Statistics
| Branch: | Revision:

root / hw / musicpal.c @ 02e2da45

History | View | Annotate | Download (43.1 kB)

1
/*
2
 * Marvell MV88W8618 / Freecom MusicPal emulation.
3
 *
4
 * Copyright (c) 2008 Jan Kiszka
5
 *
6
 * This code is licenced under the GNU GPL v2.
7
 */
8

    
9
#include "sysbus.h"
10
#include "arm-misc.h"
11
#include "devices.h"
12
#include "net.h"
13
#include "sysemu.h"
14
#include "boards.h"
15
#include "pc.h"
16
#include "qemu-timer.h"
17
#include "block.h"
18
#include "flash.h"
19
#include "console.h"
20
#include "audio/audio.h"
21
#include "i2c.h"
22

    
23
#define MP_MISC_BASE            0x80002000
24
#define MP_MISC_SIZE            0x00001000
25

    
26
#define MP_ETH_BASE             0x80008000
27
#define MP_ETH_SIZE             0x00001000
28

    
29
#define MP_WLAN_BASE            0x8000C000
30
#define MP_WLAN_SIZE            0x00000800
31

    
32
#define MP_UART1_BASE           0x8000C840
33
#define MP_UART2_BASE           0x8000C940
34

    
35
#define MP_GPIO_BASE            0x8000D000
36
#define MP_GPIO_SIZE            0x00001000
37

    
38
#define MP_FLASHCFG_BASE        0x90006000
39
#define MP_FLASHCFG_SIZE        0x00001000
40

    
41
#define MP_AUDIO_BASE           0x90007000
42
#define MP_AUDIO_SIZE           0x00001000
43

    
44
#define MP_PIC_BASE             0x90008000
45
#define MP_PIC_SIZE             0x00001000
46

    
47
#define MP_PIT_BASE             0x90009000
48
#define MP_PIT_SIZE             0x00001000
49

    
50
#define MP_LCD_BASE             0x9000c000
51
#define MP_LCD_SIZE             0x00001000
52

    
53
#define MP_SRAM_BASE            0xC0000000
54
#define MP_SRAM_SIZE            0x00020000
55

    
56
#define MP_RAM_DEFAULT_SIZE     32*1024*1024
57
#define MP_FLASH_SIZE_MAX       32*1024*1024
58

    
59
#define MP_TIMER1_IRQ           4
60
#define MP_TIMER2_IRQ           5
61
#define MP_TIMER3_IRQ           6
62
#define MP_TIMER4_IRQ           7
63
#define MP_EHCI_IRQ             8
64
#define MP_ETH_IRQ              9
65
#define MP_UART1_IRQ            11
66
#define MP_UART2_IRQ            11
67
#define MP_GPIO_IRQ             12
68
#define MP_RTC_IRQ              28
69
#define MP_AUDIO_IRQ            30
70

    
71
static uint32_t gpio_in_state = 0xffffffff;
72
static uint32_t gpio_isr;
73
static uint32_t gpio_out_state;
74
static ram_addr_t sram_off;
75

    
76
typedef enum i2c_state {
77
    STOPPED = 0,
78
    INITIALIZING,
79
    SENDING_BIT7,
80
    SENDING_BIT6,
81
    SENDING_BIT5,
82
    SENDING_BIT4,
83
    SENDING_BIT3,
84
    SENDING_BIT2,
85
    SENDING_BIT1,
86
    SENDING_BIT0,
87
    WAITING_FOR_ACK,
88
    RECEIVING_BIT7,
89
    RECEIVING_BIT6,
90
    RECEIVING_BIT5,
91
    RECEIVING_BIT4,
92
    RECEIVING_BIT3,
93
    RECEIVING_BIT2,
94
    RECEIVING_BIT1,
95
    RECEIVING_BIT0,
96
    SENDING_ACK
97
} i2c_state;
98

    
99
typedef struct i2c_interface {
100
    i2c_bus *bus;
101
    i2c_state state;
102
    int last_data;
103
    int last_clock;
104
    uint8_t buffer;
105
    int current_addr;
106
} i2c_interface;
107

    
108
static void i2c_enter_stop(i2c_interface *i2c)
109
{
110
    if (i2c->current_addr >= 0)
111
        i2c_end_transfer(i2c->bus);
112
    i2c->current_addr = -1;
113
    i2c->state = STOPPED;
114
}
115

    
116
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
117
{
118
    if (!i2c)
119
        return;
120

    
121
    switch (i2c->state) {
122
    case STOPPED:
123
        if (data == 0 && i2c->last_data == 1 && clock == 1)
124
            i2c->state = INITIALIZING;
125
        break;
126

    
127
    case INITIALIZING:
128
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
129
            i2c->state = SENDING_BIT7;
130
        else
131
            i2c_enter_stop(i2c);
132
        break;
133

    
134
    case SENDING_BIT7 ... SENDING_BIT0:
135
        if (clock == 0 && i2c->last_clock == 1) {
136
            i2c->buffer = (i2c->buffer << 1) | data;
137
            i2c->state++; /* will end up in WAITING_FOR_ACK */
138
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
139
            i2c_enter_stop(i2c);
140
        break;
141

    
142
    case WAITING_FOR_ACK:
143
        if (clock == 0 && i2c->last_clock == 1) {
144
            if (i2c->current_addr < 0) {
145
                i2c->current_addr = i2c->buffer;
146
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
147
                                   i2c->buffer & 1);
148
            } else
149
                i2c_send(i2c->bus, i2c->buffer);
150
            if (i2c->current_addr & 1) {
151
                i2c->state = RECEIVING_BIT7;
152
                i2c->buffer = i2c_recv(i2c->bus);
153
            } else
154
                i2c->state = SENDING_BIT7;
155
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
156
            i2c_enter_stop(i2c);
157
        break;
158

    
159
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
160
        if (clock == 0 && i2c->last_clock == 1) {
161
            i2c->state++; /* will end up in SENDING_ACK */
162
            i2c->buffer <<= 1;
163
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
164
            i2c_enter_stop(i2c);
165
        break;
166

    
167
    case SENDING_ACK:
168
        if (clock == 0 && i2c->last_clock == 1) {
169
            i2c->state = RECEIVING_BIT7;
170
            if (data == 0)
171
                i2c->buffer = i2c_recv(i2c->bus);
172
            else
173
                i2c_nack(i2c->bus);
174
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
175
            i2c_enter_stop(i2c);
176
        break;
177
    }
178

    
179
    i2c->last_data = data;
180
    i2c->last_clock = clock;
181
}
182

    
183
static int i2c_get_data(i2c_interface *i2c)
184
{
185
    if (!i2c)
186
        return 0;
187

    
188
    switch (i2c->state) {
189
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
190
        return (i2c->buffer >> 7);
191

    
192
    case WAITING_FOR_ACK:
193
    default:
194
        return 0;
195
    }
196
}
197

    
198
static i2c_interface *mixer_i2c;
199

    
200
#ifdef HAS_AUDIO
201

    
202
/* Audio register offsets */
203
#define MP_AUDIO_PLAYBACK_MODE  0x00
204
#define MP_AUDIO_CLOCK_DIV      0x18
205
#define MP_AUDIO_IRQ_STATUS     0x20
206
#define MP_AUDIO_IRQ_ENABLE     0x24
207
#define MP_AUDIO_TX_START_LO    0x28
208
#define MP_AUDIO_TX_THRESHOLD   0x2C
209
#define MP_AUDIO_TX_STATUS      0x38
210
#define MP_AUDIO_TX_START_HI    0x40
211

    
212
/* Status register and IRQ enable bits */
213
#define MP_AUDIO_TX_HALF        (1 << 6)
214
#define MP_AUDIO_TX_FULL        (1 << 7)
215

    
216
/* Playback mode bits */
217
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
218
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
219
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)
220
#define MP_AUDIO_MONO           (1 << 14)
221

    
222
/* Wolfson 8750 I2C address */
223
#define MP_WM_ADDR              0x34
224

    
225
static const char audio_name[] = "mv88w8618";
226

    
227
typedef struct musicpal_audio_state {
228
    qemu_irq irq;
229
    uint32_t playback_mode;
230
    uint32_t status;
231
    uint32_t irq_enable;
232
    unsigned long phys_buf;
233
    uint32_t target_buffer;
234
    unsigned int threshold;
235
    unsigned int play_pos;
236
    unsigned int last_free;
237
    uint32_t clock_div;
238
    DeviceState *wm;
239
} musicpal_audio_state;
240

    
241
static void audio_callback(void *opaque, int free_out, int free_in)
242
{
243
    musicpal_audio_state *s = opaque;
244
    int16_t *codec_buffer;
245
    int8_t buf[4096];
246
    int8_t *mem_buffer;
247
    int pos, block_size;
248

    
249
    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
250
        return;
251

    
252
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
253
        free_out <<= 1;
254

    
255
    if (!(s->playback_mode & MP_AUDIO_MONO))
256
        free_out <<= 1;
257

    
258
    block_size = s->threshold/2;
259
    if (free_out - s->last_free < block_size)
260
        return;
261

    
262
    if (block_size > 4096)
263
        return;
264

    
265
    cpu_physical_memory_read(s->target_buffer + s->play_pos, (void *)buf,
266
                             block_size);
267
    mem_buffer = buf;
268
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
269
        if (s->playback_mode & MP_AUDIO_MONO) {
270
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
271
            for (pos = 0; pos < block_size; pos += 2) {
272
                *codec_buffer++ = *(int16_t *)mem_buffer;
273
                *codec_buffer++ = *(int16_t *)mem_buffer;
274
                mem_buffer += 2;
275
            }
276
        } else
277
            memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
278
                   (uint32_t *)mem_buffer, block_size);
279
    } else {
280
        if (s->playback_mode & MP_AUDIO_MONO) {
281
            codec_buffer = wm8750_dac_buffer(s->wm, block_size);
282
            for (pos = 0; pos < block_size; pos++) {
283
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
284
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
285
            }
286
        } else {
287
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
288
            for (pos = 0; pos < block_size; pos += 2) {
289
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
290
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
291
            }
292
        }
293
    }
294
    wm8750_dac_commit(s->wm);
295

    
296
    s->last_free = free_out - block_size;
297

    
298
    if (s->play_pos == 0) {
299
        s->status |= MP_AUDIO_TX_HALF;
300
        s->play_pos = block_size;
301
    } else {
302
        s->status |= MP_AUDIO_TX_FULL;
303
        s->play_pos = 0;
304
    }
305

    
306
    if (s->status & s->irq_enable)
307
        qemu_irq_raise(s->irq);
308
}
309

    
310
static void musicpal_audio_clock_update(musicpal_audio_state *s)
311
{
312
    int rate;
313

    
314
    if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
315
        rate = 24576000 / 64; /* 24.576MHz */
316
    else
317
        rate = 11289600 / 64; /* 11.2896MHz */
318

    
319
    rate /= ((s->clock_div >> 8) & 0xff) + 1;
320

    
321
    wm8750_set_bclk_in(s->wm, rate);
322
}
323

    
324
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
325
{
326
    musicpal_audio_state *s = opaque;
327

    
328
    switch (offset) {
329
    case MP_AUDIO_PLAYBACK_MODE:
330
        return s->playback_mode;
331

    
332
    case MP_AUDIO_CLOCK_DIV:
333
        return s->clock_div;
334

    
335
    case MP_AUDIO_IRQ_STATUS:
336
        return s->status;
337

    
338
    case MP_AUDIO_IRQ_ENABLE:
339
        return s->irq_enable;
340

    
341
    case MP_AUDIO_TX_STATUS:
342
        return s->play_pos >> 2;
343

    
344
    default:
345
        return 0;
346
    }
347
}
348

    
349
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
350
                                 uint32_t value)
351
{
352
    musicpal_audio_state *s = opaque;
353

    
354
    switch (offset) {
355
    case MP_AUDIO_PLAYBACK_MODE:
356
        if (value & MP_AUDIO_PLAYBACK_EN &&
357
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
358
            s->status = 0;
359
            s->last_free = 0;
360
            s->play_pos = 0;
361
        }
362
        s->playback_mode = value;
363
        musicpal_audio_clock_update(s);
364
        break;
365

    
366
    case MP_AUDIO_CLOCK_DIV:
367
        s->clock_div = value;
368
        s->last_free = 0;
369
        s->play_pos = 0;
370
        musicpal_audio_clock_update(s);
371
        break;
372

    
373
    case MP_AUDIO_IRQ_STATUS:
374
        s->status &= ~value;
375
        break;
376

    
377
    case MP_AUDIO_IRQ_ENABLE:
378
        s->irq_enable = value;
379
        if (s->status & s->irq_enable)
380
            qemu_irq_raise(s->irq);
381
        break;
382

    
383
    case MP_AUDIO_TX_START_LO:
384
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
385
        s->target_buffer = s->phys_buf;
386
        s->play_pos = 0;
387
        s->last_free = 0;
388
        break;
389

    
390
    case MP_AUDIO_TX_THRESHOLD:
391
        s->threshold = (value + 1) * 4;
392
        break;
393

    
394
    case MP_AUDIO_TX_START_HI:
395
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
396
        s->target_buffer = s->phys_buf;
397
        s->play_pos = 0;
398
        s->last_free = 0;
399
        break;
400
    }
401
}
402

    
403
static void musicpal_audio_reset(void *opaque)
404
{
405
    musicpal_audio_state *s = opaque;
406

    
407
    s->playback_mode = 0;
408
    s->status = 0;
409
    s->irq_enable = 0;
410
}
411

    
412
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
413
    musicpal_audio_read,
414
    musicpal_audio_read,
415
    musicpal_audio_read
416
};
417

    
418
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
419
    musicpal_audio_write,
420
    musicpal_audio_write,
421
    musicpal_audio_write
422
};
423

    
424
static i2c_interface *musicpal_audio_init(qemu_irq irq)
425
{
426
    musicpal_audio_state *s;
427
    i2c_interface *i2c;
428
    int iomemtype;
429

    
430
    s = qemu_mallocz(sizeof(musicpal_audio_state));
431
    s->irq = irq;
432

    
433
    i2c = qemu_mallocz(sizeof(i2c_interface));
434
    i2c->bus = i2c_init_bus(NULL, "i2c");
435
    i2c->current_addr = -1;
436

    
437
    s->wm = i2c_create_slave(i2c->bus, "wm8750", MP_WM_ADDR);
438
    wm8750_data_req_set(s->wm, audio_callback, s);
439

    
440
    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
441
                       musicpal_audio_writefn, s);
442
    cpu_register_physical_memory(MP_AUDIO_BASE, MP_AUDIO_SIZE, iomemtype);
443

    
444
    qemu_register_reset(musicpal_audio_reset, 0, s);
445

    
446
    return i2c;
447
}
448
#else  /* !HAS_AUDIO */
449
static i2c_interface *musicpal_audio_init(qemu_irq irq)
450
{
451
    return NULL;
452
}
453
#endif /* !HAS_AUDIO */
454

    
455
/* Ethernet register offsets */
456
#define MP_ETH_SMIR             0x010
457
#define MP_ETH_PCXR             0x408
458
#define MP_ETH_SDCMR            0x448
459
#define MP_ETH_ICR              0x450
460
#define MP_ETH_IMR              0x458
461
#define MP_ETH_FRDP0            0x480
462
#define MP_ETH_FRDP1            0x484
463
#define MP_ETH_FRDP2            0x488
464
#define MP_ETH_FRDP3            0x48C
465
#define MP_ETH_CRDP0            0x4A0
466
#define MP_ETH_CRDP1            0x4A4
467
#define MP_ETH_CRDP2            0x4A8
468
#define MP_ETH_CRDP3            0x4AC
469
#define MP_ETH_CTDP0            0x4E0
470
#define MP_ETH_CTDP1            0x4E4
471
#define MP_ETH_CTDP2            0x4E8
472
#define MP_ETH_CTDP3            0x4EC
473

    
474
/* MII PHY access */
475
#define MP_ETH_SMIR_DATA        0x0000FFFF
476
#define MP_ETH_SMIR_ADDR        0x03FF0000
477
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
478
#define MP_ETH_SMIR_RDVALID     (1 << 27)
479

    
480
/* PHY registers */
481
#define MP_ETH_PHY1_BMSR        0x00210000
482
#define MP_ETH_PHY1_PHYSID1     0x00410000
483
#define MP_ETH_PHY1_PHYSID2     0x00610000
484

    
485
#define MP_PHY_BMSR_LINK        0x0004
486
#define MP_PHY_BMSR_AUTONEG     0x0008
487

    
488
#define MP_PHY_88E3015          0x01410E20
489

    
490
/* TX descriptor status */
491
#define MP_ETH_TX_OWN           (1 << 31)
492

    
493
/* RX descriptor status */
494
#define MP_ETH_RX_OWN           (1 << 31)
495

    
496
/* Interrupt cause/mask bits */
497
#define MP_ETH_IRQ_RX_BIT       0
498
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
499
#define MP_ETH_IRQ_TXHI_BIT     2
500
#define MP_ETH_IRQ_TXLO_BIT     3
501

    
502
/* Port config bits */
503
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */
504

    
505
/* SDMA command bits */
506
#define MP_ETH_CMD_TXHI         (1 << 23)
507
#define MP_ETH_CMD_TXLO         (1 << 22)
508

    
509
typedef struct mv88w8618_tx_desc {
510
    uint32_t cmdstat;
511
    uint16_t res;
512
    uint16_t bytes;
513
    uint32_t buffer;
514
    uint32_t next;
515
} mv88w8618_tx_desc;
516

    
517
typedef struct mv88w8618_rx_desc {
518
    uint32_t cmdstat;
519
    uint16_t bytes;
520
    uint16_t buffer_size;
521
    uint32_t buffer;
522
    uint32_t next;
523
} mv88w8618_rx_desc;
524

    
525
typedef struct mv88w8618_eth_state {
526
    SysBusDevice busdev;
527
    qemu_irq irq;
528
    uint32_t smir;
529
    uint32_t icr;
530
    uint32_t imr;
531
    int mmio_index;
532
    int vlan_header;
533
    uint32_t tx_queue[2];
534
    uint32_t rx_queue[4];
535
    uint32_t frx_queue[4];
536
    uint32_t cur_rx[4];
537
    VLANClientState *vc;
538
} mv88w8618_eth_state;
539

    
540
static void eth_rx_desc_put(uint32_t addr, mv88w8618_rx_desc *desc)
541
{
542
    cpu_to_le32s(&desc->cmdstat);
543
    cpu_to_le16s(&desc->bytes);
544
    cpu_to_le16s(&desc->buffer_size);
545
    cpu_to_le32s(&desc->buffer);
546
    cpu_to_le32s(&desc->next);
547
    cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
548
}
549

    
550
static void eth_rx_desc_get(uint32_t addr, mv88w8618_rx_desc *desc)
551
{
552
    cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
553
    le32_to_cpus(&desc->cmdstat);
554
    le16_to_cpus(&desc->bytes);
555
    le16_to_cpus(&desc->buffer_size);
556
    le32_to_cpus(&desc->buffer);
557
    le32_to_cpus(&desc->next);
558
}
559

    
560
static int eth_can_receive(void *opaque)
561
{
562
    return 1;
563
}
564

    
565
static void eth_receive(void *opaque, const uint8_t *buf, int size)
566
{
567
    mv88w8618_eth_state *s = opaque;
568
    uint32_t desc_addr;
569
    mv88w8618_rx_desc desc;
570
    int i;
571

    
572
    for (i = 0; i < 4; i++) {
573
        desc_addr = s->cur_rx[i];
574
        if (!desc_addr)
575
            continue;
576
        do {
577
            eth_rx_desc_get(desc_addr, &desc);
578
            if ((desc.cmdstat & MP_ETH_RX_OWN) && desc.buffer_size >= size) {
579
                cpu_physical_memory_write(desc.buffer + s->vlan_header,
580
                                          buf, size);
581
                desc.bytes = size + s->vlan_header;
582
                desc.cmdstat &= ~MP_ETH_RX_OWN;
583
                s->cur_rx[i] = desc.next;
584

    
585
                s->icr |= MP_ETH_IRQ_RX;
586
                if (s->icr & s->imr)
587
                    qemu_irq_raise(s->irq);
588
                eth_rx_desc_put(desc_addr, &desc);
589
                return;
590
            }
591
            desc_addr = desc.next;
592
        } while (desc_addr != s->rx_queue[i]);
593
    }
594
}
595

    
596
static void eth_tx_desc_put(uint32_t addr, mv88w8618_tx_desc *desc)
597
{
598
    cpu_to_le32s(&desc->cmdstat);
599
    cpu_to_le16s(&desc->res);
600
    cpu_to_le16s(&desc->bytes);
601
    cpu_to_le32s(&desc->buffer);
602
    cpu_to_le32s(&desc->next);
603
    cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
604
}
605

    
606
static void eth_tx_desc_get(uint32_t addr, mv88w8618_tx_desc *desc)
607
{
608
    cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
609
    le32_to_cpus(&desc->cmdstat);
610
    le16_to_cpus(&desc->res);
611
    le16_to_cpus(&desc->bytes);
612
    le32_to_cpus(&desc->buffer);
613
    le32_to_cpus(&desc->next);
614
}
615

    
616
static void eth_send(mv88w8618_eth_state *s, int queue_index)
617
{
618
    uint32_t desc_addr = s->tx_queue[queue_index];
619
    mv88w8618_tx_desc desc;
620
    uint8_t buf[2048];
621
    int len;
622

    
623

    
624
    do {
625
        eth_tx_desc_get(desc_addr, &desc);
626
        if (desc.cmdstat & MP_ETH_TX_OWN) {
627
            len = desc.bytes;
628
            if (len < 2048) {
629
                cpu_physical_memory_read(desc.buffer, buf, len);
630
                qemu_send_packet(s->vc, buf, len);
631
            }
632
            desc.cmdstat &= ~MP_ETH_TX_OWN;
633
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
634
            eth_tx_desc_put(desc_addr, &desc);
635
        }
636
        desc_addr = desc.next;
637
    } while (desc_addr != s->tx_queue[queue_index]);
638
}
639

    
640
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
641
{
642
    mv88w8618_eth_state *s = opaque;
643

    
644
    switch (offset) {
645
    case MP_ETH_SMIR:
646
        if (s->smir & MP_ETH_SMIR_OPCODE) {
647
            switch (s->smir & MP_ETH_SMIR_ADDR) {
648
            case MP_ETH_PHY1_BMSR:
649
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
650
                       MP_ETH_SMIR_RDVALID;
651
            case MP_ETH_PHY1_PHYSID1:
652
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
653
            case MP_ETH_PHY1_PHYSID2:
654
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
655
            default:
656
                return MP_ETH_SMIR_RDVALID;
657
            }
658
        }
659
        return 0;
660

    
661
    case MP_ETH_ICR:
662
        return s->icr;
663

    
664
    case MP_ETH_IMR:
665
        return s->imr;
666

    
667
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
668
        return s->frx_queue[(offset - MP_ETH_FRDP0)/4];
669

    
670
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
671
        return s->rx_queue[(offset - MP_ETH_CRDP0)/4];
672

    
673
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
674
        return s->tx_queue[(offset - MP_ETH_CTDP0)/4];
675

    
676
    default:
677
        return 0;
678
    }
679
}
680

    
681
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
682
                                uint32_t value)
683
{
684
    mv88w8618_eth_state *s = opaque;
685

    
686
    switch (offset) {
687
    case MP_ETH_SMIR:
688
        s->smir = value;
689
        break;
690

    
691
    case MP_ETH_PCXR:
692
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
693
        break;
694

    
695
    case MP_ETH_SDCMR:
696
        if (value & MP_ETH_CMD_TXHI)
697
            eth_send(s, 1);
698
        if (value & MP_ETH_CMD_TXLO)
699
            eth_send(s, 0);
700
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
701
            qemu_irq_raise(s->irq);
702
        break;
703

    
704
    case MP_ETH_ICR:
705
        s->icr &= value;
706
        break;
707

    
708
    case MP_ETH_IMR:
709
        s->imr = value;
710
        if (s->icr & s->imr)
711
            qemu_irq_raise(s->irq);
712
        break;
713

    
714
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
715
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = value;
716
        break;
717

    
718
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
719
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
720
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = value;
721
        break;
722

    
723
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
724
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = value;
725
        break;
726
    }
727
}
728

    
729
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
730
    mv88w8618_eth_read,
731
    mv88w8618_eth_read,
732
    mv88w8618_eth_read
733
};
734

    
735
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
736
    mv88w8618_eth_write,
737
    mv88w8618_eth_write,
738
    mv88w8618_eth_write
739
};
740

    
741
static void eth_cleanup(VLANClientState *vc)
742
{
743
    mv88w8618_eth_state *s = vc->opaque;
744

    
745
    cpu_unregister_io_memory(s->mmio_index);
746

    
747
    qemu_free(s);
748
}
749

    
750
static void mv88w8618_eth_init(SysBusDevice *dev)
751
{
752
    mv88w8618_eth_state *s = FROM_SYSBUS(mv88w8618_eth_state, dev);
753

    
754
    sysbus_init_irq(dev, &s->irq);
755
    s->vc = qdev_get_vlan_client(&dev->qdev,
756
                                 eth_receive, eth_can_receive,
757
                                 eth_cleanup, s);
758
    s->mmio_index = cpu_register_io_memory(0, mv88w8618_eth_readfn,
759
                                           mv88w8618_eth_writefn, s);
760
    sysbus_init_mmio(dev, MP_ETH_SIZE, s->mmio_index);
761
}
762

    
763
/* LCD register offsets */
764
#define MP_LCD_IRQCTRL          0x180
765
#define MP_LCD_IRQSTAT          0x184
766
#define MP_LCD_SPICTRL          0x1ac
767
#define MP_LCD_INST             0x1bc
768
#define MP_LCD_DATA             0x1c0
769

    
770
/* Mode magics */
771
#define MP_LCD_SPI_DATA         0x00100011
772
#define MP_LCD_SPI_CMD          0x00104011
773
#define MP_LCD_SPI_INVALID      0x00000000
774

    
775
/* Commmands */
776
#define MP_LCD_INST_SETPAGE0    0xB0
777
/* ... */
778
#define MP_LCD_INST_SETPAGE7    0xB7
779

    
780
#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */
781

    
782
typedef struct musicpal_lcd_state {
783
    SysBusDevice busdev;
784
    uint32_t mode;
785
    uint32_t irqctrl;
786
    int page;
787
    int page_off;
788
    DisplayState *ds;
789
    uint8_t video_ram[128*64/8];
790
} musicpal_lcd_state;
791

    
792
static uint32_t lcd_brightness;
793

    
794
static uint8_t scale_lcd_color(uint8_t col)
795
{
796
    int tmp = col;
797

    
798
    switch (lcd_brightness) {
799
    case 0x00000007: /* 0 */
800
        return 0;
801

    
802
    case 0x00020000: /* 1 */
803
        return (tmp * 1) / 7;
804

    
805
    case 0x00020001: /* 2 */
806
        return (tmp * 2) / 7;
807

    
808
    case 0x00040000: /* 3 */
809
        return (tmp * 3) / 7;
810

    
811
    case 0x00010006: /* 4 */
812
        return (tmp * 4) / 7;
813

    
814
    case 0x00020005: /* 5 */
815
        return (tmp * 5) / 7;
816

    
817
    case 0x00040003: /* 6 */
818
        return (tmp * 6) / 7;
819

    
820
    case 0x00030004: /* 7 */
821
    default:
822
        return col;
823
    }
824
}
825

    
826
#define SET_LCD_PIXEL(depth, type) \
827
static inline void glue(set_lcd_pixel, depth) \
828
        (musicpal_lcd_state *s, int x, int y, type col) \
829
{ \
830
    int dx, dy; \
831
    type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
832
\
833
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
834
        for (dx = 0; dx < 3; dx++, pixel++) \
835
            *pixel = col; \
836
}
837
SET_LCD_PIXEL(8, uint8_t)
838
SET_LCD_PIXEL(16, uint16_t)
839
SET_LCD_PIXEL(32, uint32_t)
840

    
841
#include "pixel_ops.h"
842

    
843
static void lcd_refresh(void *opaque)
844
{
845
    musicpal_lcd_state *s = opaque;
846
    int x, y, col;
847

    
848
    switch (ds_get_bits_per_pixel(s->ds)) {
849
    case 0:
850
        return;
851
#define LCD_REFRESH(depth, func) \
852
    case depth: \
853
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
854
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
855
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
856
        for (x = 0; x < 128; x++) \
857
            for (y = 0; y < 64; y++) \
858
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
859
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
860
                else \
861
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
862
        break;
863
    LCD_REFRESH(8, rgb_to_pixel8)
864
    LCD_REFRESH(16, rgb_to_pixel16)
865
    LCD_REFRESH(32, (is_surface_bgr(s->ds->surface) ?
866
                     rgb_to_pixel32bgr : rgb_to_pixel32))
867
    default:
868
        hw_error("unsupported colour depth %i\n",
869
                  ds_get_bits_per_pixel(s->ds));
870
    }
871

    
872
    dpy_update(s->ds, 0, 0, 128*3, 64*3);
873
}
874

    
875
static void lcd_invalidate(void *opaque)
876
{
877
}
878

    
879
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
880
{
881
    musicpal_lcd_state *s = opaque;
882

    
883
    switch (offset) {
884
    case MP_LCD_IRQCTRL:
885
        return s->irqctrl;
886

    
887
    default:
888
        return 0;
889
    }
890
}
891

    
892
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
893
                               uint32_t value)
894
{
895
    musicpal_lcd_state *s = opaque;
896

    
897
    switch (offset) {
898
    case MP_LCD_IRQCTRL:
899
        s->irqctrl = value;
900
        break;
901

    
902
    case MP_LCD_SPICTRL:
903
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
904
            s->mode = value;
905
        else
906
            s->mode = MP_LCD_SPI_INVALID;
907
        break;
908

    
909
    case MP_LCD_INST:
910
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
911
            s->page = value - MP_LCD_INST_SETPAGE0;
912
            s->page_off = 0;
913
        }
914
        break;
915

    
916
    case MP_LCD_DATA:
917
        if (s->mode == MP_LCD_SPI_CMD) {
918
            if (value >= MP_LCD_INST_SETPAGE0 &&
919
                value <= MP_LCD_INST_SETPAGE7) {
920
                s->page = value - MP_LCD_INST_SETPAGE0;
921
                s->page_off = 0;
922
            }
923
        } else if (s->mode == MP_LCD_SPI_DATA) {
924
            s->video_ram[s->page*128 + s->page_off] = value;
925
            s->page_off = (s->page_off + 1) & 127;
926
        }
927
        break;
928
    }
929
}
930

    
931
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
932
    musicpal_lcd_read,
933
    musicpal_lcd_read,
934
    musicpal_lcd_read
935
};
936

    
937
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
938
    musicpal_lcd_write,
939
    musicpal_lcd_write,
940
    musicpal_lcd_write
941
};
942

    
943
static void musicpal_lcd_init(SysBusDevice *dev)
944
{
945
    musicpal_lcd_state *s = FROM_SYSBUS(musicpal_lcd_state, dev);
946
    int iomemtype;
947

    
948
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
949
                                       musicpal_lcd_writefn, s);
950
    sysbus_init_mmio(dev, MP_LCD_SIZE, iomemtype);
951
    cpu_register_physical_memory(MP_LCD_BASE, MP_LCD_SIZE, iomemtype);
952

    
953
    s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
954
                                 NULL, NULL, s);
955
    qemu_console_resize(s->ds, 128*3, 64*3);
956
}
957

    
958
/* PIC register offsets */
959
#define MP_PIC_STATUS           0x00
960
#define MP_PIC_ENABLE_SET       0x08
961
#define MP_PIC_ENABLE_CLR       0x0C
962

    
963
typedef struct mv88w8618_pic_state
964
{
965
    SysBusDevice busdev;
966
    uint32_t level;
967
    uint32_t enabled;
968
    qemu_irq parent_irq;
969
} mv88w8618_pic_state;
970

    
971
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
972
{
973
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
974
}
975

    
976
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
977
{
978
    mv88w8618_pic_state *s = opaque;
979

    
980
    if (level)
981
        s->level |= 1 << irq;
982
    else
983
        s->level &= ~(1 << irq);
984
    mv88w8618_pic_update(s);
985
}
986

    
987
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
988
{
989
    mv88w8618_pic_state *s = opaque;
990

    
991
    switch (offset) {
992
    case MP_PIC_STATUS:
993
        return s->level & s->enabled;
994

    
995
    default:
996
        return 0;
997
    }
998
}
999

    
1000
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
1001
                                uint32_t value)
1002
{
1003
    mv88w8618_pic_state *s = opaque;
1004

    
1005
    switch (offset) {
1006
    case MP_PIC_ENABLE_SET:
1007
        s->enabled |= value;
1008
        break;
1009

    
1010
    case MP_PIC_ENABLE_CLR:
1011
        s->enabled &= ~value;
1012
        s->level &= ~value;
1013
        break;
1014
    }
1015
    mv88w8618_pic_update(s);
1016
}
1017

    
1018
static void mv88w8618_pic_reset(void *opaque)
1019
{
1020
    mv88w8618_pic_state *s = opaque;
1021

    
1022
    s->level = 0;
1023
    s->enabled = 0;
1024
}
1025

    
1026
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1027
    mv88w8618_pic_read,
1028
    mv88w8618_pic_read,
1029
    mv88w8618_pic_read
1030
};
1031

    
1032
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1033
    mv88w8618_pic_write,
1034
    mv88w8618_pic_write,
1035
    mv88w8618_pic_write
1036
};
1037

    
1038
static void mv88w8618_pic_init(SysBusDevice *dev)
1039
{
1040
    mv88w8618_pic_state *s = FROM_SYSBUS(mv88w8618_pic_state, dev);
1041
    int iomemtype;
1042

    
1043
    qdev_init_irq_sink(&dev->qdev, mv88w8618_pic_set_irq, 32);
1044
    sysbus_init_irq(dev, &s->parent_irq);
1045
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1046
                                       mv88w8618_pic_writefn, s);
1047
    sysbus_init_mmio(dev, MP_PIC_SIZE, iomemtype);
1048

    
1049
    qemu_register_reset(mv88w8618_pic_reset, 0, s);
1050
}
1051

    
1052
/* PIT register offsets */
1053
#define MP_PIT_TIMER1_LENGTH    0x00
1054
/* ... */
1055
#define MP_PIT_TIMER4_LENGTH    0x0C
1056
#define MP_PIT_CONTROL          0x10
1057
#define MP_PIT_TIMER1_VALUE     0x14
1058
/* ... */
1059
#define MP_PIT_TIMER4_VALUE     0x20
1060
#define MP_BOARD_RESET          0x34
1061

    
1062
/* Magic board reset value (probably some watchdog behind it) */
1063
#define MP_BOARD_RESET_MAGIC    0x10000
1064

    
1065
typedef struct mv88w8618_timer_state {
1066
    ptimer_state *ptimer;
1067
    uint32_t limit;
1068
    int freq;
1069
    qemu_irq irq;
1070
} mv88w8618_timer_state;
1071

    
1072
typedef struct mv88w8618_pit_state {
1073
    SysBusDevice busdev;
1074
    mv88w8618_timer_state timer[4];
1075
    uint32_t control;
1076
} mv88w8618_pit_state;
1077

    
1078
static void mv88w8618_timer_tick(void *opaque)
1079
{
1080
    mv88w8618_timer_state *s = opaque;
1081

    
1082
    qemu_irq_raise(s->irq);
1083
}
1084

    
1085
static void mv88w8618_timer_init(SysBusDevice *dev, mv88w8618_timer_state *s,
1086
                                 uint32_t freq)
1087
{
1088
    QEMUBH *bh;
1089

    
1090
    sysbus_init_irq(dev, &s->irq);
1091
    s->freq = freq;
1092

    
1093
    bh = qemu_bh_new(mv88w8618_timer_tick, s);
1094
    s->ptimer = ptimer_init(bh);
1095
}
1096

    
1097
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1098
{
1099
    mv88w8618_pit_state *s = opaque;
1100
    mv88w8618_timer_state *t;
1101

    
1102
    switch (offset) {
1103
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1104
        t = &s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1105
        return ptimer_get_count(t->ptimer);
1106

    
1107
    default:
1108
        return 0;
1109
    }
1110
}
1111

    
1112
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1113
                                uint32_t value)
1114
{
1115
    mv88w8618_pit_state *s = opaque;
1116
    mv88w8618_timer_state *t;
1117
    int i;
1118

    
1119
    switch (offset) {
1120
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1121
        t = &s->timer[offset >> 2];
1122
        t->limit = value;
1123
        ptimer_set_limit(t->ptimer, t->limit, 1);
1124
        break;
1125

    
1126
    case MP_PIT_CONTROL:
1127
        for (i = 0; i < 4; i++) {
1128
            if (value & 0xf) {
1129
                t = &s->timer[i];
1130
                ptimer_set_limit(t->ptimer, t->limit, 0);
1131
                ptimer_set_freq(t->ptimer, t->freq);
1132
                ptimer_run(t->ptimer, 0);
1133
            }
1134
            value >>= 4;
1135
        }
1136
        break;
1137

    
1138
    case MP_BOARD_RESET:
1139
        if (value == MP_BOARD_RESET_MAGIC)
1140
            qemu_system_reset_request();
1141
        break;
1142
    }
1143
}
1144

    
1145
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1146
    mv88w8618_pit_read,
1147
    mv88w8618_pit_read,
1148
    mv88w8618_pit_read
1149
};
1150

    
1151
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1152
    mv88w8618_pit_write,
1153
    mv88w8618_pit_write,
1154
    mv88w8618_pit_write
1155
};
1156

    
1157
static void mv88w8618_pit_init(SysBusDevice *dev)
1158
{
1159
    int iomemtype;
1160
    mv88w8618_pit_state *s = FROM_SYSBUS(mv88w8618_pit_state, dev);
1161
    int i;
1162

    
1163
    /* Letting them all run at 1 MHz is likely just a pragmatic
1164
     * simplification. */
1165
    for (i = 0; i < 4; i++) {
1166
        mv88w8618_timer_init(dev, &s->timer[i], 1000000);
1167
    }
1168

    
1169
    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1170
                                       mv88w8618_pit_writefn, s);
1171
    sysbus_init_mmio(dev, MP_PIT_SIZE, iomemtype);
1172
}
1173

    
1174
/* Flash config register offsets */
1175
#define MP_FLASHCFG_CFGR0    0x04
1176

    
1177
typedef struct mv88w8618_flashcfg_state {
1178
    SysBusDevice busdev;
1179
    uint32_t cfgr0;
1180
} mv88w8618_flashcfg_state;
1181

    
1182
static uint32_t mv88w8618_flashcfg_read(void *opaque,
1183
                                        target_phys_addr_t offset)
1184
{
1185
    mv88w8618_flashcfg_state *s = opaque;
1186

    
1187
    switch (offset) {
1188
    case MP_FLASHCFG_CFGR0:
1189
        return s->cfgr0;
1190

    
1191
    default:
1192
        return 0;
1193
    }
1194
}
1195

    
1196
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1197
                                     uint32_t value)
1198
{
1199
    mv88w8618_flashcfg_state *s = opaque;
1200

    
1201
    switch (offset) {
1202
    case MP_FLASHCFG_CFGR0:
1203
        s->cfgr0 = value;
1204
        break;
1205
    }
1206
}
1207

    
1208
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1209
    mv88w8618_flashcfg_read,
1210
    mv88w8618_flashcfg_read,
1211
    mv88w8618_flashcfg_read
1212
};
1213

    
1214
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1215
    mv88w8618_flashcfg_write,
1216
    mv88w8618_flashcfg_write,
1217
    mv88w8618_flashcfg_write
1218
};
1219

    
1220
static void mv88w8618_flashcfg_init(SysBusDevice *dev)
1221
{
1222
    int iomemtype;
1223
    mv88w8618_flashcfg_state *s = FROM_SYSBUS(mv88w8618_flashcfg_state, dev);
1224

    
1225
    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1226
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1227
                       mv88w8618_flashcfg_writefn, s);
1228
    sysbus_init_mmio(dev, MP_FLASHCFG_SIZE, iomemtype);
1229
}
1230

    
1231
/* Misc register offsets */
1232
#define MP_MISC_BOARD_REVISION  0x18
1233

    
1234
#define MP_BOARD_REVISION       0x31
1235

    
1236
static uint32_t musicpal_misc_read(void *opaque, target_phys_addr_t offset)
1237
{
1238
    switch (offset) {
1239
    case MP_MISC_BOARD_REVISION:
1240
        return MP_BOARD_REVISION;
1241

    
1242
    default:
1243
        return 0;
1244
    }
1245
}
1246

    
1247
static void musicpal_misc_write(void *opaque, target_phys_addr_t offset,
1248
                                uint32_t value)
1249
{
1250
}
1251

    
1252
static CPUReadMemoryFunc *musicpal_misc_readfn[] = {
1253
    musicpal_misc_read,
1254
    musicpal_misc_read,
1255
    musicpal_misc_read,
1256
};
1257

    
1258
static CPUWriteMemoryFunc *musicpal_misc_writefn[] = {
1259
    musicpal_misc_write,
1260
    musicpal_misc_write,
1261
    musicpal_misc_write,
1262
};
1263

    
1264
static void musicpal_misc_init(void)
1265
{
1266
    int iomemtype;
1267

    
1268
    iomemtype = cpu_register_io_memory(0, musicpal_misc_readfn,
1269
                                       musicpal_misc_writefn, NULL);
1270
    cpu_register_physical_memory(MP_MISC_BASE, MP_MISC_SIZE, iomemtype);
1271
}
1272

    
1273
/* WLAN register offsets */
1274
#define MP_WLAN_MAGIC1          0x11c
1275
#define MP_WLAN_MAGIC2          0x124
1276

    
1277
static uint32_t mv88w8618_wlan_read(void *opaque, target_phys_addr_t offset)
1278
{
1279
    switch (offset) {
1280
    /* Workaround to allow loading the binary-only wlandrv.ko crap
1281
     * from the original Freecom firmware. */
1282
    case MP_WLAN_MAGIC1:
1283
        return ~3;
1284
    case MP_WLAN_MAGIC2:
1285
        return -1;
1286

    
1287
    default:
1288
        return 0;
1289
    }
1290
}
1291

    
1292
static void mv88w8618_wlan_write(void *opaque, target_phys_addr_t offset,
1293
                                 uint32_t value)
1294
{
1295
}
1296

    
1297
static CPUReadMemoryFunc *mv88w8618_wlan_readfn[] = {
1298
    mv88w8618_wlan_read,
1299
    mv88w8618_wlan_read,
1300
    mv88w8618_wlan_read,
1301
};
1302

    
1303
static CPUWriteMemoryFunc *mv88w8618_wlan_writefn[] = {
1304
    mv88w8618_wlan_write,
1305
    mv88w8618_wlan_write,
1306
    mv88w8618_wlan_write,
1307
};
1308

    
1309
static void mv88w8618_wlan_init(SysBusDevice *dev)
1310
{
1311
    int iomemtype;
1312

    
1313
    iomemtype = cpu_register_io_memory(0, mv88w8618_wlan_readfn,
1314
                                       mv88w8618_wlan_writefn, NULL);
1315
    sysbus_init_mmio(dev, MP_WLAN_SIZE, iomemtype);
1316
}
1317

    
1318
/* GPIO register offsets */
1319
#define MP_GPIO_OE_LO           0x008
1320
#define MP_GPIO_OUT_LO          0x00c
1321
#define MP_GPIO_IN_LO           0x010
1322
#define MP_GPIO_ISR_LO          0x020
1323
#define MP_GPIO_OE_HI           0x508
1324
#define MP_GPIO_OUT_HI          0x50c
1325
#define MP_GPIO_IN_HI           0x510
1326
#define MP_GPIO_ISR_HI          0x520
1327

    
1328
/* GPIO bits & masks */
1329
#define MP_GPIO_WHEEL_VOL       (1 << 8)
1330
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
1331
#define MP_GPIO_WHEEL_NAV       (1 << 10)
1332
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
1333
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
1334
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
1335
#define MP_GPIO_BTN_MENU        (1 << 20)
1336
#define MP_GPIO_BTN_VOLUME      (1 << 21)
1337
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
1338
#define MP_GPIO_I2C_DATA_BIT    29
1339
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
1340
#define MP_GPIO_I2C_CLOCK_BIT   30
1341

    
1342
/* LCD brightness bits in GPIO_OE_HI */
1343
#define MP_OE_LCD_BRIGHTNESS    0x0007
1344

    
1345
static uint32_t musicpal_gpio_read(void *opaque, target_phys_addr_t offset)
1346
{
1347
    switch (offset) {
1348
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1349
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1350

    
1351
    case MP_GPIO_OUT_LO:
1352
        return gpio_out_state & 0xFFFF;
1353
    case MP_GPIO_OUT_HI:
1354
        return gpio_out_state >> 16;
1355

    
1356
    case MP_GPIO_IN_LO:
1357
        return gpio_in_state & 0xFFFF;
1358
    case MP_GPIO_IN_HI:
1359
        /* Update received I2C data */
1360
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1361
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1362
        return gpio_in_state >> 16;
1363

    
1364
    case MP_GPIO_ISR_LO:
1365
        return gpio_isr & 0xFFFF;
1366
    case MP_GPIO_ISR_HI:
1367
        return gpio_isr >> 16;
1368

    
1369
    default:
1370
        return 0;
1371
    }
1372
}
1373

    
1374
static void musicpal_gpio_write(void *opaque, target_phys_addr_t offset,
1375
                                uint32_t value)
1376
{
1377
    switch (offset) {
1378
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1379
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1380
                         (value & MP_OE_LCD_BRIGHTNESS);
1381
        break;
1382

    
1383
    case MP_GPIO_OUT_LO:
1384
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1385
        break;
1386
    case MP_GPIO_OUT_HI:
1387
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1388
        lcd_brightness = (lcd_brightness & 0xFFFF) |
1389
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1390
        i2c_state_update(mixer_i2c,
1391
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1392
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1393
        break;
1394

    
1395
    }
1396
}
1397

    
1398
static CPUReadMemoryFunc *musicpal_gpio_readfn[] = {
1399
    musicpal_gpio_read,
1400
    musicpal_gpio_read,
1401
    musicpal_gpio_read,
1402
};
1403

    
1404
static CPUWriteMemoryFunc *musicpal_gpio_writefn[] = {
1405
    musicpal_gpio_write,
1406
    musicpal_gpio_write,
1407
    musicpal_gpio_write,
1408
};
1409

    
1410
static void musicpal_gpio_init(void)
1411
{
1412
    int iomemtype;
1413

    
1414
    iomemtype = cpu_register_io_memory(0, musicpal_gpio_readfn,
1415
                                       musicpal_gpio_writefn, NULL);
1416
    cpu_register_physical_memory(MP_GPIO_BASE, MP_GPIO_SIZE, iomemtype);
1417
}
1418

    
1419
/* Keyboard codes & masks */
1420
#define KEY_RELEASED            0x80
1421
#define KEY_CODE                0x7f
1422

    
1423
#define KEYCODE_TAB             0x0f
1424
#define KEYCODE_ENTER           0x1c
1425
#define KEYCODE_F               0x21
1426
#define KEYCODE_M               0x32
1427

    
1428
#define KEYCODE_EXTENDED        0xe0
1429
#define KEYCODE_UP              0x48
1430
#define KEYCODE_DOWN            0x50
1431
#define KEYCODE_LEFT            0x4b
1432
#define KEYCODE_RIGHT           0x4d
1433

    
1434
static void musicpal_key_event(void *opaque, int keycode)
1435
{
1436
    qemu_irq irq = opaque;
1437
    uint32_t event = 0;
1438
    static int kbd_extended;
1439

    
1440
    if (keycode == KEYCODE_EXTENDED) {
1441
        kbd_extended = 1;
1442
        return;
1443
    }
1444

    
1445
    if (kbd_extended)
1446
        switch (keycode & KEY_CODE) {
1447
        case KEYCODE_UP:
1448
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1449
            break;
1450

    
1451
        case KEYCODE_DOWN:
1452
            event = MP_GPIO_WHEEL_NAV;
1453
            break;
1454

    
1455
        case KEYCODE_LEFT:
1456
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1457
            break;
1458

    
1459
        case KEYCODE_RIGHT:
1460
            event = MP_GPIO_WHEEL_VOL;
1461
            break;
1462
        }
1463
    else {
1464
        switch (keycode & KEY_CODE) {
1465
        case KEYCODE_F:
1466
            event = MP_GPIO_BTN_FAVORITS;
1467
            break;
1468

    
1469
        case KEYCODE_TAB:
1470
            event = MP_GPIO_BTN_VOLUME;
1471
            break;
1472

    
1473
        case KEYCODE_ENTER:
1474
            event = MP_GPIO_BTN_NAVIGATION;
1475
            break;
1476

    
1477
        case KEYCODE_M:
1478
            event = MP_GPIO_BTN_MENU;
1479
            break;
1480
        }
1481
        /* Do not repeat already pressed buttons */
1482
        if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1483
            event = 0;
1484
    }
1485

    
1486
    if (event) {
1487
        if (keycode & KEY_RELEASED) {
1488
            gpio_in_state |= event;
1489
        } else {
1490
            gpio_in_state &= ~event;
1491
            gpio_isr = event;
1492
            qemu_irq_raise(irq);
1493
        }
1494
    }
1495

    
1496
    kbd_extended = 0;
1497
}
1498

    
1499
static struct arm_boot_info musicpal_binfo = {
1500
    .loader_start = 0x0,
1501
    .board_id = 0x20e,
1502
};
1503

    
1504
static void musicpal_init(ram_addr_t ram_size,
1505
               const char *boot_device,
1506
               const char *kernel_filename, const char *kernel_cmdline,
1507
               const char *initrd_filename, const char *cpu_model)
1508
{
1509
    CPUState *env;
1510
    qemu_irq *cpu_pic;
1511
    qemu_irq pic[32];
1512
    DeviceState *dev;
1513
    int i;
1514
    int index;
1515
    unsigned long flash_size;
1516

    
1517
    if (!cpu_model)
1518
        cpu_model = "arm926";
1519

    
1520
    env = cpu_init(cpu_model);
1521
    if (!env) {
1522
        fprintf(stderr, "Unable to find CPU definition\n");
1523
        exit(1);
1524
    }
1525
    cpu_pic = arm_pic_init_cpu(env);
1526

    
1527
    /* For now we use a fixed - the original - RAM size */
1528
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1529
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1530

    
1531
    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1532
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1533

    
1534
    dev = sysbus_create_simple("mv88w8618_pic", MP_PIC_BASE,
1535
                               cpu_pic[ARM_PIC_CPU_IRQ]);
1536
    for (i = 0; i < 32; i++) {
1537
        pic[i] = qdev_get_irq_sink(dev, i);
1538
    }
1539
    sysbus_create_varargs("mv88w8618_pit", MP_PIT_BASE, pic[MP_TIMER1_IRQ],
1540
                          pic[MP_TIMER2_IRQ], pic[MP_TIMER3_IRQ],
1541
                          pic[MP_TIMER4_IRQ], NULL);
1542

    
1543
    if (serial_hds[0])
1544
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1545
                   serial_hds[0], 1);
1546
    if (serial_hds[1])
1547
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1548
                   serial_hds[1], 1);
1549

    
1550
    /* Register flash */
1551
    index = drive_get_index(IF_PFLASH, 0, 0);
1552
    if (index != -1) {
1553
        flash_size = bdrv_getlength(drives_table[index].bdrv);
1554
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1555
            flash_size != 32*1024*1024) {
1556
            fprintf(stderr, "Invalid flash image size\n");
1557
            exit(1);
1558
        }
1559

    
1560
        /*
1561
         * The original U-Boot accesses the flash at 0xFE000000 instead of
1562
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1563
         * image is smaller than 32 MB.
1564
         */
1565
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1566
                              drives_table[index].bdrv, 0x10000,
1567
                              (flash_size + 0xffff) >> 16,
1568
                              MP_FLASH_SIZE_MAX / flash_size,
1569
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
1570
                              0x5555, 0x2AAA);
1571
    }
1572
    sysbus_create_simple("mv88w8618_flashcfg", MP_FLASHCFG_BASE, NULL);
1573

    
1574
    sysbus_create_simple("musicpal_lcd", MP_LCD_BASE, NULL);
1575

    
1576
    qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1577

    
1578
    qemu_check_nic_model(&nd_table[0], "mv88w8618");
1579
    dev = qdev_create(NULL, "mv88w8618_eth");
1580
    qdev_set_netdev(dev, &nd_table[0]);
1581
    qdev_init(dev);
1582
    sysbus_mmio_map(sysbus_from_qdev(dev), 0, MP_ETH_BASE);
1583
    sysbus_connect_irq(sysbus_from_qdev(dev), 0, pic[MP_ETH_IRQ]);
1584

    
1585
    mixer_i2c = musicpal_audio_init(pic[MP_AUDIO_IRQ]);
1586

    
1587
    sysbus_create_simple("mv88w8618_wlan", MP_WLAN_BASE, NULL);
1588

    
1589
    musicpal_misc_init();
1590
    musicpal_gpio_init();
1591

    
1592
    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1593
    musicpal_binfo.kernel_filename = kernel_filename;
1594
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
1595
    musicpal_binfo.initrd_filename = initrd_filename;
1596
    arm_load_kernel(env, &musicpal_binfo);
1597
}
1598

    
1599
static QEMUMachine musicpal_machine = {
1600
    .name = "musicpal",
1601
    .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1602
    .init = musicpal_init,
1603
};
1604

    
1605
static void musicpal_machine_init(void)
1606
{
1607
    qemu_register_machine(&musicpal_machine);
1608
}
1609

    
1610
machine_init(musicpal_machine_init);
1611

    
1612
static void musicpal_register_devices(void)
1613
{
1614
    sysbus_register_dev("mv88w8618_pic", sizeof(mv88w8618_pic_state),
1615
                        mv88w8618_pic_init);
1616
    sysbus_register_dev("mv88w8618_pit", sizeof(mv88w8618_pit_state),
1617
                        mv88w8618_pit_init);
1618
    sysbus_register_dev("mv88w8618_flashcfg", sizeof(mv88w8618_flashcfg_state),
1619
                        mv88w8618_flashcfg_init);
1620
    sysbus_register_dev("mv88w8618_eth", sizeof(mv88w8618_eth_state),
1621
                        mv88w8618_eth_init);
1622
    sysbus_register_dev("mv88w8618_wlan", sizeof(SysBusDevice),
1623
                        mv88w8618_wlan_init);
1624
    sysbus_register_dev("musicpal_lcd", sizeof(musicpal_lcd_state),
1625
                        musicpal_lcd_init);
1626
}
1627

    
1628
device_init(musicpal_register_devices)