Statistics
| Branch: | Revision:

root / hw / msix.c @ 01731cfb

History | View | Annotate | Download (11.8 kB)

1
/*
2
 * MSI-X device support
3
 *
4
 * This module includes support for MSI-X in pci devices.
5
 *
6
 * Author: Michael S. Tsirkin <mst@redhat.com>
7
 *
8
 *  Copyright (c) 2009, Red Hat Inc, Michael S. Tsirkin (mst@redhat.com)
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2.  See
11
 * the COPYING file in the top-level directory.
12
 */
13

    
14
#include "hw.h"
15
#include "msix.h"
16
#include "pci.h"
17
#include "range.h"
18

    
19
#define MSIX_CAP_LENGTH 12
20

    
21
/* MSI enable bit and maskall bit are in byte 1 in FLAGS register */
22
#define MSIX_CONTROL_OFFSET (PCI_MSIX_FLAGS + 1)
23
#define MSIX_ENABLE_MASK (PCI_MSIX_FLAGS_ENABLE >> 8)
24
#define MSIX_MASKALL_MASK (PCI_MSIX_FLAGS_MASKALL >> 8)
25

    
26
/* How much space does an MSIX table need. */
27
/* The spec requires giving the table structure
28
 * a 4K aligned region all by itself. */
29
#define MSIX_PAGE_SIZE 0x1000
30
/* Reserve second half of the page for pending bits */
31
#define MSIX_PAGE_PENDING (MSIX_PAGE_SIZE / 2)
32
#define MSIX_MAX_ENTRIES 32
33

    
34

    
35
/* Flag for interrupt controller to declare MSI-X support */
36
int msix_supported;
37

    
38
/* Add MSI-X capability to the config space for the device. */
39
/* Given a bar and its size, add MSI-X table on top of it
40
 * and fill MSI-X capability in the config space.
41
 * Original bar size must be a power of 2 or 0.
42
 * New bar size is returned. */
43
static int msix_add_config(struct PCIDevice *pdev, unsigned short nentries,
44
                           unsigned bar_nr, unsigned bar_size)
45
{
46
    int config_offset;
47
    uint8_t *config;
48
    uint32_t new_size;
49

    
50
    if (nentries < 1 || nentries > PCI_MSIX_FLAGS_QSIZE + 1)
51
        return -EINVAL;
52
    if (bar_size > 0x80000000)
53
        return -ENOSPC;
54

    
55
    /* Add space for MSI-X structures */
56
    if (!bar_size) {
57
        new_size = MSIX_PAGE_SIZE;
58
    } else if (bar_size < MSIX_PAGE_SIZE) {
59
        bar_size = MSIX_PAGE_SIZE;
60
        new_size = MSIX_PAGE_SIZE * 2;
61
    } else {
62
        new_size = bar_size * 2;
63
    }
64

    
65
    pdev->msix_bar_size = new_size;
66
    config_offset = pci_add_capability(pdev, PCI_CAP_ID_MSIX,
67
                                       0, MSIX_CAP_LENGTH);
68
    if (config_offset < 0)
69
        return config_offset;
70
    config = pdev->config + config_offset;
71

    
72
    pci_set_word(config + PCI_MSIX_FLAGS, nentries - 1);
73
    /* Table on top of BAR */
74
    pci_set_long(config + PCI_MSIX_TABLE, bar_size | bar_nr);
75
    /* Pending bits on top of that */
76
    pci_set_long(config + PCI_MSIX_PBA, (bar_size + MSIX_PAGE_PENDING) |
77
                 bar_nr);
78
    pdev->msix_cap = config_offset;
79
    /* Make flags bit writeable. */
80
    pdev->wmask[config_offset + MSIX_CONTROL_OFFSET] |= MSIX_ENABLE_MASK |
81
            MSIX_MASKALL_MASK;
82
    return 0;
83
}
84

    
85
static uint32_t msix_mmio_readl(void *opaque, target_phys_addr_t addr)
86
{
87
    PCIDevice *dev = opaque;
88
    unsigned int offset = addr & (MSIX_PAGE_SIZE - 1) & ~0x3;
89
    void *page = dev->msix_table_page;
90

    
91
    return pci_get_long(page + offset);
92
}
93

    
94
static uint32_t msix_mmio_read_unallowed(void *opaque, target_phys_addr_t addr)
95
{
96
    fprintf(stderr, "MSI-X: only dword read is allowed!\n");
97
    return 0;
98
}
99

    
100
static uint8_t msix_pending_mask(int vector)
101
{
102
    return 1 << (vector % 8);
103
}
104

    
105
static uint8_t *msix_pending_byte(PCIDevice *dev, int vector)
106
{
107
    return dev->msix_table_page + MSIX_PAGE_PENDING + vector / 8;
108
}
109

    
110
static int msix_is_pending(PCIDevice *dev, int vector)
111
{
112
    return *msix_pending_byte(dev, vector) & msix_pending_mask(vector);
113
}
114

    
115
static void msix_set_pending(PCIDevice *dev, int vector)
116
{
117
    *msix_pending_byte(dev, vector) |= msix_pending_mask(vector);
118
}
119

    
120
static void msix_clr_pending(PCIDevice *dev, int vector)
121
{
122
    *msix_pending_byte(dev, vector) &= ~msix_pending_mask(vector);
123
}
124

    
125
static int msix_function_masked(PCIDevice *dev)
126
{
127
    return dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] & MSIX_MASKALL_MASK;
128
}
129

    
130
static int msix_is_masked(PCIDevice *dev, int vector)
131
{
132
    unsigned offset =
133
        vector * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL;
134
    return msix_function_masked(dev) ||
135
           dev->msix_table_page[offset] & PCI_MSIX_ENTRY_CTRL_MASKBIT;
136
}
137

    
138
static void msix_handle_mask_update(PCIDevice *dev, int vector)
139
{
140
    if (!msix_is_masked(dev, vector) && msix_is_pending(dev, vector)) {
141
        msix_clr_pending(dev, vector);
142
        msix_notify(dev, vector);
143
    }
144
}
145

    
146
/* Handle MSI-X capability config write. */
147
void msix_write_config(PCIDevice *dev, uint32_t addr,
148
                       uint32_t val, int len)
149
{
150
    unsigned enable_pos = dev->msix_cap + MSIX_CONTROL_OFFSET;
151
    int vector;
152

    
153
    if (!range_covers_byte(addr, len, enable_pos)) {
154
        return;
155
    }
156

    
157
    if (!msix_enabled(dev)) {
158
        return;
159
    }
160

    
161
    pci_device_deassert_intx(dev);
162

    
163
    if (msix_function_masked(dev)) {
164
        return;
165
    }
166

    
167
    for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
168
        msix_handle_mask_update(dev, vector);
169
    }
170
}
171

    
172
static void msix_mmio_writel(void *opaque, target_phys_addr_t addr,
173
                             uint32_t val)
174
{
175
    PCIDevice *dev = opaque;
176
    unsigned int offset = addr & (MSIX_PAGE_SIZE - 1) & ~0x3;
177
    int vector = offset / PCI_MSIX_ENTRY_SIZE;
178
    pci_set_long(dev->msix_table_page + offset, val);
179
    msix_handle_mask_update(dev, vector);
180
}
181

    
182
static void msix_mmio_write_unallowed(void *opaque, target_phys_addr_t addr,
183
                                      uint32_t val)
184
{
185
    fprintf(stderr, "MSI-X: only dword write is allowed!\n");
186
}
187

    
188
static CPUWriteMemoryFunc * const msix_mmio_write[] = {
189
    msix_mmio_write_unallowed, msix_mmio_write_unallowed, msix_mmio_writel
190
};
191

    
192
static CPUReadMemoryFunc * const msix_mmio_read[] = {
193
    msix_mmio_read_unallowed, msix_mmio_read_unallowed, msix_mmio_readl
194
};
195

    
196
/* Should be called from device's map method. */
197
void msix_mmio_map(PCIDevice *d, int region_num,
198
                   pcibus_t addr, pcibus_t size, int type)
199
{
200
    uint8_t *config = d->config + d->msix_cap;
201
    uint32_t table = pci_get_long(config + PCI_MSIX_TABLE);
202
    uint32_t offset = table & ~(MSIX_PAGE_SIZE - 1);
203
    /* TODO: for assigned devices, we'll want to make it possible to map
204
     * pending bits separately in case they are in a separate bar. */
205
    int table_bir = table & PCI_MSIX_FLAGS_BIRMASK;
206

    
207
    if (table_bir != region_num)
208
        return;
209
    if (size <= offset)
210
        return;
211
    cpu_register_physical_memory(addr + offset, size - offset,
212
                                 d->msix_mmio_index);
213
}
214

    
215
static void msix_mask_all(struct PCIDevice *dev, unsigned nentries)
216
{
217
    int vector;
218
    for (vector = 0; vector < nentries; ++vector) {
219
        unsigned offset =
220
            vector * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL;
221
        dev->msix_table_page[offset] |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
222
    }
223
}
224

    
225
/* Initialize the MSI-X structures. Note: if MSI-X is supported, BAR size is
226
 * modified, it should be retrieved with msix_bar_size. */
227
int msix_init(struct PCIDevice *dev, unsigned short nentries,
228
              unsigned bar_nr, unsigned bar_size)
229
{
230
    int ret;
231
    /* Nothing to do if MSI is not supported by interrupt controller */
232
    if (!msix_supported)
233
        return -ENOTSUP;
234

    
235
    if (nentries > MSIX_MAX_ENTRIES)
236
        return -EINVAL;
237

    
238
    dev->msix_entry_used = qemu_mallocz(MSIX_MAX_ENTRIES *
239
                                        sizeof *dev->msix_entry_used);
240

    
241
    dev->msix_table_page = qemu_mallocz(MSIX_PAGE_SIZE);
242
    msix_mask_all(dev, nentries);
243

    
244
    dev->msix_mmio_index = cpu_register_io_memory(msix_mmio_read,
245
                                                  msix_mmio_write, dev,
246
                                                  DEVICE_NATIVE_ENDIAN);
247
    if (dev->msix_mmio_index == -1) {
248
        ret = -EBUSY;
249
        goto err_index;
250
    }
251

    
252
    dev->msix_entries_nr = nentries;
253
    ret = msix_add_config(dev, nentries, bar_nr, bar_size);
254
    if (ret)
255
        goto err_config;
256

    
257
    dev->cap_present |= QEMU_PCI_CAP_MSIX;
258
    return 0;
259

    
260
err_config:
261
    dev->msix_entries_nr = 0;
262
    cpu_unregister_io_memory(dev->msix_mmio_index);
263
err_index:
264
    qemu_free(dev->msix_table_page);
265
    dev->msix_table_page = NULL;
266
    qemu_free(dev->msix_entry_used);
267
    dev->msix_entry_used = NULL;
268
    return ret;
269
}
270

    
271
static void msix_free_irq_entries(PCIDevice *dev)
272
{
273
    int vector;
274

    
275
    for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
276
        dev->msix_entry_used[vector] = 0;
277
        msix_clr_pending(dev, vector);
278
    }
279
}
280

    
281
/* Clean up resources for the device. */
282
int msix_uninit(PCIDevice *dev)
283
{
284
    if (!(dev->cap_present & QEMU_PCI_CAP_MSIX))
285
        return 0;
286
    pci_del_capability(dev, PCI_CAP_ID_MSIX, MSIX_CAP_LENGTH);
287
    dev->msix_cap = 0;
288
    msix_free_irq_entries(dev);
289
    dev->msix_entries_nr = 0;
290
    cpu_unregister_io_memory(dev->msix_mmio_index);
291
    qemu_free(dev->msix_table_page);
292
    dev->msix_table_page = NULL;
293
    qemu_free(dev->msix_entry_used);
294
    dev->msix_entry_used = NULL;
295
    dev->cap_present &= ~QEMU_PCI_CAP_MSIX;
296
    return 0;
297
}
298

    
299
void msix_save(PCIDevice *dev, QEMUFile *f)
300
{
301
    unsigned n = dev->msix_entries_nr;
302

    
303
    if (!(dev->cap_present & QEMU_PCI_CAP_MSIX)) {
304
        return;
305
    }
306

    
307
    qemu_put_buffer(f, dev->msix_table_page, n * PCI_MSIX_ENTRY_SIZE);
308
    qemu_put_buffer(f, dev->msix_table_page + MSIX_PAGE_PENDING, (n + 7) / 8);
309
}
310

    
311
/* Should be called after restoring the config space. */
312
void msix_load(PCIDevice *dev, QEMUFile *f)
313
{
314
    unsigned n = dev->msix_entries_nr;
315

    
316
    if (!(dev->cap_present & QEMU_PCI_CAP_MSIX)) {
317
        return;
318
    }
319

    
320
    msix_free_irq_entries(dev);
321
    qemu_get_buffer(f, dev->msix_table_page, n * PCI_MSIX_ENTRY_SIZE);
322
    qemu_get_buffer(f, dev->msix_table_page + MSIX_PAGE_PENDING, (n + 7) / 8);
323
}
324

    
325
/* Does device support MSI-X? */
326
int msix_present(PCIDevice *dev)
327
{
328
    return dev->cap_present & QEMU_PCI_CAP_MSIX;
329
}
330

    
331
/* Is MSI-X enabled? */
332
int msix_enabled(PCIDevice *dev)
333
{
334
    return (dev->cap_present & QEMU_PCI_CAP_MSIX) &&
335
        (dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &
336
         MSIX_ENABLE_MASK);
337
}
338

    
339
/* Size of bar where MSI-X table resides, or 0 if MSI-X not supported. */
340
uint32_t msix_bar_size(PCIDevice *dev)
341
{
342
    return (dev->cap_present & QEMU_PCI_CAP_MSIX) ?
343
        dev->msix_bar_size : 0;
344
}
345

    
346
/* Send an MSI-X message */
347
void msix_notify(PCIDevice *dev, unsigned vector)
348
{
349
    uint8_t *table_entry = dev->msix_table_page + vector * PCI_MSIX_ENTRY_SIZE;
350
    uint64_t address;
351
    uint32_t data;
352

    
353
    if (vector >= dev->msix_entries_nr || !dev->msix_entry_used[vector])
354
        return;
355
    if (msix_is_masked(dev, vector)) {
356
        msix_set_pending(dev, vector);
357
        return;
358
    }
359

    
360
    address = pci_get_quad(table_entry + PCI_MSIX_ENTRY_LOWER_ADDR);
361
    data = pci_get_long(table_entry + PCI_MSIX_ENTRY_DATA);
362
    stl_phys(address, data);
363
}
364

    
365
void msix_reset(PCIDevice *dev)
366
{
367
    if (!(dev->cap_present & QEMU_PCI_CAP_MSIX))
368
        return;
369
    msix_free_irq_entries(dev);
370
    dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &=
371
            ~dev->wmask[dev->msix_cap + MSIX_CONTROL_OFFSET];
372
    memset(dev->msix_table_page, 0, MSIX_PAGE_SIZE);
373
    msix_mask_all(dev, dev->msix_entries_nr);
374
}
375

    
376
/* PCI spec suggests that devices make it possible for software to configure
377
 * less vectors than supported by the device, but does not specify a standard
378
 * mechanism for devices to do so.
379
 *
380
 * We support this by asking devices to declare vectors software is going to
381
 * actually use, and checking this on the notification path. Devices that
382
 * don't want to follow the spec suggestion can declare all vectors as used. */
383

    
384
/* Mark vector as used. */
385
int msix_vector_use(PCIDevice *dev, unsigned vector)
386
{
387
    if (vector >= dev->msix_entries_nr)
388
        return -EINVAL;
389
    dev->msix_entry_used[vector]++;
390
    return 0;
391
}
392

    
393
/* Mark vector as unused. */
394
void msix_vector_unuse(PCIDevice *dev, unsigned vector)
395
{
396
    if (vector >= dev->msix_entries_nr || !dev->msix_entry_used[vector]) {
397
        return;
398
    }
399
    if (--dev->msix_entry_used[vector]) {
400
        return;
401
    }
402
    msix_clr_pending(dev, vector);
403
}
404

    
405
void msix_unuse_all_vectors(PCIDevice *dev)
406
{
407
    if (!(dev->cap_present & QEMU_PCI_CAP_MSIX))
408
        return;
409
    msix_free_irq_entries(dev);
410
}