objects.

Example 4.24. Container Delete Request

 DELETE /<api version>/<account>/<container> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

Cloud Files™ Developer Guide May 24, 2011 API v1

22

'Response '

No content is returned. A status code of 204 (No Content) indicates success, 404 (Not
Found) is returned if the requested container was not found, and a 409 (Conflict) if the
container is not empty. No response body will be generated.

Example 4.25. Container Delete Response

 HTTP/1.1 204 No Content
 Date: Thu, 07 Jun 2007 18:57:07 GMT
 Server: Apache
 Content-Length: 0
 Content-Type: text/plain; charset=UTF-8

4.2.4. Retrieve Container Metadata

HEAD operations against a storage container are used to determine the number of objects,
and the total bytes of all objects stored in the container. Since the storage system is
designed to store large amounts of data, care should be taken when representing the total
bytes response as an integer; when possible, convert it to a 64-bit unsigned integer if your
platform supports that primitive type.

Example 4.26. Container Metadata Request

 HEAD /<api version>/<account>/<container> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

The HTTP return code will be 204 (No Content) if the container exists, and 404 (Not
Found) if it does not. The object count and utilization are returned in the X-Container-
Object-Count and X-Container-Bytes-Used headers respectively.

Example 4.27. Container Metadata Response

 HTTP/1.1 204 No Content
 Date: Wed, 16 Mar 2010 19:37:41 GMT
 Content-type: text/html
 X-Container-Object-Count: 7
 X-Container-Bytes-Used: 413
 X-Container-Meta-InspectedBy: JackWolf

4.3. Storage Object Services
An object represents the data and any metadata for the files stored in the system. Through
the ReST interface, metadata for an object can be included by adding custom HTTP headers
to the request and the data payload as the request body. Objects cannot exceed 5GB and
must have names that do not exceed 1024 bytes after URL encoding. However, objects
larger than 5GB can be segmented and then concatenated together so that you can

Cloud Files™ Developer Guide May 24, 2011 API v1

23

upload 5 GB segments and download a single concatenated object. You can work with the
segments and manifests directly with HTTP requests.

4.3.1. Retrieve Object

GET operations against an object are used to retrieve the object's data.

Note that you can perform conditional GET requests by using certain HTTP headers as
documented in RFC 2616. Cloud Files supports the following headers:

RFC 2616: http://www.ietf.org/rfc/rfc2616.txt

• If-Match

• If-None-Match

• If-Modified-Since

• If-Unmodified-Since

It is also possible to fetch a portion of data using the HTTP Range header. At this time,
Cloud Files does not support the full specification for Range but basic support is provided.
Cloud Files only allows a single range that includes OFFSET and/or LENGTH. We support
a sub-set of Range and do not adhere to the full RFC-2616 specification. We support
specifying OFFSET-LENGTH where either OFFSET or LENGTH can be optional (not both at
the same time). The following are supported forms of the header:

• Range: bytes=-5 - last five bytes of the object

• Range: bytes=10-15 - the five bytes after a 10-byte offset

• Range: bytes=32- - all data after the first 32 bytes of the object

Example 4.28. Retrieve Object Request

 GET /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

The object's data is returned in the response body. Object metadata is returned as HTTP
headers. A status of 200 (Ok) indicates success; status 404 (Not Found) is returned if no
such object exists.

Example 4.29. Retrieve Object Response

 HTTP/1.1 200 Ok
 Date: Wed, 11 Jul 2007 19:37:41 GMT
 Server: Apache
 Last-Modified: Fri, 12 Jun 2007 13:40:18 GMT
 ETag: b0dffe8254d152d8fd28f3c5e0404a10
 Content-type: text/html
 Content-Length: 512000

http://www.ietf.org/rfc/rfc2616.txt

Cloud Files™ Developer Guide May 24, 2011 API v1

24

 [...]

4.3.2. Create/Update Object

PUT operations are used to write, or overwrite, an object's metadata and content.

You can ensure end-to-end data integrity by including an MD5 checksum of your object's
data in the ETag header. You are not required to include the ETag header, but it is
recommended to ensure that the storage system successfully stored your object's content.

The HTTP response will include the MD5 checksum of the data written to the storage
system. If you do not send the ETag in the request, you should compare the value returned
with your content's MD5 locally to perform the end-to-end data validation on the client
side. For segmented objects, the ETag is the MD5 sum of the concatenated string of ETags
for each of the segments in the manifest, which only offers change detection but not direct
comparison.

Objects can be assigned custom metadata by including additional HTTP headers on the PUT
request.

The object can be created with custom metadata via HTTP headers identified with the X-
Object-Meta- prefix.

Example 4.30. Create/Update Object Request

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 ETag: 8a964ee2a5e88be344f36c22562a6486
 Content-Length: 512000
 X-Object-Meta-PIN: 1234

 [...]

No response body is returned. A status code of 201 (Created) indicates a successful write;
status 412 (Length Required) denotes a missing Content-Length or Content-Type
header in the request. If the MD5 checksum of the data written to the storage system does
NOT match the (optionally) supplied ETag value, a 422 (Unprocessable Entity) response is
returned.

Example 4.31. Create/Update Object Response

 HTTP/1.1 201 Created
 Date: Thu, 07 Jun 2007 18:57:07 GMT
 Server: Apache
 ETag: d9f5eb4bba4e2f2f046e54611bc8196b
 Content-Length: 0

Cloud Files™ Developer Guide May 24, 2011 API v1

25

 Content-Type: text/plain; charset=UTF-8

4.3.2.1. Large Object Creation

Objects that are larger than 5GB must be segmented, prior to upload. You then upload
the segments like you would any other object and create a manifest object telling Cloud
Files how to find the segments of the large object. The segments remain individually
addressable, but retrieving the manifest object streams all the segments concatenated.
There is no limit to the number of segments that can be a part of a single large object.

In order to ensure the download works correctly, you must upload all the object segments
to the same container, ensure each object name has a common prefix where their names
sort in the order they should be concatenated. You also create and upload a manifest file.
The manifest file is simply a zero-byte file with the extra X-Object-Manifest: <container>/
<prefix> header, where <container> is the container the object segments are in and <prefix>
is the common prefix for all the segments.

It is best to upload all the segments first and then create or update the manifest. With this
method, the full object will not be available for downloading until the upload is complete.
Also, you can upload a new set of segments to a second location and then update the
manifest to point to this new location. During the upload of the new segments, the original
manifest will still be available to download the first set of segments.

Example 4.32. Upload Segment of a Large Object

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 ETag: 8a964ee2a5e88be344f36c22562a6486
 Content-Length: 1
 X-Object-Meta-PIN: 1234

 s

No response body is returned. A status code of 201 (Created) indicates a successful write;
status 412 (Length Required) denotes a missing Content-Length or Content-Type
header in the request. If the MD5 checksum of the data written to the storage system does
NOT match the (optionally) supplied ETag value, a 422 (Unprocessable Entity) response is
returned.

You can continue uploading segments like this example shows, prior to uploading the
manifest.

Example 4.33. Upload Next Segment of the Large Object

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 ETag: 8a964ee2a5e88be344f36c22562a6486
 Content-Length: 1

Cloud Files™ Developer Guide May 24, 2011 API v1

26

 X-Object-Meta-PIN: 1234

 w

Next, upload the manifest you created that indicates the container the object segments
reside within. Note that uploading additional segments after the manifest is created will
cause the concatenated object to be that much larger but you do not need to recreate the
manifest file for subsequent additional segments.

Example 4.34. Upload Manifest

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Content-Length: 0
 X-Object-Meta-PIN: 1234
 X-Object-Manifest: container/object/segments

 [...]

The response's Content-Type for a GET or HEAD on the manifest will be the same as the
Content-Type set during the PUT request that created the manifest. You can easily change
the Content-Type by reissuing the PUT request.

4.3.2.2. Chunked Transfer Encoding

Users can upload data without needing to know in advance the amount of data to be
uploaded. Users can do this by specifying an HTTP header of Transfer-Encoding:
chunked and not using a Content-Length header. A good use of this feature would be
doing a DB dump, piping the output through gzip, then piping the data directly into Cloud
Files without having to buffer the data to disk to compute the file size. If users attempt
to upload more that 5GB with this method, the server will close the TCP/IP connection
after 5GB and purge the customer data from the system. Users must take responsibility
for ensuring the data they transfer will be less than 5GB or for splitting it into 5GB chunks,
each in its own storage object. If you have files that are larger than 5GB and still want to
use Cloud Files, you can segment them prior to upload, upload them to the same container,
and then use a manifest file to allow downloading of a concatenated object containing all
the segmented objects, concatenated as a single object.

Example 4.35. Upload Unspecified Quantity of Content

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Transfer-Encoding: chunked
 X-Object-Meta-PIN: 1234

Cloud Files™ Developer Guide May 24, 2011 API v1

27

 19
 A bunch of data broken up
 D
 into chunks.
 0

4.3.2.3. Assigning CORS Headers to Requests

CORS is a specification that stands for Cross-Origin Resource Sharing. It defines how
browsers and servers communicate across origins using HTTP headers, such as those
assigned by Cloud Files API requests. These headers are supported with the Cloud Files API.
You can read more about the definition of the Access-Control- response headers and Origin
response header at www.w3.org/TR/access-control/.

• Access-Control-Allow-Credentials

• Access-Control-Allow-Methods

• Access-Control-Allow-Origin

• Access-Control-Expose-Headers

• Access-Control-Max-Age

• Access-Control-Request-Headers

• Access-Control-Request-Method

• Origin

These headers can be assigned to objects only.

Example 4.36. Assign CORS Header

In the example, the origin header is assigned that indicates where the file came from. This
allows you to provide security that requests to your Cloud Files repository are indeed from
the correct origination:

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Origin: http://storage.clouddrive.com

4.3.2.4. Enabling File Compression with the Content-Encoding Header

The Content-Encoding header allows a file to be compressed without losing the identity of
the underlying media type of the file, for example, a video.

Example 4.37. Content-Encoding Header Example

In the example, the content-encoding header is assigned with an attachment type that
indicates how the file should be downloaded:

http://www.w3.org/TR/access-control/

Cloud Files™ Developer Guide May 24, 2011 API v1

28

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Content-Type: video/mp4
 Content-Encoding: gzip

4.3.2.5. Enabling Browser Bypass with the Content-Disposition Header

When an object is assigned the Content-Disposition header you can override a browser's
default behavior for a file so that the downloader saves the file rather than displaying it
using default browser settings.

Example 4.38. Content-Disposition Header Example

In the example, the content-encoding header is assigned with an attachment type that
indicates how the file should be downloaded.

 PUT /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Content-Type: image/tiff
 Content-Disposition: attachment; filename=platmap.tif

4.3.3. Copy Object

Suppose you upload a file with the wrong object name or content type, or you needed to
move some objects to another container. Without a server-side copy feature, you would
need to repeat uploading the same content and then delete the existing object. With
server-side object copy, you can save the step of re-uploading the content and thus also
save the associated bandwidth charges, if any were to apply.

There are two ways to copy an existing object to another object in Cloud Files. One way
is to do a PUT to the new object (the target) location, but add the “X-Copy-From” header
to designate the source of the data. The header value should be the container and object
name of the source object in the form of “/container/object”. Also, the X-Copy-From PUT
requests require a Content-Length header, even if it is zero (0).

PUT /<api version>/<account>/<container>/<destobject> HTTP/1.1
Host: <storage URL>
X-Auth-Token: <some-auth-token>
X-Copy-From: /<container>/<sourceobject>
Content-Length: 0

The second way to do an object copy is similar. Do a COPY to the existing object, and
include the “Destination” header to specify the target of the copy. The header value is the
container and new object name in the form of “/container/object”.

COPY /<api version>/<account>/<container>/<sourceobject> HTTP/1.1
Host: <storage URL>

Cloud Files™ Developer Guide May 24, 2011 API v1

29

X-Auth-Token: <some-auth-token>
Destination: /<container>/<destobject>

With both of these methods, the destination container must exist before attempting
the copy. If you were wanting to perform a move of the objects rather than a copy, you
would need to send a DELETE request to the old object. A move simply becomes a COPY +
DELETE. All metadata is preserved during the object copy. Note that you can set metadata
on the request to copy the object (either the PUT or the COPY) and the metadata will
overwrite any conflicting keys on the target (new) object. One interesting use case is to
copy an object to itself and set the content type to a new value. This is the only way to
change the content type of an existing object.

4.3.4. Delete Object

DELETE operations on an object are used to permanently remove that object from the
storage system (metadata and data).

Deleting an object is processed immediately at the time of the request. Any subsequent
GET, HEAD, POST, or DELETE operations will return a 404 (Not Found) error.

Example 4.39. Object Delete Request

 DELETE /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

No response body is returned. A status code of 204 (No Content) indicates success, status
404 (Not Found) is returned when the object does not exist.

Example 4.40. Object Delete Response

 HTTP/1.1 204 No Content
 Date: Thu, 07 Jun 2007 20:59:39 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8

4.3.5. Retrieve Object Metadata

HEAD operations on an object are used to retrieve object metadata and other standard
HTTP headers.

The only required header to be sent in the request is the authorization token.

Example 4.41. Object Metadata Request

 HEAD /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

Cloud Files™ Developer Guide May 24, 2011 API v1

30

No response body is returned. Metadata is returned as HTTP headers. A status code of 200
(OK) indicates success; status 404 (Not Found) is returned when the object does not exist.

Example 4.42. Object Metadata Response

 HTTP/1.1 200 OK
 Date: Thu, 07 Jun 2007 20:59:39 GMT
 Server: Apache
 Last-Modified: Fri, 12 Jun 2007 13:40:18 GMT
 ETag: 8a964ee2a5e88be344f36c22562a6486
 Content-Length: 512000
 Content-Type: text/plain; charset=UTF-8
 X-Object-Meta-Meat: Bacon
 X-Object-Meta-Fruit: Bacon
 X-Object-Meta-Veggie: Bacon
 X-Object-Meta-Dairy: Bacon

4.3.6. Update Object Metadata

POST operations against an object name are used to set and overwrite arbitrary key/value
metadata. You cannot use the POST operation to change any of the object's other headers
such as Content-Type, ETag, etc. It is not used to upload storage objects (see PUT).

Key names must be prefixed with X-Object-Meta-. A POST request will delete all
existing metadata added with a previous PUT/POST.

Example 4.43. Update Object Metadata Request

 POST /<api version>/<account>/<container>/<object> HTTP/1.1
 Host: storage.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 X-Object-Meta-Fruit: Apple
 X-Object-Meta-Veggie: Carrot

No response body is returned. A status code of 202 (Accepted) indicates success; status 404
(Not Found) is returned when the requested object does not exist.

Example 4.44. Update Object Metadata Response

 HTTP/1.1 202 Accepted
 Date: Thu, 07 Jun 2007 20:59:39 GMT
 Server: Apache
 Content-Length: 0
 Content-Type: text/plain; charset=UTF-8

Cloud Files™ Developer Guide May 24, 2011 API v1

31

5. API Operations for CDN Services
The following is a description of API calls that can be used for CDN account and container
operations. All of the ReST methods described below must be issued against the CDN
management service as defined in the X-CDN-Management–Url returned by a successful
authentication.

5.1. CDN Account Operations
This section describes the methods allowed against the account portion URI and conform to
the following format:

Example 5.1. CDN HTTP Request: General Structure

 METHOD /v1/<account> HTTP\1.1

5.1.1. List CDN-Enabled Containers

GET operations against the X-CDN-Management-Url for an account are performed to
retrieve a list of existing CDN-enabled containers. Like the storage system’s GET container,
the CDN management service allows the following query parameters:

Query Parameters

limit For an integer value n, limits the number of results to at most n values.

marker Given a string value x, return object names greater in value than the
specified marker.

format Specify either json or xml to return the respective serialized response.

enabled_only Set to true to return only the CDN-enabled containers.

Using the format query parameter, you can request the output in a serialized format in
either JSON or XML.

Using limit and marker provides a mechanism to iterate through the entire list of
containers. Keep in mind that the value for marker will need to be URL encoded before
issuing the request.

There is also support for filtering the list to return only the list of containers that are
currently CDN-enabled. Passing in a query parameter of ?enabled_only=true will
suppress any private containers from appearing in the list.

The list of CDN-enabled containers is returned in the response body, one container name
per line.

Cloud Files™ Developer Guide May 24, 2011 API v1

32

Example 5.2. CDN-Enabled Containers List Request

 GET /<api version>/<account> HTTP/1.1
 Host: cdn.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

A list of containers is returned in the response body, one container per line. A 204 (No
Content) HTTP return code will be passed back if the account has no containers.

Example 5.3. CDN-Enabled Containers List Response

 HTTP/1.1 200 Ok
 Date: Thu, 07 Jun 2007 18:57:07 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8
 Content-Length: 13

 images
 movies

5.1.1.1. Serialized List Output

If a format=xml or format=json argument is appended to the CDN management URL,
the service will serve extended container information serialized in the chosen format. Other
than the ?format=xml|json parameter, it will return the same status/errors codes. The
sample responses below are formatted for readability.

Example 5.4. CDN-Enabled Containers Details Request: JSON

 GET /v1/<account>?format=json HTTP/1.1
 Host: cdn.clouddrive.com
 X-Auth-Token: a6e3359b-3749-440a-9292-0bdcb0e33617

Example 5.5. CDN-Enabled Containers Details Response: JSON

 HTTP/1.1 200 OK
 Date: Mon, 09 Mar 2009 20:07:47 GMT
 Server: Apache
 Content-Length: 127
 Content-Type: application/json; charset=utf-8

 [
 {"name":"test_container",
 "cdn_enabled":"true",
 "ttl":28800,
 "log_retention":"true",
 "cdn_uri":"http://c2.r2.cf1.rackcdn.com",

Cloud Files™ Developer Guide May 24, 2011 API v1

33

 "cdn_ssl_uri":"https://c2.ssl.cf1.rackcdn.com"}
]

Example 5.6. CDN-Enabled Containers Details Request: XML

 GET /v1/<account>?format=xml HTTP/1.1
 Host: cdn.clouddrive.com
 X-Auth-Token: a6e3359b-3749-440a-9292-0bdcb0e33617

Example 5.7. CDN-Enabled Containers Details Response: XML

 HTTP/1.1 200 OK
 Date: Mon, 09 Mar 2009 20:11:27 GMT
 Server: Apache
 Content-Length: 267
 Content-Type: application/xml; charset=utf-8

 <?xml version="1.0" encoding="UTF-8"?>
 <account name="WidgetsRNotUs.invalid">
 <container>
 <name>images</name>
 <cdn_enabled>True</cdn_enabled>
 <ttl>86400</ttl>
 <log_retention>True</log_retention>
 <cdn_url>
 http://c2.r2.cf1.rackcdn.com
 </cdn_url>
 <cdn_ssl_url>
 https://c2.ssl.cf1.rackcdn.com
 </cdn_ssl_url>
 </container>
 </account>

Cloud Files™ Developer Guide May 24, 2011 API v1

34

5.2. CDN Container Services
This section documents the ReST operations against the CDN management service that
can be performed on containers. All operations are valid HTTP request methods and will
resemble this format:

Example 5.8. CDN-Enabled Container HTTP Request: General Structure

 METHOD /v1/<account>/<container> HTTP/1.1

Containers tracked in the CDN management service are separate and distinct from the
containers defined in the storage service. It is possible for a container to be CDN-enabled
even if it doesn't exist in the storage system. Users may want the ability to pre-generate
CDN URLs before actually uploading content; this separation gives them that ability.

However, for the content to be served from the CDN, the container names MUST match in
both the CDN management service and the storage service. For example, you could CDN-
enable a container called images and be assigned the CDN URL, but you also need to
create a container called images in the storage service and populate it with the content
you want to serve over the CDN.

5.2.1. CDN-Enabled Container
PUT operations against a container are used to initially CDN-enable the container and set
its attributes.

When a container is CDN-enabled, any objects stored in that container are publicly
accessible over a CDN by combining the container's CDN URI with the object name. Any
objects accessed will be cached in the CDN for Time To Live or TTL(value) number of
seconds; the default is 72 hours or 259200 seconds. On the next access after the TTL
expiration, the CDN will re-fetch the object and cache it again for another TTL(value)
seconds. The minimum TTL that can be set is 15 minutes (900 seconds); the maximum TTL is
50 years (range of 900 to 1577836800 seconds).

To specify the TTL, include an HTTP header of X-TTL: integer_seconds Setting the
TTL is the same as setting the HTTP Expires and Cache-Control headers for the cached
object. Setting a TTL for a long time, such as 5 years, does not guarantee that their content
will stay populated on CDN edge servers for the entire five-year period. The most popular
objects stay cached based on the edge locations logic.

Example 5.9. Container CDN-Enable Request

 PUT /<api version>/<account>/<container> HTTP/1.1
 Host: cdn.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 X-TTL: 2592000
 X-Log-Retention: True

No content is returned. A status code of 201 (Created) indicates that the container was
CDN-enabled as requested. The response will contain an HTTP header to indicate the URL

Cloud Files™ Developer Guide May 24, 2011 API v1

35

that can be combined with object names to serve objects through the CDN. If the container
is already CDN-enabled, a 202 (Accepted) response is returned and the TTL is adjusted.

Example 5.10. Container CDN-Enable Response

 HTTP/1.1 201 Created
 Date: Thu, 07 Jun 2007 18:50:19 GMT
 Server: Apache
 Content-Type: text/plain; charset=UTF-8
 X-CDN-URI: http://c10171.r71.cf0.rackcdn.com
 X-CDN-SSL-URI: http://c10171.ssl.cf0.rackcdn.com

5.2.2. List CDN-Enabled Container Metadata
HEAD operations against a CDN-enabled container are used to determine the CDN
attributes of the container.

If the container is (or ever has been) CDN-enabled, the URI, TTL, enabled status, and log
retention status are returned in the response headers. Its CDN URI can be combined with
any object name within the container to form the publicly accessible URL for that object
for distribution over a CDN system. The TTL value is the number of seconds that the object
will be cached in the CDN system before being refetched. The enabled status indicates
whether the container is currently marked to allow public serving of objects via CDN. The
log_retention setting specifies whether the CDN access logs should be collected and stored
in the Cloud Files storage system.

Example 5.11. CDN-Enabled Container Metadata Request

 HEAD /<api version>/<account>/<container> HTTP/1.1
 Host: cdn.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

The HTTP return code will be 204 (No Content) if the container exists, and 404 (Not Found)
if it does not. The CDN attributes are returned in HTTP headers. If SSL is available for the
container, an X-CDN-SSL-URI header is returned in addition to X-CDN-URI.

Example 5.12. CDN-Enabled Container Metadata Response

 HTTP/1.1 204 No Content
 Date: Wed, 11 Jul 2007 19:37:41 GMT
 Content-type: text/html
 X-CDN-Enabled: True
 X-CDN-URI: http://c10171.r71.cf0.rackcdn.com
 X-CDN-SSL-URI: https://c10171.ssl.cf0.rackcdn.com
 X-TTL: 86400
 X-Log-Retention: True

5.2.3. Purge CDN-Enabled Containers or Objects
DELETE operations against a CDN-enabled container or object are used to remove an
outdated or unwanted object from the CDN. You can manually purge CDN-enabled objects

Cloud Files™ Developer Guide May 24, 2011 API v1

36

or containers without having to wait for the TTL to expire, and you can optionally be
notified by email that the object has been purged. There are two methods for purging
content from the edge: one for purging individual objects, one for purging entire
containers.

Example 5.13. Purge CDN-Enabled Object

 DELETE /<api version>/<account>/<object> HTTP/1.1
 Host: cdn.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 X-Purge-Email: user@domain.com

Example 5.14. Purge CDN-Enabled Container

 DELETE /<api version>/<account>/<container> HTTP/1.1
 Host: cdn.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 X-Purge-Email: user@domain.com, user2@domain.com, user3@domain.com

A 204 No Content response is returned. The system purges the object from the CDN, and
sends an email to the indicated address or multiple addresses. The email address is optional.
You can enter a comma-separated list of addresses if you want to notify more than one
person about the deletion. A status code of 204 (No Content) indicates success; 404 (Not
Found) is returned if the requested container was never CDN-enabled, and it returns a 403
if an authorization problem occurs. The CDN URI is returned in the HTTP header, X-CDN-
URI. Purging a container may take a long time, 45 minutes or longer, please be patient
while waiting for a response.

Example 5.15. Purge CDN-Enabled Container or Object Response

 HTTP/1.1 204 No Content
 Date: Thu, 13 Jan 2010 18:57:07 GMT
 Server: Apache
 Content-Length: 0
 Content-Type: text/plain; charset=UTF-8

5.2.4. Update CDN-Enabled Container Metadata

POST operations against a CDN-enabled container are used to adjust CDN attributes.

The POST operation can be used to set a new TTL cache expiration value or to enable/
disable public sharing over the CDN. Keep in mind that if you have content currently cached
in the CDN, setting your container back to private will NOT purge the CDN cache; you will
have to wait for the TTL to expire.

Example 5.16. Update CDN-Enabled Container Metadata Request

 POST /<api version>/<account>/<container> HTTP/1.1

Cloud Files™ Developer Guide May 24, 2011 API v1

37

 Host: cdn.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 X-TTL: 86400
 X-CDN-Enabled: True
 X-Log-Retention: True

No content is returned. A status code of 202 (Accepted) indicates success; 404 (Not Found)
is returned if the requested container was not found. The CDN URI and the CDN SSL URI
are both returned in the HTTP headers, X-CDN-URI and X-CDN-SSL-URI.

Example 5.17. Update CDN-Enabled Container Metadata Response

 HTTP/1.1 204 No Content
 Date: Thu, 07 Jun 2011 18:57:07 GMT
 Server: Apache
 Content-Length: 0
 Content-Type: text/plain; charset=UTF-8
 X-CDN-URI: http://c10171.r71.cf0.rackcdn.com
 X-CDN-SSL-URI: https://c10171.ssl.cf0.rackcdn.com

5.2.5. CDN-Enabled Containers Served via SSL

HEAD operations against a CDN-enabled container can also return an SSL URI. When SSL is
available, another header gets returned with calls to the CDN Management URL, X-CDN-
SSL-URI, in addition to X-CDN-URI. This feature enables users to use https protocol in URLS
used for requesting objects stored in CDN-enabled containers.

Example 5.18. CDN-Enabled Container Metadata Requests with SSL

 HEAD /<api version>/<account>/<container> HTTP/1.1
 Host: cdn.clouddrive.com
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

No content is returned. A status code of 202 (Accepted) indicates success; 404 (Not Found)
is returned if the requested container was not found. The CDN SSL URI is returned in the
HTTP header, X-CDN-SSL-URI.

Example 5.19. CDN-Enabled Container Metadata with SSL

 HTTPS/1.1 204 No Content
 Date: Thu, 07 Jan 2011 18:57:07 GMT
 Server: Apache
 Content-Length: 0
 Content-Type: text/plain; charset=UTF-8
 X-CDN-URI: http://c10171.r71.cf0.rackcdn.com
 X-CDN-SSL-URI: https://c10171.ssl.cf0.rackcdn.com
 X-CDN-Enabled: True
 X-TTL: 259000
 X-Log-Retention: False
 Connection: close
 Content-Type: text/plain; charset=UTF-8

Cloud Files™ Developer Guide May 24, 2011 API v1

38

Cloud Files™ Developer Guide May 24, 2011 API v1

39

6. Troubleshooting
This section introduces a command-line utility and demonstrates interacting with the ReST
interfaces through that utility.

6.1. Using cURL
cURL is a command-line tool which is available on most UNIX®-like environments and Mac
OS X® and can be downloaded for Windows®. For more information on cURL, visit http://
curl.haxx.se/.

cURL allows you to transmit and receive HTTP requests and responses from the command-
line or from within a shell script. This makes it possible to work with the ReST API directly
without using one of the client APIs.

The following cURL command-line options will be used

cURL Command-Line Options

-X METHOD Specify the HTTP method to request (HEAD, GET, etc.)

-D Dump HTTP response headers to stdout.

-H HEADER Specify an HTTP header in the request.

6.1.1. Authentication

In order to use the ReST API, you will first need to obtain a authorization token, which will
need to be passed in for each request using the X-Auth-Token header. The following
example demonstrates how to use cURL to obtain the authorization token and the URL of
the storage system.

Example 6.1. cURL Authenticate

 curl -D - \
 -H "X-Auth-Token: a86850deb2742ec3cb41518e26aa2d89" \
 -H "X-Auth-User: jdoe" \
 https://auth.api.rackspacecloud.com/v1.0

 HTTP/1.1 204 No Content
 Date: Thu, 09 Jul 2009 15:31:39 GMT
 Server: Apache/2.2.3
 X-Storage-Url: https://storage.clouddrive.com/v1/CF_xer7_343
 X-CDN-Management-Url: https://cdn.clouddrive.com/v1/CF_xer7_343
 X-Auth-Token: fc81aaa6-98a1-9ab0-94ba-aba9a89aa9ae
 Content-Length: 0
 Connection: close
 Content-Type: application/octet-stream

http://curl.haxx.se/
http://curl.haxx.se/

Cloud Files™ Developer Guide May 24, 2011 API v1

40

The storage URL, CDN management URL, and authentication token are returned in the
headers of the response. After authentication, you can use cURL to perform HEAD, GET,
DELETE, POST and PUT requests on the storage and CDN services.

6.1.2. Determining Storage Usage

A HEAD request can be sent to the storage service to determine how much data you
have stored in the system and the number of containers you are using. Use the -X switch
to specify the correct HTTP method and the -D to dump the HTTP response headers to
terminal output (stdout).

Example 6.2. cURL Get Storage Space

 curl –X HEAD -D - \
 -H "X-Auth-Token: fc81aaa6-98a1-9ab0-94ba-aba9a89aa9ae" \
 https://storage.clouddrive.com/v1/CF_xer7_343

 HTTP/1.1 204 No Content
 Date: Thu, 09 Jul 2009 15:38:14 GMT
 Server: Apache
 X-Account-Container-Count: 22
 X-Account-Bytes-Used: 9891628380
 Content-Type: text/plain

The HTTP request must include a header to specify the authentication token. The HTTP
headers in the response indicate the number of containers in this storage account and the
total bytes stored for the entire account.

6.1.3. Creating a Storage Container

Before uploading any data to Cloud Files, you must create a storage container. You do this
with a PUT request; cURL can be used for that, too.

Example 6.3. cURL Create Storage Container

 curl –X PUT -D - \
 -H "X-Auth-Token: fc81aaa6-98a1-9ab0-94ba-aba9a89aa9ae" \
 https://storage.clouddrive.com/v1/CF_xer7_343/images

 HTTP/1.1 201 Created
 Date: Thu, 09 Jul 2009 17:03:36 GMT
 Server: Apache
 Content-Length: 0
 Content-Type: text/plain

Returning an HTTP status code of 201 (Created) indicates that the container was
successfully created.

Cloud Files™ Developer Guide May 24, 2011 API v1

41

6.1.4. Uploading a Storage Object

After creating a container, you can upload a local file. For this example, let's upload a
screenshot image. The -T switch specifies the full path to the local file to upload. Please
note that if you intend to distribute this object via the CDN you MUST make sure that
the object's Content-Type is set correctly. This is the mechanism by which a user's web
browser knows how to display the file or launch a helper application to view the file.

Example 6.4. cURL Upload Storage Object

 curl –X PUT -T screenies/wow1.jpg-D - \
 -H "ETag: 805120ec285a7ed28f74024422fe3594" \
 -H "Content-Type: image/jpeg" \
 -H "X-Auth-Token: fc81aaa6-98a1-9ab0-94ba-aba9a89aa9ae" \
 -H "X-Object-Meta-Screenie: Mel visits Outland" \
 https://storage.clouddrive.com/v1/CF_xer7_343/images/wow1.jpg

 HTTP/1.1 201 Created
 Date: Thu, 09 Jul 2009 17:03:36 GMT
 Server: Apache
 Content-Length: 0
 ETag: 805120ec285a7ed28f74024422fe3594
 Content-Type: text/plain

6.1.5. CDN-Enabling the Container

After creating a container and storing a file in it, you can choose to share the file. Since the
data in Cloud Files is all private, you can share your screenshot via the CDN. To CDN-enable
a container, issue a PUT request against the CDN management service. The default TTL is
72 hours and supports a minimum of 15 minutes (900 seconds) and a maximum of 50 years
(1577836800 seconds). Note that the target URL specifies the CDN system.

Example 6.5. cURL CDN-Enable Container

 curl –X PUT -D - \
 -H "X-Auth-Token: fc81aaa6-98a1-9ab0-94ba-aba9a89aa9ae" \
 -H "X-CDN-Enabled: True" \
 -H "X-TTL: 259200" \
 https://cdn.clouddrive.com/v1/CF_xer7_343/images

 HTTP/1.1 202 Accepted
 Date: Thu, 06 Aug 2009 01:34:13 GMT
 Server: Apache
 X-CDN-URI: http://c10171.r71.cf0.rackcdn.com
 X-CDN-SSL-URI: https://c10171.ssl.cf0.rackcnd.com
 Content-Length: 0
 Connection: close
 Content-Type: text/plain; charset=UTF-8

Cloud Files™ Developer Guide May 24, 2011 API v1

42

When the container is CDN-enabled, the service returns its public URI in the X-CDN-URI
header of the response, plus the SSL URL in the X-CDN-SSL-URL header of the response.
Now you can combine this URI with the object name to access the file via the CDN, or use
the https:// URI in combination with the object name to access the file over a secure SSL
connection via the CDN.

You can verify the CDN's cache settings that you specified with your TTL value by sending
a GET request to the object's CDN URL and viewing the response headers. The TTL value
you specify translates to the Expires and Cache-Control headers of the CDN's cached
Object.

The cURL command below issues a GET request which downloads the entire file but writes
it to /dev/null, a data sink that won't actually save the content to your local drive (This is
only valid on UNIX-like systems).

Example 6.6. cURL Download a File

 curl –s -D - \
 http://c10171.r71.cf0.rackcdn.com/wow1.jpg \
 -O /dev/null

 HTTP/1.1 200 OK
 Date: Thu, 06 Aug 2009 01:40:12 GMT
 Server: Apache
 Expires: Fri, 07 Aug 2009 01:40:12 GMT
 Last-Modified: Thu, 09 Jul 2009 17:14:46 GMT
 Cache-Control: max-age=86400, public
 ETag: b20237bff6828976d2eb348e1ca8adae
 Content-Length: 1255764
 Content-Type: image/jpeg
 Connection: keep-alive

6.1.6. Other cURL Commands

You can issue any of the ReST methods defined for Cloud Files with the cURL utility. For
example, you can use cURL to send POST and DELETE requests even though we haven't
provided specific examples.

It should be noted that generally each time curl is invoked to perform an operation,
a separate TCP/IP and SSL connection is created and thrown away. The language APIs.
however. are designed to re-use these connections between operations and therefore
provide much better performance. It is recommended that you use one of the supported
language APIs in your production applications and limit curl to quick-and-easy testing/
troubleshooting.

	Cloud Files™ Developer Guide
	Table of Contents
	1. Overview
	1.1. Intended Audience
	1.2. Document Change History
	1.3. Additional Resources

	2. Concepts
	2.1. Accounts
	2.2. Authentication
	2.3. Permissions
	2.4. Containers
	2.5. Objects
	2.6. Operations
	2.7. CDN-Enabled Containers
	2.8. Language-Specific API Bindings

	3. General API Information
	3.1. Authentication
	3.2. Overview of API Operations

	4. API Operations for Storage Services
	4.1. Storage Account Services
	4.1.1. List Containers
	4.1.1.1. Serialized List Output
	4.1.1.2. List Large Number of Containers

	4.1.2. Retrieve Account Metadata

	4.2. Storage Container Services
	4.2.1. List Objects
	4.2.1.1. Serialized List Output
	4.2.1.2. List Large Number of Objects
	4.2.1.3. Pseudo-Hierarchical Folders/Directories

	4.2.2. Create Container
	4.2.3. Delete Container
	4.2.4. Retrieve Container Metadata

	4.3. Storage Object Services
	4.3.1. Retrieve Object
	4.3.2. Create/Update Object
	4.3.2.1. Large Object Creation
	4.3.2.2. Chunked Transfer Encoding
	4.3.2.3. Assigning CORS Headers to Requests
	4.3.2.4. Enabling File Compression with the Content-Encoding Header
	4.3.2.5. Enabling Browser Bypass with the Content-Disposition Header

	4.3.3. Copy Object
	4.3.4. Delete Object
	4.3.5. Retrieve Object Metadata
	4.3.6. Update Object Metadata

	5. API Operations for CDN Services
	5.1. CDN Account Operations
	5.1.1. List CDN-Enabled Containers
	5.1.1.1. Serialized List Output

	5.2. CDN Container Services
	5.2.1. CDN-Enabled Container
	5.2.2. List CDN-Enabled Container Metadata
	5.2.3. Purge CDN-Enabled Containers or Objects
	5.2.4. Update CDN-Enabled Container Metadata
	5.2.5. CDN-Enabled Containers Served via SSL

	6. Troubleshooting
	6.1. Using cURL
	6.1.1. Authentication
	6.1.2. Determining Storage Usage
	6.1.3. Creating a Storage Container
	6.1.4. Uploading a Storage Object
	6.1.5. CDN-Enabling the Container
	6.1.6. Other cURL Commands

