Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ 0122f472

History | View | Annotate | Download (60 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 *
24
 * TODO:
25
 *  o Downstream port handoff
26
 */
27

    
28
#include "hw.h"
29
#include "qemu-timer.h"
30
#include "usb.h"
31
#include "pci.h"
32
#include "monitor.h"
33
#include "trace.h"
34

    
35
#define EHCI_DEBUG   0
36

    
37
#if EHCI_DEBUG
38
#define DPRINTF printf
39
#else
40
#define DPRINTF(...)
41
#endif
42

    
43
/* internal processing - reset HC to try and recover */
44
#define USB_RET_PROCERR   (-99)
45

    
46
#define MMIO_SIZE        0x1000
47

    
48
/* Capability Registers Base Address - section 2.2 */
49
#define CAPREGBASE       0x0000
50
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
51
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
52
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
53
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
54
#define EECP             HCCPARAMS + 1
55
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
56
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
57

    
58
#define OPREGBASE        0x0020        // Operational Registers Base Address
59

    
60
#define USBCMD           OPREGBASE + 0x0000
61
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
62
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
63
#define USBCMD_FLS       (3 << 2)      // Frame List Size
64
#define USBCMD_FLS_SH    2             // Frame List Size Shift
65
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
66
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
67
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
68
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
69
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
70
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
71
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
72
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
73

    
74
#define USBSTS           OPREGBASE + 0x0004
75
#define USBSTS_RO_MASK   0x0000003f
76
#define USBSTS_INT       (1 << 0)      // USB Interrupt
77
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
78
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
79
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
80
#define USBSTS_HSE       (1 << 4)      // Host System Error
81
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
82
#define USBSTS_HALT      (1 << 12)     // HC Halted
83
#define USBSTS_REC       (1 << 13)     // Reclamation
84
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
85
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
86

    
87
/*
88
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
89
 *  so no need to redefine here.
90
 */
91
#define USBINTR              OPREGBASE + 0x0008
92
#define USBINTR_MASK         0x0000003f
93

    
94
#define FRINDEX              OPREGBASE + 0x000c
95
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
96
#define PERIODICLISTBASE     OPREGBASE + 0x0014
97
#define ASYNCLISTADDR        OPREGBASE + 0x0018
98
#define ASYNCLISTADDR_MASK   0xffffffe0
99

    
100
#define CONFIGFLAG           OPREGBASE + 0x0040
101

    
102
#define PORTSC               (OPREGBASE + 0x0044)
103
#define PORTSC_BEGIN         PORTSC
104
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
105
/*
106
 * Bits that are reserverd or are read-only are masked out of values
107
 * written to us by software
108
 */
109
#define PORTSC_RO_MASK       0x007021c5
110
#define PORTSC_RWC_MASK      0x0000002a
111
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
112
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
113
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
114
#define PORTSC_PTC           (15 << 16)   // Port Test Control
115
#define PORTSC_PTC_SH        16           // Port Test Control shift
116
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
117
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
118
#define PORTSC_POWNER        (1 << 13)    // Port Owner
119
#define PORTSC_PPOWER        (1 << 12)    // Port Power
120
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
121
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
122
#define PORTSC_PRESET        (1 << 8)     // Port Reset
123
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
124
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
125
#define PORTSC_OCC           (1 << 5)     // Over Current Change
126
#define PORTSC_OCA           (1 << 4)     // Over Current Active
127
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
128
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
129
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
130
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
131

    
132
#define FRAME_TIMER_FREQ 1000
133
#define FRAME_TIMER_USEC (1000000 / FRAME_TIMER_FREQ)
134

    
135
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
136
#define NB_PORTS         4        // Number of downstream ports
137
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
138
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
139
#define MAX_QH           100      // Max allowable queue heads in a chain
140

    
141
/*  Internal periodic / asynchronous schedule state machine states
142
 */
143
typedef enum {
144
    EST_INACTIVE = 1000,
145
    EST_ACTIVE,
146
    EST_EXECUTING,
147
    EST_SLEEPING,
148
    /*  The following states are internal to the state machine function
149
    */
150
    EST_WAITLISTHEAD,
151
    EST_FETCHENTRY,
152
    EST_FETCHQH,
153
    EST_FETCHITD,
154
    EST_ADVANCEQUEUE,
155
    EST_FETCHQTD,
156
    EST_EXECUTE,
157
    EST_WRITEBACK,
158
    EST_HORIZONTALQH
159
} EHCI_STATES;
160

    
161
/* macros for accessing fields within next link pointer entry */
162
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
163
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
164
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
165

    
166
/* link pointer types */
167
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
168
#define NLPTR_TYPE_QH            1     // queue head
169
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
170
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
171

    
172

    
173
/*  EHCI spec version 1.0 Section 3.3
174
 */
175
typedef struct EHCIitd {
176
    uint32_t next;
177

    
178
    uint32_t transact[8];
179
#define ITD_XACT_ACTIVE          (1 << 31)
180
#define ITD_XACT_DBERROR         (1 << 30)
181
#define ITD_XACT_BABBLE          (1 << 29)
182
#define ITD_XACT_XACTERR         (1 << 28)
183
#define ITD_XACT_LENGTH_MASK     0x0fff0000
184
#define ITD_XACT_LENGTH_SH       16
185
#define ITD_XACT_IOC             (1 << 15)
186
#define ITD_XACT_PGSEL_MASK      0x00007000
187
#define ITD_XACT_PGSEL_SH        12
188
#define ITD_XACT_OFFSET_MASK     0x00000fff
189

    
190
    uint32_t bufptr[7];
191
#define ITD_BUFPTR_MASK          0xfffff000
192
#define ITD_BUFPTR_SH            12
193
#define ITD_BUFPTR_EP_MASK       0x00000f00
194
#define ITD_BUFPTR_EP_SH         8
195
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
196
#define ITD_BUFPTR_DEVADDR_SH    0
197
#define ITD_BUFPTR_DIRECTION     (1 << 11)
198
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
199
#define ITD_BUFPTR_MAXPKT_SH     0
200
#define ITD_BUFPTR_MULT_MASK     0x00000003
201
} EHCIitd;
202

    
203
/*  EHCI spec version 1.0 Section 3.4
204
 */
205
typedef struct EHCIsitd {
206
    uint32_t next;                  // Standard next link pointer
207
    uint32_t epchar;
208
#define SITD_EPCHAR_IO              (1 << 31)
209
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
210
#define SITD_EPCHAR_PORTNUM_SH      24
211
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
212
#define SITD_EPCHAR_HUBADDR_SH      16
213
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
214
#define SITD_EPCHAR_EPNUM_SH        8
215
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
216

    
217
    uint32_t uframe;
218
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
219
#define SITD_UFRAME_CMASK_SH        8
220
#define SITD_UFRAME_SMASK_MASK      0x000000ff
221

    
222
    uint32_t results;
223
#define SITD_RESULTS_IOC              (1 << 31)
224
#define SITD_RESULTS_PGSEL            (1 << 30)
225
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
226
#define SITD_RESULTS_TYBYTES_SH       16
227
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
228
#define SITD_RESULTS_CPROGMASK_SH     8
229
#define SITD_RESULTS_ACTIVE           (1 << 7)
230
#define SITD_RESULTS_ERR              (1 << 6)
231
#define SITD_RESULTS_DBERR            (1 << 5)
232
#define SITD_RESULTS_BABBLE           (1 << 4)
233
#define SITD_RESULTS_XACTERR          (1 << 3)
234
#define SITD_RESULTS_MISSEDUF         (1 << 2)
235
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
236

    
237
    uint32_t bufptr[2];
238
#define SITD_BUFPTR_MASK              0xfffff000
239
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
240
#define SITD_BUFPTR_TPOS_MASK         0x00000018
241
#define SITD_BUFPTR_TPOS_SH           3
242
#define SITD_BUFPTR_TCNT_MASK         0x00000007
243

    
244
    uint32_t backptr;                 // Standard next link pointer
245
} EHCIsitd;
246

    
247
/*  EHCI spec version 1.0 Section 3.5
248
 */
249
typedef struct EHCIqtd {
250
    uint32_t next;                    // Standard next link pointer
251
    uint32_t altnext;                 // Standard next link pointer
252
    uint32_t token;
253
#define QTD_TOKEN_DTOGGLE             (1 << 31)
254
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
255
#define QTD_TOKEN_TBYTES_SH           16
256
#define QTD_TOKEN_IOC                 (1 << 15)
257
#define QTD_TOKEN_CPAGE_MASK          0x00007000
258
#define QTD_TOKEN_CPAGE_SH            12
259
#define QTD_TOKEN_CERR_MASK           0x00000c00
260
#define QTD_TOKEN_CERR_SH             10
261
#define QTD_TOKEN_PID_MASK            0x00000300
262
#define QTD_TOKEN_PID_SH              8
263
#define QTD_TOKEN_ACTIVE              (1 << 7)
264
#define QTD_TOKEN_HALT                (1 << 6)
265
#define QTD_TOKEN_DBERR               (1 << 5)
266
#define QTD_TOKEN_BABBLE              (1 << 4)
267
#define QTD_TOKEN_XACTERR             (1 << 3)
268
#define QTD_TOKEN_MISSEDUF            (1 << 2)
269
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
270
#define QTD_TOKEN_PING                (1 << 0)
271

    
272
    uint32_t bufptr[5];               // Standard buffer pointer
273
#define QTD_BUFPTR_MASK               0xfffff000
274
} EHCIqtd;
275

    
276
/*  EHCI spec version 1.0 Section 3.6
277
 */
278
typedef struct EHCIqh {
279
    uint32_t next;                    // Standard next link pointer
280

    
281
    /* endpoint characteristics */
282
    uint32_t epchar;
283
#define QH_EPCHAR_RL_MASK             0xf0000000
284
#define QH_EPCHAR_RL_SH               28
285
#define QH_EPCHAR_C                   (1 << 27)
286
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
287
#define QH_EPCHAR_MPLEN_SH            16
288
#define QH_EPCHAR_H                   (1 << 15)
289
#define QH_EPCHAR_DTC                 (1 << 14)
290
#define QH_EPCHAR_EPS_MASK            0x00003000
291
#define QH_EPCHAR_EPS_SH              12
292
#define EHCI_QH_EPS_FULL              0
293
#define EHCI_QH_EPS_LOW               1
294
#define EHCI_QH_EPS_HIGH              2
295
#define EHCI_QH_EPS_RESERVED          3
296

    
297
#define QH_EPCHAR_EP_MASK             0x00000f00
298
#define QH_EPCHAR_EP_SH               8
299
#define QH_EPCHAR_I                   (1 << 7)
300
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
301
#define QH_EPCHAR_DEVADDR_SH          0
302

    
303
    /* endpoint capabilities */
304
    uint32_t epcap;
305
#define QH_EPCAP_MULT_MASK            0xc0000000
306
#define QH_EPCAP_MULT_SH              30
307
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
308
#define QH_EPCAP_PORTNUM_SH           23
309
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
310
#define QH_EPCAP_HUBADDR_SH           16
311
#define QH_EPCAP_CMASK_MASK           0x0000ff00
312
#define QH_EPCAP_CMASK_SH             8
313
#define QH_EPCAP_SMASK_MASK           0x000000ff
314
#define QH_EPCAP_SMASK_SH             0
315

    
316
    uint32_t current_qtd;             // Standard next link pointer
317
    uint32_t next_qtd;                // Standard next link pointer
318
    uint32_t altnext_qtd;
319
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
320
#define QH_ALTNEXT_NAKCNT_SH          1
321

    
322
    uint32_t token;                   // Same as QTD token
323
    uint32_t bufptr[5];               // Standard buffer pointer
324
#define BUFPTR_CPROGMASK_MASK         0x000000ff
325
#define BUFPTR_FRAMETAG_MASK          0x0000001f
326
#define BUFPTR_SBYTES_MASK            0x00000fe0
327
#define BUFPTR_SBYTES_SH              5
328
} EHCIqh;
329

    
330
/*  EHCI spec version 1.0 Section 3.7
331
 */
332
typedef struct EHCIfstn {
333
    uint32_t next;                    // Standard next link pointer
334
    uint32_t backptr;                 // Standard next link pointer
335
} EHCIfstn;
336

    
337
typedef struct EHCIQueue EHCIQueue;
338
typedef struct EHCIState EHCIState;
339

    
340
enum async_state {
341
    EHCI_ASYNC_NONE = 0,
342
    EHCI_ASYNC_INFLIGHT,
343
    EHCI_ASYNC_FINISHED,
344
};
345

    
346
struct EHCIQueue {
347
    EHCIState *ehci;
348

    
349
    /* cached data from guest - needs to be flushed
350
     * when guest removes an entry (doorbell, handshake sequence)
351
     */
352
    EHCIqh qh;             // copy of current QH (being worked on)
353
    uint32_t qhaddr;       // address QH read from
354
    EHCIqtd qtd;           // copy of current QTD (being worked on)
355
    uint32_t qtdaddr;      // address QTD read from
356

    
357
    USBPacket packet;
358
    uint8_t buffer[BUFF_SIZE];
359
    int pid;
360
    uint32_t tbytes;
361
    enum async_state async;
362
    int usb_status;
363
};
364

    
365
struct EHCIState {
366
    PCIDevice dev;
367
    USBBus bus;
368
    qemu_irq irq;
369
    target_phys_addr_t mem_base;
370
    int mem;
371
    int num_ports;
372
    /*
373
     *  EHCI spec version 1.0 Section 2.3
374
     *  Host Controller Operational Registers
375
     */
376
    union {
377
        uint8_t mmio[MMIO_SIZE];
378
        struct {
379
            uint8_t cap[OPREGBASE];
380
            uint32_t usbcmd;
381
            uint32_t usbsts;
382
            uint32_t usbintr;
383
            uint32_t frindex;
384
            uint32_t ctrldssegment;
385
            uint32_t periodiclistbase;
386
            uint32_t asynclistaddr;
387
            uint32_t notused[9];
388
            uint32_t configflag;
389
            uint32_t portsc[NB_PORTS];
390
        };
391
    };
392

    
393
    /*
394
     *  Internal states, shadow registers, etc
395
     */
396
    uint32_t sofv;
397
    QEMUTimer *frame_timer;
398
    int attach_poll_counter;
399
    int astate;                        // Current state in asynchronous schedule
400
    int pstate;                        // Current state in periodic schedule
401
    USBPort ports[NB_PORTS];
402
    uint32_t usbsts_pending;
403
    EHCIQueue queue;
404

    
405
    uint32_t a_fetch_addr;   // which address to look at next
406
    uint32_t p_fetch_addr;   // which address to look at next
407

    
408
    USBPacket ipacket;
409
    uint8_t ibuffer[BUFF_SIZE];
410
    int isoch_pause;
411

    
412
    uint32_t last_run_usec;
413
    uint32_t frame_end_usec;
414
};
415

    
416
#define SET_LAST_RUN_CLOCK(s) \
417
    (s)->last_run_usec = qemu_get_clock_ns(vm_clock) / 1000;
418

    
419
/* nifty macros from Arnon's EHCI version  */
420
#define get_field(data, field) \
421
    (((data) & field##_MASK) >> field##_SH)
422

    
423
#define set_field(data, newval, field) do { \
424
    uint32_t val = *data; \
425
    val &= ~ field##_MASK; \
426
    val |= ((newval) << field##_SH) & field##_MASK; \
427
    *data = val; \
428
    } while(0)
429

    
430
static const char *ehci_state_names[] = {
431
    [ EST_INACTIVE ]     = "INACTIVE",
432
    [ EST_ACTIVE ]       = "ACTIVE",
433
    [ EST_EXECUTING ]    = "EXECUTING",
434
    [ EST_SLEEPING ]     = "SLEEPING",
435
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
436
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
437
    [ EST_FETCHQH ]      = "FETCH QH",
438
    [ EST_FETCHITD ]     = "FETCH ITD",
439
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
440
    [ EST_FETCHQTD ]     = "FETCH QTD",
441
    [ EST_EXECUTE ]      = "EXECUTE",
442
    [ EST_WRITEBACK ]    = "WRITEBACK",
443
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
444
};
445

    
446
static const char *ehci_mmio_names[] = {
447
    [ CAPLENGTH ]        = "CAPLENGTH",
448
    [ HCIVERSION ]       = "HCIVERSION",
449
    [ HCSPARAMS ]        = "HCSPARAMS",
450
    [ HCCPARAMS ]        = "HCCPARAMS",
451
    [ USBCMD ]           = "USBCMD",
452
    [ USBSTS ]           = "USBSTS",
453
    [ USBINTR ]          = "USBINTR",
454
    [ FRINDEX ]          = "FRINDEX",
455
    [ PERIODICLISTBASE ] = "P-LIST BASE",
456
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
457
    [ PORTSC_BEGIN ]     = "PORTSC #0",
458
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
459
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
460
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
461
    [ CONFIGFLAG ]       = "CONFIGFLAG",
462
};
463

    
464
static const char *nr2str(const char **n, size_t len, uint32_t nr)
465
{
466
    if (nr < len && n[nr] != NULL) {
467
        return n[nr];
468
    } else {
469
        return "unknown";
470
    }
471
}
472

    
473
static const char *state2str(uint32_t state)
474
{
475
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
476
}
477

    
478
static const char *addr2str(target_phys_addr_t addr)
479
{
480
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
481
}
482

    
483
static void ehci_trace_usbsts(uint32_t mask, int state)
484
{
485
    /* interrupts */
486
    if (mask & USBSTS_INT) {
487
        trace_usb_ehci_usbsts("INT", state);
488
    }
489
    if (mask & USBSTS_ERRINT) {
490
        trace_usb_ehci_usbsts("ERRINT", state);
491
    }
492
    if (mask & USBSTS_PCD) {
493
        trace_usb_ehci_usbsts("PCD", state);
494
    }
495
    if (mask & USBSTS_FLR) {
496
        trace_usb_ehci_usbsts("FLR", state);
497
    }
498
    if (mask & USBSTS_HSE) {
499
        trace_usb_ehci_usbsts("HSE", state);
500
    }
501
    if (mask & USBSTS_IAA) {
502
        trace_usb_ehci_usbsts("IAA", state);
503
    }
504

    
505
    /* status */
506
    if (mask & USBSTS_HALT) {
507
        trace_usb_ehci_usbsts("HALT", state);
508
    }
509
    if (mask & USBSTS_REC) {
510
        trace_usb_ehci_usbsts("REC", state);
511
    }
512
    if (mask & USBSTS_PSS) {
513
        trace_usb_ehci_usbsts("PSS", state);
514
    }
515
    if (mask & USBSTS_ASS) {
516
        trace_usb_ehci_usbsts("ASS", state);
517
    }
518
}
519

    
520
static inline void ehci_set_usbsts(EHCIState *s, int mask)
521
{
522
    if ((s->usbsts & mask) == mask) {
523
        return;
524
    }
525
    ehci_trace_usbsts(mask, 1);
526
    s->usbsts |= mask;
527
}
528

    
529
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
530
{
531
    if ((s->usbsts & mask) == 0) {
532
        return;
533
    }
534
    ehci_trace_usbsts(mask, 0);
535
    s->usbsts &= ~mask;
536
}
537

    
538
static inline void ehci_set_interrupt(EHCIState *s, int intr)
539
{
540
    int level = 0;
541

    
542
    // TODO honour interrupt threshold requests
543

    
544
    ehci_set_usbsts(s, intr);
545

    
546
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
547
        level = 1;
548
    }
549

    
550
    qemu_set_irq(s->irq, level);
551
}
552

    
553
static inline void ehci_record_interrupt(EHCIState *s, int intr)
554
{
555
    s->usbsts_pending |= intr;
556
}
557

    
558
static inline void ehci_commit_interrupt(EHCIState *s)
559
{
560
    if (!s->usbsts_pending) {
561
        return;
562
    }
563
    ehci_set_interrupt(s, s->usbsts_pending);
564
    s->usbsts_pending = 0;
565
}
566

    
567
static void ehci_set_state(EHCIState *s, int async, int state)
568
{
569
    if (async) {
570
        trace_usb_ehci_state("async", state2str(state));
571
        s->astate = state;
572
    } else {
573
        trace_usb_ehci_state("periodic", state2str(state));
574
        s->pstate = state;
575
    }
576
}
577

    
578
static int ehci_get_state(EHCIState *s, int async)
579
{
580
    return async ? s->astate : s->pstate;
581
}
582

    
583
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
584
{
585
    if (async) {
586
        s->a_fetch_addr = addr;
587
    } else {
588
        s->p_fetch_addr = addr;
589
    }
590
}
591

    
592
static int ehci_get_fetch_addr(EHCIState *s, int async)
593
{
594
    return async ? s->a_fetch_addr : s->p_fetch_addr;
595
}
596

    
597
static void ehci_trace_qh(EHCIState *s, target_phys_addr_t addr, EHCIqh *qh)
598
{
599
    trace_usb_ehci_qh(addr, qh->next,
600
                      qh->current_qtd, qh->next_qtd, qh->altnext_qtd,
601
                      get_field(qh->epchar, QH_EPCHAR_RL),
602
                      get_field(qh->epchar, QH_EPCHAR_MPLEN),
603
                      get_field(qh->epchar, QH_EPCHAR_EPS),
604
                      get_field(qh->epchar, QH_EPCHAR_EP),
605
                      get_field(qh->epchar, QH_EPCHAR_DEVADDR),
606
                      (bool)(qh->epchar & QH_EPCHAR_C),
607
                      (bool)(qh->epchar & QH_EPCHAR_H),
608
                      (bool)(qh->epchar & QH_EPCHAR_DTC),
609
                      (bool)(qh->epchar & QH_EPCHAR_I));
610
}
611

    
612
static void ehci_trace_qtd(EHCIState *s, target_phys_addr_t addr, EHCIqtd *qtd)
613
{
614
    trace_usb_ehci_qtd(addr, qtd->next, qtd->altnext,
615
                       get_field(qtd->token, QTD_TOKEN_TBYTES),
616
                       get_field(qtd->token, QTD_TOKEN_CPAGE),
617
                       get_field(qtd->token, QTD_TOKEN_CERR),
618
                       get_field(qtd->token, QTD_TOKEN_PID),
619
                       (bool)(qtd->token & QTD_TOKEN_IOC),
620
                       (bool)(qtd->token & QTD_TOKEN_ACTIVE),
621
                       (bool)(qtd->token & QTD_TOKEN_HALT),
622
                       (bool)(qtd->token & QTD_TOKEN_BABBLE),
623
                       (bool)(qtd->token & QTD_TOKEN_XACTERR));
624
}
625

    
626
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
627
{
628
    trace_usb_ehci_itd(addr, itd->next);
629
}
630

    
631
/* Attach or detach a device on root hub */
632

    
633
static void ehci_attach(USBPort *port)
634
{
635
    EHCIState *s = port->opaque;
636
    uint32_t *portsc = &s->portsc[port->index];
637

    
638
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
639

    
640
    *portsc |= PORTSC_CONNECT;
641
    *portsc |= PORTSC_CSC;
642

    
643
    /*
644
     *  If a high speed device is attached then we own this port(indicated
645
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
646
     *  and set an interrupt if enabled.
647
     */
648
    if ( !(*portsc & PORTSC_POWNER)) {
649
        ehci_set_interrupt(s, USBSTS_PCD);
650
    }
651
}
652

    
653
static void ehci_detach(USBPort *port)
654
{
655
    EHCIState *s = port->opaque;
656
    uint32_t *portsc = &s->portsc[port->index];
657

    
658
    trace_usb_ehci_port_detach(port->index);
659

    
660
    *portsc &= ~PORTSC_CONNECT;
661
    *portsc |= PORTSC_CSC;
662

    
663
    /*
664
     *  If a high speed device is attached then we own this port(indicated
665
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
666
     *  and set an interrupt if enabled.
667
     */
668
    if ( !(*portsc & PORTSC_POWNER)) {
669
        ehci_set_interrupt(s, USBSTS_PCD);
670
    }
671
}
672

    
673
/* 4.1 host controller initialization */
674
static void ehci_reset(void *opaque)
675
{
676
    EHCIState *s = opaque;
677
    uint8_t *pci_conf;
678
    int i;
679

    
680
    trace_usb_ehci_reset();
681
    pci_conf = s->dev.config;
682

    
683
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
684

    
685
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
686
    s->usbsts = USBSTS_HALT;
687

    
688
    s->astate = EST_INACTIVE;
689
    s->pstate = EST_INACTIVE;
690
    s->isoch_pause = -1;
691
    s->attach_poll_counter = 0;
692

    
693
    for(i = 0; i < NB_PORTS; i++) {
694
        s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
695

    
696
        if (s->ports[i].dev) {
697
            usb_attach(&s->ports[i], s->ports[i].dev);
698
        }
699
    }
700
}
701

    
702
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
703
{
704
    EHCIState *s = ptr;
705
    uint32_t val;
706

    
707
    val = s->mmio[addr];
708

    
709
    return val;
710
}
711

    
712
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
713
{
714
    EHCIState *s = ptr;
715
    uint32_t val;
716

    
717
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
718

    
719
    return val;
720
}
721

    
722
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
723
{
724
    EHCIState *s = ptr;
725
    uint32_t val;
726

    
727
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
728
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
729

    
730
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
731
    return val;
732
}
733

    
734
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
735
{
736
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
737
    exit(1);
738
}
739

    
740
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
741
{
742
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
743
    exit(1);
744
}
745

    
746
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
747
{
748
    uint32_t *portsc = &s->portsc[port];
749
    int rwc;
750
    USBDevice *dev = s->ports[port].dev;
751

    
752
    rwc = val & PORTSC_RWC_MASK;
753
    val &= PORTSC_RO_MASK;
754

    
755
    // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
756

    
757
    *portsc &= ~rwc;
758

    
759
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
760
        trace_usb_ehci_port_reset(port, 1);
761
    }
762

    
763
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
764
        trace_usb_ehci_port_reset(port, 0);
765
        usb_attach(&s->ports[port], dev);
766

    
767
        // TODO how to handle reset of ports with no device
768
        if (dev) {
769
            usb_send_msg(dev, USB_MSG_RESET);
770
        }
771

    
772
        if (s->ports[port].dev) {
773
            *portsc &= ~PORTSC_CSC;
774
        }
775

    
776
        /*  Table 2.16 Set the enable bit(and enable bit change) to indicate
777
         *  to SW that this port has a high speed device attached
778
         *
779
         *  TODO - when to disable?
780
         */
781
        val |= PORTSC_PED;
782
        val |= PORTSC_PEDC;
783
    }
784

    
785
    *portsc &= ~PORTSC_RO_MASK;
786
    *portsc |= val;
787
}
788

    
789
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
790
{
791
    EHCIState *s = ptr;
792
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
793
    uint32_t old = *mmio;
794
    int i;
795

    
796
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
797

    
798
    /* Only aligned reads are allowed on OHCI */
799
    if (addr & 3) {
800
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
801
                TARGET_FMT_plx "\n", addr);
802
        return;
803
    }
804

    
805
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
806
        handle_port_status_write(s, (addr-PORTSC)/4, val);
807
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
808
        return;
809
    }
810

    
811
    if (addr < OPREGBASE) {
812
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
813
                TARGET_FMT_plx "\n", addr);
814
        return;
815
    }
816

    
817

    
818
    /* Do any register specific pre-write processing here.  */
819
    switch(addr) {
820
    case USBCMD:
821
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
822
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
823
            SET_LAST_RUN_CLOCK(s);
824
            ehci_clear_usbsts(s, USBSTS_HALT);
825
        }
826

    
827
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
828
            qemu_del_timer(s->frame_timer);
829
            // TODO - should finish out some stuff before setting halt
830
            ehci_set_usbsts(s, USBSTS_HALT);
831
        }
832

    
833
        if (val & USBCMD_HCRESET) {
834
            ehci_reset(s);
835
            val &= ~USBCMD_HCRESET;
836
        }
837

    
838
        /* not supporting dynamic frame list size at the moment */
839
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
840
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
841
                    val & USBCMD_FLS);
842
            val &= ~USBCMD_FLS;
843
        }
844
        break;
845

    
846
    case USBSTS:
847
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
848
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
849
        val = s->usbsts;
850
        ehci_set_interrupt(s, 0);
851
        break;
852

    
853
    case USBINTR:
854
        val &= USBINTR_MASK;
855
        break;
856

    
857
    case FRINDEX:
858
        s->sofv = val >> 3;
859
        break;
860

    
861
    case CONFIGFLAG:
862
        val &= 0x1;
863
        if (val) {
864
            for(i = 0; i < NB_PORTS; i++)
865
                s->portsc[i] &= ~PORTSC_POWNER;
866
        }
867
        break;
868

    
869
    case PERIODICLISTBASE:
870
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
871
            fprintf(stderr,
872
              "ehci: PERIODIC list base register set while periodic schedule\n"
873
              "      is enabled and HC is enabled\n");
874
        }
875
        break;
876

    
877
    case ASYNCLISTADDR:
878
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
879
            fprintf(stderr,
880
              "ehci: ASYNC list address register set while async schedule\n"
881
              "      is enabled and HC is enabled\n");
882
        }
883
        break;
884
    }
885

    
886
    *mmio = val;
887
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
888
}
889

    
890

    
891
// TODO : Put in common header file, duplication from usb-ohci.c
892

    
893
/* Get an array of dwords from main memory */
894
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
895
{
896
    int i;
897

    
898
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
899
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
900
        *buf = le32_to_cpu(*buf);
901
    }
902

    
903
    return 1;
904
}
905

    
906
/* Put an array of dwords in to main memory */
907
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
908
{
909
    int i;
910

    
911
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
912
        uint32_t tmp = cpu_to_le32(*buf);
913
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
914
    }
915

    
916
    return 1;
917
}
918

    
919
// 4.10.2
920

    
921
static int ehci_qh_do_overlay(EHCIQueue *q)
922
{
923
    int i;
924
    int dtoggle;
925
    int ping;
926
    int eps;
927
    int reload;
928

    
929
    // remember values in fields to preserve in qh after overlay
930

    
931
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
932
    ping    = q->qh.token & QTD_TOKEN_PING;
933

    
934
    q->qh.current_qtd = q->qtdaddr;
935
    q->qh.next_qtd    = q->qtd.next;
936
    q->qh.altnext_qtd = q->qtd.altnext;
937
    q->qh.token       = q->qtd.token;
938

    
939

    
940
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
941
    if (eps == EHCI_QH_EPS_HIGH) {
942
        q->qh.token &= ~QTD_TOKEN_PING;
943
        q->qh.token |= ping;
944
    }
945

    
946
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
947
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
948

    
949
    for (i = 0; i < 5; i++) {
950
        q->qh.bufptr[i] = q->qtd.bufptr[i];
951
    }
952

    
953
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
954
        // preserve QH DT bit
955
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
956
        q->qh.token |= dtoggle;
957
    }
958

    
959
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
960
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
961

    
962
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
963

    
964
    return 0;
965
}
966

    
967
static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
968
{
969
    int bufpos = 0;
970
    int cpage, offset;
971
    uint32_t head;
972
    uint32_t tail;
973

    
974

    
975
    if (!bytes) {
976
        return 0;
977
    }
978

    
979
    cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
980
    if (cpage > 4) {
981
        fprintf(stderr, "cpage out of range (%d)\n", cpage);
982
        return USB_RET_PROCERR;
983
    }
984

    
985
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
986

    
987
    do {
988
        /* start and end of this page */
989
        head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
990
        tail = head + ~QTD_BUFPTR_MASK + 1;
991
        /* add offset into page */
992
        head |= offset;
993

    
994
        if (bytes <= (tail - head)) {
995
            tail = head + bytes;
996
        }
997

    
998
        trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
999
        cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1000

    
1001
        bufpos += (tail - head);
1002
        bytes -= (tail - head);
1003

    
1004
        if (bytes > 0) {
1005
            cpage++;
1006
            offset = 0;
1007
        }
1008
    } while (bytes > 0);
1009

    
1010
    /* save cpage */
1011
    set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1012

    
1013
    /* save offset into cpage */
1014
    offset = tail - head;
1015
    q->qh.bufptr[0] &= ~QTD_BUFPTR_MASK;
1016
    q->qh.bufptr[0] |= offset;
1017

    
1018
    return 0;
1019
}
1020

    
1021
static void ehci_async_complete_packet(USBDevice *dev, USBPacket *packet)
1022
{
1023
    EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1024

    
1025
    DPRINTF("Async packet complete\n");
1026
    assert(q->async == EHIC_ASYNC_INFLIGHT);
1027
    q->async = EHCI_ASYNC_FINISHED;
1028
    q->usb_status = packet->len;
1029
}
1030

    
1031
static void ehci_execute_complete(EHCIQueue *q)
1032
{
1033
    int c_err, reload;
1034

    
1035
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1036
        DPRINTF("not done yet\n");
1037
        return;
1038
    }
1039
    q->async = EHCI_ASYNC_NONE;
1040

    
1041
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1042
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1043

    
1044
    if (q->usb_status < 0) {
1045
err:
1046
        /* TO-DO: put this is in a function that can be invoked below as well */
1047
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1048
        c_err--;
1049
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1050

    
1051
        switch(q->usb_status) {
1052
        case USB_RET_NODEV:
1053
            fprintf(stderr, "USB no device\n");
1054
            break;
1055
        case USB_RET_STALL:
1056
            fprintf(stderr, "USB stall\n");
1057
            q->qh.token |= QTD_TOKEN_HALT;
1058
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1059
            break;
1060
        case USB_RET_NAK:
1061
            /* 4.10.3 */
1062
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1063
            if ((q->pid == USB_TOKEN_IN) && reload) {
1064
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1065
                nakcnt--;
1066
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1067
            } else if (!reload) {
1068
                return;
1069
            }
1070
            break;
1071
        case USB_RET_BABBLE:
1072
            fprintf(stderr, "USB babble TODO\n");
1073
            q->qh.token |= QTD_TOKEN_BABBLE;
1074
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1075
            break;
1076
        default:
1077
            /* should not be triggerable */
1078
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1079
            assert(0);
1080
            break;
1081
        }
1082
    } else {
1083
        // DPRINTF("Short packet condition\n");
1084
        // TODO check 4.12 for splits
1085

    
1086
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1087
            q->usb_status = USB_RET_BABBLE;
1088
            goto err;
1089
        }
1090

    
1091
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1092
            if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1093
                q->usb_status = USB_RET_PROCERR;
1094
                return;
1095
            }
1096
            q->tbytes -= q->usb_status;
1097
        } else {
1098
            q->tbytes = 0;
1099
        }
1100

    
1101
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1102
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1103
    }
1104

    
1105
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1106
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1107

    
1108
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1109
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1110
    }
1111
}
1112

    
1113
// 4.10.3
1114

    
1115
static int ehci_execute(EHCIQueue *q)
1116
{
1117
    USBPort *port;
1118
    USBDevice *dev;
1119
    int ret;
1120
    int i;
1121
    int endp;
1122
    int devadr;
1123

    
1124
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1125
        fprintf(stderr, "Attempting to execute inactive QH\n");
1126
        return USB_RET_PROCERR;
1127
    }
1128

    
1129
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1130
    if (q->tbytes > BUFF_SIZE) {
1131
        fprintf(stderr, "Request for more bytes than allowed\n");
1132
        return USB_RET_PROCERR;
1133
    }
1134

    
1135
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1136
    switch(q->pid) {
1137
        case 0: q->pid = USB_TOKEN_OUT; break;
1138
        case 1: q->pid = USB_TOKEN_IN; break;
1139
        case 2: q->pid = USB_TOKEN_SETUP; break;
1140
        default: fprintf(stderr, "bad token\n"); break;
1141
    }
1142

    
1143
    if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1144
        (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1145
        return USB_RET_PROCERR;
1146
    }
1147

    
1148
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1149
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1150

    
1151
    ret = USB_RET_NODEV;
1152

    
1153
    // TO-DO: associating device with ehci port
1154
    for(i = 0; i < NB_PORTS; i++) {
1155
        port = &q->ehci->ports[i];
1156
        dev = port->dev;
1157

    
1158
        // TODO sometime we will also need to check if we are the port owner
1159

    
1160
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1161
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1162
                    i, q->ehci->portsc[i]);
1163
            continue;
1164
        }
1165

    
1166
        q->packet.pid = q->pid;
1167
        q->packet.devaddr = devadr;
1168
        q->packet.devep = endp;
1169
        q->packet.data = q->buffer;
1170
        q->packet.len = q->tbytes;
1171

    
1172
        ret = usb_handle_packet(dev, &q->packet);
1173

    
1174
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1175
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1176
                q->packet.len, q->tbytes, endp, ret);
1177

    
1178
        if (ret != USB_RET_NODEV) {
1179
            break;
1180
        }
1181
    }
1182

    
1183
    if (ret > BUFF_SIZE) {
1184
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1185
        return USB_RET_PROCERR;
1186
    }
1187

    
1188
    if (ret == USB_RET_ASYNC) {
1189
        q->async = EHCI_ASYNC_INFLIGHT;
1190
    }
1191

    
1192
    return ret;
1193
}
1194

    
1195
/*  4.7.2
1196
 */
1197

    
1198
static int ehci_process_itd(EHCIState *ehci,
1199
                            EHCIitd *itd)
1200
{
1201
    USBPort *port;
1202
    USBDevice *dev;
1203
    int ret;
1204
    int i, j;
1205
    int ptr;
1206
    int pid;
1207
    int pg;
1208
    int len;
1209
    int dir;
1210
    int devadr;
1211
    int endp;
1212
    int maxpkt;
1213

    
1214
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1215
    devadr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1216
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1217
    maxpkt = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1218

    
1219
    for(i = 0; i < 8; i++) {
1220
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1221
            DPRINTF("ISOCHRONOUS active for frame %d, interval %d\n",
1222
                    ehci->frindex >> 3, i);
1223

    
1224
            pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1225
            ptr = (itd->bufptr[pg] & ITD_BUFPTR_MASK) |
1226
                (itd->transact[i] & ITD_XACT_OFFSET_MASK);
1227
            len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1228

    
1229
            if (len > BUFF_SIZE) {
1230
                return USB_RET_PROCERR;
1231
            }
1232

    
1233
            DPRINTF("ISOCH: buffer %08X len %d\n", ptr, len);
1234

    
1235
            if (!dir) {
1236
                cpu_physical_memory_rw(ptr, &ehci->ibuffer[0], len, 0);
1237
                pid = USB_TOKEN_OUT;
1238
            } else
1239
                pid = USB_TOKEN_IN;
1240

    
1241
            ret = USB_RET_NODEV;
1242

    
1243
            for (j = 0; j < NB_PORTS; j++) {
1244
                port = &ehci->ports[j];
1245
                dev = port->dev;
1246

    
1247
                // TODO sometime we will also need to check if we are the port owner
1248

    
1249
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1250
                    DPRINTF("Port %d, no exec, not connected(%08X)\n",
1251
                            j, ehci->portsc[j]);
1252
                    continue;
1253
                }
1254

    
1255
                ehci->ipacket.pid = pid;
1256
                ehci->ipacket.devaddr = devadr;
1257
                ehci->ipacket.devep = endp;
1258
                ehci->ipacket.data = ehci->ibuffer;
1259
                ehci->ipacket.len = len;
1260

    
1261
                DPRINTF("calling usb_handle_packet\n");
1262
                ret = usb_handle_packet(dev, &ehci->ipacket);
1263

    
1264
                if (ret != USB_RET_NODEV) {
1265
                    break;
1266
                }
1267
            }
1268

    
1269
            /*  In isoch, there is no facility to indicate a NAK so let's
1270
             *  instead just complete a zero-byte transaction.  Setting
1271
             *  DBERR seems too draconian.
1272
             */
1273

    
1274
            if (ret == USB_RET_NAK) {
1275
                if (ehci->isoch_pause > 0) {
1276
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1277
                    ehci->isoch_pause--;
1278
                    return 0;
1279
                } else if (ehci->isoch_pause == -1) {
1280
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1281
                    // Pause frindex for up to 50 msec waiting for data from
1282
                    // remote
1283
                    ehci->isoch_pause = 50;
1284
                    return 0;
1285
                } else {
1286
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1287
                    ret = 0;
1288
                }
1289
            } else {
1290
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1291
                ehci->isoch_pause = -1;
1292
            }
1293

    
1294
            if (ret >= 0) {
1295
                itd->transact[i] &= ~ITD_XACT_ACTIVE;
1296

    
1297
                if (itd->transact[i] & ITD_XACT_IOC) {
1298
                    ehci_record_interrupt(ehci, USBSTS_INT);
1299
                }
1300
            }
1301

    
1302
            if (ret >= 0 && dir) {
1303
                cpu_physical_memory_rw(ptr, &ehci->ibuffer[0], len, 1);
1304

    
1305
                if (ret != len) {
1306
                    DPRINTF("ISOCH IN expected %d, got %d\n",
1307
                            len, ret);
1308
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1309
                }
1310
            }
1311
        }
1312
    }
1313
    return 0;
1314
}
1315

    
1316
/*  This state is the entry point for asynchronous schedule
1317
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1318
 */
1319
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1320
{
1321
    EHCIqh qh;
1322
    int i = 0;
1323
    int again = 0;
1324
    uint32_t entry = ehci->asynclistaddr;
1325

    
1326
    /* set reclamation flag at start event (4.8.6) */
1327
    if (async) {
1328
        ehci_set_usbsts(ehci, USBSTS_REC);
1329
    }
1330

    
1331
    /*  Find the head of the list (4.9.1.1) */
1332
    for(i = 0; i < MAX_QH; i++) {
1333
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1334
        ehci_trace_qh(ehci, NLPTR_GET(entry), &qh);
1335

    
1336
        if (qh.epchar & QH_EPCHAR_H) {
1337
            if (async) {
1338
                entry |= (NLPTR_TYPE_QH << 1);
1339
            }
1340

    
1341
            ehci_set_fetch_addr(ehci, async, entry);
1342
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1343
            again = 1;
1344
            goto out;
1345
        }
1346

    
1347
        entry = qh.next;
1348
        if (entry == ehci->asynclistaddr) {
1349
            break;
1350
        }
1351
    }
1352

    
1353
    /* no head found for list. */
1354

    
1355
    ehci_set_state(ehci, async, EST_ACTIVE);
1356

    
1357
out:
1358
    return again;
1359
}
1360

    
1361

    
1362
/*  This state is the entry point for periodic schedule processing as
1363
 *  well as being a continuation state for async processing.
1364
 */
1365
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1366
{
1367
    int again = 0;
1368
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1369

    
1370
#if EHCI_DEBUG == 0
1371
    if (qemu_get_clock_ns(vm_clock) / 1000 >= ehci->frame_end_usec) {
1372
        if (async) {
1373
            DPRINTF("FETCHENTRY: FRAME timer elapsed, exit state machine\n");
1374
            goto out;
1375
        } else {
1376
            DPRINTF("FETCHENTRY: WARNING "
1377
                    "- frame timer elapsed during periodic\n");
1378
        }
1379
    }
1380
#endif
1381
    if (entry < 0x1000) {
1382
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1383
        ehci_set_state(ehci, async, EST_ACTIVE);
1384
        goto out;
1385
    }
1386

    
1387
    /* section 4.8, only QH in async schedule */
1388
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1389
        fprintf(stderr, "non queue head request in async schedule\n");
1390
        return -1;
1391
    }
1392

    
1393
    switch (NLPTR_TYPE_GET(entry)) {
1394
    case NLPTR_TYPE_QH:
1395
        ehci_set_state(ehci, async, EST_FETCHQH);
1396
        again = 1;
1397
        break;
1398

    
1399
    case NLPTR_TYPE_ITD:
1400
        ehci_set_state(ehci, async, EST_FETCHITD);
1401
        again = 1;
1402
        break;
1403

    
1404
    default:
1405
        // TODO: handle siTD and FSTN types
1406
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1407
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1408
        return -1;
1409
    }
1410

    
1411
out:
1412
    return again;
1413
}
1414

    
1415
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1416
{
1417
    uint32_t entry;
1418
    EHCIQueue *q;
1419
    int reload;
1420

    
1421
    entry = ehci_get_fetch_addr(ehci, async);
1422
    q = &ehci->queue; /* temporary */
1423
    q->qhaddr = entry;
1424

    
1425
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1426
    ehci_trace_qh(ehci, NLPTR_GET(q->qhaddr), &q->qh);
1427

    
1428
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1429

    
1430
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1431
        if (ehci->usbsts & USBSTS_REC) {
1432
            ehci_clear_usbsts(ehci, USBSTS_REC);
1433
        } else {
1434
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1435
                       " - done processing\n", q->qhaddr);
1436
            ehci_set_state(ehci, async, EST_ACTIVE);
1437
            q = NULL;
1438
            goto out;
1439
        }
1440
    }
1441

    
1442
#if EHCI_DEBUG
1443
    if (q->qhaddr != q->qh.next) {
1444
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1445
               q->qhaddr,
1446
               q->qh.epchar & QH_EPCHAR_H,
1447
               q->qh.token & QTD_TOKEN_HALT,
1448
               q->qh.token & QTD_TOKEN_ACTIVE,
1449
               q->qh.next);
1450
    }
1451
#endif
1452

    
1453
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1454
    if (reload) {
1455
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1456
    }
1457

    
1458
    if (q->qh.token & QTD_TOKEN_HALT) {
1459
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1460

    
1461
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1462
        q->qtdaddr = q->qh.current_qtd;
1463
        ehci_set_state(ehci, async, EST_FETCHQTD);
1464

    
1465
    } else {
1466
        /*  EHCI spec version 1.0 Section 4.10.2 */
1467
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1468
    }
1469

    
1470
out:
1471
    return q;
1472
}
1473

    
1474
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1475
{
1476
    uint32_t entry;
1477
    EHCIitd itd;
1478

    
1479
    assert(!async);
1480
    entry = ehci_get_fetch_addr(ehci, async);
1481

    
1482
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1483
               sizeof(EHCIitd) >> 2);
1484
    ehci_trace_itd(ehci, entry, &itd);
1485

    
1486
    if (ehci_process_itd(ehci, &itd) != 0) {
1487
        return -1;
1488
    }
1489

    
1490
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1491
                sizeof(EHCIitd) >> 2);
1492
    ehci_set_fetch_addr(ehci, async, itd.next);
1493
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1494

    
1495
    return 1;
1496
}
1497

    
1498
/* Section 4.10.2 - paragraph 3 */
1499
static int ehci_state_advqueue(EHCIQueue *q, int async)
1500
{
1501
#if 0
1502
    /* TO-DO: 4.10.2 - paragraph 2
1503
     * if I-bit is set to 1 and QH is not active
1504
     * go to horizontal QH
1505
     */
1506
    if (I-bit set) {
1507
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1508
        goto out;
1509
    }
1510
#endif
1511

    
1512
    /*
1513
     * want data and alt-next qTD is valid
1514
     */
1515
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1516
        (q->qh.altnext_qtd > 0x1000) &&
1517
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1518
        q->qtdaddr = q->qh.altnext_qtd;
1519
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1520

    
1521
    /*
1522
     *  next qTD is valid
1523
     */
1524
    } else if ((q->qh.next_qtd > 0x1000) &&
1525
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1526
        q->qtdaddr = q->qh.next_qtd;
1527
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1528

    
1529
    /*
1530
     *  no valid qTD, try next QH
1531
     */
1532
    } else {
1533
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1534
    }
1535

    
1536
    return 1;
1537
}
1538

    
1539
/* Section 4.10.2 - paragraph 4 */
1540
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1541
{
1542
    int again = 0;
1543

    
1544
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1545
    ehci_trace_qtd(q->ehci, NLPTR_GET(q->qtdaddr), &q->qtd);
1546

    
1547
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1548
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1549
        again = 1;
1550
    } else {
1551
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1552
        again = 1;
1553
    }
1554

    
1555
    return again;
1556
}
1557

    
1558
static int ehci_state_horizqh(EHCIQueue *q, int async)
1559
{
1560
    int again = 0;
1561

    
1562
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1563
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1564
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1565
        again = 1;
1566
    } else {
1567
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1568
    }
1569

    
1570
    return again;
1571
}
1572

    
1573
static int ehci_state_execute(EHCIQueue *q, int async)
1574
{
1575
    int again = 0;
1576
    int reload, nakcnt;
1577
    int smask;
1578

    
1579
    if (ehci_qh_do_overlay(q) != 0) {
1580
        return -1;
1581
    }
1582

    
1583
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1584

    
1585
    if (!smask) {
1586
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1587
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1588
        if (reload && !nakcnt) {
1589
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1590
            again = 1;
1591
            goto out;
1592
        }
1593
    }
1594

    
1595
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1596
    // TODO write back ptr to async list when done or out of time
1597
    // TODO Windows does not seem to ever set the MULT field
1598

    
1599
    if (!async) {
1600
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1601
        if (!transactCtr) {
1602
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1603
            again = 1;
1604
            goto out;
1605
        }
1606
    }
1607

    
1608
    if (async) {
1609
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1610
    }
1611

    
1612
    q->usb_status = ehci_execute(q);
1613
    if (q->usb_status == USB_RET_PROCERR) {
1614
        again = -1;
1615
        goto out;
1616
    }
1617
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1618

    
1619
    if (q->usb_status != USB_RET_ASYNC) {
1620
        again = 1;
1621
    }
1622

    
1623
out:
1624
    return again;
1625
}
1626

    
1627
static int ehci_state_executing(EHCIQueue *q, int async)
1628
{
1629
    int again = 0;
1630
    int reload, nakcnt;
1631

    
1632
    ehci_execute_complete(q);
1633
    if (q->usb_status == USB_RET_ASYNC) {
1634
        goto out;
1635
    }
1636
    if (q->usb_status == USB_RET_PROCERR) {
1637
        again = -1;
1638
        goto out;
1639
    }
1640

    
1641
    // 4.10.3
1642
    if (!async) {
1643
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1644
        transactCtr--;
1645
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1646
        // 4.10.3, bottom of page 82, should exit this state when transaction
1647
        // counter decrements to 0
1648
    }
1649

    
1650
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1651
    if (reload) {
1652
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1653
        if (q->usb_status == USB_RET_NAK) {
1654
            if (nakcnt) {
1655
                nakcnt--;
1656
            }
1657
        } else {
1658
            nakcnt = reload;
1659
        }
1660
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1661
    }
1662

    
1663
    /*
1664
     *  Write the qh back to guest physical memory.  This step isn't
1665
     *  in the EHCI spec but we need to do it since we don't share
1666
     *  physical memory with our guest VM.
1667
     */
1668
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1669

    
1670
    /* 4.10.5 */
1671
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1672
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1673
    } else {
1674
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1675
    }
1676

    
1677
    again = 1;
1678

    
1679
out:
1680
    return again;
1681
}
1682

    
1683

    
1684
static int ehci_state_writeback(EHCIQueue *q, int async)
1685
{
1686
    int again = 0;
1687

    
1688
    /*  Write back the QTD from the QH area */
1689
    ehci_trace_qtd(q->ehci, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1690
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1691
                sizeof(EHCIqtd) >> 2);
1692

    
1693
    /* TODO confirm next state.  For now, keep going if async
1694
     * but stop after one qtd if periodic
1695
     */
1696
    //if (async) {
1697
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1698
        again = 1;
1699
    //} else {
1700
    //    ehci_set_state(ehci, async, EST_ACTIVE);
1701
    //}
1702
    return again;
1703
}
1704

    
1705
/*
1706
 * This is the state machine that is common to both async and periodic
1707
 */
1708

    
1709
static void ehci_advance_state(EHCIState *ehci,
1710
                               int async)
1711
{
1712
    EHCIQueue *q = NULL;
1713
    int again;
1714
    int iter = 0;
1715

    
1716
    do {
1717
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1718
            iter++;
1719
            /* if we are roaming a lot of QH without executing a qTD
1720
             * something is wrong with the linked list. TO-DO: why is
1721
             * this hack needed?
1722
             */
1723
            if (iter > MAX_ITERATIONS) {
1724
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1725
                ehci_set_state(ehci, async, EST_ACTIVE);
1726
                break;
1727
            }
1728
        }
1729
        switch(ehci_get_state(ehci, async)) {
1730
        case EST_WAITLISTHEAD:
1731
            again = ehci_state_waitlisthead(ehci, async);
1732
            break;
1733

    
1734
        case EST_FETCHENTRY:
1735
            again = ehci_state_fetchentry(ehci, async);
1736
            break;
1737

    
1738
        case EST_FETCHQH:
1739
            q = ehci_state_fetchqh(ehci, async);
1740
            again = q ? 1 : 0;
1741
            break;
1742

    
1743
        case EST_FETCHITD:
1744
            again = ehci_state_fetchitd(ehci, async);
1745
            break;
1746

    
1747
        case EST_ADVANCEQUEUE:
1748
            again = ehci_state_advqueue(q, async);
1749
            break;
1750

    
1751
        case EST_FETCHQTD:
1752
            again = ehci_state_fetchqtd(q, async);
1753
            break;
1754

    
1755
        case EST_HORIZONTALQH:
1756
            again = ehci_state_horizqh(q, async);
1757
            break;
1758

    
1759
        case EST_EXECUTE:
1760
            iter = 0;
1761
            again = ehci_state_execute(q, async);
1762
            break;
1763

    
1764
        case EST_EXECUTING:
1765
            q = &ehci->queue; /* temporary */
1766
            again = ehci_state_executing(q, async);
1767
            break;
1768

    
1769
        case EST_WRITEBACK:
1770
            again = ehci_state_writeback(q, async);
1771
            break;
1772

    
1773
        default:
1774
            fprintf(stderr, "Bad state!\n");
1775
            again = -1;
1776
            break;
1777
        }
1778

    
1779
        if (again < 0) {
1780
            fprintf(stderr, "processing error - resetting ehci HC\n");
1781
            ehci_reset(ehci);
1782
            again = 0;
1783
        }
1784
    }
1785
    while (again);
1786

    
1787
    ehci_commit_interrupt(ehci);
1788
}
1789

    
1790
static void ehci_advance_async_state(EHCIState *ehci)
1791
{
1792
    int async = 1;
1793

    
1794
    switch(ehci_get_state(ehci, async)) {
1795
    case EST_INACTIVE:
1796
        if (!(ehci->usbcmd & USBCMD_ASE)) {
1797
            break;
1798
        }
1799
        ehci_set_usbsts(ehci, USBSTS_ASS);
1800
        ehci_set_state(ehci, async, EST_ACTIVE);
1801
        // No break, fall through to ACTIVE
1802

    
1803
    case EST_ACTIVE:
1804
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
1805
            ehci_clear_usbsts(ehci, USBSTS_ASS);
1806
            ehci_set_state(ehci, async, EST_INACTIVE);
1807
            break;
1808
        }
1809

    
1810
        /* If the doorbell is set, the guest wants to make a change to the
1811
         * schedule. The host controller needs to release cached data.
1812
         * (section 4.8.2)
1813
         */
1814
        if (ehci->usbcmd & USBCMD_IAAD) {
1815
            DPRINTF("ASYNC: doorbell request acknowledged\n");
1816
            ehci->usbcmd &= ~USBCMD_IAAD;
1817
            ehci_set_interrupt(ehci, USBSTS_IAA);
1818
            break;
1819
        }
1820

    
1821
        /* make sure guest has acknowledged */
1822
        /* TO-DO: is this really needed? */
1823
        if (ehci->usbsts & USBSTS_IAA) {
1824
            DPRINTF("IAA status bit still set.\n");
1825
            break;
1826
        }
1827

    
1828
        /* check that address register has been set */
1829
        if (ehci->asynclistaddr == 0) {
1830
            break;
1831
        }
1832

    
1833
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1834
        /* fall through */
1835

    
1836
    case EST_FETCHENTRY:
1837
        /* fall through */
1838

    
1839
    case EST_EXECUTING:
1840
        ehci_advance_state(ehci, async);
1841
        break;
1842

    
1843
    default:
1844
        /* this should only be due to a developer mistake */
1845
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
1846
                "Resetting to active\n", ehci->astate);
1847
        assert(0);
1848
    }
1849
}
1850

    
1851
static void ehci_advance_periodic_state(EHCIState *ehci)
1852
{
1853
    uint32_t entry;
1854
    uint32_t list;
1855
    int async = 0;
1856

    
1857
    // 4.6
1858

    
1859
    switch(ehci_get_state(ehci, async)) {
1860
    case EST_INACTIVE:
1861
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
1862
            ehci_set_usbsts(ehci, USBSTS_PSS);
1863
            ehci_set_state(ehci, async, EST_ACTIVE);
1864
            // No break, fall through to ACTIVE
1865
        } else
1866
            break;
1867

    
1868
    case EST_ACTIVE:
1869
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
1870
            ehci_clear_usbsts(ehci, USBSTS_PSS);
1871
            ehci_set_state(ehci, async, EST_INACTIVE);
1872
            break;
1873
        }
1874

    
1875
        list = ehci->periodiclistbase & 0xfffff000;
1876
        /* check that register has been set */
1877
        if (list == 0) {
1878
            break;
1879
        }
1880
        list |= ((ehci->frindex & 0x1ff8) >> 1);
1881

    
1882
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
1883
        entry = le32_to_cpu(entry);
1884

    
1885
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
1886
                ehci->frindex / 8, list, entry);
1887
        ehci_set_fetch_addr(ehci, async,entry);
1888
        ehci_set_state(ehci, async, EST_FETCHENTRY);
1889
        ehci_advance_state(ehci, async);
1890
        break;
1891

    
1892
    case EST_EXECUTING:
1893
        DPRINTF("PERIODIC state adv for executing\n");
1894
        ehci_advance_state(ehci, async);
1895
        break;
1896

    
1897
    default:
1898
        /* this should only be due to a developer mistake */
1899
        fprintf(stderr, "ehci: Bad periodic state %d. "
1900
                "Resetting to active\n", ehci->pstate);
1901
        assert(0);
1902
    }
1903
}
1904

    
1905
static void ehci_frame_timer(void *opaque)
1906
{
1907
    EHCIState *ehci = opaque;
1908
    int64_t expire_time, t_now;
1909
    int usec_elapsed;
1910
    int frames;
1911
    int usec_now;
1912
    int i;
1913
    int skipped_frames = 0;
1914

    
1915

    
1916
    t_now = qemu_get_clock_ns(vm_clock);
1917
    expire_time = t_now + (get_ticks_per_sec() / FRAME_TIMER_FREQ);
1918
    if (expire_time == t_now) {
1919
        expire_time++;
1920
    }
1921

    
1922
    usec_now = t_now / 1000;
1923
    usec_elapsed = usec_now - ehci->last_run_usec;
1924
    frames = usec_elapsed / FRAME_TIMER_USEC;
1925
    ehci->frame_end_usec = usec_now + FRAME_TIMER_USEC - 10;
1926

    
1927
    for (i = 0; i < frames; i++) {
1928
        if ( !(ehci->usbsts & USBSTS_HALT)) {
1929
            if (ehci->isoch_pause <= 0) {
1930
                ehci->frindex += 8;
1931
            }
1932

    
1933
            if (ehci->frindex > 0x00001fff) {
1934
                ehci->frindex = 0;
1935
                ehci_set_interrupt(ehci, USBSTS_FLR);
1936
            }
1937

    
1938
            ehci->sofv = (ehci->frindex - 1) >> 3;
1939
            ehci->sofv &= 0x000003ff;
1940
        }
1941

    
1942
        if (frames - i > 10) {
1943
            skipped_frames++;
1944
        } else {
1945
            // TODO could this cause periodic frames to get skipped if async
1946
            // active?
1947
            if (ehci_get_state(ehci, 1) != EST_EXECUTING) {
1948
                ehci_advance_periodic_state(ehci);
1949
            }
1950
        }
1951

    
1952
        ehci->last_run_usec += FRAME_TIMER_USEC;
1953
    }
1954

    
1955
#if 0
1956
    if (skipped_frames) {
1957
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
1958
    }
1959
#endif
1960

    
1961
    /*  Async is not inside loop since it executes everything it can once
1962
     *  called
1963
     */
1964
    if (ehci_get_state(ehci, 0) != EST_EXECUTING) {
1965
        ehci_advance_async_state(ehci);
1966
    }
1967

    
1968
    qemu_mod_timer(ehci->frame_timer, expire_time);
1969
}
1970

    
1971
static CPUReadMemoryFunc *ehci_readfn[3]={
1972
    ehci_mem_readb,
1973
    ehci_mem_readw,
1974
    ehci_mem_readl
1975
};
1976

    
1977
static CPUWriteMemoryFunc *ehci_writefn[3]={
1978
    ehci_mem_writeb,
1979
    ehci_mem_writew,
1980
    ehci_mem_writel
1981
};
1982

    
1983
static void ehci_map(PCIDevice *pci_dev, int region_num,
1984
                     pcibus_t addr, pcibus_t size, int type)
1985
{
1986
    EHCIState *s =(EHCIState *)pci_dev;
1987

    
1988
    DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
1989
            region_num, addr, size, s->mem);
1990
    s->mem_base = addr;
1991
    cpu_register_physical_memory(addr, size, s->mem);
1992
}
1993

    
1994
static int usb_ehci_initfn(PCIDevice *dev);
1995

    
1996
static USBPortOps ehci_port_ops = {
1997
    .attach = ehci_attach,
1998
    .detach = ehci_detach,
1999
    .complete = ehci_async_complete_packet,
2000
};
2001

    
2002
static PCIDeviceInfo ehci_info = {
2003
    .qdev.name    = "usb-ehci",
2004
    .qdev.size    = sizeof(EHCIState),
2005
    .init         = usb_ehci_initfn,
2006
};
2007

    
2008
static int usb_ehci_initfn(PCIDevice *dev)
2009
{
2010
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2011
    uint8_t *pci_conf = s->dev.config;
2012
    int i;
2013

    
2014
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
2015
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82801D);
2016
    pci_set_byte(&pci_conf[PCI_REVISION_ID], 0x10);
2017
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2018
    pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB);
2019
    pci_set_byte(&pci_conf[PCI_HEADER_TYPE], PCI_HEADER_TYPE_NORMAL);
2020

    
2021
    /* capabilities pointer */
2022
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2023
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2024

    
2025
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2026
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2027
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2028

    
2029
    // pci_conf[0x50] = 0x01; // power management caps
2030

    
2031
    pci_set_byte(&pci_conf[0x60], 0x20);  // spec release number (2.1.4)
2032
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2033
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2034

    
2035
    pci_conf[0x64] = 0x00;
2036
    pci_conf[0x65] = 0x00;
2037
    pci_conf[0x66] = 0x00;
2038
    pci_conf[0x67] = 0x00;
2039
    pci_conf[0x68] = 0x01;
2040
    pci_conf[0x69] = 0x00;
2041
    pci_conf[0x6a] = 0x00;
2042
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2043
    pci_conf[0x6c] = 0x00;
2044
    pci_conf[0x6d] = 0x00;
2045
    pci_conf[0x6e] = 0x00;
2046
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2047

    
2048
    // 2.2 host controller interface version
2049
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2050
    s->mmio[0x01] = 0x00;
2051
    s->mmio[0x02] = 0x00;
2052
    s->mmio[0x03] = 0x01;        // HC version
2053
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2054
    s->mmio[0x05] = 0x00;        // No companion ports at present
2055
    s->mmio[0x06] = 0x00;
2056
    s->mmio[0x07] = 0x00;
2057
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2058
    s->mmio[0x09] = 0x68;        // EECP
2059
    s->mmio[0x0a] = 0x00;
2060
    s->mmio[0x0b] = 0x00;
2061

    
2062
    s->irq = s->dev.irq[3];
2063

    
2064
    usb_bus_new(&s->bus, &s->dev.qdev);
2065
    for(i = 0; i < NB_PORTS; i++) {
2066
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2067
                          USB_SPEED_MASK_HIGH);
2068
        usb_port_location(&s->ports[i], NULL, i+1);
2069
        s->ports[i].dev = 0;
2070
    }
2071

    
2072
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2073
    s->queue.ehci = s;
2074

    
2075
    qemu_register_reset(ehci_reset, s);
2076

    
2077
    s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2078
                                    DEVICE_LITTLE_ENDIAN);
2079

    
2080
    pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2081
                                                            ehci_map);
2082

    
2083
    fprintf(stderr, "*** EHCI support is under development ***\n");
2084

    
2085
    return 0;
2086
}
2087

    
2088
static void ehci_register(void)
2089
{
2090
    pci_qdev_register(&ehci_info);
2091
}
2092
device_init(ehci_register);
2093

    
2094
/*
2095
 * vim: expandtab ts=4
2096
 */