Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ 025b168c

History | View | Annotate | Download (64.1 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 *
24
 * TODO:
25
 *  o Downstream port handoff
26
 */
27

    
28
#include "hw.h"
29
#include "qemu-timer.h"
30
#include "usb.h"
31
#include "pci.h"
32
#include "monitor.h"
33
#include "trace.h"
34

    
35
#define EHCI_DEBUG   0
36

    
37
#if EHCI_DEBUG
38
#define DPRINTF printf
39
#else
40
#define DPRINTF(...)
41
#endif
42

    
43
/* internal processing - reset HC to try and recover */
44
#define USB_RET_PROCERR   (-99)
45

    
46
#define MMIO_SIZE        0x1000
47

    
48
/* Capability Registers Base Address - section 2.2 */
49
#define CAPREGBASE       0x0000
50
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
51
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
52
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
53
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
54
#define EECP             HCCPARAMS + 1
55
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
56
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
57

    
58
#define OPREGBASE        0x0020        // Operational Registers Base Address
59

    
60
#define USBCMD           OPREGBASE + 0x0000
61
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
62
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
63
#define USBCMD_FLS       (3 << 2)      // Frame List Size
64
#define USBCMD_FLS_SH    2             // Frame List Size Shift
65
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
66
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
67
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
68
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
69
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
70
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
71
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
72
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
73

    
74
#define USBSTS           OPREGBASE + 0x0004
75
#define USBSTS_RO_MASK   0x0000003f
76
#define USBSTS_INT       (1 << 0)      // USB Interrupt
77
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
78
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
79
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
80
#define USBSTS_HSE       (1 << 4)      // Host System Error
81
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
82
#define USBSTS_HALT      (1 << 12)     // HC Halted
83
#define USBSTS_REC       (1 << 13)     // Reclamation
84
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
85
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
86

    
87
/*
88
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
89
 *  so no need to redefine here.
90
 */
91
#define USBINTR              OPREGBASE + 0x0008
92
#define USBINTR_MASK         0x0000003f
93

    
94
#define FRINDEX              OPREGBASE + 0x000c
95
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
96
#define PERIODICLISTBASE     OPREGBASE + 0x0014
97
#define ASYNCLISTADDR        OPREGBASE + 0x0018
98
#define ASYNCLISTADDR_MASK   0xffffffe0
99

    
100
#define CONFIGFLAG           OPREGBASE + 0x0040
101

    
102
#define PORTSC               (OPREGBASE + 0x0044)
103
#define PORTSC_BEGIN         PORTSC
104
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
105
/*
106
 * Bits that are reserverd or are read-only are masked out of values
107
 * written to us by software
108
 */
109
#define PORTSC_RO_MASK       0x007021c5
110
#define PORTSC_RWC_MASK      0x0000002a
111
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
112
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
113
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
114
#define PORTSC_PTC           (15 << 16)   // Port Test Control
115
#define PORTSC_PTC_SH        16           // Port Test Control shift
116
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
117
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
118
#define PORTSC_POWNER        (1 << 13)    // Port Owner
119
#define PORTSC_PPOWER        (1 << 12)    // Port Power
120
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
121
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
122
#define PORTSC_PRESET        (1 << 8)     // Port Reset
123
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
124
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
125
#define PORTSC_OCC           (1 << 5)     // Over Current Change
126
#define PORTSC_OCA           (1 << 4)     // Over Current Active
127
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
128
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
129
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
130
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
131

    
132
#define FRAME_TIMER_FREQ 1000
133
#define FRAME_TIMER_USEC (1000000 / FRAME_TIMER_FREQ)
134

    
135
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
136
#define NB_PORTS         4        // Number of downstream ports
137
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
138
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
139
#define MAX_QH           100      // Max allowable queue heads in a chain
140

    
141
/*  Internal periodic / asynchronous schedule state machine states
142
 */
143
typedef enum {
144
    EST_INACTIVE = 1000,
145
    EST_ACTIVE,
146
    EST_EXECUTING,
147
    EST_SLEEPING,
148
    /*  The following states are internal to the state machine function
149
    */
150
    EST_WAITLISTHEAD,
151
    EST_FETCHENTRY,
152
    EST_FETCHQH,
153
    EST_FETCHITD,
154
    EST_ADVANCEQUEUE,
155
    EST_FETCHQTD,
156
    EST_EXECUTE,
157
    EST_WRITEBACK,
158
    EST_HORIZONTALQH
159
} EHCI_STATES;
160

    
161
/* macros for accessing fields within next link pointer entry */
162
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
163
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
164
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
165

    
166
/* link pointer types */
167
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
168
#define NLPTR_TYPE_QH            1     // queue head
169
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
170
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
171

    
172

    
173
/*  EHCI spec version 1.0 Section 3.3
174
 */
175
typedef struct EHCIitd {
176
    uint32_t next;
177

    
178
    uint32_t transact[8];
179
#define ITD_XACT_ACTIVE          (1 << 31)
180
#define ITD_XACT_DBERROR         (1 << 30)
181
#define ITD_XACT_BABBLE          (1 << 29)
182
#define ITD_XACT_XACTERR         (1 << 28)
183
#define ITD_XACT_LENGTH_MASK     0x0fff0000
184
#define ITD_XACT_LENGTH_SH       16
185
#define ITD_XACT_IOC             (1 << 15)
186
#define ITD_XACT_PGSEL_MASK      0x00007000
187
#define ITD_XACT_PGSEL_SH        12
188
#define ITD_XACT_OFFSET_MASK     0x00000fff
189

    
190
    uint32_t bufptr[7];
191
#define ITD_BUFPTR_MASK          0xfffff000
192
#define ITD_BUFPTR_SH            12
193
#define ITD_BUFPTR_EP_MASK       0x00000f00
194
#define ITD_BUFPTR_EP_SH         8
195
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
196
#define ITD_BUFPTR_DEVADDR_SH    0
197
#define ITD_BUFPTR_DIRECTION     (1 << 11)
198
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
199
#define ITD_BUFPTR_MAXPKT_SH     0
200
#define ITD_BUFPTR_MULT_MASK     0x00000003
201
#define ITD_BUFPTR_MULT_SH       0
202
} EHCIitd;
203

    
204
/*  EHCI spec version 1.0 Section 3.4
205
 */
206
typedef struct EHCIsitd {
207
    uint32_t next;                  // Standard next link pointer
208
    uint32_t epchar;
209
#define SITD_EPCHAR_IO              (1 << 31)
210
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
211
#define SITD_EPCHAR_PORTNUM_SH      24
212
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
213
#define SITD_EPCHAR_HUBADDR_SH      16
214
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
215
#define SITD_EPCHAR_EPNUM_SH        8
216
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
217

    
218
    uint32_t uframe;
219
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
220
#define SITD_UFRAME_CMASK_SH        8
221
#define SITD_UFRAME_SMASK_MASK      0x000000ff
222

    
223
    uint32_t results;
224
#define SITD_RESULTS_IOC              (1 << 31)
225
#define SITD_RESULTS_PGSEL            (1 << 30)
226
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
227
#define SITD_RESULTS_TYBYTES_SH       16
228
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
229
#define SITD_RESULTS_CPROGMASK_SH     8
230
#define SITD_RESULTS_ACTIVE           (1 << 7)
231
#define SITD_RESULTS_ERR              (1 << 6)
232
#define SITD_RESULTS_DBERR            (1 << 5)
233
#define SITD_RESULTS_BABBLE           (1 << 4)
234
#define SITD_RESULTS_XACTERR          (1 << 3)
235
#define SITD_RESULTS_MISSEDUF         (1 << 2)
236
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
237

    
238
    uint32_t bufptr[2];
239
#define SITD_BUFPTR_MASK              0xfffff000
240
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
241
#define SITD_BUFPTR_TPOS_MASK         0x00000018
242
#define SITD_BUFPTR_TPOS_SH           3
243
#define SITD_BUFPTR_TCNT_MASK         0x00000007
244

    
245
    uint32_t backptr;                 // Standard next link pointer
246
} EHCIsitd;
247

    
248
/*  EHCI spec version 1.0 Section 3.5
249
 */
250
typedef struct EHCIqtd {
251
    uint32_t next;                    // Standard next link pointer
252
    uint32_t altnext;                 // Standard next link pointer
253
    uint32_t token;
254
#define QTD_TOKEN_DTOGGLE             (1 << 31)
255
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
256
#define QTD_TOKEN_TBYTES_SH           16
257
#define QTD_TOKEN_IOC                 (1 << 15)
258
#define QTD_TOKEN_CPAGE_MASK          0x00007000
259
#define QTD_TOKEN_CPAGE_SH            12
260
#define QTD_TOKEN_CERR_MASK           0x00000c00
261
#define QTD_TOKEN_CERR_SH             10
262
#define QTD_TOKEN_PID_MASK            0x00000300
263
#define QTD_TOKEN_PID_SH              8
264
#define QTD_TOKEN_ACTIVE              (1 << 7)
265
#define QTD_TOKEN_HALT                (1 << 6)
266
#define QTD_TOKEN_DBERR               (1 << 5)
267
#define QTD_TOKEN_BABBLE              (1 << 4)
268
#define QTD_TOKEN_XACTERR             (1 << 3)
269
#define QTD_TOKEN_MISSEDUF            (1 << 2)
270
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
271
#define QTD_TOKEN_PING                (1 << 0)
272

    
273
    uint32_t bufptr[5];               // Standard buffer pointer
274
#define QTD_BUFPTR_MASK               0xfffff000
275
} EHCIqtd;
276

    
277
/*  EHCI spec version 1.0 Section 3.6
278
 */
279
typedef struct EHCIqh {
280
    uint32_t next;                    // Standard next link pointer
281

    
282
    /* endpoint characteristics */
283
    uint32_t epchar;
284
#define QH_EPCHAR_RL_MASK             0xf0000000
285
#define QH_EPCHAR_RL_SH               28
286
#define QH_EPCHAR_C                   (1 << 27)
287
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
288
#define QH_EPCHAR_MPLEN_SH            16
289
#define QH_EPCHAR_H                   (1 << 15)
290
#define QH_EPCHAR_DTC                 (1 << 14)
291
#define QH_EPCHAR_EPS_MASK            0x00003000
292
#define QH_EPCHAR_EPS_SH              12
293
#define EHCI_QH_EPS_FULL              0
294
#define EHCI_QH_EPS_LOW               1
295
#define EHCI_QH_EPS_HIGH              2
296
#define EHCI_QH_EPS_RESERVED          3
297

    
298
#define QH_EPCHAR_EP_MASK             0x00000f00
299
#define QH_EPCHAR_EP_SH               8
300
#define QH_EPCHAR_I                   (1 << 7)
301
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
302
#define QH_EPCHAR_DEVADDR_SH          0
303

    
304
    /* endpoint capabilities */
305
    uint32_t epcap;
306
#define QH_EPCAP_MULT_MASK            0xc0000000
307
#define QH_EPCAP_MULT_SH              30
308
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
309
#define QH_EPCAP_PORTNUM_SH           23
310
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
311
#define QH_EPCAP_HUBADDR_SH           16
312
#define QH_EPCAP_CMASK_MASK           0x0000ff00
313
#define QH_EPCAP_CMASK_SH             8
314
#define QH_EPCAP_SMASK_MASK           0x000000ff
315
#define QH_EPCAP_SMASK_SH             0
316

    
317
    uint32_t current_qtd;             // Standard next link pointer
318
    uint32_t next_qtd;                // Standard next link pointer
319
    uint32_t altnext_qtd;
320
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
321
#define QH_ALTNEXT_NAKCNT_SH          1
322

    
323
    uint32_t token;                   // Same as QTD token
324
    uint32_t bufptr[5];               // Standard buffer pointer
325
#define BUFPTR_CPROGMASK_MASK         0x000000ff
326
#define BUFPTR_FRAMETAG_MASK          0x0000001f
327
#define BUFPTR_SBYTES_MASK            0x00000fe0
328
#define BUFPTR_SBYTES_SH              5
329
} EHCIqh;
330

    
331
/*  EHCI spec version 1.0 Section 3.7
332
 */
333
typedef struct EHCIfstn {
334
    uint32_t next;                    // Standard next link pointer
335
    uint32_t backptr;                 // Standard next link pointer
336
} EHCIfstn;
337

    
338
typedef struct EHCIQueue EHCIQueue;
339
typedef struct EHCIState EHCIState;
340

    
341
enum async_state {
342
    EHCI_ASYNC_NONE = 0,
343
    EHCI_ASYNC_INFLIGHT,
344
    EHCI_ASYNC_FINISHED,
345
};
346

    
347
struct EHCIQueue {
348
    EHCIState *ehci;
349
    QTAILQ_ENTRY(EHCIQueue) next;
350
    bool async_schedule;
351
    uint32_t seen, ts;
352

    
353
    /* cached data from guest - needs to be flushed
354
     * when guest removes an entry (doorbell, handshake sequence)
355
     */
356
    EHCIqh qh;             // copy of current QH (being worked on)
357
    uint32_t qhaddr;       // address QH read from
358
    EHCIqtd qtd;           // copy of current QTD (being worked on)
359
    uint32_t qtdaddr;      // address QTD read from
360

    
361
    USBPacket packet;
362
    uint8_t buffer[BUFF_SIZE];
363
    int pid;
364
    uint32_t tbytes;
365
    enum async_state async;
366
    int usb_status;
367
};
368

    
369
struct EHCIState {
370
    PCIDevice dev;
371
    USBBus bus;
372
    qemu_irq irq;
373
    target_phys_addr_t mem_base;
374
    int mem;
375
    int num_ports;
376
    /*
377
     *  EHCI spec version 1.0 Section 2.3
378
     *  Host Controller Operational Registers
379
     */
380
    union {
381
        uint8_t mmio[MMIO_SIZE];
382
        struct {
383
            uint8_t cap[OPREGBASE];
384
            uint32_t usbcmd;
385
            uint32_t usbsts;
386
            uint32_t usbintr;
387
            uint32_t frindex;
388
            uint32_t ctrldssegment;
389
            uint32_t periodiclistbase;
390
            uint32_t asynclistaddr;
391
            uint32_t notused[9];
392
            uint32_t configflag;
393
            uint32_t portsc[NB_PORTS];
394
        };
395
    };
396

    
397
    /*
398
     *  Internal states, shadow registers, etc
399
     */
400
    uint32_t sofv;
401
    QEMUTimer *frame_timer;
402
    int attach_poll_counter;
403
    int astate;                        // Current state in asynchronous schedule
404
    int pstate;                        // Current state in periodic schedule
405
    USBPort ports[NB_PORTS];
406
    uint32_t usbsts_pending;
407
    QTAILQ_HEAD(, EHCIQueue) queues;
408

    
409
    uint32_t a_fetch_addr;   // which address to look at next
410
    uint32_t p_fetch_addr;   // which address to look at next
411

    
412
    USBPacket ipacket;
413
    uint8_t ibuffer[BUFF_SIZE];
414
    int isoch_pause;
415

    
416
    uint32_t last_run_usec;
417
    uint32_t frame_end_usec;
418
};
419

    
420
#define SET_LAST_RUN_CLOCK(s) \
421
    (s)->last_run_usec = qemu_get_clock_ns(vm_clock) / 1000;
422

    
423
/* nifty macros from Arnon's EHCI version  */
424
#define get_field(data, field) \
425
    (((data) & field##_MASK) >> field##_SH)
426

    
427
#define set_field(data, newval, field) do { \
428
    uint32_t val = *data; \
429
    val &= ~ field##_MASK; \
430
    val |= ((newval) << field##_SH) & field##_MASK; \
431
    *data = val; \
432
    } while(0)
433

    
434
static const char *ehci_state_names[] = {
435
    [ EST_INACTIVE ]     = "INACTIVE",
436
    [ EST_ACTIVE ]       = "ACTIVE",
437
    [ EST_EXECUTING ]    = "EXECUTING",
438
    [ EST_SLEEPING ]     = "SLEEPING",
439
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
440
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
441
    [ EST_FETCHQH ]      = "FETCH QH",
442
    [ EST_FETCHITD ]     = "FETCH ITD",
443
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
444
    [ EST_FETCHQTD ]     = "FETCH QTD",
445
    [ EST_EXECUTE ]      = "EXECUTE",
446
    [ EST_WRITEBACK ]    = "WRITEBACK",
447
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
448
};
449

    
450
static const char *ehci_mmio_names[] = {
451
    [ CAPLENGTH ]        = "CAPLENGTH",
452
    [ HCIVERSION ]       = "HCIVERSION",
453
    [ HCSPARAMS ]        = "HCSPARAMS",
454
    [ HCCPARAMS ]        = "HCCPARAMS",
455
    [ USBCMD ]           = "USBCMD",
456
    [ USBSTS ]           = "USBSTS",
457
    [ USBINTR ]          = "USBINTR",
458
    [ FRINDEX ]          = "FRINDEX",
459
    [ PERIODICLISTBASE ] = "P-LIST BASE",
460
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
461
    [ PORTSC_BEGIN ]     = "PORTSC #0",
462
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
463
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
464
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
465
    [ CONFIGFLAG ]       = "CONFIGFLAG",
466
};
467

    
468
static const char *nr2str(const char **n, size_t len, uint32_t nr)
469
{
470
    if (nr < len && n[nr] != NULL) {
471
        return n[nr];
472
    } else {
473
        return "unknown";
474
    }
475
}
476

    
477
static const char *state2str(uint32_t state)
478
{
479
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
480
}
481

    
482
static const char *addr2str(target_phys_addr_t addr)
483
{
484
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
485
}
486

    
487
static void ehci_trace_usbsts(uint32_t mask, int state)
488
{
489
    /* interrupts */
490
    if (mask & USBSTS_INT) {
491
        trace_usb_ehci_usbsts("INT", state);
492
    }
493
    if (mask & USBSTS_ERRINT) {
494
        trace_usb_ehci_usbsts("ERRINT", state);
495
    }
496
    if (mask & USBSTS_PCD) {
497
        trace_usb_ehci_usbsts("PCD", state);
498
    }
499
    if (mask & USBSTS_FLR) {
500
        trace_usb_ehci_usbsts("FLR", state);
501
    }
502
    if (mask & USBSTS_HSE) {
503
        trace_usb_ehci_usbsts("HSE", state);
504
    }
505
    if (mask & USBSTS_IAA) {
506
        trace_usb_ehci_usbsts("IAA", state);
507
    }
508

    
509
    /* status */
510
    if (mask & USBSTS_HALT) {
511
        trace_usb_ehci_usbsts("HALT", state);
512
    }
513
    if (mask & USBSTS_REC) {
514
        trace_usb_ehci_usbsts("REC", state);
515
    }
516
    if (mask & USBSTS_PSS) {
517
        trace_usb_ehci_usbsts("PSS", state);
518
    }
519
    if (mask & USBSTS_ASS) {
520
        trace_usb_ehci_usbsts("ASS", state);
521
    }
522
}
523

    
524
static inline void ehci_set_usbsts(EHCIState *s, int mask)
525
{
526
    if ((s->usbsts & mask) == mask) {
527
        return;
528
    }
529
    ehci_trace_usbsts(mask, 1);
530
    s->usbsts |= mask;
531
}
532

    
533
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
534
{
535
    if ((s->usbsts & mask) == 0) {
536
        return;
537
    }
538
    ehci_trace_usbsts(mask, 0);
539
    s->usbsts &= ~mask;
540
}
541

    
542
static inline void ehci_set_interrupt(EHCIState *s, int intr)
543
{
544
    int level = 0;
545

    
546
    // TODO honour interrupt threshold requests
547

    
548
    ehci_set_usbsts(s, intr);
549

    
550
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
551
        level = 1;
552
    }
553

    
554
    qemu_set_irq(s->irq, level);
555
}
556

    
557
static inline void ehci_record_interrupt(EHCIState *s, int intr)
558
{
559
    s->usbsts_pending |= intr;
560
}
561

    
562
static inline void ehci_commit_interrupt(EHCIState *s)
563
{
564
    if (!s->usbsts_pending) {
565
        return;
566
    }
567
    ehci_set_interrupt(s, s->usbsts_pending);
568
    s->usbsts_pending = 0;
569
}
570

    
571
static void ehci_set_state(EHCIState *s, int async, int state)
572
{
573
    if (async) {
574
        trace_usb_ehci_state("async", state2str(state));
575
        s->astate = state;
576
    } else {
577
        trace_usb_ehci_state("periodic", state2str(state));
578
        s->pstate = state;
579
    }
580
}
581

    
582
static int ehci_get_state(EHCIState *s, int async)
583
{
584
    return async ? s->astate : s->pstate;
585
}
586

    
587
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
588
{
589
    if (async) {
590
        s->a_fetch_addr = addr;
591
    } else {
592
        s->p_fetch_addr = addr;
593
    }
594
}
595

    
596
static int ehci_get_fetch_addr(EHCIState *s, int async)
597
{
598
    return async ? s->a_fetch_addr : s->p_fetch_addr;
599
}
600

    
601
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
602
{
603
    /* need three here due to argument count limits */
604
    trace_usb_ehci_qh_ptrs(q, addr, qh->next,
605
                           qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
606
    trace_usb_ehci_qh_fields(addr,
607
                             get_field(qh->epchar, QH_EPCHAR_RL),
608
                             get_field(qh->epchar, QH_EPCHAR_MPLEN),
609
                             get_field(qh->epchar, QH_EPCHAR_EPS),
610
                             get_field(qh->epchar, QH_EPCHAR_EP),
611
                             get_field(qh->epchar, QH_EPCHAR_DEVADDR));
612
    trace_usb_ehci_qh_bits(addr,
613
                           (bool)(qh->epchar & QH_EPCHAR_C),
614
                           (bool)(qh->epchar & QH_EPCHAR_H),
615
                           (bool)(qh->epchar & QH_EPCHAR_DTC),
616
                           (bool)(qh->epchar & QH_EPCHAR_I));
617
}
618

    
619
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
620
{
621
    /* need three here due to argument count limits */
622
    trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
623
    trace_usb_ehci_qtd_fields(addr,
624
                              get_field(qtd->token, QTD_TOKEN_TBYTES),
625
                              get_field(qtd->token, QTD_TOKEN_CPAGE),
626
                              get_field(qtd->token, QTD_TOKEN_CERR),
627
                              get_field(qtd->token, QTD_TOKEN_PID));
628
    trace_usb_ehci_qtd_bits(addr,
629
                            (bool)(qtd->token & QTD_TOKEN_IOC),
630
                            (bool)(qtd->token & QTD_TOKEN_ACTIVE),
631
                            (bool)(qtd->token & QTD_TOKEN_HALT),
632
                            (bool)(qtd->token & QTD_TOKEN_BABBLE),
633
                            (bool)(qtd->token & QTD_TOKEN_XACTERR));
634
}
635

    
636
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
637
{
638
    trace_usb_ehci_itd(addr, itd->next,
639
                       get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
640
                       get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
641
                       get_field(itd->bufptr[0], ITD_BUFPTR_EP),
642
                       get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
643
}
644

    
645
/* queue management */
646

    
647
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
648
{
649
    EHCIQueue *q;
650

    
651
    q = qemu_mallocz(sizeof(*q));
652
    q->ehci = ehci;
653
    q->async_schedule = async;
654
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
655
    trace_usb_ehci_queue_action(q, "alloc");
656
    return q;
657
}
658

    
659
static void ehci_free_queue(EHCIQueue *q)
660
{
661
    trace_usb_ehci_queue_action(q, "free");
662
    if (q->async == EHCI_ASYNC_INFLIGHT) {
663
        usb_cancel_packet(&q->packet);
664
    }
665
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
666
    qemu_free(q);
667
}
668

    
669
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
670
{
671
    EHCIQueue *q;
672

    
673
    QTAILQ_FOREACH(q, &ehci->queues, next) {
674
        if (addr == q->qhaddr) {
675
            return q;
676
        }
677
    }
678
    return NULL;
679
}
680

    
681
static void ehci_queues_rip_unused(EHCIState *ehci)
682
{
683
    EHCIQueue *q, *tmp;
684

    
685
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
686
        if (q->seen) {
687
            q->seen = 0;
688
            q->ts = ehci->last_run_usec;
689
            continue;
690
        }
691
        if (ehci->last_run_usec < q->ts + 250000) {
692
            /* allow 0.25 sec idle */
693
            continue;
694
        }
695
        ehci_free_queue(q);
696
    }
697
}
698

    
699
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
700
{
701
    EHCIQueue *q, *tmp;
702

    
703
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
704
        if (q->packet.owner != dev) {
705
            continue;
706
        }
707
        ehci_free_queue(q);
708
    }
709
}
710

    
711
static void ehci_queues_rip_all(EHCIState *ehci)
712
{
713
    EHCIQueue *q, *tmp;
714

    
715
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
716
        ehci_free_queue(q);
717
    }
718
}
719

    
720
/* Attach or detach a device on root hub */
721

    
722
static void ehci_attach(USBPort *port)
723
{
724
    EHCIState *s = port->opaque;
725
    uint32_t *portsc = &s->portsc[port->index];
726

    
727
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
728

    
729
    *portsc |= PORTSC_CONNECT;
730
    *portsc |= PORTSC_CSC;
731

    
732
    /*
733
     *  If a high speed device is attached then we own this port(indicated
734
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
735
     *  and set an interrupt if enabled.
736
     */
737
    if ( !(*portsc & PORTSC_POWNER)) {
738
        ehci_set_interrupt(s, USBSTS_PCD);
739
    }
740
}
741

    
742
static void ehci_detach(USBPort *port)
743
{
744
    EHCIState *s = port->opaque;
745
    uint32_t *portsc = &s->portsc[port->index];
746

    
747
    trace_usb_ehci_port_detach(port->index);
748

    
749
    *portsc &= ~PORTSC_CONNECT;
750
    *portsc |= PORTSC_CSC;
751

    
752
    /*
753
     *  If a high speed device is attached then we own this port(indicated
754
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
755
     *  and set an interrupt if enabled.
756
     */
757
    if ( !(*portsc & PORTSC_POWNER)) {
758
        ehci_set_interrupt(s, USBSTS_PCD);
759
    }
760
}
761

    
762
/* 4.1 host controller initialization */
763
static void ehci_reset(void *opaque)
764
{
765
    EHCIState *s = opaque;
766
    int i;
767

    
768
    trace_usb_ehci_reset();
769

    
770
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
771

    
772
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
773
    s->usbsts = USBSTS_HALT;
774

    
775
    s->astate = EST_INACTIVE;
776
    s->pstate = EST_INACTIVE;
777
    s->isoch_pause = -1;
778
    s->attach_poll_counter = 0;
779

    
780
    for(i = 0; i < NB_PORTS; i++) {
781
        s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
782

    
783
        if (s->ports[i].dev) {
784
            usb_attach(&s->ports[i], s->ports[i].dev);
785
        }
786
    }
787
    ehci_queues_rip_all(s);
788
}
789

    
790
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
791
{
792
    EHCIState *s = ptr;
793
    uint32_t val;
794

    
795
    val = s->mmio[addr];
796

    
797
    return val;
798
}
799

    
800
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
801
{
802
    EHCIState *s = ptr;
803
    uint32_t val;
804

    
805
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
806

    
807
    return val;
808
}
809

    
810
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
811
{
812
    EHCIState *s = ptr;
813
    uint32_t val;
814

    
815
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
816
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
817

    
818
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
819
    return val;
820
}
821

    
822
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
823
{
824
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
825
    exit(1);
826
}
827

    
828
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
829
{
830
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
831
    exit(1);
832
}
833

    
834
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
835
{
836
    uint32_t *portsc = &s->portsc[port];
837
    int rwc;
838
    USBDevice *dev = s->ports[port].dev;
839

    
840
    rwc = val & PORTSC_RWC_MASK;
841
    val &= PORTSC_RO_MASK;
842

    
843
    // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
844

    
845
    *portsc &= ~rwc;
846

    
847
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
848
        trace_usb_ehci_port_reset(port, 1);
849
    }
850

    
851
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
852
        trace_usb_ehci_port_reset(port, 0);
853
        usb_attach(&s->ports[port], dev);
854

    
855
        // TODO how to handle reset of ports with no device
856
        if (dev) {
857
            usb_send_msg(dev, USB_MSG_RESET);
858
        }
859

    
860
        if (s->ports[port].dev) {
861
            *portsc &= ~PORTSC_CSC;
862
        }
863

    
864
        /*  Table 2.16 Set the enable bit(and enable bit change) to indicate
865
         *  to SW that this port has a high speed device attached
866
         *
867
         *  TODO - when to disable?
868
         */
869
        val |= PORTSC_PED;
870
        val |= PORTSC_PEDC;
871
    }
872

    
873
    *portsc &= ~PORTSC_RO_MASK;
874
    *portsc |= val;
875
}
876

    
877
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
878
{
879
    EHCIState *s = ptr;
880
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
881
    uint32_t old = *mmio;
882
    int i;
883

    
884
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
885

    
886
    /* Only aligned reads are allowed on OHCI */
887
    if (addr & 3) {
888
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
889
                TARGET_FMT_plx "\n", addr);
890
        return;
891
    }
892

    
893
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
894
        handle_port_status_write(s, (addr-PORTSC)/4, val);
895
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
896
        return;
897
    }
898

    
899
    if (addr < OPREGBASE) {
900
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
901
                TARGET_FMT_plx "\n", addr);
902
        return;
903
    }
904

    
905

    
906
    /* Do any register specific pre-write processing here.  */
907
    switch(addr) {
908
    case USBCMD:
909
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
910
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
911
            SET_LAST_RUN_CLOCK(s);
912
            ehci_clear_usbsts(s, USBSTS_HALT);
913
        }
914

    
915
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
916
            qemu_del_timer(s->frame_timer);
917
            // TODO - should finish out some stuff before setting halt
918
            ehci_set_usbsts(s, USBSTS_HALT);
919
        }
920

    
921
        if (val & USBCMD_HCRESET) {
922
            ehci_reset(s);
923
            val &= ~USBCMD_HCRESET;
924
        }
925

    
926
        /* not supporting dynamic frame list size at the moment */
927
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
928
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
929
                    val & USBCMD_FLS);
930
            val &= ~USBCMD_FLS;
931
        }
932
        break;
933

    
934
    case USBSTS:
935
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
936
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
937
        val = s->usbsts;
938
        ehci_set_interrupt(s, 0);
939
        break;
940

    
941
    case USBINTR:
942
        val &= USBINTR_MASK;
943
        break;
944

    
945
    case FRINDEX:
946
        s->sofv = val >> 3;
947
        break;
948

    
949
    case CONFIGFLAG:
950
        val &= 0x1;
951
        if (val) {
952
            for(i = 0; i < NB_PORTS; i++)
953
                s->portsc[i] &= ~PORTSC_POWNER;
954
        }
955
        break;
956

    
957
    case PERIODICLISTBASE:
958
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
959
            fprintf(stderr,
960
              "ehci: PERIODIC list base register set while periodic schedule\n"
961
              "      is enabled and HC is enabled\n");
962
        }
963
        break;
964

    
965
    case ASYNCLISTADDR:
966
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
967
            fprintf(stderr,
968
              "ehci: ASYNC list address register set while async schedule\n"
969
              "      is enabled and HC is enabled\n");
970
        }
971
        break;
972
    }
973

    
974
    *mmio = val;
975
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
976
}
977

    
978

    
979
// TODO : Put in common header file, duplication from usb-ohci.c
980

    
981
/* Get an array of dwords from main memory */
982
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
983
{
984
    int i;
985

    
986
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
987
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
988
        *buf = le32_to_cpu(*buf);
989
    }
990

    
991
    return 1;
992
}
993

    
994
/* Put an array of dwords in to main memory */
995
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
996
{
997
    int i;
998

    
999
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1000
        uint32_t tmp = cpu_to_le32(*buf);
1001
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1002
    }
1003

    
1004
    return 1;
1005
}
1006

    
1007
// 4.10.2
1008

    
1009
static int ehci_qh_do_overlay(EHCIQueue *q)
1010
{
1011
    int i;
1012
    int dtoggle;
1013
    int ping;
1014
    int eps;
1015
    int reload;
1016

    
1017
    // remember values in fields to preserve in qh after overlay
1018

    
1019
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1020
    ping    = q->qh.token & QTD_TOKEN_PING;
1021

    
1022
    q->qh.current_qtd = q->qtdaddr;
1023
    q->qh.next_qtd    = q->qtd.next;
1024
    q->qh.altnext_qtd = q->qtd.altnext;
1025
    q->qh.token       = q->qtd.token;
1026

    
1027

    
1028
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1029
    if (eps == EHCI_QH_EPS_HIGH) {
1030
        q->qh.token &= ~QTD_TOKEN_PING;
1031
        q->qh.token |= ping;
1032
    }
1033

    
1034
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1035
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1036

    
1037
    for (i = 0; i < 5; i++) {
1038
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1039
    }
1040

    
1041
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1042
        // preserve QH DT bit
1043
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1044
        q->qh.token |= dtoggle;
1045
    }
1046

    
1047
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1048
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1049

    
1050
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1051

    
1052
    return 0;
1053
}
1054

    
1055
static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1056
{
1057
    int bufpos = 0;
1058
    int cpage, offset;
1059
    uint32_t head;
1060
    uint32_t tail;
1061

    
1062

    
1063
    if (!bytes) {
1064
        return 0;
1065
    }
1066

    
1067
    cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1068
    if (cpage > 4) {
1069
        fprintf(stderr, "cpage out of range (%d)\n", cpage);
1070
        return USB_RET_PROCERR;
1071
    }
1072

    
1073
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1074

    
1075
    do {
1076
        /* start and end of this page */
1077
        head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1078
        tail = head + ~QTD_BUFPTR_MASK + 1;
1079
        /* add offset into page */
1080
        head |= offset;
1081

    
1082
        if (bytes <= (tail - head)) {
1083
            tail = head + bytes;
1084
        }
1085

    
1086
        trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1087
        cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1088

    
1089
        bufpos += (tail - head);
1090
        offset += (tail - head);
1091
        bytes -= (tail - head);
1092

    
1093
        if (bytes > 0) {
1094
            cpage++;
1095
            offset = 0;
1096
        }
1097
    } while (bytes > 0);
1098

    
1099
    /* save cpage */
1100
    set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1101

    
1102
    /* save offset into cpage */
1103
    q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1104
    q->qh.bufptr[0] |= offset;
1105

    
1106
    return 0;
1107
}
1108

    
1109
static void ehci_async_complete_packet(USBDevice *dev, USBPacket *packet)
1110
{
1111
    EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1112

    
1113
    trace_usb_ehci_queue_action(q, "wakeup");
1114
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1115
    q->async = EHCI_ASYNC_FINISHED;
1116
    q->usb_status = packet->len;
1117
}
1118

    
1119
static void ehci_execute_complete(EHCIQueue *q)
1120
{
1121
    int c_err, reload;
1122

    
1123
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1124
    q->async = EHCI_ASYNC_NONE;
1125

    
1126
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1127
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1128

    
1129
    if (q->usb_status < 0) {
1130
err:
1131
        /* TO-DO: put this is in a function that can be invoked below as well */
1132
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1133
        c_err--;
1134
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1135

    
1136
        switch(q->usb_status) {
1137
        case USB_RET_NODEV:
1138
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1139
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1140
            break;
1141
        case USB_RET_STALL:
1142
            q->qh.token |= QTD_TOKEN_HALT;
1143
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1144
            break;
1145
        case USB_RET_NAK:
1146
            /* 4.10.3 */
1147
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1148
            if ((q->pid == USB_TOKEN_IN) && reload) {
1149
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1150
                nakcnt--;
1151
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1152
            } else if (!reload) {
1153
                return;
1154
            }
1155
            break;
1156
        case USB_RET_BABBLE:
1157
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1158
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1159
            break;
1160
        default:
1161
            /* should not be triggerable */
1162
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1163
            assert(0);
1164
            break;
1165
        }
1166
    } else {
1167
        // DPRINTF("Short packet condition\n");
1168
        // TODO check 4.12 for splits
1169

    
1170
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1171
            q->usb_status = USB_RET_BABBLE;
1172
            goto err;
1173
        }
1174

    
1175
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1176
            if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1177
                q->usb_status = USB_RET_PROCERR;
1178
                return;
1179
            }
1180
            q->tbytes -= q->usb_status;
1181
        } else {
1182
            q->tbytes = 0;
1183
        }
1184

    
1185
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1186
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1187
    }
1188

    
1189
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1190
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1191

    
1192
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1193
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1194
    }
1195
}
1196

    
1197
// 4.10.3
1198

    
1199
static int ehci_execute(EHCIQueue *q)
1200
{
1201
    USBPort *port;
1202
    USBDevice *dev;
1203
    int ret;
1204
    int i;
1205
    int endp;
1206
    int devadr;
1207

    
1208
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1209
        fprintf(stderr, "Attempting to execute inactive QH\n");
1210
        return USB_RET_PROCERR;
1211
    }
1212

    
1213
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1214
    if (q->tbytes > BUFF_SIZE) {
1215
        fprintf(stderr, "Request for more bytes than allowed\n");
1216
        return USB_RET_PROCERR;
1217
    }
1218

    
1219
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1220
    switch(q->pid) {
1221
        case 0: q->pid = USB_TOKEN_OUT; break;
1222
        case 1: q->pid = USB_TOKEN_IN; break;
1223
        case 2: q->pid = USB_TOKEN_SETUP; break;
1224
        default: fprintf(stderr, "bad token\n"); break;
1225
    }
1226

    
1227
    if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1228
        (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1229
        return USB_RET_PROCERR;
1230
    }
1231

    
1232
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1233
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1234

    
1235
    ret = USB_RET_NODEV;
1236

    
1237
    // TO-DO: associating device with ehci port
1238
    for(i = 0; i < NB_PORTS; i++) {
1239
        port = &q->ehci->ports[i];
1240
        dev = port->dev;
1241

    
1242
        // TODO sometime we will also need to check if we are the port owner
1243

    
1244
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1245
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1246
                    i, q->ehci->portsc[i]);
1247
            continue;
1248
        }
1249

    
1250
        q->packet.pid = q->pid;
1251
        q->packet.devaddr = devadr;
1252
        q->packet.devep = endp;
1253
        q->packet.data = q->buffer;
1254
        q->packet.len = q->tbytes;
1255

    
1256
        ret = usb_handle_packet(dev, &q->packet);
1257

    
1258
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1259
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1260
                q->packet.len, q->tbytes, endp, ret);
1261

    
1262
        if (ret != USB_RET_NODEV) {
1263
            break;
1264
        }
1265
    }
1266

    
1267
    if (ret > BUFF_SIZE) {
1268
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1269
        return USB_RET_PROCERR;
1270
    }
1271

    
1272
    return ret;
1273
}
1274

    
1275
/*  4.7.2
1276
 */
1277

    
1278
static int ehci_process_itd(EHCIState *ehci,
1279
                            EHCIitd *itd)
1280
{
1281
    USBPort *port;
1282
    USBDevice *dev;
1283
    int ret;
1284
    uint32_t i, j, len, len1, len2, pid, dir, devaddr, endp;
1285
    uint32_t pg, off, ptr1, ptr2, max, mult;
1286

    
1287
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1288
    devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1289
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1290
    max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1291
    mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1292

    
1293
    for(i = 0; i < 8; i++) {
1294
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1295
            pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1296
            off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1297
            ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1298
            ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1299
            len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1300

    
1301
            if (len > max * mult) {
1302
                len = max * mult;
1303
            }
1304

    
1305
            if (len > BUFF_SIZE) {
1306
                return USB_RET_PROCERR;
1307
            }
1308

    
1309
            if (off + len > 4096) {
1310
                /* transfer crosses page border */
1311
                len2 = off + len - 4096;
1312
                len1 = len - len2;
1313
            } else {
1314
                len1 = len;
1315
                len2 = 0;
1316
            }
1317

    
1318
            if (!dir) {
1319
                pid = USB_TOKEN_OUT;
1320
                trace_usb_ehci_data(0, pg, off, ptr1 + off, len1, 0);
1321
                cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 0);
1322
                if (len2) {
1323
                    trace_usb_ehci_data(0, pg+1, 0, ptr2, len2, len1);
1324
                    cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 0);
1325
                }
1326
            } else {
1327
                pid = USB_TOKEN_IN;
1328
            }
1329

    
1330
            ret = USB_RET_NODEV;
1331

    
1332
            for (j = 0; j < NB_PORTS; j++) {
1333
                port = &ehci->ports[j];
1334
                dev = port->dev;
1335

    
1336
                // TODO sometime we will also need to check if we are the port owner
1337

    
1338
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1339
                    continue;
1340
                }
1341

    
1342
                ehci->ipacket.pid = pid;
1343
                ehci->ipacket.devaddr = devaddr;
1344
                ehci->ipacket.devep = endp;
1345
                ehci->ipacket.data = ehci->ibuffer;
1346
                ehci->ipacket.len = len;
1347

    
1348
                ret = usb_handle_packet(dev, &ehci->ipacket);
1349

    
1350
                if (ret != USB_RET_NODEV) {
1351
                    break;
1352
                }
1353
            }
1354

    
1355
#if 0
1356
            /*  In isoch, there is no facility to indicate a NAK so let's
1357
             *  instead just complete a zero-byte transaction.  Setting
1358
             *  DBERR seems too draconian.
1359
             */
1360

1361
            if (ret == USB_RET_NAK) {
1362
                if (ehci->isoch_pause > 0) {
1363
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1364
                    ehci->isoch_pause--;
1365
                    return 0;
1366
                } else if (ehci->isoch_pause == -1) {
1367
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1368
                    // Pause frindex for up to 50 msec waiting for data from
1369
                    // remote
1370
                    ehci->isoch_pause = 50;
1371
                    return 0;
1372
                } else {
1373
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1374
                    ret = 0;
1375
                }
1376
            } else {
1377
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1378
                ehci->isoch_pause = -1;
1379
            }
1380
#else
1381
            if (ret == USB_RET_NAK) {
1382
                ret = 0;
1383
            }
1384
#endif
1385

    
1386
            if (ret >= 0) {
1387
                if (!dir) {
1388
                    /* OUT */
1389
                    set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1390
                } else {
1391
                    /* IN */
1392
                    if (len1 > ret) {
1393
                        len1 = ret;
1394
                    }
1395
                    if (len2 > ret - len1) {
1396
                        len2 = ret - len1;
1397
                    }
1398
                    if (len1) {
1399
                        trace_usb_ehci_data(1, pg, off, ptr1 + off, len1, 0);
1400
                        cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 1);
1401
                    }
1402
                    if (len2) {
1403
                        trace_usb_ehci_data(1, pg+1, 0, ptr2, len2, len1);
1404
                        cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 1);
1405
                    }
1406
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1407
                }
1408

    
1409
                if (itd->transact[i] & ITD_XACT_IOC) {
1410
                    ehci_record_interrupt(ehci, USBSTS_INT);
1411
                }
1412
            }
1413
            itd->transact[i] &= ~ITD_XACT_ACTIVE;
1414
        }
1415
    }
1416
    return 0;
1417
}
1418

    
1419
/*  This state is the entry point for asynchronous schedule
1420
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1421
 */
1422
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1423
{
1424
    EHCIqh qh;
1425
    int i = 0;
1426
    int again = 0;
1427
    uint32_t entry = ehci->asynclistaddr;
1428

    
1429
    /* set reclamation flag at start event (4.8.6) */
1430
    if (async) {
1431
        ehci_set_usbsts(ehci, USBSTS_REC);
1432
    }
1433

    
1434
    ehci_queues_rip_unused(ehci);
1435

    
1436
    /*  Find the head of the list (4.9.1.1) */
1437
    for(i = 0; i < MAX_QH; i++) {
1438
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1439
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1440

    
1441
        if (qh.epchar & QH_EPCHAR_H) {
1442
            if (async) {
1443
                entry |= (NLPTR_TYPE_QH << 1);
1444
            }
1445

    
1446
            ehci_set_fetch_addr(ehci, async, entry);
1447
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1448
            again = 1;
1449
            goto out;
1450
        }
1451

    
1452
        entry = qh.next;
1453
        if (entry == ehci->asynclistaddr) {
1454
            break;
1455
        }
1456
    }
1457

    
1458
    /* no head found for list. */
1459

    
1460
    ehci_set_state(ehci, async, EST_ACTIVE);
1461

    
1462
out:
1463
    return again;
1464
}
1465

    
1466

    
1467
/*  This state is the entry point for periodic schedule processing as
1468
 *  well as being a continuation state for async processing.
1469
 */
1470
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1471
{
1472
    int again = 0;
1473
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1474

    
1475
    if (entry < 0x1000) {
1476
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1477
        ehci_set_state(ehci, async, EST_ACTIVE);
1478
        goto out;
1479
    }
1480

    
1481
    /* section 4.8, only QH in async schedule */
1482
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1483
        fprintf(stderr, "non queue head request in async schedule\n");
1484
        return -1;
1485
    }
1486

    
1487
    switch (NLPTR_TYPE_GET(entry)) {
1488
    case NLPTR_TYPE_QH:
1489
        ehci_set_state(ehci, async, EST_FETCHQH);
1490
        again = 1;
1491
        break;
1492

    
1493
    case NLPTR_TYPE_ITD:
1494
        ehci_set_state(ehci, async, EST_FETCHITD);
1495
        again = 1;
1496
        break;
1497

    
1498
    default:
1499
        // TODO: handle siTD and FSTN types
1500
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1501
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1502
        return -1;
1503
    }
1504

    
1505
out:
1506
    return again;
1507
}
1508

    
1509
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1510
{
1511
    uint32_t entry;
1512
    EHCIQueue *q;
1513
    int reload;
1514

    
1515
    entry = ehci_get_fetch_addr(ehci, async);
1516
    q = ehci_find_queue_by_qh(ehci, entry);
1517
    if (NULL == q) {
1518
        q = ehci_alloc_queue(ehci, async);
1519
    }
1520
    q->qhaddr = entry;
1521
    q->seen++;
1522

    
1523
    if (q->seen > 1) {
1524
        /* we are going in circles -- stop processing */
1525
        ehci_set_state(ehci, async, EST_ACTIVE);
1526
        q = NULL;
1527
        goto out;
1528
    }
1529

    
1530
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1531
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1532

    
1533
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1534
        /* I/O still in progress -- skip queue */
1535
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1536
        goto out;
1537
    }
1538
    if (q->async == EHCI_ASYNC_FINISHED) {
1539
        /* I/O finished -- continue processing queue */
1540
        trace_usb_ehci_queue_action(q, "resume");
1541
        ehci_set_state(ehci, async, EST_EXECUTING);
1542
        goto out;
1543
    }
1544

    
1545
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1546

    
1547
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1548
        if (ehci->usbsts & USBSTS_REC) {
1549
            ehci_clear_usbsts(ehci, USBSTS_REC);
1550
        } else {
1551
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1552
                       " - done processing\n", q->qhaddr);
1553
            ehci_set_state(ehci, async, EST_ACTIVE);
1554
            q = NULL;
1555
            goto out;
1556
        }
1557
    }
1558

    
1559
#if EHCI_DEBUG
1560
    if (q->qhaddr != q->qh.next) {
1561
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1562
               q->qhaddr,
1563
               q->qh.epchar & QH_EPCHAR_H,
1564
               q->qh.token & QTD_TOKEN_HALT,
1565
               q->qh.token & QTD_TOKEN_ACTIVE,
1566
               q->qh.next);
1567
    }
1568
#endif
1569

    
1570
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1571
    if (reload) {
1572
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1573
    }
1574

    
1575
    if (q->qh.token & QTD_TOKEN_HALT) {
1576
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1577

    
1578
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1579
        q->qtdaddr = q->qh.current_qtd;
1580
        ehci_set_state(ehci, async, EST_FETCHQTD);
1581

    
1582
    } else {
1583
        /*  EHCI spec version 1.0 Section 4.10.2 */
1584
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1585
    }
1586

    
1587
out:
1588
    return q;
1589
}
1590

    
1591
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1592
{
1593
    uint32_t entry;
1594
    EHCIitd itd;
1595

    
1596
    assert(!async);
1597
    entry = ehci_get_fetch_addr(ehci, async);
1598

    
1599
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1600
               sizeof(EHCIitd) >> 2);
1601
    ehci_trace_itd(ehci, entry, &itd);
1602

    
1603
    if (ehci_process_itd(ehci, &itd) != 0) {
1604
        return -1;
1605
    }
1606

    
1607
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1608
                sizeof(EHCIitd) >> 2);
1609
    ehci_set_fetch_addr(ehci, async, itd.next);
1610
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1611

    
1612
    return 1;
1613
}
1614

    
1615
/* Section 4.10.2 - paragraph 3 */
1616
static int ehci_state_advqueue(EHCIQueue *q, int async)
1617
{
1618
#if 0
1619
    /* TO-DO: 4.10.2 - paragraph 2
1620
     * if I-bit is set to 1 and QH is not active
1621
     * go to horizontal QH
1622
     */
1623
    if (I-bit set) {
1624
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1625
        goto out;
1626
    }
1627
#endif
1628

    
1629
    /*
1630
     * want data and alt-next qTD is valid
1631
     */
1632
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1633
        (q->qh.altnext_qtd > 0x1000) &&
1634
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1635
        q->qtdaddr = q->qh.altnext_qtd;
1636
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1637

    
1638
    /*
1639
     *  next qTD is valid
1640
     */
1641
    } else if ((q->qh.next_qtd > 0x1000) &&
1642
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1643
        q->qtdaddr = q->qh.next_qtd;
1644
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1645

    
1646
    /*
1647
     *  no valid qTD, try next QH
1648
     */
1649
    } else {
1650
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1651
    }
1652

    
1653
    return 1;
1654
}
1655

    
1656
/* Section 4.10.2 - paragraph 4 */
1657
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1658
{
1659
    int again = 0;
1660

    
1661
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1662
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1663

    
1664
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1665
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1666
        again = 1;
1667
    } else {
1668
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1669
        again = 1;
1670
    }
1671

    
1672
    return again;
1673
}
1674

    
1675
static int ehci_state_horizqh(EHCIQueue *q, int async)
1676
{
1677
    int again = 0;
1678

    
1679
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1680
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1681
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1682
        again = 1;
1683
    } else {
1684
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1685
    }
1686

    
1687
    return again;
1688
}
1689

    
1690
/*
1691
 *  Write the qh back to guest physical memory.  This step isn't
1692
 *  in the EHCI spec but we need to do it since we don't share
1693
 *  physical memory with our guest VM.
1694
 *
1695
 *  The first three dwords are read-only for the EHCI, so skip them
1696
 *  when writing back the qh.
1697
 */
1698
static void ehci_flush_qh(EHCIQueue *q)
1699
{
1700
    uint32_t *qh = (uint32_t *) &q->qh;
1701
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1702
    uint32_t addr = NLPTR_GET(q->qhaddr);
1703

    
1704
    put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1705
}
1706

    
1707
static int ehci_state_execute(EHCIQueue *q, int async)
1708
{
1709
    int again = 0;
1710
    int reload, nakcnt;
1711
    int smask;
1712

    
1713
    if (ehci_qh_do_overlay(q) != 0) {
1714
        return -1;
1715
    }
1716

    
1717
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1718

    
1719
    if (!smask) {
1720
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1721
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1722
        if (reload && !nakcnt) {
1723
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1724
            again = 1;
1725
            goto out;
1726
        }
1727
    }
1728

    
1729
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1730
    // TODO write back ptr to async list when done or out of time
1731
    // TODO Windows does not seem to ever set the MULT field
1732

    
1733
    if (!async) {
1734
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1735
        if (!transactCtr) {
1736
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1737
            again = 1;
1738
            goto out;
1739
        }
1740
    }
1741

    
1742
    if (async) {
1743
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1744
    }
1745

    
1746
    q->usb_status = ehci_execute(q);
1747
    if (q->usb_status == USB_RET_PROCERR) {
1748
        again = -1;
1749
        goto out;
1750
    }
1751
    if (q->usb_status == USB_RET_ASYNC) {
1752
        ehci_flush_qh(q);
1753
        trace_usb_ehci_queue_action(q, "suspend");
1754
        q->async = EHCI_ASYNC_INFLIGHT;
1755
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1756
        again = 1;
1757
        goto out;
1758
    }
1759

    
1760
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1761
    again = 1;
1762

    
1763
out:
1764
    return again;
1765
}
1766

    
1767
static int ehci_state_executing(EHCIQueue *q, int async)
1768
{
1769
    int again = 0;
1770
    int reload, nakcnt;
1771

    
1772
    ehci_execute_complete(q);
1773
    if (q->usb_status == USB_RET_ASYNC) {
1774
        goto out;
1775
    }
1776
    if (q->usb_status == USB_RET_PROCERR) {
1777
        again = -1;
1778
        goto out;
1779
    }
1780

    
1781
    // 4.10.3
1782
    if (!async) {
1783
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1784
        transactCtr--;
1785
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1786
        // 4.10.3, bottom of page 82, should exit this state when transaction
1787
        // counter decrements to 0
1788
    }
1789

    
1790
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1791
    if (reload) {
1792
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1793
        if (q->usb_status == USB_RET_NAK) {
1794
            if (nakcnt) {
1795
                nakcnt--;
1796
            }
1797
        } else {
1798
            nakcnt = reload;
1799
        }
1800
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1801
    }
1802

    
1803
    /* 4.10.5 */
1804
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1805
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1806
    } else {
1807
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1808
    }
1809

    
1810
    again = 1;
1811

    
1812
out:
1813
    ehci_flush_qh(q);
1814
    return again;
1815
}
1816

    
1817

    
1818
static int ehci_state_writeback(EHCIQueue *q, int async)
1819
{
1820
    int again = 0;
1821

    
1822
    /*  Write back the QTD from the QH area */
1823
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1824
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1825
                sizeof(EHCIqtd) >> 2);
1826

    
1827
    /*
1828
     * EHCI specs say go horizontal here.
1829
     *
1830
     * We can also advance the queue here for performance reasons.  We
1831
     * need to take care to only take that shortcut in case we've
1832
     * processed the qtd just written back without errors, i.e. halt
1833
     * bit is clear.
1834
     */
1835
    if (q->qh.token & QTD_TOKEN_HALT) {
1836
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1837
        again = 1;
1838
    } else {
1839
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1840
        again = 1;
1841
    }
1842
    return again;
1843
}
1844

    
1845
/*
1846
 * This is the state machine that is common to both async and periodic
1847
 */
1848

    
1849
static void ehci_advance_state(EHCIState *ehci,
1850
                               int async)
1851
{
1852
    EHCIQueue *q = NULL;
1853
    int again;
1854
    int iter = 0;
1855

    
1856
    do {
1857
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1858
            iter++;
1859
            /* if we are roaming a lot of QH without executing a qTD
1860
             * something is wrong with the linked list. TO-DO: why is
1861
             * this hack needed?
1862
             */
1863
            assert(iter < MAX_ITERATIONS);
1864
#if 0
1865
            if (iter > MAX_ITERATIONS) {
1866
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1867
                ehci_set_state(ehci, async, EST_ACTIVE);
1868
                break;
1869
            }
1870
#endif
1871
        }
1872
        switch(ehci_get_state(ehci, async)) {
1873
        case EST_WAITLISTHEAD:
1874
            again = ehci_state_waitlisthead(ehci, async);
1875
            break;
1876

    
1877
        case EST_FETCHENTRY:
1878
            again = ehci_state_fetchentry(ehci, async);
1879
            break;
1880

    
1881
        case EST_FETCHQH:
1882
            q = ehci_state_fetchqh(ehci, async);
1883
            again = q ? 1 : 0;
1884
            break;
1885

    
1886
        case EST_FETCHITD:
1887
            again = ehci_state_fetchitd(ehci, async);
1888
            break;
1889

    
1890
        case EST_ADVANCEQUEUE:
1891
            again = ehci_state_advqueue(q, async);
1892
            break;
1893

    
1894
        case EST_FETCHQTD:
1895
            again = ehci_state_fetchqtd(q, async);
1896
            break;
1897

    
1898
        case EST_HORIZONTALQH:
1899
            again = ehci_state_horizqh(q, async);
1900
            break;
1901

    
1902
        case EST_EXECUTE:
1903
            iter = 0;
1904
            again = ehci_state_execute(q, async);
1905
            break;
1906

    
1907
        case EST_EXECUTING:
1908
            assert(q != NULL);
1909
            again = ehci_state_executing(q, async);
1910
            break;
1911

    
1912
        case EST_WRITEBACK:
1913
            again = ehci_state_writeback(q, async);
1914
            break;
1915

    
1916
        default:
1917
            fprintf(stderr, "Bad state!\n");
1918
            again = -1;
1919
            assert(0);
1920
            break;
1921
        }
1922

    
1923
        if (again < 0) {
1924
            fprintf(stderr, "processing error - resetting ehci HC\n");
1925
            ehci_reset(ehci);
1926
            again = 0;
1927
            assert(0);
1928
        }
1929
    }
1930
    while (again);
1931

    
1932
    ehci_commit_interrupt(ehci);
1933
}
1934

    
1935
static void ehci_advance_async_state(EHCIState *ehci)
1936
{
1937
    int async = 1;
1938

    
1939
    switch(ehci_get_state(ehci, async)) {
1940
    case EST_INACTIVE:
1941
        if (!(ehci->usbcmd & USBCMD_ASE)) {
1942
            break;
1943
        }
1944
        ehci_set_usbsts(ehci, USBSTS_ASS);
1945
        ehci_set_state(ehci, async, EST_ACTIVE);
1946
        // No break, fall through to ACTIVE
1947

    
1948
    case EST_ACTIVE:
1949
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
1950
            ehci_clear_usbsts(ehci, USBSTS_ASS);
1951
            ehci_set_state(ehci, async, EST_INACTIVE);
1952
            break;
1953
        }
1954

    
1955
        /* If the doorbell is set, the guest wants to make a change to the
1956
         * schedule. The host controller needs to release cached data.
1957
         * (section 4.8.2)
1958
         */
1959
        if (ehci->usbcmd & USBCMD_IAAD) {
1960
            DPRINTF("ASYNC: doorbell request acknowledged\n");
1961
            ehci->usbcmd &= ~USBCMD_IAAD;
1962
            ehci_set_interrupt(ehci, USBSTS_IAA);
1963
            break;
1964
        }
1965

    
1966
        /* make sure guest has acknowledged */
1967
        /* TO-DO: is this really needed? */
1968
        if (ehci->usbsts & USBSTS_IAA) {
1969
            DPRINTF("IAA status bit still set.\n");
1970
            break;
1971
        }
1972

    
1973
        /* check that address register has been set */
1974
        if (ehci->asynclistaddr == 0) {
1975
            break;
1976
        }
1977

    
1978
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1979
        ehci_advance_state(ehci, async);
1980
        break;
1981

    
1982
    default:
1983
        /* this should only be due to a developer mistake */
1984
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
1985
                "Resetting to active\n", ehci->astate);
1986
        assert(0);
1987
    }
1988
}
1989

    
1990
static void ehci_advance_periodic_state(EHCIState *ehci)
1991
{
1992
    uint32_t entry;
1993
    uint32_t list;
1994
    int async = 0;
1995

    
1996
    // 4.6
1997

    
1998
    switch(ehci_get_state(ehci, async)) {
1999
    case EST_INACTIVE:
2000
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2001
            ehci_set_usbsts(ehci, USBSTS_PSS);
2002
            ehci_set_state(ehci, async, EST_ACTIVE);
2003
            // No break, fall through to ACTIVE
2004
        } else
2005
            break;
2006

    
2007
    case EST_ACTIVE:
2008
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2009
            ehci_clear_usbsts(ehci, USBSTS_PSS);
2010
            ehci_set_state(ehci, async, EST_INACTIVE);
2011
            break;
2012
        }
2013

    
2014
        list = ehci->periodiclistbase & 0xfffff000;
2015
        /* check that register has been set */
2016
        if (list == 0) {
2017
            break;
2018
        }
2019
        list |= ((ehci->frindex & 0x1ff8) >> 1);
2020

    
2021
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2022
        entry = le32_to_cpu(entry);
2023

    
2024
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2025
                ehci->frindex / 8, list, entry);
2026
        ehci_set_fetch_addr(ehci, async,entry);
2027
        ehci_set_state(ehci, async, EST_FETCHENTRY);
2028
        ehci_advance_state(ehci, async);
2029
        break;
2030

    
2031
    default:
2032
        /* this should only be due to a developer mistake */
2033
        fprintf(stderr, "ehci: Bad periodic state %d. "
2034
                "Resetting to active\n", ehci->pstate);
2035
        assert(0);
2036
    }
2037
}
2038

    
2039
static void ehci_frame_timer(void *opaque)
2040
{
2041
    EHCIState *ehci = opaque;
2042
    int64_t expire_time, t_now;
2043
    int usec_elapsed;
2044
    int frames;
2045
    int usec_now;
2046
    int i;
2047
    int skipped_frames = 0;
2048

    
2049

    
2050
    t_now = qemu_get_clock_ns(vm_clock);
2051
    expire_time = t_now + (get_ticks_per_sec() / FRAME_TIMER_FREQ);
2052
    if (expire_time == t_now) {
2053
        expire_time++;
2054
    }
2055

    
2056
    usec_now = t_now / 1000;
2057
    usec_elapsed = usec_now - ehci->last_run_usec;
2058
    frames = usec_elapsed / FRAME_TIMER_USEC;
2059
    ehci->frame_end_usec = usec_now + FRAME_TIMER_USEC - 10;
2060

    
2061
    for (i = 0; i < frames; i++) {
2062
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2063
            if (ehci->isoch_pause <= 0) {
2064
                ehci->frindex += 8;
2065
            }
2066

    
2067
            if (ehci->frindex > 0x00001fff) {
2068
                ehci->frindex = 0;
2069
                ehci_set_interrupt(ehci, USBSTS_FLR);
2070
            }
2071

    
2072
            ehci->sofv = (ehci->frindex - 1) >> 3;
2073
            ehci->sofv &= 0x000003ff;
2074
        }
2075

    
2076
        if (frames - i > 10) {
2077
            skipped_frames++;
2078
        } else {
2079
            ehci_advance_periodic_state(ehci);
2080
        }
2081

    
2082
        ehci->last_run_usec += FRAME_TIMER_USEC;
2083
    }
2084

    
2085
#if 0
2086
    if (skipped_frames) {
2087
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2088
    }
2089
#endif
2090

    
2091
    /*  Async is not inside loop since it executes everything it can once
2092
     *  called
2093
     */
2094
    ehci_advance_async_state(ehci);
2095

    
2096
    qemu_mod_timer(ehci->frame_timer, expire_time);
2097
}
2098

    
2099
static CPUReadMemoryFunc *ehci_readfn[3]={
2100
    ehci_mem_readb,
2101
    ehci_mem_readw,
2102
    ehci_mem_readl
2103
};
2104

    
2105
static CPUWriteMemoryFunc *ehci_writefn[3]={
2106
    ehci_mem_writeb,
2107
    ehci_mem_writew,
2108
    ehci_mem_writel
2109
};
2110

    
2111
static void ehci_map(PCIDevice *pci_dev, int region_num,
2112
                     pcibus_t addr, pcibus_t size, int type)
2113
{
2114
    EHCIState *s =(EHCIState *)pci_dev;
2115

    
2116
    DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2117
            region_num, addr, size, s->mem);
2118
    s->mem_base = addr;
2119
    cpu_register_physical_memory(addr, size, s->mem);
2120
}
2121

    
2122
static void ehci_device_destroy(USBBus *bus, USBDevice *dev)
2123
{
2124
    EHCIState *s = container_of(bus, EHCIState, bus);
2125

    
2126
    ehci_queues_rip_device(s, dev);
2127
}
2128

    
2129
static int usb_ehci_initfn(PCIDevice *dev);
2130

    
2131
static USBPortOps ehci_port_ops = {
2132
    .attach = ehci_attach,
2133
    .detach = ehci_detach,
2134
    .complete = ehci_async_complete_packet,
2135
};
2136

    
2137
static USBBusOps ehci_bus_ops = {
2138
    .device_destroy = ehci_device_destroy,
2139
};
2140

    
2141
static PCIDeviceInfo ehci_info = {
2142
    .qdev.name    = "usb-ehci",
2143
    .qdev.size    = sizeof(EHCIState),
2144
    .init         = usb_ehci_initfn,
2145
};
2146

    
2147
static int usb_ehci_initfn(PCIDevice *dev)
2148
{
2149
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2150
    uint8_t *pci_conf = s->dev.config;
2151
    int i;
2152

    
2153
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
2154
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82801D);
2155
    pci_set_byte(&pci_conf[PCI_REVISION_ID], 0x10);
2156
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2157
    pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB);
2158
    pci_set_byte(&pci_conf[PCI_HEADER_TYPE], PCI_HEADER_TYPE_NORMAL);
2159

    
2160
    /* capabilities pointer */
2161
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2162
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2163

    
2164
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2165
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2166
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2167

    
2168
    // pci_conf[0x50] = 0x01; // power management caps
2169

    
2170
    pci_set_byte(&pci_conf[0x60], 0x20);  // spec release number (2.1.4)
2171
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2172
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2173

    
2174
    pci_conf[0x64] = 0x00;
2175
    pci_conf[0x65] = 0x00;
2176
    pci_conf[0x66] = 0x00;
2177
    pci_conf[0x67] = 0x00;
2178
    pci_conf[0x68] = 0x01;
2179
    pci_conf[0x69] = 0x00;
2180
    pci_conf[0x6a] = 0x00;
2181
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2182
    pci_conf[0x6c] = 0x00;
2183
    pci_conf[0x6d] = 0x00;
2184
    pci_conf[0x6e] = 0x00;
2185
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2186

    
2187
    // 2.2 host controller interface version
2188
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2189
    s->mmio[0x01] = 0x00;
2190
    s->mmio[0x02] = 0x00;
2191
    s->mmio[0x03] = 0x01;        // HC version
2192
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2193
    s->mmio[0x05] = 0x00;        // No companion ports at present
2194
    s->mmio[0x06] = 0x00;
2195
    s->mmio[0x07] = 0x00;
2196
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2197
    s->mmio[0x09] = 0x68;        // EECP
2198
    s->mmio[0x0a] = 0x00;
2199
    s->mmio[0x0b] = 0x00;
2200

    
2201
    s->irq = s->dev.irq[3];
2202

    
2203
    usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2204
    for(i = 0; i < NB_PORTS; i++) {
2205
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2206
                          USB_SPEED_MASK_HIGH);
2207
        usb_port_location(&s->ports[i], NULL, i+1);
2208
        s->ports[i].dev = 0;
2209
    }
2210

    
2211
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2212
    QTAILQ_INIT(&s->queues);
2213

    
2214
    qemu_register_reset(ehci_reset, s);
2215

    
2216
    s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2217
                                    DEVICE_LITTLE_ENDIAN);
2218

    
2219
    pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2220
                                                            ehci_map);
2221

    
2222
    fprintf(stderr, "*** EHCI support is under development ***\n");
2223

    
2224
    return 0;
2225
}
2226

    
2227
static void ehci_register(void)
2228
{
2229
    pci_qdev_register(&ehci_info);
2230
}
2231
device_init(ehci_register);
2232

    
2233
/*
2234
 * vim: expandtab ts=4
2235
 */