Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 023fe10d

History | View | Annotate | Download (12.9 kB)

1
/*
2
 *  i386 execution defines 
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "dyngen-exec.h"
22

    
23
/* at least 4 register variables are defines */
24
register struct CPUX86State *env asm(AREG0);
25
register uint32_t T0 asm(AREG1);
26
register uint32_t T1 asm(AREG2);
27
register uint32_t T2 asm(AREG3);
28

    
29
#define A0 T2
30

    
31
/* if more registers are available, we define some registers too */
32
#ifdef AREG4
33
register uint32_t EAX asm(AREG4);
34
#define reg_EAX
35
#endif
36

    
37
#ifdef AREG5
38
register uint32_t ESP asm(AREG5);
39
#define reg_ESP
40
#endif
41

    
42
#ifdef AREG6
43
register uint32_t EBP asm(AREG6);
44
#define reg_EBP
45
#endif
46

    
47
#ifdef AREG7
48
register uint32_t ECX asm(AREG7);
49
#define reg_ECX
50
#endif
51

    
52
#ifdef AREG8
53
register uint32_t EDX asm(AREG8);
54
#define reg_EDX
55
#endif
56

    
57
#ifdef AREG9
58
register uint32_t EBX asm(AREG9);
59
#define reg_EBX
60
#endif
61

    
62
#ifdef AREG10
63
register uint32_t ESI asm(AREG10);
64
#define reg_ESI
65
#endif
66

    
67
#ifdef AREG11
68
register uint32_t EDI asm(AREG11);
69
#define reg_EDI
70
#endif
71

    
72
extern FILE *logfile;
73
extern int loglevel;
74

    
75
#ifndef reg_EAX
76
#define EAX (env->regs[R_EAX])
77
#endif
78
#ifndef reg_ECX
79
#define ECX (env->regs[R_ECX])
80
#endif
81
#ifndef reg_EDX
82
#define EDX (env->regs[R_EDX])
83
#endif
84
#ifndef reg_EBX
85
#define EBX (env->regs[R_EBX])
86
#endif
87
#ifndef reg_ESP
88
#define ESP (env->regs[R_ESP])
89
#endif
90
#ifndef reg_EBP
91
#define EBP (env->regs[R_EBP])
92
#endif
93
#ifndef reg_ESI
94
#define ESI (env->regs[R_ESI])
95
#endif
96
#ifndef reg_EDI
97
#define EDI (env->regs[R_EDI])
98
#endif
99
#define EIP  (env->eip)
100
#define DF  (env->df)
101

    
102
#define CC_SRC (env->cc_src)
103
#define CC_DST (env->cc_dst)
104
#define CC_OP  (env->cc_op)
105

    
106
/* float macros */
107
#define FT0    (env->ft0)
108
#define ST0    (env->fpregs[env->fpstt])
109
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7])
110
#define ST1    ST(1)
111

    
112
#ifdef USE_FP_CONVERT
113
#define FP_CONVERT  (env->fp_convert)
114
#endif
115

    
116
#include "cpu.h"
117
#include "exec-all.h"
118

    
119
typedef struct CCTable {
120
    int (*compute_all)(void); /* return all the flags */
121
    int (*compute_c)(void);  /* return the C flag */
122
} CCTable;
123

    
124
extern CCTable cc_table[];
125

    
126
void load_seg(int seg_reg, int selector);
127
void helper_ljmp_protected_T0_T1(int next_eip);
128
void helper_lcall_real_T0_T1(int shift, int next_eip);
129
void helper_lcall_protected_T0_T1(int shift, int next_eip);
130
void helper_iret_real(int shift);
131
void helper_iret_protected(int shift, int next_eip);
132
void helper_lret_protected(int shift, int addend);
133
void helper_lldt_T0(void);
134
void helper_ltr_T0(void);
135
void helper_movl_crN_T0(int reg);
136
void helper_movl_drN_T0(int reg);
137
void helper_invlpg(unsigned int addr);
138
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
139
void cpu_x86_update_cr3(CPUX86State *env, uint32_t new_cr3);
140
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
141
void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
142
int cpu_x86_handle_mmu_fault(CPUX86State *env, uint32_t addr, 
143
                             int is_write, int is_user, int is_softmmu);
144
void tlb_fill(unsigned long addr, int is_write, int is_user, 
145
              void *retaddr);
146
void __hidden cpu_lock(void);
147
void __hidden cpu_unlock(void);
148
void do_interrupt(int intno, int is_int, int error_code, 
149
                  unsigned int next_eip, int is_hw);
150
void do_interrupt_user(int intno, int is_int, int error_code, 
151
                       unsigned int next_eip);
152
void raise_interrupt(int intno, int is_int, int error_code, 
153
                     unsigned int next_eip);
154
void raise_exception_err(int exception_index, int error_code);
155
void raise_exception(int exception_index);
156
void __hidden cpu_loop_exit(void);
157
void helper_fsave(uint8_t *ptr, int data32);
158
void helper_frstor(uint8_t *ptr, int data32);
159

    
160
void OPPROTO op_movl_eflags_T0(void);
161
void OPPROTO op_movl_T0_eflags(void);
162
void raise_interrupt(int intno, int is_int, int error_code, 
163
                     unsigned int next_eip);
164
void raise_exception_err(int exception_index, int error_code);
165
void raise_exception(int exception_index);
166
void helper_divl_EAX_T0(uint32_t eip);
167
void helper_idivl_EAX_T0(uint32_t eip);
168
void helper_cmpxchg8b(void);
169
void helper_cpuid(void);
170
void helper_sysenter(void);
171
void helper_sysexit(void);
172
void helper_rdtsc(void);
173
void helper_rdmsr(void);
174
void helper_wrmsr(void);
175
void helper_lsl(void);
176
void helper_lar(void);
177
void helper_verr(void);
178
void helper_verw(void);
179

    
180
void check_iob_T0(void);
181
void check_iow_T0(void);
182
void check_iol_T0(void);
183
void check_iob_DX(void);
184
void check_iow_DX(void);
185
void check_iol_DX(void);
186

    
187
/* XXX: move that to a generic header */
188
#if !defined(CONFIG_USER_ONLY)
189

    
190
#define ldul_user ldl_user
191
#define ldul_kernel ldl_kernel
192

    
193
#define ACCESS_TYPE 0
194
#define MEMSUFFIX _kernel
195
#define DATA_SIZE 1
196
#include "softmmu_header.h"
197

    
198
#define DATA_SIZE 2
199
#include "softmmu_header.h"
200

    
201
#define DATA_SIZE 4
202
#include "softmmu_header.h"
203

    
204
#define DATA_SIZE 8
205
#include "softmmu_header.h"
206
#undef ACCESS_TYPE
207
#undef MEMSUFFIX
208

    
209
#define ACCESS_TYPE 1
210
#define MEMSUFFIX _user
211
#define DATA_SIZE 1
212
#include "softmmu_header.h"
213

    
214
#define DATA_SIZE 2
215
#include "softmmu_header.h"
216

    
217
#define DATA_SIZE 4
218
#include "softmmu_header.h"
219

    
220
#define DATA_SIZE 8
221
#include "softmmu_header.h"
222
#undef ACCESS_TYPE
223
#undef MEMSUFFIX
224

    
225
/* these access are slower, they must be as rare as possible */
226
#define ACCESS_TYPE 2
227
#define MEMSUFFIX _data
228
#define DATA_SIZE 1
229
#include "softmmu_header.h"
230

    
231
#define DATA_SIZE 2
232
#include "softmmu_header.h"
233

    
234
#define DATA_SIZE 4
235
#include "softmmu_header.h"
236

    
237
#define DATA_SIZE 8
238
#include "softmmu_header.h"
239
#undef ACCESS_TYPE
240
#undef MEMSUFFIX
241

    
242
#define ldub(p) ldub_data(p)
243
#define ldsb(p) ldsb_data(p)
244
#define lduw(p) lduw_data(p)
245
#define ldsw(p) ldsw_data(p)
246
#define ldl(p) ldl_data(p)
247
#define ldq(p) ldq_data(p)
248

    
249
#define stb(p, v) stb_data(p, v)
250
#define stw(p, v) stw_data(p, v)
251
#define stl(p, v) stl_data(p, v)
252
#define stq(p, v) stq_data(p, v)
253

    
254
static inline double ldfq(void *ptr)
255
{
256
    union {
257
        double d;
258
        uint64_t i;
259
    } u;
260
    u.i = ldq(ptr);
261
    return u.d;
262
}
263

    
264
static inline void stfq(void *ptr, double v)
265
{
266
    union {
267
        double d;
268
        uint64_t i;
269
    } u;
270
    u.d = v;
271
    stq(ptr, u.i);
272
}
273

    
274
static inline float ldfl(void *ptr)
275
{
276
    union {
277
        float f;
278
        uint32_t i;
279
    } u;
280
    u.i = ldl(ptr);
281
    return u.f;
282
}
283

    
284
static inline void stfl(void *ptr, float v)
285
{
286
    union {
287
        float f;
288
        uint32_t i;
289
    } u;
290
    u.f = v;
291
    stl(ptr, u.i);
292
}
293

    
294
#endif /* !defined(CONFIG_USER_ONLY) */
295

    
296
#ifdef USE_X86LDOUBLE
297
/* use long double functions */
298
#define lrint lrintl
299
#define llrint llrintl
300
#define fabs fabsl
301
#define sin sinl
302
#define cos cosl
303
#define sqrt sqrtl
304
#define pow powl
305
#define log logl
306
#define tan tanl
307
#define atan2 atan2l
308
#define floor floorl
309
#define ceil ceill
310
#define rint rintl
311
#endif
312

    
313
#if !defined(_BSD)
314
extern int lrint(CPU86_LDouble x);
315
extern int64_t llrint(CPU86_LDouble x);
316
#else
317
#define lrint(d)                ((int)rint(d))
318
#define llrint(d)                ((int)rint(d))
319
#endif
320
extern CPU86_LDouble fabs(CPU86_LDouble x);
321
extern CPU86_LDouble sin(CPU86_LDouble x);
322
extern CPU86_LDouble cos(CPU86_LDouble x);
323
extern CPU86_LDouble sqrt(CPU86_LDouble x);
324
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
325
extern CPU86_LDouble log(CPU86_LDouble x);
326
extern CPU86_LDouble tan(CPU86_LDouble x);
327
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
328
extern CPU86_LDouble floor(CPU86_LDouble x);
329
extern CPU86_LDouble ceil(CPU86_LDouble x);
330
extern CPU86_LDouble rint(CPU86_LDouble x);
331

    
332
#define RC_MASK         0xc00
333
#define RC_NEAR                0x000
334
#define RC_DOWN                0x400
335
#define RC_UP                0x800
336
#define RC_CHOP                0xc00
337

    
338
#define MAXTAN 9223372036854775808.0
339

    
340
#ifdef __arm__
341
/* we have no way to do correct rounding - a FPU emulator is needed */
342
#define FE_DOWNWARD   FE_TONEAREST
343
#define FE_UPWARD     FE_TONEAREST
344
#define FE_TOWARDZERO FE_TONEAREST
345
#endif
346

    
347
#ifdef USE_X86LDOUBLE
348

    
349
/* only for x86 */
350
typedef union {
351
    long double d;
352
    struct {
353
        unsigned long long lower;
354
        unsigned short upper;
355
    } l;
356
} CPU86_LDoubleU;
357

    
358
/* the following deal with x86 long double-precision numbers */
359
#define MAXEXPD 0x7fff
360
#define EXPBIAS 16383
361
#define EXPD(fp)        (fp.l.upper & 0x7fff)
362
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
363
#define MANTD(fp)       (fp.l.lower)
364
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
365

    
366
#else
367

    
368
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
369
typedef union {
370
    double d;
371
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
372
    struct {
373
        uint32_t lower;
374
        int32_t upper;
375
    } l;
376
#else
377
    struct {
378
        int32_t upper;
379
        uint32_t lower;
380
    } l;
381
#endif
382
#ifndef __arm__
383
    int64_t ll;
384
#endif
385
} CPU86_LDoubleU;
386

    
387
/* the following deal with IEEE double-precision numbers */
388
#define MAXEXPD 0x7ff
389
#define EXPBIAS 1023
390
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
391
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
392
#ifdef __arm__
393
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
394
#else
395
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
396
#endif
397
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
398
#endif
399

    
400
static inline void fpush(void)
401
{
402
    env->fpstt = (env->fpstt - 1) & 7;
403
    env->fptags[env->fpstt] = 0; /* validate stack entry */
404
}
405

    
406
static inline void fpop(void)
407
{
408
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
409
    env->fpstt = (env->fpstt + 1) & 7;
410
}
411

    
412
#ifndef USE_X86LDOUBLE
413
static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
414
{
415
    CPU86_LDoubleU temp;
416
    int upper, e;
417
    uint64_t ll;
418

    
419
    /* mantissa */
420
    upper = lduw(ptr + 8);
421
    /* XXX: handle overflow ? */
422
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
423
    e |= (upper >> 4) & 0x800; /* sign */
424
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
425
#ifdef __arm__
426
    temp.l.upper = (e << 20) | (ll >> 32);
427
    temp.l.lower = ll;
428
#else
429
    temp.ll = ll | ((uint64_t)e << 52);
430
#endif
431
    return temp.d;
432
}
433

    
434
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
435
{
436
    CPU86_LDoubleU temp;
437
    int e;
438

    
439
    temp.d = f;
440
    /* mantissa */
441
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
442
    /* exponent + sign */
443
    e = EXPD(temp) - EXPBIAS + 16383;
444
    e |= SIGND(temp) >> 16;
445
    stw(ptr + 8, e);
446
}
447
#else
448

    
449
/* XXX: same endianness assumed */
450

    
451
#ifdef CONFIG_USER_ONLY
452

    
453
static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
454
{
455
    return *(CPU86_LDouble *)ptr;
456
}
457

    
458
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
459
{
460
    *(CPU86_LDouble *)ptr = f;
461
}
462

    
463
#else
464

    
465
/* we use memory access macros */
466

    
467
static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
468
{
469
    CPU86_LDoubleU temp;
470

    
471
    temp.l.lower = ldq(ptr);
472
    temp.l.upper = lduw(ptr + 8);
473
    return temp.d;
474
}
475

    
476
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
477
{
478
    CPU86_LDoubleU temp;
479
    
480
    temp.d = f;
481
    stq(ptr, temp.l.lower);
482
    stw(ptr + 8, temp.l.upper);
483
}
484

    
485
#endif /* !CONFIG_USER_ONLY */
486

    
487
#endif /* USE_X86LDOUBLE */
488

    
489
#define FPUS_IE (1 << 0)
490
#define FPUS_DE (1 << 1)
491
#define FPUS_ZE (1 << 2)
492
#define FPUS_OE (1 << 3)
493
#define FPUS_UE (1 << 4)
494
#define FPUS_PE (1 << 5)
495
#define FPUS_SF (1 << 6)
496
#define FPUS_SE (1 << 7)
497
#define FPUS_B  (1 << 15)
498

    
499
#define FPUC_EM 0x3f
500

    
501
const CPU86_LDouble f15rk[7];
502

    
503
void helper_fldt_ST0_A0(void);
504
void helper_fstt_ST0_A0(void);
505
void fpu_raise_exception(void);
506
CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b);
507
void helper_fbld_ST0_A0(void);
508
void helper_fbst_ST0_A0(void);
509
void helper_f2xm1(void);
510
void helper_fyl2x(void);
511
void helper_fptan(void);
512
void helper_fpatan(void);
513
void helper_fxtract(void);
514
void helper_fprem1(void);
515
void helper_fprem(void);
516
void helper_fyl2xp1(void);
517
void helper_fsqrt(void);
518
void helper_fsincos(void);
519
void helper_frndint(void);
520
void helper_fscale(void);
521
void helper_fsin(void);
522
void helper_fcos(void);
523
void helper_fxam_ST0(void);
524
void helper_fstenv(uint8_t *ptr, int data32);
525
void helper_fldenv(uint8_t *ptr, int data32);
526
void helper_fsave(uint8_t *ptr, int data32);
527
void helper_frstor(uint8_t *ptr, int data32);
528
void restore_native_fp_state(CPUState *env);
529
void save_native_fp_state(CPUState *env);
530

    
531
const uint8_t parity_table[256];
532
const uint8_t rclw_table[32];
533
const uint8_t rclb_table[32];
534

    
535
static inline uint32_t compute_eflags(void)
536
{
537
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
538
}
539

    
540
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
541
static inline void load_eflags(int eflags, int update_mask)
542
{
543
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
544
    DF = 1 - (2 * ((eflags >> 10) & 1));
545
    env->eflags = (env->eflags & ~update_mask) | 
546
        (eflags & update_mask);
547
}
548