Statistics
| Branch: | Revision:

root / hw / pxa2xx_mmci.c @ 02ce600c

History | View | Annotate | Download (14.3 kB)

1
/*
2
 * Intel XScale PXA255/270 MultiMediaCard/SD/SDIO Controller emulation.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Written by Andrzej Zaborowski <balrog@zabor.org>
6
 *
7
 * This code is licensed under the GPLv2.
8
 */
9

    
10
#include "vl.h"
11
#include "sd.h"
12

    
13
struct pxa2xx_mmci_s {
14
    target_phys_addr_t base;
15
    qemu_irq irq;
16
    void *dma;
17

    
18
    SDState *card;
19

    
20
    uint32_t status;
21
    uint32_t clkrt;
22
    uint32_t spi;
23
    uint32_t cmdat;
24
    uint32_t resp_tout;
25
    uint32_t read_tout;
26
    int blklen;
27
    int numblk;
28
    uint32_t intmask;
29
    uint32_t intreq;
30
    int cmd;
31
    uint32_t arg;
32

    
33
    int active;
34
    int bytesleft;
35
    uint8_t tx_fifo[64];
36
    int tx_start;
37
    int tx_len;
38
    uint8_t rx_fifo[32];
39
    int rx_start;
40
    int rx_len;
41
    uint16_t resp_fifo[9];
42
    int resp_len;
43

    
44
    int cmdreq;
45
    int ac_width;
46
};
47

    
48
#define MMC_STRPCL        0x00        /* MMC Clock Start/Stop register */
49
#define MMC_STAT        0x04        /* MMC Status register */
50
#define MMC_CLKRT        0x08        /* MMC Clock Rate register */
51
#define MMC_SPI                0x0c        /* MMC SPI Mode register */
52
#define MMC_CMDAT        0x10        /* MMC Command/Data register */
53
#define MMC_RESTO        0x14        /* MMC Response Time-Out register */
54
#define MMC_RDTO        0x18        /* MMC Read Time-Out register */
55
#define MMC_BLKLEN        0x1c        /* MMC Block Length register */
56
#define MMC_NUMBLK        0x20        /* MMC Number of Blocks register */
57
#define MMC_PRTBUF        0x24        /* MMC Buffer Partly Full register */
58
#define MMC_I_MASK        0x28        /* MMC Interrupt Mask register */
59
#define MMC_I_REG        0x2c        /* MMC Interrupt Request register */
60
#define MMC_CMD                0x30        /* MMC Command register */
61
#define MMC_ARGH        0x34        /* MMC Argument High register */
62
#define MMC_ARGL        0x38        /* MMC Argument Low register */
63
#define MMC_RES                0x3c        /* MMC Response FIFO */
64
#define MMC_RXFIFO        0x40        /* MMC Receive FIFO */
65
#define MMC_TXFIFO        0x44        /* MMC Transmit FIFO */
66
#define MMC_RDWAIT        0x48        /* MMC RD_WAIT register */
67
#define MMC_BLKS_REM        0x4c        /* MMC Blocks Remaining register */
68

    
69
/* Bitfield masks */
70
#define STRPCL_STOP_CLK        (1 << 0)
71
#define STRPCL_STRT_CLK        (1 << 1)
72
#define STAT_TOUT_RES        (1 << 1)
73
#define STAT_CLK_EN        (1 << 8)
74
#define STAT_DATA_DONE        (1 << 11)
75
#define STAT_PRG_DONE        (1 << 12)
76
#define STAT_END_CMDRES        (1 << 13)
77
#define SPI_SPI_MODE        (1 << 0)
78
#define CMDAT_RES_TYPE        (3 << 0)
79
#define CMDAT_DATA_EN        (1 << 2)
80
#define CMDAT_WR_RD        (1 << 3)
81
#define CMDAT_DMA_EN        (1 << 7)
82
#define CMDAT_STOP_TRAN        (1 << 10)
83
#define INT_DATA_DONE        (1 << 0)
84
#define INT_PRG_DONE        (1 << 1)
85
#define INT_END_CMD        (1 << 2)
86
#define INT_STOP_CMD        (1 << 3)
87
#define INT_CLK_OFF        (1 << 4)
88
#define INT_RXFIFO_REQ        (1 << 5)
89
#define INT_TXFIFO_REQ        (1 << 6)
90
#define INT_TINT        (1 << 7)
91
#define INT_DAT_ERR        (1 << 8)
92
#define INT_RES_ERR        (1 << 9)
93
#define INT_RD_STALLED        (1 << 10)
94
#define INT_SDIO_INT        (1 << 11)
95
#define INT_SDIO_SACK        (1 << 12)
96
#define PRTBUF_PRT_BUF        (1 << 0)
97

    
98
/* Route internal interrupt lines to the global IC and DMA */
99
static void pxa2xx_mmci_int_update(struct pxa2xx_mmci_s *s)
100
{
101
    uint32_t mask = s->intmask;
102
    if (s->cmdat & CMDAT_DMA_EN) {
103
        mask |= INT_RXFIFO_REQ | INT_TXFIFO_REQ;
104

    
105
        pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma,
106
                        PXA2XX_RX_RQ_MMCI, !!(s->intreq & INT_RXFIFO_REQ));
107
        pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma,
108
                        PXA2XX_TX_RQ_MMCI, !!(s->intreq & INT_TXFIFO_REQ));
109
    }
110

    
111
    qemu_set_irq(s->irq, !!(s->intreq & ~mask));
112
}
113

    
114
static void pxa2xx_mmci_fifo_update(struct pxa2xx_mmci_s *s)
115
{
116
    if (!s->active)
117
        return;
118

    
119
    if (s->cmdat & CMDAT_WR_RD) {
120
        while (s->bytesleft && s->tx_len) {
121
            sd_write_data(s->card, s->tx_fifo[s->tx_start ++]);
122
            s->tx_start &= 0x1f;
123
            s->tx_len --;
124
            s->bytesleft --;
125
        }
126
        if (s->bytesleft)
127
            s->intreq |= INT_TXFIFO_REQ;
128
    } else
129
        while (s->bytesleft && s->rx_len < 32) {
130
            s->rx_fifo[(s->rx_start + (s->rx_len ++)) & 0x1f] =
131
                sd_read_data(s->card);
132
            s->bytesleft --;
133
            s->intreq |= INT_RXFIFO_REQ;
134
        }
135

    
136
    if (!s->bytesleft) {
137
        s->active = 0;
138
        s->intreq |= INT_DATA_DONE;
139
        s->status |= STAT_DATA_DONE;
140

    
141
        if (s->cmdat & CMDAT_WR_RD) {
142
            s->intreq |= INT_PRG_DONE;
143
            s->status |= STAT_PRG_DONE;
144
        }
145
    }
146

    
147
    pxa2xx_mmci_int_update(s);
148
}
149

    
150
static void pxa2xx_mmci_wakequeues(struct pxa2xx_mmci_s *s)
151
{
152
    int rsplen, i;
153
    struct sd_request_s request;
154
    uint8_t response[16];
155

    
156
    s->active = 1;
157
    s->rx_len = 0;
158
    s->tx_len = 0;
159
    s->cmdreq = 0;
160

    
161
    request.cmd = s->cmd;
162
    request.arg = s->arg;
163
    request.crc = 0;        /* FIXME */
164

    
165
    rsplen = sd_do_command(s->card, &request, response);
166
    s->intreq |= INT_END_CMD;
167

    
168
    memset(s->resp_fifo, 0, sizeof(s->resp_fifo));
169
    switch (s->cmdat & CMDAT_RES_TYPE) {
170
#define PXAMMCI_RESP(wd, value0, value1)        \
171
        s->resp_fifo[(wd) + 0] |= (value0);        \
172
        s->resp_fifo[(wd) + 1] |= (value1) << 8;
173
    case 0:        /* No response */
174
        goto complete;
175

    
176
    case 1:        /* R1, R4, R5 or R6 */
177
        if (rsplen < 4)
178
            goto timeout;
179
        goto complete;
180

    
181
    case 2:        /* R2 */
182
        if (rsplen < 16)
183
            goto timeout;
184
        goto complete;
185

    
186
    case 3:        /* R3 */
187
        if (rsplen < 4)
188
            goto timeout;
189
        goto complete;
190

    
191
    complete:
192
        for (i = 0; rsplen > 0; i ++, rsplen -= 2) {
193
            PXAMMCI_RESP(i, response[i * 2], response[i * 2 + 1]);
194
        }
195
        s->status |= STAT_END_CMDRES;
196

    
197
        if (!(s->cmdat & CMDAT_DATA_EN))
198
            s->active = 0;
199
        else
200
            s->bytesleft = s->numblk * s->blklen;
201

    
202
        s->resp_len = 0;
203
        break;
204

    
205
    timeout:
206
        s->active = 0;
207
        s->status |= STAT_TOUT_RES;
208
        break;
209
    }
210

    
211
    pxa2xx_mmci_fifo_update(s);
212
}
213

    
214
static uint32_t pxa2xx_mmci_read(void *opaque, target_phys_addr_t offset)
215
{
216
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
217
    uint32_t ret;
218
    offset -= s->base;
219

    
220
    switch (offset) {
221
    case MMC_STRPCL:
222
        return 0;
223
    case MMC_STAT:
224
        return s->status;
225
    case MMC_CLKRT:
226
        return s->clkrt;
227
    case MMC_SPI:
228
        return s->spi;
229
    case MMC_CMDAT:
230
        return s->cmdat;
231
    case MMC_RESTO:
232
        return s->resp_tout;
233
    case MMC_RDTO:
234
        return s->read_tout;
235
    case MMC_BLKLEN:
236
        return s->blklen;
237
    case MMC_NUMBLK:
238
        return s->numblk;
239
    case MMC_PRTBUF:
240
        return 0;
241
    case MMC_I_MASK:
242
        return s->intmask;
243
    case MMC_I_REG:
244
        return s->intreq;
245
    case MMC_CMD:
246
        return s->cmd | 0x40;
247
    case MMC_ARGH:
248
        return s->arg >> 16;
249
    case MMC_ARGL:
250
        return s->arg & 0xffff;
251
    case MMC_RES:
252
        if (s->resp_len < 9)
253
            return s->resp_fifo[s->resp_len ++];
254
        return 0;
255
    case MMC_RXFIFO:
256
        ret = 0;
257
        while (s->ac_width -- && s->rx_len) {
258
            ret |= s->rx_fifo[s->rx_start ++] << (s->ac_width << 3);
259
            s->rx_start &= 0x1f;
260
            s->rx_len --;
261
        }
262
        s->intreq &= ~INT_RXFIFO_REQ;
263
        pxa2xx_mmci_fifo_update(s);
264
        return ret;
265
    case MMC_RDWAIT:
266
        return 0;
267
    case MMC_BLKS_REM:
268
        return s->numblk;
269
    default:
270
        cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n",
271
                        __FUNCTION__, offset);
272
    }
273

    
274
    return 0;
275
}
276

    
277
static void pxa2xx_mmci_write(void *opaque,
278
                target_phys_addr_t offset, uint32_t value)
279
{
280
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
281
    offset -= s->base;
282

    
283
    switch (offset) {
284
    case MMC_STRPCL:
285
        if (value & STRPCL_STRT_CLK) {
286
            s->status |= STAT_CLK_EN;
287
            s->intreq &= ~INT_CLK_OFF;
288

    
289
            if (s->cmdreq && !(s->cmdat & CMDAT_STOP_TRAN)) {
290
                s->status &= STAT_CLK_EN;
291
                pxa2xx_mmci_wakequeues(s);
292
            }
293
        }
294

    
295
        if (value & STRPCL_STOP_CLK) {
296
            s->status &= ~STAT_CLK_EN;
297
            s->intreq |= INT_CLK_OFF;
298
            s->active = 0;
299
        }
300

    
301
        pxa2xx_mmci_int_update(s);
302
        break;
303

    
304
    case MMC_CLKRT:
305
        s->clkrt = value & 7;
306
        break;
307

    
308
    case MMC_SPI:
309
        s->spi = value & 0xf;
310
        if (value & SPI_SPI_MODE)
311
            printf("%s: attempted to use card in SPI mode\n", __FUNCTION__);
312
        break;
313

    
314
    case MMC_CMDAT:
315
        s->cmdat = value & 0x3dff;
316
        s->active = 0;
317
        s->cmdreq = 1;
318
        if (!(value & CMDAT_STOP_TRAN)) {
319
            s->status &= STAT_CLK_EN;
320

    
321
            if (s->status & STAT_CLK_EN)
322
                pxa2xx_mmci_wakequeues(s);
323
        }
324

    
325
        pxa2xx_mmci_int_update(s);
326
        break;
327

    
328
    case MMC_RESTO:
329
        s->resp_tout = value & 0x7f;
330
        break;
331

    
332
    case MMC_RDTO:
333
        s->read_tout = value & 0xffff;
334
        break;
335

    
336
    case MMC_BLKLEN:
337
        s->blklen = value & 0xfff;
338
        break;
339

    
340
    case MMC_NUMBLK:
341
        s->numblk = value & 0xffff;
342
        break;
343

    
344
    case MMC_PRTBUF:
345
        if (value & PRTBUF_PRT_BUF) {
346
            s->tx_start ^= 32;
347
            s->tx_len = 0;
348
        }
349
        pxa2xx_mmci_fifo_update(s);
350
        break;
351

    
352
    case MMC_I_MASK:
353
        s->intmask = value & 0x1fff;
354
        pxa2xx_mmci_int_update(s);
355
        break;
356

    
357
    case MMC_CMD:
358
        s->cmd = value & 0x3f;
359
        break;
360

    
361
    case MMC_ARGH:
362
        s->arg &= 0x0000ffff;
363
        s->arg |= value << 16;
364
        break;
365

    
366
    case MMC_ARGL:
367
        s->arg &= 0xffff0000;
368
        s->arg |= value & 0x0000ffff;
369
        break;
370

    
371
    case MMC_TXFIFO:
372
        while (s->ac_width -- && s->tx_len < 0x20)
373
            s->tx_fifo[(s->tx_start + (s->tx_len ++)) & 0x1f] =
374
                    (value >> (s->ac_width << 3)) & 0xff;
375
        s->intreq &= ~INT_TXFIFO_REQ;
376
        pxa2xx_mmci_fifo_update(s);
377
        break;
378

    
379
    case MMC_RDWAIT:
380
    case MMC_BLKS_REM:
381
        break;
382

    
383
    default:
384
        cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n",
385
                        __FUNCTION__, offset);
386
    }
387
}
388

    
389
static uint32_t pxa2xx_mmci_readb(void *opaque, target_phys_addr_t offset)
390
{
391
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
392
    s->ac_width = 1;
393
    return pxa2xx_mmci_read(opaque, offset);
394
}
395

    
396
static uint32_t pxa2xx_mmci_readh(void *opaque, target_phys_addr_t offset)
397
{
398
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
399
    s->ac_width = 2;
400
    return pxa2xx_mmci_read(opaque, offset);
401
}
402

    
403
static uint32_t pxa2xx_mmci_readw(void *opaque, target_phys_addr_t offset)
404
{
405
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
406
    s->ac_width = 4;
407
    return pxa2xx_mmci_read(opaque, offset);
408
}
409

    
410
static CPUReadMemoryFunc *pxa2xx_mmci_readfn[] = {
411
    pxa2xx_mmci_readb,
412
    pxa2xx_mmci_readh,
413
    pxa2xx_mmci_readw
414
};
415

    
416
static void pxa2xx_mmci_writeb(void *opaque,
417
                target_phys_addr_t offset, uint32_t value)
418
{
419
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
420
    s->ac_width = 1;
421
    pxa2xx_mmci_write(opaque, offset, value);
422
}
423

    
424
static void pxa2xx_mmci_writeh(void *opaque,
425
                target_phys_addr_t offset, uint32_t value)
426
{
427
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
428
    s->ac_width = 2;
429
    pxa2xx_mmci_write(opaque, offset, value);
430
}
431

    
432
static void pxa2xx_mmci_writew(void *opaque,
433
                target_phys_addr_t offset, uint32_t value)
434
{
435
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
436
    s->ac_width = 4;
437
    pxa2xx_mmci_write(opaque, offset, value);
438
}
439

    
440
static CPUWriteMemoryFunc *pxa2xx_mmci_writefn[] = {
441
    pxa2xx_mmci_writeb,
442
    pxa2xx_mmci_writeh,
443
    pxa2xx_mmci_writew
444
};
445

    
446
static void pxa2xx_mmci_save(QEMUFile *f, void *opaque)
447
{
448
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
449
    int i;
450

    
451
    qemu_put_be32s(f, &s->status);
452
    qemu_put_be32s(f, &s->clkrt);
453
    qemu_put_be32s(f, &s->spi);
454
    qemu_put_be32s(f, &s->cmdat);
455
    qemu_put_be32s(f, &s->resp_tout);
456
    qemu_put_be32s(f, &s->read_tout);
457
    qemu_put_be32(f, s->blklen);
458
    qemu_put_be32(f, s->numblk);
459
    qemu_put_be32s(f, &s->intmask);
460
    qemu_put_be32s(f, &s->intreq);
461
    qemu_put_be32(f, s->cmd);
462
    qemu_put_be32s(f, &s->arg);
463
    qemu_put_be32(f, s->cmdreq);
464
    qemu_put_be32(f, s->active);
465
    qemu_put_be32(f, s->bytesleft);
466

    
467
    qemu_put_byte(f, s->tx_len);
468
    for (i = 0; i < s->tx_len; i ++)
469
        qemu_put_byte(f, s->tx_fifo[(s->tx_start + i) & 63]);
470

    
471
    qemu_put_byte(f, s->rx_len);
472
    for (i = 0; i < s->rx_len; i ++)
473
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 31]);
474

    
475
    qemu_put_byte(f, s->resp_len);
476
    for (i = s->resp_len; i < 9; i ++)
477
        qemu_put_be16s(f, &s->resp_fifo[i]);
478
}
479

    
480
static int pxa2xx_mmci_load(QEMUFile *f, void *opaque, int version_id)
481
{
482
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
483
    int i;
484

    
485
    qemu_get_be32s(f, &s->status);
486
    qemu_get_be32s(f, &s->clkrt);
487
    qemu_get_be32s(f, &s->spi);
488
    qemu_get_be32s(f, &s->cmdat);
489
    qemu_get_be32s(f, &s->resp_tout);
490
    qemu_get_be32s(f, &s->read_tout);
491
    s->blklen = qemu_get_be32(f);
492
    s->numblk = qemu_get_be32(f);
493
    qemu_get_be32s(f, &s->intmask);
494
    qemu_get_be32s(f, &s->intreq);
495
    s->cmd = qemu_get_be32(f);
496
    qemu_get_be32s(f, &s->arg);
497
    s->cmdreq = qemu_get_be32(f);
498
    s->active = qemu_get_be32(f);
499
    s->bytesleft = qemu_get_be32(f);
500

    
501
    s->tx_len = qemu_get_byte(f);
502
    s->tx_start = 0;
503
    if (s->tx_len >= sizeof(s->tx_fifo) || s->tx_len < 0)
504
        return -EINVAL;
505
    for (i = 0; i < s->tx_len; i ++)
506
        s->tx_fifo[i] = qemu_get_byte(f);
507

    
508
    s->rx_len = qemu_get_byte(f);
509
    s->rx_start = 0;
510
    if (s->rx_len >= sizeof(s->rx_fifo) || s->rx_len < 0)
511
        return -EINVAL;
512
    for (i = 0; i < s->rx_len; i ++)
513
        s->rx_fifo[i] = qemu_get_byte(f);
514

    
515
    s->resp_len = qemu_get_byte(f);
516
    if (s->resp_len > 9 || s->resp_len < 0)
517
        return -EINVAL;
518
    for (i = s->resp_len; i < 9; i ++)
519
         qemu_get_be16s(f, &s->resp_fifo[i]);
520

    
521
    return 0;
522
}
523

    
524
struct pxa2xx_mmci_s *pxa2xx_mmci_init(target_phys_addr_t base,
525
                qemu_irq irq, void *dma)
526
{
527
    int iomemtype;
528
    struct pxa2xx_mmci_s *s;
529

    
530
    s = (struct pxa2xx_mmci_s *) qemu_mallocz(sizeof(struct pxa2xx_mmci_s));
531
    s->base = base;
532
    s->irq = irq;
533
    s->dma = dma;
534

    
535
    iomemtype = cpu_register_io_memory(0, pxa2xx_mmci_readfn,
536
                    pxa2xx_mmci_writefn, s);
537
    cpu_register_physical_memory(base, 0x00100000, iomemtype);
538

    
539
    /* Instantiate the actual storage */
540
    s->card = sd_init(sd_bdrv);
541

    
542
    register_savevm("pxa2xx_mmci", 0, 0,
543
                    pxa2xx_mmci_save, pxa2xx_mmci_load, s);
544

    
545
    return s;
546
}
547

    
548
void pxa2xx_mmci_handlers(struct pxa2xx_mmci_s *s, qemu_irq readonly,
549
                qemu_irq coverswitch)
550
{
551
    sd_set_cb(s->card, read, coverswitch);
552
}