Statistics
| Branch: | Revision:

root / hw / spapr.c @ 00dc738d

History | View | Annotate | Download (13.3 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30

    
31
#include "hw/boards.h"
32
#include "hw/ppc.h"
33
#include "hw/loader.h"
34

    
35
#include "hw/spapr.h"
36
#include "hw/spapr_vio.h"
37
#include "hw/xics.h"
38

    
39
#include <libfdt.h>
40

    
41
#define KERNEL_LOAD_ADDR        0x00000000
42
#define INITRD_LOAD_ADDR        0x02800000
43
#define FDT_MAX_SIZE            0x10000
44
#define RTAS_MAX_SIZE           0x10000
45

    
46
#define TIMEBASE_FREQ           512000000ULL
47

    
48
#define MAX_CPUS                32
49
#define XICS_IRQS                1024
50

    
51
sPAPREnvironment *spapr;
52

    
53
static void *spapr_create_fdt(int *fdt_size, ram_addr_t ramsize,
54
                              const char *cpu_model, CPUState *envs[],
55
                              sPAPREnvironment *spapr,
56
                              target_phys_addr_t initrd_base,
57
                              target_phys_addr_t initrd_size,
58
                              const char *kernel_cmdline,
59
                              target_phys_addr_t rtas_addr,
60
                              target_phys_addr_t rtas_size,
61
                              long hash_shift)
62
{
63
    void *fdt;
64
    uint64_t mem_reg_property[] = { 0, cpu_to_be64(ramsize) };
65
    uint32_t start_prop = cpu_to_be32(initrd_base);
66
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
67
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
68
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt";
69
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
70
    int i;
71
    char *modelname;
72
    int ret;
73

    
74
#define _FDT(exp) \
75
    do { \
76
        int ret = (exp);                                           \
77
        if (ret < 0) {                                             \
78
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
79
                    #exp, fdt_strerror(ret));                      \
80
            exit(1);                                               \
81
        }                                                          \
82
    } while (0)
83

    
84
    fdt = qemu_mallocz(FDT_MAX_SIZE);
85
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
86

    
87
    _FDT((fdt_finish_reservemap(fdt)));
88

    
89
    /* Root node */
90
    _FDT((fdt_begin_node(fdt, "")));
91
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
92
    _FDT((fdt_property_string(fdt, "model", "qemu,emulated-pSeries-LPAR")));
93

    
94
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
95
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
96

    
97
    /* /chosen */
98
    _FDT((fdt_begin_node(fdt, "chosen")));
99

    
100
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
101
    _FDT((fdt_property(fdt, "linux,initrd-start",
102
                       &start_prop, sizeof(start_prop))));
103
    _FDT((fdt_property(fdt, "linux,initrd-end",
104
                       &end_prop, sizeof(end_prop))));
105

    
106
    _FDT((fdt_end_node(fdt)));
107

    
108
    /* memory node */
109
    _FDT((fdt_begin_node(fdt, "memory@0")));
110

    
111
    _FDT((fdt_property_string(fdt, "device_type", "memory")));
112
    _FDT((fdt_property(fdt, "reg",
113
                       mem_reg_property, sizeof(mem_reg_property))));
114

    
115
    _FDT((fdt_end_node(fdt)));
116

    
117
    /* cpus */
118
    _FDT((fdt_begin_node(fdt, "cpus")));
119

    
120
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
121
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
122

    
123
    modelname = qemu_strdup(cpu_model);
124

    
125
    for (i = 0; i < strlen(modelname); i++) {
126
        modelname[i] = toupper(modelname[i]);
127
    }
128

    
129
    for (i = 0; i < smp_cpus; i++) {
130
        CPUState *env = envs[i];
131
        uint32_t gserver_prop[] = {cpu_to_be32(i), 0}; /* HACK! */
132
        char *nodename;
133
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
134
                           0xffffffff, 0xffffffff};
135

    
136
        if (asprintf(&nodename, "%s@%x", modelname, i) < 0) {
137
            fprintf(stderr, "Allocation failure\n");
138
            exit(1);
139
        }
140

    
141
        _FDT((fdt_begin_node(fdt, nodename)));
142

    
143
        free(nodename);
144

    
145
        _FDT((fdt_property_cell(fdt, "reg", i)));
146
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
147

    
148
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
149
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
150
                                env->dcache_line_size)));
151
        _FDT((fdt_property_cell(fdt, "icache-block-size",
152
                                env->icache_line_size)));
153
        _FDT((fdt_property_cell(fdt, "timebase-frequency", TIMEBASE_FREQ)));
154
        /* Hardcode CPU frequency for now.  It's kind of arbitrary on
155
         * full emu, for kvm we should copy it from the host */
156
        _FDT((fdt_property_cell(fdt, "clock-frequency", 1000000000)));
157
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
158
        _FDT((fdt_property(fdt, "ibm,pft-size",
159
                           pft_size_prop, sizeof(pft_size_prop))));
160
        _FDT((fdt_property_string(fdt, "status", "okay")));
161
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
162
        _FDT((fdt_property_cell(fdt, "ibm,ppc-interrupt-server#s", i)));
163
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
164
                           gserver_prop, sizeof(gserver_prop))));
165

    
166
        if (envs[i]->mmu_model & POWERPC_MMU_1TSEG) {
167
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
168
                               segs, sizeof(segs))));
169
        }
170

    
171
        _FDT((fdt_end_node(fdt)));
172
    }
173

    
174
    qemu_free(modelname);
175

    
176
    _FDT((fdt_end_node(fdt)));
177

    
178
    /* RTAS */
179
    _FDT((fdt_begin_node(fdt, "rtas")));
180

    
181
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
182
                       sizeof(hypertas_prop))));
183

    
184
    _FDT((fdt_end_node(fdt)));
185

    
186
    /* interrupt controller */
187
    _FDT((fdt_begin_node(fdt, "interrupt-controller@0")));
188

    
189
    _FDT((fdt_property_string(fdt, "device_type",
190
                              "PowerPC-External-Interrupt-Presentation")));
191
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
192
    _FDT((fdt_property_cell(fdt, "reg", 0)));
193
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
194
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
195
                       interrupt_server_ranges_prop,
196
                       sizeof(interrupt_server_ranges_prop))));
197

    
198
    _FDT((fdt_end_node(fdt)));
199

    
200
    /* vdevice */
201
    _FDT((fdt_begin_node(fdt, "vdevice")));
202

    
203
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
204
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
205
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
206
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
207
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
208
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
209

    
210
    _FDT((fdt_end_node(fdt)));
211

    
212
    _FDT((fdt_end_node(fdt))); /* close root node */
213
    _FDT((fdt_finish(fdt)));
214

    
215
    /* re-expand to allow for further tweaks */
216
    _FDT((fdt_open_into(fdt, fdt, FDT_MAX_SIZE)));
217

    
218
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
219
    if (ret < 0) {
220
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
221
        exit(1);
222
    }
223

    
224
    /* RTAS */
225
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
226
    if (ret < 0) {
227
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
228
    }
229

    
230
    _FDT((fdt_pack(fdt)));
231

    
232
    *fdt_size = fdt_totalsize(fdt);
233

    
234
    return fdt;
235
}
236

    
237
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
238
{
239
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
240
}
241

    
242
static void emulate_spapr_hypercall(CPUState *env)
243
{
244
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
245
}
246

    
247
/* pSeries LPAR / sPAPR hardware init */
248
static void ppc_spapr_init(ram_addr_t ram_size,
249
                           const char *boot_device,
250
                           const char *kernel_filename,
251
                           const char *kernel_cmdline,
252
                           const char *initrd_filename,
253
                           const char *cpu_model)
254
{
255
    CPUState *envs[MAX_CPUS];
256
    void *fdt, *htab;
257
    int i;
258
    ram_addr_t ram_offset;
259
    target_phys_addr_t fdt_addr, rtas_addr;
260
    uint32_t kernel_base, initrd_base;
261
    long kernel_size, initrd_size, htab_size, rtas_size;
262
    long pteg_shift = 17;
263
    int fdt_size;
264
    char *filename;
265

    
266
    spapr = qemu_malloc(sizeof(*spapr));
267
    cpu_ppc_hypercall = emulate_spapr_hypercall;
268

    
269
    /* We place the device tree just below either the top of RAM, or
270
     * 2GB, so that it can be processed with 32-bit code if
271
     * necessary */
272
    fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE;
273
    /* RTAS goes just below that */
274
    rtas_addr = fdt_addr - RTAS_MAX_SIZE;
275

    
276
    /* init CPUs */
277
    if (cpu_model == NULL) {
278
        cpu_model = "POWER7";
279
    }
280
    for (i = 0; i < smp_cpus; i++) {
281
        CPUState *env = cpu_init(cpu_model);
282

    
283
        if (!env) {
284
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
285
            exit(1);
286
        }
287
        /* Set time-base frequency to 512 MHz */
288
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
289
        qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);
290

    
291
        env->hreset_vector = 0x60;
292
        env->hreset_excp_prefix = 0;
293
        env->gpr[3] = i;
294

    
295
        envs[i] = env;
296
    }
297

    
298
    /* allocate RAM */
299
    ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
300
    cpu_register_physical_memory(0, ram_size, ram_offset);
301

    
302
    /* allocate hash page table.  For now we always make this 16mb,
303
     * later we should probably make it scale to the size of guest
304
     * RAM */
305
    htab_size = 1ULL << (pteg_shift + 7);
306
    htab = qemu_mallocz(htab_size);
307

    
308
    for (i = 0; i < smp_cpus; i++) {
309
        envs[i]->external_htab = htab;
310
        envs[i]->htab_base = -1;
311
        envs[i]->htab_mask = htab_size - 1;
312
    }
313

    
314
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
315
    rtas_size = load_image_targphys(filename, rtas_addr, ram_size - rtas_addr);
316
    if (rtas_size < 0) {
317
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
318
        exit(1);
319
    }
320
    qemu_free(filename);
321

    
322
    /* Set up Interrupt Controller */
323
    spapr->icp = xics_system_init(smp_cpus, envs, XICS_IRQS);
324

    
325
    /* Set up VIO bus */
326
    spapr->vio_bus = spapr_vio_bus_init();
327

    
328
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
329
        if (serial_hds[i]) {
330
            spapr_vty_create(spapr->vio_bus, i, serial_hds[i]);
331
        }
332
    }
333

    
334
    if (kernel_filename) {
335
        uint64_t lowaddr = 0;
336

    
337
        kernel_base = KERNEL_LOAD_ADDR;
338

    
339
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
340
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
341
        if (kernel_size < 0) {
342
            kernel_size = load_image_targphys(kernel_filename, kernel_base,
343
                                              ram_size - kernel_base);
344
        }
345
        if (kernel_size < 0) {
346
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
347
                    kernel_filename);
348
            exit(1);
349
        }
350

    
351
        /* load initrd */
352
        if (initrd_filename) {
353
            initrd_base = INITRD_LOAD_ADDR;
354
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
355
                                              ram_size - initrd_base);
356
            if (initrd_size < 0) {
357
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
358
                        initrd_filename);
359
                exit(1);
360
            }
361
        } else {
362
            initrd_base = 0;
363
            initrd_size = 0;
364
        }
365
    } else {
366
        fprintf(stderr, "pSeries machine needs -kernel for now");
367
        exit(1);
368
    }
369

    
370
    /* Prepare the device tree */
371
    fdt = spapr_create_fdt(&fdt_size, ram_size, cpu_model, envs, spapr,
372
                           initrd_base, initrd_size, kernel_cmdline,
373
                           rtas_addr, rtas_size, pteg_shift + 7);
374
    assert(fdt != NULL);
375

    
376
    cpu_physical_memory_write(fdt_addr, fdt, fdt_size);
377

    
378
    qemu_free(fdt);
379

    
380
    envs[0]->gpr[3] = fdt_addr;
381
    envs[0]->gpr[5] = 0;
382
    envs[0]->hreset_vector = kernel_base;
383
}
384

    
385
static QEMUMachine spapr_machine = {
386
    .name = "pseries",
387
    .desc = "pSeries Logical Partition (PAPR compliant)",
388
    .init = ppc_spapr_init,
389
    .max_cpus = MAX_CPUS,
390
    .no_vga = 1,
391
    .no_parallel = 1,
392
};
393

    
394
static void spapr_machine_init(void)
395
{
396
    qemu_register_machine(&spapr_machine);
397
}
398

    
399
machine_init(spapr_machine_init);