Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 03875444

History | View | Annotate | Download (84.6 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@end itemize
91

    
92
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
93

    
94
@node Installation
95
@chapter Installation
96

    
97
If you want to compile QEMU yourself, see @ref{compilation}.
98

    
99
@menu
100
* install_linux::   Linux
101
* install_windows:: Windows
102
* install_mac::     Macintosh
103
@end menu
104

    
105
@node install_linux
106
@section Linux
107

    
108
If a precompiled package is available for your distribution - you just
109
have to install it. Otherwise, see @ref{compilation}.
110

    
111
@node install_windows
112
@section Windows
113

    
114
Download the experimental binary installer at
115
@url{http://www.free.oszoo.org/@/download.html}.
116

    
117
@node install_mac
118
@section Mac OS X
119

    
120
Download the experimental binary installer at
121
@url{http://www.free.oszoo.org/@/download.html}.
122

    
123
@node QEMU PC System emulator
124
@chapter QEMU PC System emulator
125

    
126
@menu
127
* pcsys_introduction:: Introduction
128
* pcsys_quickstart::   Quick Start
129
* sec_invocation::     Invocation
130
* pcsys_keys::         Keys
131
* pcsys_monitor::      QEMU Monitor
132
* disk_images::        Disk Images
133
* pcsys_network::      Network emulation
134
* direct_linux_boot::  Direct Linux Boot
135
* pcsys_usb::          USB emulation
136
* vnc_security::       VNC security
137
* gdb_usage::          GDB usage
138
* pcsys_os_specific::  Target OS specific information
139
@end menu
140

    
141
@node pcsys_introduction
142
@section Introduction
143

    
144
@c man begin DESCRIPTION
145

    
146
The QEMU PC System emulator simulates the
147
following peripherals:
148

    
149
@itemize @minus
150
@item
151
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
152
@item
153
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
154
extensions (hardware level, including all non standard modes).
155
@item
156
PS/2 mouse and keyboard
157
@item
158
2 PCI IDE interfaces with hard disk and CD-ROM support
159
@item
160
Floppy disk
161
@item
162
PCI/ISA PCI network adapters
163
@item
164
Serial ports
165
@item
166
Creative SoundBlaster 16 sound card
167
@item
168
ENSONIQ AudioPCI ES1370 sound card
169
@item
170
Intel 82801AA AC97 Audio compatible sound card
171
@item
172
Adlib(OPL2) - Yamaha YM3812 compatible chip
173
@item
174
Gravis Ultrasound GF1 sound card
175
@item
176
PCI UHCI USB controller and a virtual USB hub.
177
@end itemize
178

    
179
SMP is supported with up to 255 CPUs.
180

    
181
Note that adlib, ac97 and gus are only available when QEMU was configured
182
with --enable-adlib, --enable-ac97 or --enable-gus respectively.
183

    
184
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
185
VGA BIOS.
186

    
187
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
188

    
189
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
190
by Tibor "TS" Schütz.
191

    
192
@c man end
193

    
194
@node pcsys_quickstart
195
@section Quick Start
196

    
197
Download and uncompress the linux image (@file{linux.img}) and type:
198

    
199
@example
200
qemu linux.img
201
@end example
202

    
203
Linux should boot and give you a prompt.
204

    
205
@node sec_invocation
206
@section Invocation
207

    
208
@example
209
@c man begin SYNOPSIS
210
usage: qemu [options] [@var{disk_image}]
211
@c man end
212
@end example
213

    
214
@c man begin OPTIONS
215
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
216

    
217
General options:
218
@table @option
219
@item -M @var{machine}
220
Select the emulated @var{machine} (@code{-M ?} for list)
221

    
222
@item -fda @var{file}
223
@item -fdb @var{file}
224
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
225
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
226

    
227
@item -hda @var{file}
228
@item -hdb @var{file}
229
@item -hdc @var{file}
230
@item -hdd @var{file}
231
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
232

    
233
@item -cdrom @var{file}
234
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
235
@option{-cdrom} at the same time). You can use the host CD-ROM by
236
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
237

    
238
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
239

    
240
Define a new drive. Valid options are:
241

    
242
@table @code
243
@item file=@var{file}
244
This option defines which disk image (@pxref{disk_images}) to use with
245
this drive. If the filename contains comma, you must double it
246
(for instance, "file=my,,file" to use file "my,file").
247
@item if=@var{interface}
248
This option defines on which type on interface the drive is connected.
249
Available types are: ide, scsi, sd, mtd, floppy, pflash.
250
@item bus=@var{bus},unit=@var{unit}
251
These options define where is connected the drive by defining the bus number and
252
the unit id.
253
@item index=@var{index}
254
This option defines where is connected the drive by using an index in the list
255
of available connectors of a given interface type.
256
@item media=@var{media}
257
This option defines the type of the media: disk or cdrom.
258
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
259
These options have the same definition as they have in @option{-hdachs}.
260
@item snapshot=@var{snapshot}
261
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
262
@item cache=@var{cache}
263
@var{cache} is "on" or "off" and allows to disable host cache to access data.
264
@end table
265

    
266
Instead of @option{-cdrom} you can use:
267
@example
268
qemu -drive file=file,index=2,media=cdrom
269
@end example
270

    
271
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
272
use:
273
@example
274
qemu -drive file=file,index=0,media=disk
275
qemu -drive file=file,index=1,media=disk
276
qemu -drive file=file,index=2,media=disk
277
qemu -drive file=file,index=3,media=disk
278
@end example
279

    
280
You can connect a CDROM to the slave of ide0:
281
@example
282
qemu -drive file=file,if=ide,index=1,media=cdrom
283
@end example
284

    
285
If you don't specify the "file=" argument, you define an empty drive:
286
@example
287
qemu -drive if=ide,index=1,media=cdrom
288
@end example
289

    
290
You can connect a SCSI disk with unit ID 6 on the bus #0:
291
@example
292
qemu -drive file=file,if=scsi,bus=0,unit=6
293
@end example
294

    
295
Instead of @option{-fda}, @option{-fdb}, you can use:
296
@example
297
qemu -drive file=file,index=0,if=floppy
298
qemu -drive file=file,index=1,if=floppy
299
@end example
300

    
301
By default, @var{interface} is "ide" and @var{index} is automatically
302
incremented:
303
@example
304
qemu -drive file=a -drive file=b"
305
@end example
306
is interpreted like:
307
@example
308
qemu -hda a -hdb b
309
@end example
310

    
311
@item -boot [a|c|d|n]
312
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
313
is the default.
314

    
315
@item -snapshot
316
Write to temporary files instead of disk image files. In this case,
317
the raw disk image you use is not written back. You can however force
318
the write back by pressing @key{C-a s} (@pxref{disk_images}).
319

    
320
@item -no-fd-bootchk
321
Disable boot signature checking for floppy disks in Bochs BIOS. It may
322
be needed to boot from old floppy disks.
323

    
324
@item -m @var{megs}
325
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
326

    
327
@item -smp @var{n}
328
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
329
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
330
to 4.
331

    
332
@item -audio-help
333

    
334
Will show the audio subsystem help: list of drivers, tunable
335
parameters.
336

    
337
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
338

    
339
Enable audio and selected sound hardware. Use ? to print all
340
available sound hardware.
341

    
342
@example
343
qemu -soundhw sb16,adlib hda
344
qemu -soundhw es1370 hda
345
qemu -soundhw ac97 hda
346
qemu -soundhw all hda
347
qemu -soundhw ?
348
@end example
349

    
350
Note that Linux's i810_audio OSS kernel (for AC97) module might
351
require manually specifying clocking.
352

    
353
@example
354
modprobe i810_audio clocking=48000
355
@end example
356

    
357
@item -localtime
358
Set the real time clock to local time (the default is to UTC
359
time). This option is needed to have correct date in MS-DOS or
360
Windows.
361

    
362
@item -startdate @var{date}
363
Set the initial date of the real time clock. Valid format for
364
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
365
@code{2006-06-17}. The default value is @code{now}.
366

    
367
@item -pidfile @var{file}
368
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
369
from a script.
370

    
371
@item -daemonize
372
Daemonize the QEMU process after initialization.  QEMU will not detach from
373
standard IO until it is ready to receive connections on any of its devices.
374
This option is a useful way for external programs to launch QEMU without having
375
to cope with initialization race conditions.
376

    
377
@item -win2k-hack
378
Use it when installing Windows 2000 to avoid a disk full bug. After
379
Windows 2000 is installed, you no longer need this option (this option
380
slows down the IDE transfers).
381

    
382
@item -option-rom @var{file}
383
Load the contents of @var{file} as an option ROM.
384
This option is useful to load things like EtherBoot.
385

    
386
@item -name @var{name}
387
Sets the @var{name} of the guest.
388
This name will be display in the SDL window caption.
389
The @var{name} will also be used for the VNC server.
390

    
391
@end table
392

    
393
Display options:
394
@table @option
395

    
396
@item -nographic
397

    
398
Normally, QEMU uses SDL to display the VGA output. With this option,
399
you can totally disable graphical output so that QEMU is a simple
400
command line application. The emulated serial port is redirected on
401
the console. Therefore, you can still use QEMU to debug a Linux kernel
402
with a serial console.
403

    
404
@item -curses
405

    
406
Normally, QEMU uses SDL to display the VGA output.  With this option,
407
QEMU can display the VGA output when in text mode using a 
408
curses/ncurses interface.  Nothing is displayed in graphical mode.
409

    
410
@item -no-frame
411

    
412
Do not use decorations for SDL windows and start them using the whole
413
available screen space. This makes the using QEMU in a dedicated desktop
414
workspace more convenient.
415

    
416
@item -no-quit
417

    
418
Disable SDL window close capability.
419

    
420
@item -full-screen
421
Start in full screen.
422

    
423
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
424

    
425
Normally, QEMU uses SDL to display the VGA output.  With this option,
426
you can have QEMU listen on VNC display @var{display} and redirect the VGA
427
display over the VNC session.  It is very useful to enable the usb
428
tablet device when using this option (option @option{-usbdevice
429
tablet}). When using the VNC display, you must use the @option{-k}
430
parameter to set the keyboard layout if you are not using en-us. Valid
431
syntax for the @var{display} is
432

    
433
@table @code
434

    
435
@item @var{host}:@var{d}
436

    
437
TCP connections will only be allowed from @var{host} on display @var{d}.
438
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
439
be omitted in which case the server will accept connections from any host.
440

    
441
@item @code{unix}:@var{path}
442

    
443
Connections will be allowed over UNIX domain sockets where @var{path} is the
444
location of a unix socket to listen for connections on.
445

    
446
@item none
447

    
448
VNC is initialized but not started. The monitor @code{change} command
449
can be used to later start the VNC server.
450

    
451
@end table
452

    
453
Following the @var{display} value there may be one or more @var{option} flags
454
separated by commas. Valid options are
455

    
456
@table @code
457

    
458
@item reverse
459

    
460
Connect to a listening VNC client via a ``reverse'' connection. The
461
client is specified by the @var{display}. For reverse network
462
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
463
is a TCP port number, not a display number.
464

    
465
@item password
466

    
467
Require that password based authentication is used for client connections.
468
The password must be set separately using the @code{change} command in the
469
@ref{pcsys_monitor}
470

    
471
@item tls
472

    
473
Require that client use TLS when communicating with the VNC server. This
474
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
475
attack. It is recommended that this option be combined with either the
476
@var{x509} or @var{x509verify} options.
477

    
478
@item x509=@var{/path/to/certificate/dir}
479

    
480
Valid if @option{tls} is specified. Require that x509 credentials are used
481
for negotiating the TLS session. The server will send its x509 certificate
482
to the client. It is recommended that a password be set on the VNC server
483
to provide authentication of the client when this is used. The path following
484
this option specifies where the x509 certificates are to be loaded from.
485
See the @ref{vnc_security} section for details on generating certificates.
486

    
487
@item x509verify=@var{/path/to/certificate/dir}
488

    
489
Valid if @option{tls} is specified. Require that x509 credentials are used
490
for negotiating the TLS session. The server will send its x509 certificate
491
to the client, and request that the client send its own x509 certificate.
492
The server will validate the client's certificate against the CA certificate,
493
and reject clients when validation fails. If the certificate authority is
494
trusted, this is a sufficient authentication mechanism. You may still wish
495
to set a password on the VNC server as a second authentication layer. The
496
path following this option specifies where the x509 certificates are to
497
be loaded from. See the @ref{vnc_security} section for details on generating
498
certificates.
499

    
500
@end table
501

    
502
@item -k @var{language}
503

    
504
Use keyboard layout @var{language} (for example @code{fr} for
505
French). This option is only needed where it is not easy to get raw PC
506
keycodes (e.g. on Macs, with some X11 servers or with a VNC
507
display). You don't normally need to use it on PC/Linux or PC/Windows
508
hosts.
509

    
510
The available layouts are:
511
@example
512
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
513
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
514
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
515
@end example
516

    
517
The default is @code{en-us}.
518

    
519
@end table
520

    
521
USB options:
522
@table @option
523

    
524
@item -usb
525
Enable the USB driver (will be the default soon)
526

    
527
@item -usbdevice @var{devname}
528
Add the USB device @var{devname}. @xref{usb_devices}.
529

    
530
@table @code
531

    
532
@item mouse
533
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
534

    
535
@item tablet
536
Pointer device that uses absolute coordinates (like a touchscreen). This
537
means qemu is able to report the mouse position without having to grab the
538
mouse. Also overrides the PS/2 mouse emulation when activated.
539

    
540
@item disk:file
541
Mass storage device based on file
542

    
543
@item host:bus.addr
544
Pass through the host device identified by bus.addr (Linux only).
545

    
546
@item host:vendor_id:product_id
547
Pass through the host device identified by vendor_id:product_id (Linux only).
548

    
549
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
550
Serial converter to host character device @var{dev}, see @code{-serial} for the
551
available devices.
552

    
553
@item braille
554
Braille device.  This will use BrlAPI to display the braille output on a real
555
or fake device.
556

    
557
@end table
558

    
559
@end table
560

    
561
Network options:
562

    
563
@table @option
564

    
565
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
566
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
567
= 0 is the default). The NIC is an ne2k_pci by default on the PC
568
target. Optionally, the MAC address can be changed. If no
569
@option{-net} option is specified, a single NIC is created.
570
Qemu can emulate several different models of network card.
571
Valid values for @var{type} are
572
@code{i82551}, @code{i82557b}, @code{i82559er},
573
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
574
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
575
Not all devices are supported on all targets.  Use -net nic,model=?
576
for a list of available devices for your target.
577

    
578
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
579
Use the user mode network stack which requires no administrator
580
privilege to run.  @option{hostname=name} can be used to specify the client
581
hostname reported by the builtin DHCP server.
582

    
583
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
584
Connect the host TAP network interface @var{name} to VLAN @var{n} and
585
use the network script @var{file} to configure it. The default
586
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
587
disable script execution. If @var{name} is not
588
provided, the OS automatically provides one. @option{fd}=@var{h} can be
589
used to specify the handle of an already opened host TAP interface. Example:
590

    
591
@example
592
qemu linux.img -net nic -net tap
593
@end example
594

    
595
More complicated example (two NICs, each one connected to a TAP device)
596
@example
597
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
598
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
599
@end example
600

    
601

    
602
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
603

    
604
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
605
machine using a TCP socket connection. If @option{listen} is
606
specified, QEMU waits for incoming connections on @var{port}
607
(@var{host} is optional). @option{connect} is used to connect to
608
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
609
specifies an already opened TCP socket.
610

    
611
Example:
612
@example
613
# launch a first QEMU instance
614
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
615
               -net socket,listen=:1234
616
# connect the VLAN 0 of this instance to the VLAN 0
617
# of the first instance
618
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
619
               -net socket,connect=127.0.0.1:1234
620
@end example
621

    
622
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
623

    
624
Create a VLAN @var{n} shared with another QEMU virtual
625
machines using a UDP multicast socket, effectively making a bus for
626
every QEMU with same multicast address @var{maddr} and @var{port}.
627
NOTES:
628
@enumerate
629
@item
630
Several QEMU can be running on different hosts and share same bus (assuming
631
correct multicast setup for these hosts).
632
@item
633
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
634
@url{http://user-mode-linux.sf.net}.
635
@item
636
Use @option{fd=h} to specify an already opened UDP multicast socket.
637
@end enumerate
638

    
639
Example:
640
@example
641
# launch one QEMU instance
642
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
643
               -net socket,mcast=230.0.0.1:1234
644
# launch another QEMU instance on same "bus"
645
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
646
               -net socket,mcast=230.0.0.1:1234
647
# launch yet another QEMU instance on same "bus"
648
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
649
               -net socket,mcast=230.0.0.1:1234
650
@end example
651

    
652
Example (User Mode Linux compat.):
653
@example
654
# launch QEMU instance (note mcast address selected
655
# is UML's default)
656
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
657
               -net socket,mcast=239.192.168.1:1102
658
# launch UML
659
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
660
@end example
661

    
662
@item -net none
663
Indicate that no network devices should be configured. It is used to
664
override the default configuration (@option{-net nic -net user}) which
665
is activated if no @option{-net} options are provided.
666

    
667
@item -tftp @var{dir}
668
When using the user mode network stack, activate a built-in TFTP
669
server. The files in @var{dir} will be exposed as the root of a TFTP server.
670
The TFTP client on the guest must be configured in binary mode (use the command
671
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
672
usual 10.0.2.2.
673

    
674
@item -bootp @var{file}
675
When using the user mode network stack, broadcast @var{file} as the BOOTP
676
filename.  In conjunction with @option{-tftp}, this can be used to network boot
677
a guest from a local directory.
678

    
679
Example (using pxelinux):
680
@example
681
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
682
@end example
683

    
684
@item -smb @var{dir}
685
When using the user mode network stack, activate a built-in SMB
686
server so that Windows OSes can access to the host files in @file{@var{dir}}
687
transparently.
688

    
689
In the guest Windows OS, the line:
690
@example
691
10.0.2.4 smbserver
692
@end example
693
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
694
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
695

    
696
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
697

    
698
Note that a SAMBA server must be installed on the host OS in
699
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
700
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
701

    
702
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
703

    
704
When using the user mode network stack, redirect incoming TCP or UDP
705
connections to the host port @var{host-port} to the guest
706
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
707
is not specified, its value is 10.0.2.15 (default address given by the
708
built-in DHCP server).
709

    
710
For example, to redirect host X11 connection from screen 1 to guest
711
screen 0, use the following:
712

    
713
@example
714
# on the host
715
qemu -redir tcp:6001::6000 [...]
716
# this host xterm should open in the guest X11 server
717
xterm -display :1
718
@end example
719

    
720
To redirect telnet connections from host port 5555 to telnet port on
721
the guest, use the following:
722

    
723
@example
724
# on the host
725
qemu -redir tcp:5555::23 [...]
726
telnet localhost 5555
727
@end example
728

    
729
Then when you use on the host @code{telnet localhost 5555}, you
730
connect to the guest telnet server.
731

    
732
@end table
733

    
734
Linux boot specific: When using these options, you can use a given
735
Linux kernel without installing it in the disk image. It can be useful
736
for easier testing of various kernels.
737

    
738
@table @option
739

    
740
@item -kernel @var{bzImage}
741
Use @var{bzImage} as kernel image.
742

    
743
@item -append @var{cmdline}
744
Use @var{cmdline} as kernel command line
745

    
746
@item -initrd @var{file}
747
Use @var{file} as initial ram disk.
748

    
749
@end table
750

    
751
Debug/Expert options:
752
@table @option
753

    
754
@item -serial @var{dev}
755
Redirect the virtual serial port to host character device
756
@var{dev}. The default device is @code{vc} in graphical mode and
757
@code{stdio} in non graphical mode.
758

    
759
This option can be used several times to simulate up to 4 serials
760
ports.
761

    
762
Use @code{-serial none} to disable all serial ports.
763

    
764
Available character devices are:
765
@table @code
766
@item vc[:WxH]
767
Virtual console. Optionally, a width and height can be given in pixel with
768
@example
769
vc:800x600
770
@end example
771
It is also possible to specify width or height in characters:
772
@example
773
vc:80Cx24C
774
@end example
775
@item pty
776
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
777
@item none
778
No device is allocated.
779
@item null
780
void device
781
@item /dev/XXX
782
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
783
parameters are set according to the emulated ones.
784
@item /dev/parport@var{N}
785
[Linux only, parallel port only] Use host parallel port
786
@var{N}. Currently SPP and EPP parallel port features can be used.
787
@item file:@var{filename}
788
Write output to @var{filename}. No character can be read.
789
@item stdio
790
[Unix only] standard input/output
791
@item pipe:@var{filename}
792
name pipe @var{filename}
793
@item COM@var{n}
794
[Windows only] Use host serial port @var{n}
795
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
796
This implements UDP Net Console.
797
When @var{remote_host} or @var{src_ip} are not specified
798
they default to @code{0.0.0.0}.
799
When not using a specified @var{src_port} a random port is automatically chosen.
800

    
801
If you just want a simple readonly console you can use @code{netcat} or
802
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
803
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
804
will appear in the netconsole session.
805

    
806
If you plan to send characters back via netconsole or you want to stop
807
and start qemu a lot of times, you should have qemu use the same
808
source port each time by using something like @code{-serial
809
udp::4555@@:4556} to qemu. Another approach is to use a patched
810
version of netcat which can listen to a TCP port and send and receive
811
characters via udp.  If you have a patched version of netcat which
812
activates telnet remote echo and single char transfer, then you can
813
use the following options to step up a netcat redirector to allow
814
telnet on port 5555 to access the qemu port.
815
@table @code
816
@item Qemu Options:
817
-serial udp::4555@@:4556
818
@item netcat options:
819
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
820
@item telnet options:
821
localhost 5555
822
@end table
823

    
824

    
825
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
826
The TCP Net Console has two modes of operation.  It can send the serial
827
I/O to a location or wait for a connection from a location.  By default
828
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
829
the @var{server} option QEMU will wait for a client socket application
830
to connect to the port before continuing, unless the @code{nowait}
831
option was specified.  The @code{nodelay} option disables the Nagle buffering
832
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
833
one TCP connection at a time is accepted. You can use @code{telnet} to
834
connect to the corresponding character device.
835
@table @code
836
@item Example to send tcp console to 192.168.0.2 port 4444
837
-serial tcp:192.168.0.2:4444
838
@item Example to listen and wait on port 4444 for connection
839
-serial tcp::4444,server
840
@item Example to not wait and listen on ip 192.168.0.100 port 4444
841
-serial tcp:192.168.0.100:4444,server,nowait
842
@end table
843

    
844
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
845
The telnet protocol is used instead of raw tcp sockets.  The options
846
work the same as if you had specified @code{-serial tcp}.  The
847
difference is that the port acts like a telnet server or client using
848
telnet option negotiation.  This will also allow you to send the
849
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
850
sequence.  Typically in unix telnet you do it with Control-] and then
851
type "send break" followed by pressing the enter key.
852

    
853
@item unix:@var{path}[,server][,nowait]
854
A unix domain socket is used instead of a tcp socket.  The option works the
855
same as if you had specified @code{-serial tcp} except the unix domain socket
856
@var{path} is used for connections.
857

    
858
@item mon:@var{dev_string}
859
This is a special option to allow the monitor to be multiplexed onto
860
another serial port.  The monitor is accessed with key sequence of
861
@key{Control-a} and then pressing @key{c}. See monitor access
862
@ref{pcsys_keys} in the -nographic section for more keys.
863
@var{dev_string} should be any one of the serial devices specified
864
above.  An example to multiplex the monitor onto a telnet server
865
listening on port 4444 would be:
866
@table @code
867
@item -serial mon:telnet::4444,server,nowait
868
@end table
869

    
870
@item braille
871
Braille device.  This will use BrlAPI to display the braille output on a real
872
or fake device.
873

    
874
@end table
875

    
876
@item -parallel @var{dev}
877
Redirect the virtual parallel port to host device @var{dev} (same
878
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
879
be used to use hardware devices connected on the corresponding host
880
parallel port.
881

    
882
This option can be used several times to simulate up to 3 parallel
883
ports.
884

    
885
Use @code{-parallel none} to disable all parallel ports.
886

    
887
@item -monitor @var{dev}
888
Redirect the monitor to host device @var{dev} (same devices as the
889
serial port).
890
The default device is @code{vc} in graphical mode and @code{stdio} in
891
non graphical mode.
892

    
893
@item -echr numeric_ascii_value
894
Change the escape character used for switching to the monitor when using
895
monitor and serial sharing.  The default is @code{0x01} when using the
896
@code{-nographic} option.  @code{0x01} is equal to pressing
897
@code{Control-a}.  You can select a different character from the ascii
898
control keys where 1 through 26 map to Control-a through Control-z.  For
899
instance you could use the either of the following to change the escape
900
character to Control-t.
901
@table @code
902
@item -echr 0x14
903
@item -echr 20
904
@end table
905

    
906
@item -s
907
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
908
@item -p @var{port}
909
Change gdb connection port.  @var{port} can be either a decimal number
910
to specify a TCP port, or a host device (same devices as the serial port).
911
@item -S
912
Do not start CPU at startup (you must type 'c' in the monitor).
913
@item -d
914
Output log in /tmp/qemu.log
915
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
916
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
917
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
918
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
919
all those parameters. This option is useful for old MS-DOS disk
920
images.
921

    
922
@item -L path
923
Set the directory for the BIOS, VGA BIOS and keymaps.
924

    
925
@item -std-vga
926
Simulate a standard VGA card with Bochs VBE extensions (default is
927
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
928
VBE extensions (e.g. Windows XP) and if you want to use high
929
resolution modes (>= 1280x1024x16) then you should use this option.
930

    
931
@item -no-acpi
932
Disable ACPI (Advanced Configuration and Power Interface) support. Use
933
it if your guest OS complains about ACPI problems (PC target machine
934
only).
935

    
936
@item -no-reboot
937
Exit instead of rebooting.
938

    
939
@item -no-shutdown
940
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
941
This allows for instance switching to monitor to commit changes to the
942
disk image.
943

    
944
@item -loadvm file
945
Start right away with a saved state (@code{loadvm} in monitor)
946

    
947
@item -semihosting
948
Enable semihosting syscall emulation (ARM and M68K target machines only).
949

    
950
On ARM this implements the "Angel" interface.
951
On M68K this implements the "ColdFire GDB" interface used by libgloss.
952

    
953
Note that this allows guest direct access to the host filesystem,
954
so should only be used with trusted guest OS.
955
@end table
956

    
957
@c man end
958

    
959
@node pcsys_keys
960
@section Keys
961

    
962
@c man begin OPTIONS
963

    
964
During the graphical emulation, you can use the following keys:
965
@table @key
966
@item Ctrl-Alt-f
967
Toggle full screen
968

    
969
@item Ctrl-Alt-n
970
Switch to virtual console 'n'. Standard console mappings are:
971
@table @emph
972
@item 1
973
Target system display
974
@item 2
975
Monitor
976
@item 3
977
Serial port
978
@end table
979

    
980
@item Ctrl-Alt
981
Toggle mouse and keyboard grab.
982
@end table
983

    
984
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
985
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
986

    
987
During emulation, if you are using the @option{-nographic} option, use
988
@key{Ctrl-a h} to get terminal commands:
989

    
990
@table @key
991
@item Ctrl-a h
992
Print this help
993
@item Ctrl-a x
994
Exit emulator
995
@item Ctrl-a s
996
Save disk data back to file (if -snapshot)
997
@item Ctrl-a t
998
toggle console timestamps
999
@item Ctrl-a b
1000
Send break (magic sysrq in Linux)
1001
@item Ctrl-a c
1002
Switch between console and monitor
1003
@item Ctrl-a Ctrl-a
1004
Send Ctrl-a
1005
@end table
1006
@c man end
1007

    
1008
@ignore
1009

    
1010
@c man begin SEEALSO
1011
The HTML documentation of QEMU for more precise information and Linux
1012
user mode emulator invocation.
1013
@c man end
1014

    
1015
@c man begin AUTHOR
1016
Fabrice Bellard
1017
@c man end
1018

    
1019
@end ignore
1020

    
1021
@node pcsys_monitor
1022
@section QEMU Monitor
1023

    
1024
The QEMU monitor is used to give complex commands to the QEMU
1025
emulator. You can use it to:
1026

    
1027
@itemize @minus
1028

    
1029
@item
1030
Remove or insert removable media images
1031
(such as CD-ROM or floppies).
1032

    
1033
@item
1034
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1035
from a disk file.
1036

    
1037
@item Inspect the VM state without an external debugger.
1038

    
1039
@end itemize
1040

    
1041
@subsection Commands
1042

    
1043
The following commands are available:
1044

    
1045
@table @option
1046

    
1047
@item help or ? [@var{cmd}]
1048
Show the help for all commands or just for command @var{cmd}.
1049

    
1050
@item commit
1051
Commit changes to the disk images (if -snapshot is used).
1052

    
1053
@item info @var{subcommand}
1054
Show various information about the system state.
1055

    
1056
@table @option
1057
@item info network
1058
show the various VLANs and the associated devices
1059
@item info block
1060
show the block devices
1061
@item info registers
1062
show the cpu registers
1063
@item info history
1064
show the command line history
1065
@item info pci
1066
show emulated PCI device
1067
@item info usb
1068
show USB devices plugged on the virtual USB hub
1069
@item info usbhost
1070
show all USB host devices
1071
@item info capture
1072
show information about active capturing
1073
@item info snapshots
1074
show list of VM snapshots
1075
@item info mice
1076
show which guest mouse is receiving events
1077
@end table
1078

    
1079
@item q or quit
1080
Quit the emulator.
1081

    
1082
@item eject [-f] @var{device}
1083
Eject a removable medium (use -f to force it).
1084

    
1085
@item change @var{device} @var{setting}
1086

    
1087
Change the configuration of a device.
1088

    
1089
@table @option
1090
@item change @var{diskdevice} @var{filename}
1091
Change the medium for a removable disk device to point to @var{filename}. eg
1092

    
1093
@example
1094
(qemu) change ide1-cd0 /path/to/some.iso
1095
@end example
1096

    
1097
@item change vnc @var{display},@var{options}
1098
Change the configuration of the VNC server. The valid syntax for @var{display}
1099
and @var{options} are described at @ref{sec_invocation}. eg
1100

    
1101
@example
1102
(qemu) change vnc localhost:1
1103
@end example
1104

    
1105
@item change vnc password
1106

    
1107
Change the password associated with the VNC server. The monitor will prompt for
1108
the new password to be entered. VNC passwords are only significant upto 8 letters.
1109
eg.
1110

    
1111
@example
1112
(qemu) change vnc password
1113
Password: ********
1114
@end example
1115

    
1116
@end table
1117

    
1118
@item screendump @var{filename}
1119
Save screen into PPM image @var{filename}.
1120

    
1121
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1122
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1123
with optional scroll axis @var{dz}.
1124

    
1125
@item mouse_button @var{val}
1126
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1127

    
1128
@item mouse_set @var{index}
1129
Set which mouse device receives events at given @var{index}, index
1130
can be obtained with
1131
@example
1132
info mice
1133
@end example
1134

    
1135
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1136
Capture audio into @var{filename}. Using sample rate @var{frequency}
1137
bits per sample @var{bits} and number of channels @var{channels}.
1138

    
1139
Defaults:
1140
@itemize @minus
1141
@item Sample rate = 44100 Hz - CD quality
1142
@item Bits = 16
1143
@item Number of channels = 2 - Stereo
1144
@end itemize
1145

    
1146
@item stopcapture @var{index}
1147
Stop capture with a given @var{index}, index can be obtained with
1148
@example
1149
info capture
1150
@end example
1151

    
1152
@item log @var{item1}[,...]
1153
Activate logging of the specified items to @file{/tmp/qemu.log}.
1154

    
1155
@item savevm [@var{tag}|@var{id}]
1156
Create a snapshot of the whole virtual machine. If @var{tag} is
1157
provided, it is used as human readable identifier. If there is already
1158
a snapshot with the same tag or ID, it is replaced. More info at
1159
@ref{vm_snapshots}.
1160

    
1161
@item loadvm @var{tag}|@var{id}
1162
Set the whole virtual machine to the snapshot identified by the tag
1163
@var{tag} or the unique snapshot ID @var{id}.
1164

    
1165
@item delvm @var{tag}|@var{id}
1166
Delete the snapshot identified by @var{tag} or @var{id}.
1167

    
1168
@item stop
1169
Stop emulation.
1170

    
1171
@item c or cont
1172
Resume emulation.
1173

    
1174
@item gdbserver [@var{port}]
1175
Start gdbserver session (default @var{port}=1234)
1176

    
1177
@item x/fmt @var{addr}
1178
Virtual memory dump starting at @var{addr}.
1179

    
1180
@item xp /@var{fmt} @var{addr}
1181
Physical memory dump starting at @var{addr}.
1182

    
1183
@var{fmt} is a format which tells the command how to format the
1184
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1185

    
1186
@table @var
1187
@item count
1188
is the number of items to be dumped.
1189

    
1190
@item format
1191
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1192
c (char) or i (asm instruction).
1193

    
1194
@item size
1195
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1196
@code{h} or @code{w} can be specified with the @code{i} format to
1197
respectively select 16 or 32 bit code instruction size.
1198

    
1199
@end table
1200

    
1201
Examples:
1202
@itemize
1203
@item
1204
Dump 10 instructions at the current instruction pointer:
1205
@example
1206
(qemu) x/10i $eip
1207
0x90107063:  ret
1208
0x90107064:  sti
1209
0x90107065:  lea    0x0(%esi,1),%esi
1210
0x90107069:  lea    0x0(%edi,1),%edi
1211
0x90107070:  ret
1212
0x90107071:  jmp    0x90107080
1213
0x90107073:  nop
1214
0x90107074:  nop
1215
0x90107075:  nop
1216
0x90107076:  nop
1217
@end example
1218

    
1219
@item
1220
Dump 80 16 bit values at the start of the video memory.
1221
@smallexample
1222
(qemu) xp/80hx 0xb8000
1223
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1224
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1225
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1226
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1227
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1228
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1229
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1230
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1231
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1232
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1233
@end smallexample
1234
@end itemize
1235

    
1236
@item p or print/@var{fmt} @var{expr}
1237

    
1238
Print expression value. Only the @var{format} part of @var{fmt} is
1239
used.
1240

    
1241
@item sendkey @var{keys}
1242

    
1243
Send @var{keys} to the emulator. Use @code{-} to press several keys
1244
simultaneously. Example:
1245
@example
1246
sendkey ctrl-alt-f1
1247
@end example
1248

    
1249
This command is useful to send keys that your graphical user interface
1250
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1251

    
1252
@item system_reset
1253

    
1254
Reset the system.
1255

    
1256
@item usb_add @var{devname}
1257

    
1258
Add the USB device @var{devname}.  For details of available devices see
1259
@ref{usb_devices}
1260

    
1261
@item usb_del @var{devname}
1262

    
1263
Remove the USB device @var{devname} from the QEMU virtual USB
1264
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1265
command @code{info usb} to see the devices you can remove.
1266

    
1267
@end table
1268

    
1269
@subsection Integer expressions
1270

    
1271
The monitor understands integers expressions for every integer
1272
argument. You can use register names to get the value of specifics
1273
CPU registers by prefixing them with @emph{$}.
1274

    
1275
@node disk_images
1276
@section Disk Images
1277

    
1278
Since version 0.6.1, QEMU supports many disk image formats, including
1279
growable disk images (their size increase as non empty sectors are
1280
written), compressed and encrypted disk images. Version 0.8.3 added
1281
the new qcow2 disk image format which is essential to support VM
1282
snapshots.
1283

    
1284
@menu
1285
* disk_images_quickstart::    Quick start for disk image creation
1286
* disk_images_snapshot_mode:: Snapshot mode
1287
* vm_snapshots::              VM snapshots
1288
* qemu_img_invocation::       qemu-img Invocation
1289
* host_drives::               Using host drives
1290
* disk_images_fat_images::    Virtual FAT disk images
1291
@end menu
1292

    
1293
@node disk_images_quickstart
1294
@subsection Quick start for disk image creation
1295

    
1296
You can create a disk image with the command:
1297
@example
1298
qemu-img create myimage.img mysize
1299
@end example
1300
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1301
size in kilobytes. You can add an @code{M} suffix to give the size in
1302
megabytes and a @code{G} suffix for gigabytes.
1303

    
1304
See @ref{qemu_img_invocation} for more information.
1305

    
1306
@node disk_images_snapshot_mode
1307
@subsection Snapshot mode
1308

    
1309
If you use the option @option{-snapshot}, all disk images are
1310
considered as read only. When sectors in written, they are written in
1311
a temporary file created in @file{/tmp}. You can however force the
1312
write back to the raw disk images by using the @code{commit} monitor
1313
command (or @key{C-a s} in the serial console).
1314

    
1315
@node vm_snapshots
1316
@subsection VM snapshots
1317

    
1318
VM snapshots are snapshots of the complete virtual machine including
1319
CPU state, RAM, device state and the content of all the writable
1320
disks. In order to use VM snapshots, you must have at least one non
1321
removable and writable block device using the @code{qcow2} disk image
1322
format. Normally this device is the first virtual hard drive.
1323

    
1324
Use the monitor command @code{savevm} to create a new VM snapshot or
1325
replace an existing one. A human readable name can be assigned to each
1326
snapshot in addition to its numerical ID.
1327

    
1328
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1329
a VM snapshot. @code{info snapshots} lists the available snapshots
1330
with their associated information:
1331

    
1332
@example
1333
(qemu) info snapshots
1334
Snapshot devices: hda
1335
Snapshot list (from hda):
1336
ID        TAG                 VM SIZE                DATE       VM CLOCK
1337
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1338
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1339
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1340
@end example
1341

    
1342
A VM snapshot is made of a VM state info (its size is shown in
1343
@code{info snapshots}) and a snapshot of every writable disk image.
1344
The VM state info is stored in the first @code{qcow2} non removable
1345
and writable block device. The disk image snapshots are stored in
1346
every disk image. The size of a snapshot in a disk image is difficult
1347
to evaluate and is not shown by @code{info snapshots} because the
1348
associated disk sectors are shared among all the snapshots to save
1349
disk space (otherwise each snapshot would need a full copy of all the
1350
disk images).
1351

    
1352
When using the (unrelated) @code{-snapshot} option
1353
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1354
but they are deleted as soon as you exit QEMU.
1355

    
1356
VM snapshots currently have the following known limitations:
1357
@itemize
1358
@item
1359
They cannot cope with removable devices if they are removed or
1360
inserted after a snapshot is done.
1361
@item
1362
A few device drivers still have incomplete snapshot support so their
1363
state is not saved or restored properly (in particular USB).
1364
@end itemize
1365

    
1366
@node qemu_img_invocation
1367
@subsection @code{qemu-img} Invocation
1368

    
1369
@include qemu-img.texi
1370

    
1371
@node host_drives
1372
@subsection Using host drives
1373

    
1374
In addition to disk image files, QEMU can directly access host
1375
devices. We describe here the usage for QEMU version >= 0.8.3.
1376

    
1377
@subsubsection Linux
1378

    
1379
On Linux, you can directly use the host device filename instead of a
1380
disk image filename provided you have enough privileges to access
1381
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1382
@file{/dev/fd0} for the floppy.
1383

    
1384
@table @code
1385
@item CD
1386
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1387
specific code to detect CDROM insertion or removal. CDROM ejection by
1388
the guest OS is supported. Currently only data CDs are supported.
1389
@item Floppy
1390
You can specify a floppy device even if no floppy is loaded. Floppy
1391
removal is currently not detected accurately (if you change floppy
1392
without doing floppy access while the floppy is not loaded, the guest
1393
OS will think that the same floppy is loaded).
1394
@item Hard disks
1395
Hard disks can be used. Normally you must specify the whole disk
1396
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1397
see it as a partitioned disk. WARNING: unless you know what you do, it
1398
is better to only make READ-ONLY accesses to the hard disk otherwise
1399
you may corrupt your host data (use the @option{-snapshot} command
1400
line option or modify the device permissions accordingly).
1401
@end table
1402

    
1403
@subsubsection Windows
1404

    
1405
@table @code
1406
@item CD
1407
The preferred syntax is the drive letter (e.g. @file{d:}). The
1408
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1409
supported as an alias to the first CDROM drive.
1410

    
1411
Currently there is no specific code to handle removable media, so it
1412
is better to use the @code{change} or @code{eject} monitor commands to
1413
change or eject media.
1414
@item Hard disks
1415
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1416
where @var{N} is the drive number (0 is the first hard disk).
1417

    
1418
WARNING: unless you know what you do, it is better to only make
1419
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1420
host data (use the @option{-snapshot} command line so that the
1421
modifications are written in a temporary file).
1422
@end table
1423

    
1424

    
1425
@subsubsection Mac OS X
1426

    
1427
@file{/dev/cdrom} is an alias to the first CDROM.
1428

    
1429
Currently there is no specific code to handle removable media, so it
1430
is better to use the @code{change} or @code{eject} monitor commands to
1431
change or eject media.
1432

    
1433
@node disk_images_fat_images
1434
@subsection Virtual FAT disk images
1435

    
1436
QEMU can automatically create a virtual FAT disk image from a
1437
directory tree. In order to use it, just type:
1438

    
1439
@example
1440
qemu linux.img -hdb fat:/my_directory
1441
@end example
1442

    
1443
Then you access access to all the files in the @file{/my_directory}
1444
directory without having to copy them in a disk image or to export
1445
them via SAMBA or NFS. The default access is @emph{read-only}.
1446

    
1447
Floppies can be emulated with the @code{:floppy:} option:
1448

    
1449
@example
1450
qemu linux.img -fda fat:floppy:/my_directory
1451
@end example
1452

    
1453
A read/write support is available for testing (beta stage) with the
1454
@code{:rw:} option:
1455

    
1456
@example
1457
qemu linux.img -fda fat:floppy:rw:/my_directory
1458
@end example
1459

    
1460
What you should @emph{never} do:
1461
@itemize
1462
@item use non-ASCII filenames ;
1463
@item use "-snapshot" together with ":rw:" ;
1464
@item expect it to work when loadvm'ing ;
1465
@item write to the FAT directory on the host system while accessing it with the guest system.
1466
@end itemize
1467

    
1468
@node pcsys_network
1469
@section Network emulation
1470

    
1471
QEMU can simulate several network cards (PCI or ISA cards on the PC
1472
target) and can connect them to an arbitrary number of Virtual Local
1473
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1474
VLAN. VLAN can be connected between separate instances of QEMU to
1475
simulate large networks. For simpler usage, a non privileged user mode
1476
network stack can replace the TAP device to have a basic network
1477
connection.
1478

    
1479
@subsection VLANs
1480

    
1481
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1482
connection between several network devices. These devices can be for
1483
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1484
(TAP devices).
1485

    
1486
@subsection Using TAP network interfaces
1487

    
1488
This is the standard way to connect QEMU to a real network. QEMU adds
1489
a virtual network device on your host (called @code{tapN}), and you
1490
can then configure it as if it was a real ethernet card.
1491

    
1492
@subsubsection Linux host
1493

    
1494
As an example, you can download the @file{linux-test-xxx.tar.gz}
1495
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1496
configure properly @code{sudo} so that the command @code{ifconfig}
1497
contained in @file{qemu-ifup} can be executed as root. You must verify
1498
that your host kernel supports the TAP network interfaces: the
1499
device @file{/dev/net/tun} must be present.
1500

    
1501
See @ref{sec_invocation} to have examples of command lines using the
1502
TAP network interfaces.
1503

    
1504
@subsubsection Windows host
1505

    
1506
There is a virtual ethernet driver for Windows 2000/XP systems, called
1507
TAP-Win32. But it is not included in standard QEMU for Windows,
1508
so you will need to get it separately. It is part of OpenVPN package,
1509
so download OpenVPN from : @url{http://openvpn.net/}.
1510

    
1511
@subsection Using the user mode network stack
1512

    
1513
By using the option @option{-net user} (default configuration if no
1514
@option{-net} option is specified), QEMU uses a completely user mode
1515
network stack (you don't need root privilege to use the virtual
1516
network). The virtual network configuration is the following:
1517

    
1518
@example
1519

    
1520
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1521
                           |          (10.0.2.2)
1522
                           |
1523
                           ---->  DNS server (10.0.2.3)
1524
                           |
1525
                           ---->  SMB server (10.0.2.4)
1526
@end example
1527

    
1528
The QEMU VM behaves as if it was behind a firewall which blocks all
1529
incoming connections. You can use a DHCP client to automatically
1530
configure the network in the QEMU VM. The DHCP server assign addresses
1531
to the hosts starting from 10.0.2.15.
1532

    
1533
In order to check that the user mode network is working, you can ping
1534
the address 10.0.2.2 and verify that you got an address in the range
1535
10.0.2.x from the QEMU virtual DHCP server.
1536

    
1537
Note that @code{ping} is not supported reliably to the internet as it
1538
would require root privileges. It means you can only ping the local
1539
router (10.0.2.2).
1540

    
1541
When using the built-in TFTP server, the router is also the TFTP
1542
server.
1543

    
1544
When using the @option{-redir} option, TCP or UDP connections can be
1545
redirected from the host to the guest. It allows for example to
1546
redirect X11, telnet or SSH connections.
1547

    
1548
@subsection Connecting VLANs between QEMU instances
1549

    
1550
Using the @option{-net socket} option, it is possible to make VLANs
1551
that span several QEMU instances. See @ref{sec_invocation} to have a
1552
basic example.
1553

    
1554
@node direct_linux_boot
1555
@section Direct Linux Boot
1556

    
1557
This section explains how to launch a Linux kernel inside QEMU without
1558
having to make a full bootable image. It is very useful for fast Linux
1559
kernel testing.
1560

    
1561
The syntax is:
1562
@example
1563
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1564
@end example
1565

    
1566
Use @option{-kernel} to provide the Linux kernel image and
1567
@option{-append} to give the kernel command line arguments. The
1568
@option{-initrd} option can be used to provide an INITRD image.
1569

    
1570
When using the direct Linux boot, a disk image for the first hard disk
1571
@file{hda} is required because its boot sector is used to launch the
1572
Linux kernel.
1573

    
1574
If you do not need graphical output, you can disable it and redirect
1575
the virtual serial port and the QEMU monitor to the console with the
1576
@option{-nographic} option. The typical command line is:
1577
@example
1578
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1579
     -append "root=/dev/hda console=ttyS0" -nographic
1580
@end example
1581

    
1582
Use @key{Ctrl-a c} to switch between the serial console and the
1583
monitor (@pxref{pcsys_keys}).
1584

    
1585
@node pcsys_usb
1586
@section USB emulation
1587

    
1588
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1589
virtual USB devices or real host USB devices (experimental, works only
1590
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1591
as necessary to connect multiple USB devices.
1592

    
1593
@menu
1594
* usb_devices::
1595
* host_usb_devices::
1596
@end menu
1597
@node usb_devices
1598
@subsection Connecting USB devices
1599

    
1600
USB devices can be connected with the @option{-usbdevice} commandline option
1601
or the @code{usb_add} monitor command.  Available devices are:
1602

    
1603
@table @code
1604
@item mouse
1605
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1606
@item tablet
1607
Pointer device that uses absolute coordinates (like a touchscreen).
1608
This means qemu is able to report the mouse position without having
1609
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1610
@item disk:@var{file}
1611
Mass storage device based on @var{file} (@pxref{disk_images})
1612
@item host:@var{bus.addr}
1613
Pass through the host device identified by @var{bus.addr}
1614
(Linux only)
1615
@item host:@var{vendor_id:product_id}
1616
Pass through the host device identified by @var{vendor_id:product_id}
1617
(Linux only)
1618
@item wacom-tablet
1619
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1620
above but it can be used with the tslib library because in addition to touch
1621
coordinates it reports touch pressure.
1622
@item keyboard
1623
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1624
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1625
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1626
device @var{dev}. The available character devices are the same as for the
1627
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1628
used to override the default 0403:6001. For instance, 
1629
@example
1630
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1631
@end example
1632
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1633
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1634
@item braille
1635
Braille device.  This will use BrlAPI to display the braille output on a real
1636
or fake device.
1637
@end table
1638

    
1639
@node host_usb_devices
1640
@subsection Using host USB devices on a Linux host
1641

    
1642
WARNING: this is an experimental feature. QEMU will slow down when
1643
using it. USB devices requiring real time streaming (i.e. USB Video
1644
Cameras) are not supported yet.
1645

    
1646
@enumerate
1647
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1648
is actually using the USB device. A simple way to do that is simply to
1649
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1650
to @file{mydriver.o.disabled}.
1651

    
1652
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1653
@example
1654
ls /proc/bus/usb
1655
001  devices  drivers
1656
@end example
1657

    
1658
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1659
@example
1660
chown -R myuid /proc/bus/usb
1661
@end example
1662

    
1663
@item Launch QEMU and do in the monitor:
1664
@example
1665
info usbhost
1666
  Device 1.2, speed 480 Mb/s
1667
    Class 00: USB device 1234:5678, USB DISK
1668
@end example
1669
You should see the list of the devices you can use (Never try to use
1670
hubs, it won't work).
1671

    
1672
@item Add the device in QEMU by using:
1673
@example
1674
usb_add host:1234:5678
1675
@end example
1676

    
1677
Normally the guest OS should report that a new USB device is
1678
plugged. You can use the option @option{-usbdevice} to do the same.
1679

    
1680
@item Now you can try to use the host USB device in QEMU.
1681

    
1682
@end enumerate
1683

    
1684
When relaunching QEMU, you may have to unplug and plug again the USB
1685
device to make it work again (this is a bug).
1686

    
1687
@node vnc_security
1688
@section VNC security
1689

    
1690
The VNC server capability provides access to the graphical console
1691
of the guest VM across the network. This has a number of security
1692
considerations depending on the deployment scenarios.
1693

    
1694
@menu
1695
* vnc_sec_none::
1696
* vnc_sec_password::
1697
* vnc_sec_certificate::
1698
* vnc_sec_certificate_verify::
1699
* vnc_sec_certificate_pw::
1700
* vnc_generate_cert::
1701
@end menu
1702
@node vnc_sec_none
1703
@subsection Without passwords
1704

    
1705
The simplest VNC server setup does not include any form of authentication.
1706
For this setup it is recommended to restrict it to listen on a UNIX domain
1707
socket only. For example
1708

    
1709
@example
1710
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1711
@end example
1712

    
1713
This ensures that only users on local box with read/write access to that
1714
path can access the VNC server. To securely access the VNC server from a
1715
remote machine, a combination of netcat+ssh can be used to provide a secure
1716
tunnel.
1717

    
1718
@node vnc_sec_password
1719
@subsection With passwords
1720

    
1721
The VNC protocol has limited support for password based authentication. Since
1722
the protocol limits passwords to 8 characters it should not be considered
1723
to provide high security. The password can be fairly easily brute-forced by
1724
a client making repeat connections. For this reason, a VNC server using password
1725
authentication should be restricted to only listen on the loopback interface
1726
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1727
option, and then once QEMU is running the password is set with the monitor. Until
1728
the monitor is used to set the password all clients will be rejected.
1729

    
1730
@example
1731
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1732
(qemu) change vnc password
1733
Password: ********
1734
(qemu)
1735
@end example
1736

    
1737
@node vnc_sec_certificate
1738
@subsection With x509 certificates
1739

    
1740
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1741
TLS for encryption of the session, and x509 certificates for authentication.
1742
The use of x509 certificates is strongly recommended, because TLS on its
1743
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1744
support provides a secure session, but no authentication. This allows any
1745
client to connect, and provides an encrypted session.
1746

    
1747
@example
1748
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1749
@end example
1750

    
1751
In the above example @code{/etc/pki/qemu} should contain at least three files,
1752
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1753
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1754
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1755
only be readable by the user owning it.
1756

    
1757
@node vnc_sec_certificate_verify
1758
@subsection With x509 certificates and client verification
1759

    
1760
Certificates can also provide a means to authenticate the client connecting.
1761
The server will request that the client provide a certificate, which it will
1762
then validate against the CA certificate. This is a good choice if deploying
1763
in an environment with a private internal certificate authority.
1764

    
1765
@example
1766
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1767
@end example
1768

    
1769

    
1770
@node vnc_sec_certificate_pw
1771
@subsection With x509 certificates, client verification and passwords
1772

    
1773
Finally, the previous method can be combined with VNC password authentication
1774
to provide two layers of authentication for clients.
1775

    
1776
@example
1777
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1778
(qemu) change vnc password
1779
Password: ********
1780
(qemu)
1781
@end example
1782

    
1783
@node vnc_generate_cert
1784
@subsection Generating certificates for VNC
1785

    
1786
The GNU TLS packages provides a command called @code{certtool} which can
1787
be used to generate certificates and keys in PEM format. At a minimum it
1788
is neccessary to setup a certificate authority, and issue certificates to
1789
each server. If using certificates for authentication, then each client
1790
will also need to be issued a certificate. The recommendation is for the
1791
server to keep its certificates in either @code{/etc/pki/qemu} or for
1792
unprivileged users in @code{$HOME/.pki/qemu}.
1793

    
1794
@menu
1795
* vnc_generate_ca::
1796
* vnc_generate_server::
1797
* vnc_generate_client::
1798
@end menu
1799
@node vnc_generate_ca
1800
@subsubsection Setup the Certificate Authority
1801

    
1802
This step only needs to be performed once per organization / organizational
1803
unit. First the CA needs a private key. This key must be kept VERY secret
1804
and secure. If this key is compromised the entire trust chain of the certificates
1805
issued with it is lost.
1806

    
1807
@example
1808
# certtool --generate-privkey > ca-key.pem
1809
@end example
1810

    
1811
A CA needs to have a public certificate. For simplicity it can be a self-signed
1812
certificate, or one issue by a commercial certificate issuing authority. To
1813
generate a self-signed certificate requires one core piece of information, the
1814
name of the organization.
1815

    
1816
@example
1817
# cat > ca.info <<EOF
1818
cn = Name of your organization
1819
ca
1820
cert_signing_key
1821
EOF
1822
# certtool --generate-self-signed \
1823
           --load-privkey ca-key.pem
1824
           --template ca.info \
1825
           --outfile ca-cert.pem
1826
@end example
1827

    
1828
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1829
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1830

    
1831
@node vnc_generate_server
1832
@subsubsection Issuing server certificates
1833

    
1834
Each server (or host) needs to be issued with a key and certificate. When connecting
1835
the certificate is sent to the client which validates it against the CA certificate.
1836
The core piece of information for a server certificate is the hostname. This should
1837
be the fully qualified hostname that the client will connect with, since the client
1838
will typically also verify the hostname in the certificate. On the host holding the
1839
secure CA private key:
1840

    
1841
@example
1842
# cat > server.info <<EOF
1843
organization = Name  of your organization
1844
cn = server.foo.example.com
1845
tls_www_server
1846
encryption_key
1847
signing_key
1848
EOF
1849
# certtool --generate-privkey > server-key.pem
1850
# certtool --generate-certificate \
1851
           --load-ca-certificate ca-cert.pem \
1852
           --load-ca-privkey ca-key.pem \
1853
           --load-privkey server server-key.pem \
1854
           --template server.info \
1855
           --outfile server-cert.pem
1856
@end example
1857

    
1858
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1859
to the server for which they were generated. The @code{server-key.pem} is security
1860
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1861

    
1862
@node vnc_generate_client
1863
@subsubsection Issuing client certificates
1864

    
1865
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1866
certificates as its authentication mechanism, each client also needs to be issued
1867
a certificate. The client certificate contains enough metadata to uniquely identify
1868
the client, typically organization, state, city, building, etc. On the host holding
1869
the secure CA private key:
1870

    
1871
@example
1872
# cat > client.info <<EOF
1873
country = GB
1874
state = London
1875
locality = London
1876
organiazation = Name of your organization
1877
cn = client.foo.example.com
1878
tls_www_client
1879
encryption_key
1880
signing_key
1881
EOF
1882
# certtool --generate-privkey > client-key.pem
1883
# certtool --generate-certificate \
1884
           --load-ca-certificate ca-cert.pem \
1885
           --load-ca-privkey ca-key.pem \
1886
           --load-privkey client-key.pem \
1887
           --template client.info \
1888
           --outfile client-cert.pem
1889
@end example
1890

    
1891
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1892
copied to the client for which they were generated.
1893

    
1894
@node gdb_usage
1895
@section GDB usage
1896

    
1897
QEMU has a primitive support to work with gdb, so that you can do
1898
'Ctrl-C' while the virtual machine is running and inspect its state.
1899

    
1900
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1901
gdb connection:
1902
@example
1903
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1904
       -append "root=/dev/hda"
1905
Connected to host network interface: tun0
1906
Waiting gdb connection on port 1234
1907
@end example
1908

    
1909
Then launch gdb on the 'vmlinux' executable:
1910
@example
1911
> gdb vmlinux
1912
@end example
1913

    
1914
In gdb, connect to QEMU:
1915
@example
1916
(gdb) target remote localhost:1234
1917
@end example
1918

    
1919
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1920
@example
1921
(gdb) c
1922
@end example
1923

    
1924
Here are some useful tips in order to use gdb on system code:
1925

    
1926
@enumerate
1927
@item
1928
Use @code{info reg} to display all the CPU registers.
1929
@item
1930
Use @code{x/10i $eip} to display the code at the PC position.
1931
@item
1932
Use @code{set architecture i8086} to dump 16 bit code. Then use
1933
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1934
@end enumerate
1935

    
1936
@node pcsys_os_specific
1937
@section Target OS specific information
1938

    
1939
@subsection Linux
1940

    
1941
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1942
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1943
color depth in the guest and the host OS.
1944

    
1945
When using a 2.6 guest Linux kernel, you should add the option
1946
@code{clock=pit} on the kernel command line because the 2.6 Linux
1947
kernels make very strict real time clock checks by default that QEMU
1948
cannot simulate exactly.
1949

    
1950
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1951
not activated because QEMU is slower with this patch. The QEMU
1952
Accelerator Module is also much slower in this case. Earlier Fedora
1953
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1954
patch by default. Newer kernels don't have it.
1955

    
1956
@subsection Windows
1957

    
1958
If you have a slow host, using Windows 95 is better as it gives the
1959
best speed. Windows 2000 is also a good choice.
1960

    
1961
@subsubsection SVGA graphic modes support
1962

    
1963
QEMU emulates a Cirrus Logic GD5446 Video
1964
card. All Windows versions starting from Windows 95 should recognize
1965
and use this graphic card. For optimal performances, use 16 bit color
1966
depth in the guest and the host OS.
1967

    
1968
If you are using Windows XP as guest OS and if you want to use high
1969
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1970
1280x1024x16), then you should use the VESA VBE virtual graphic card
1971
(option @option{-std-vga}).
1972

    
1973
@subsubsection CPU usage reduction
1974

    
1975
Windows 9x does not correctly use the CPU HLT
1976
instruction. The result is that it takes host CPU cycles even when
1977
idle. You can install the utility from
1978
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1979
problem. Note that no such tool is needed for NT, 2000 or XP.
1980

    
1981
@subsubsection Windows 2000 disk full problem
1982

    
1983
Windows 2000 has a bug which gives a disk full problem during its
1984
installation. When installing it, use the @option{-win2k-hack} QEMU
1985
option to enable a specific workaround. After Windows 2000 is
1986
installed, you no longer need this option (this option slows down the
1987
IDE transfers).
1988

    
1989
@subsubsection Windows 2000 shutdown
1990

    
1991
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1992
can. It comes from the fact that Windows 2000 does not automatically
1993
use the APM driver provided by the BIOS.
1994

    
1995
In order to correct that, do the following (thanks to Struan
1996
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1997
Add/Troubleshoot a device => Add a new device & Next => No, select the
1998
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1999
(again) a few times. Now the driver is installed and Windows 2000 now
2000
correctly instructs QEMU to shutdown at the appropriate moment.
2001

    
2002
@subsubsection Share a directory between Unix and Windows
2003

    
2004
See @ref{sec_invocation} about the help of the option @option{-smb}.
2005

    
2006
@subsubsection Windows XP security problem
2007

    
2008
Some releases of Windows XP install correctly but give a security
2009
error when booting:
2010
@example
2011
A problem is preventing Windows from accurately checking the
2012
license for this computer. Error code: 0x800703e6.
2013
@end example
2014

    
2015
The workaround is to install a service pack for XP after a boot in safe
2016
mode. Then reboot, and the problem should go away. Since there is no
2017
network while in safe mode, its recommended to download the full
2018
installation of SP1 or SP2 and transfer that via an ISO or using the
2019
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2020

    
2021
@subsection MS-DOS and FreeDOS
2022

    
2023
@subsubsection CPU usage reduction
2024

    
2025
DOS does not correctly use the CPU HLT instruction. The result is that
2026
it takes host CPU cycles even when idle. You can install the utility
2027
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2028
problem.
2029

    
2030
@node QEMU System emulator for non PC targets
2031
@chapter QEMU System emulator for non PC targets
2032

    
2033
QEMU is a generic emulator and it emulates many non PC
2034
machines. Most of the options are similar to the PC emulator. The
2035
differences are mentioned in the following sections.
2036

    
2037
@menu
2038
* QEMU PowerPC System emulator::
2039
* Sparc32 System emulator::
2040
* Sparc64 System emulator::
2041
* MIPS System emulator::
2042
* ARM System emulator::
2043
* ColdFire System emulator::
2044
@end menu
2045

    
2046
@node QEMU PowerPC System emulator
2047
@section QEMU PowerPC System emulator
2048

    
2049
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2050
or PowerMac PowerPC system.
2051

    
2052
QEMU emulates the following PowerMac peripherals:
2053

    
2054
@itemize @minus
2055
@item
2056
UniNorth PCI Bridge
2057
@item
2058
PCI VGA compatible card with VESA Bochs Extensions
2059
@item
2060
2 PMAC IDE interfaces with hard disk and CD-ROM support
2061
@item
2062
NE2000 PCI adapters
2063
@item
2064
Non Volatile RAM
2065
@item
2066
VIA-CUDA with ADB keyboard and mouse.
2067
@end itemize
2068

    
2069
QEMU emulates the following PREP peripherals:
2070

    
2071
@itemize @minus
2072
@item
2073
PCI Bridge
2074
@item
2075
PCI VGA compatible card with VESA Bochs Extensions
2076
@item
2077
2 IDE interfaces with hard disk and CD-ROM support
2078
@item
2079
Floppy disk
2080
@item
2081
NE2000 network adapters
2082
@item
2083
Serial port
2084
@item
2085
PREP Non Volatile RAM
2086
@item
2087
PC compatible keyboard and mouse.
2088
@end itemize
2089

    
2090
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2091
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2092

    
2093
@c man begin OPTIONS
2094

    
2095
The following options are specific to the PowerPC emulation:
2096

    
2097
@table @option
2098

    
2099
@item -g WxH[xDEPTH]
2100

    
2101
Set the initial VGA graphic mode. The default is 800x600x15.
2102

    
2103
@end table
2104

    
2105
@c man end
2106

    
2107

    
2108
More information is available at
2109
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2110

    
2111
@node Sparc32 System emulator
2112
@section Sparc32 System emulator
2113

    
2114
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2115
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2116
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2117
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2118
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2119
of usable CPUs to 4.
2120

    
2121
QEMU emulates the following sun4m/sun4d peripherals:
2122

    
2123
@itemize @minus
2124
@item
2125
IOMMU or IO-UNITs
2126
@item
2127
TCX Frame buffer
2128
@item
2129
Lance (Am7990) Ethernet
2130
@item
2131
Non Volatile RAM M48T08
2132
@item
2133
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2134
and power/reset logic
2135
@item
2136
ESP SCSI controller with hard disk and CD-ROM support
2137
@item
2138
Floppy drive (not on SS-600MP)
2139
@item
2140
CS4231 sound device (only on SS-5, not working yet)
2141
@end itemize
2142

    
2143
The number of peripherals is fixed in the architecture.  Maximum
2144
memory size depends on the machine type, for SS-5 it is 256MB and for
2145
others 2047MB.
2146

    
2147
Since version 0.8.2, QEMU uses OpenBIOS
2148
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2149
firmware implementation. The goal is to implement a 100% IEEE
2150
1275-1994 (referred to as Open Firmware) compliant firmware.
2151

    
2152
A sample Linux 2.6 series kernel and ram disk image are available on
2153
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2154
Solaris kernels don't work.
2155

    
2156
@c man begin OPTIONS
2157

    
2158
The following options are specific to the Sparc32 emulation:
2159

    
2160
@table @option
2161

    
2162
@item -g WxHx[xDEPTH]
2163

    
2164
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2165
the only other possible mode is 1024x768x24.
2166

    
2167
@item -prom-env string
2168

    
2169
Set OpenBIOS variables in NVRAM, for example:
2170

    
2171
@example
2172
qemu-system-sparc -prom-env 'auto-boot?=false' \
2173
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2174
@end example
2175

    
2176
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2177

    
2178
Set the emulated machine type. Default is SS-5.
2179

    
2180
@end table
2181

    
2182
@c man end
2183

    
2184
@node Sparc64 System emulator
2185
@section Sparc64 System emulator
2186

    
2187
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2188
The emulator is not usable for anything yet.
2189

    
2190
QEMU emulates the following sun4u peripherals:
2191

    
2192
@itemize @minus
2193
@item
2194
UltraSparc IIi APB PCI Bridge
2195
@item
2196
PCI VGA compatible card with VESA Bochs Extensions
2197
@item
2198
Non Volatile RAM M48T59
2199
@item
2200
PC-compatible serial ports
2201
@end itemize
2202

    
2203
@node MIPS System emulator
2204
@section MIPS System emulator
2205

    
2206
Four executables cover simulation of 32 and 64-bit MIPS systems in
2207
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2208
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2209
Five different machine types are emulated:
2210

    
2211
@itemize @minus
2212
@item
2213
A generic ISA PC-like machine "mips"
2214
@item
2215
The MIPS Malta prototype board "malta"
2216
@item
2217
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2218
@item
2219
MIPS emulator pseudo board "mipssim"
2220
@item
2221
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2222
@end itemize
2223

    
2224
The generic emulation is supported by Debian 'Etch' and is able to
2225
install Debian into a virtual disk image. The following devices are
2226
emulated:
2227

    
2228
@itemize @minus
2229
@item
2230
A range of MIPS CPUs, default is the 24Kf
2231
@item
2232
PC style serial port
2233
@item
2234
PC style IDE disk
2235
@item
2236
NE2000 network card
2237
@end itemize
2238

    
2239
The Malta emulation supports the following devices:
2240

    
2241
@itemize @minus
2242
@item
2243
Core board with MIPS 24Kf CPU and Galileo system controller
2244
@item
2245
PIIX4 PCI/USB/SMbus controller
2246
@item
2247
The Multi-I/O chip's serial device
2248
@item
2249
PCnet32 PCI network card
2250
@item
2251
Malta FPGA serial device
2252
@item
2253
Cirrus VGA graphics card
2254
@end itemize
2255

    
2256
The ACER Pica emulation supports:
2257

    
2258
@itemize @minus
2259
@item
2260
MIPS R4000 CPU
2261
@item
2262
PC-style IRQ and DMA controllers
2263
@item
2264
PC Keyboard
2265
@item
2266
IDE controller
2267
@end itemize
2268

    
2269
The mipssim pseudo board emulation provides an environment similiar
2270
to what the proprietary MIPS emulator uses for running Linux.
2271
It supports:
2272

    
2273
@itemize @minus
2274
@item
2275
A range of MIPS CPUs, default is the 24Kf
2276
@item
2277
PC style serial port
2278
@item
2279
MIPSnet network emulation
2280
@end itemize
2281

    
2282
The MIPS Magnum R4000 emulation supports:
2283

    
2284
@itemize @minus
2285
@item
2286
MIPS R4000 CPU
2287
@item
2288
PC-style IRQ controller
2289
@item
2290
PC Keyboard
2291
@item
2292
SCSI controller
2293
@item
2294
G364 framebuffer
2295
@end itemize
2296

    
2297

    
2298
@node ARM System emulator
2299
@section ARM System emulator
2300

    
2301
Use the executable @file{qemu-system-arm} to simulate a ARM
2302
machine. The ARM Integrator/CP board is emulated with the following
2303
devices:
2304

    
2305
@itemize @minus
2306
@item
2307
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2308
@item
2309
Two PL011 UARTs
2310
@item
2311
SMC 91c111 Ethernet adapter
2312
@item
2313
PL110 LCD controller
2314
@item
2315
PL050 KMI with PS/2 keyboard and mouse.
2316
@item
2317
PL181 MultiMedia Card Interface with SD card.
2318
@end itemize
2319

    
2320
The ARM Versatile baseboard is emulated with the following devices:
2321

    
2322
@itemize @minus
2323
@item
2324
ARM926E, ARM1136 or Cortex-A8 CPU
2325
@item
2326
PL190 Vectored Interrupt Controller
2327
@item
2328
Four PL011 UARTs
2329
@item
2330
SMC 91c111 Ethernet adapter
2331
@item
2332
PL110 LCD controller
2333
@item
2334
PL050 KMI with PS/2 keyboard and mouse.
2335
@item
2336
PCI host bridge.  Note the emulated PCI bridge only provides access to
2337
PCI memory space.  It does not provide access to PCI IO space.
2338
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2339
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2340
mapped control registers.
2341
@item
2342
PCI OHCI USB controller.
2343
@item
2344
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2345
@item
2346
PL181 MultiMedia Card Interface with SD card.
2347
@end itemize
2348

    
2349
The ARM RealView Emulation baseboard is emulated with the following devices:
2350

    
2351
@itemize @minus
2352
@item
2353
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2354
@item
2355
ARM AMBA Generic/Distributed Interrupt Controller
2356
@item
2357
Four PL011 UARTs
2358
@item
2359
SMC 91c111 Ethernet adapter
2360
@item
2361
PL110 LCD controller
2362
@item
2363
PL050 KMI with PS/2 keyboard and mouse
2364
@item
2365
PCI host bridge
2366
@item
2367
PCI OHCI USB controller
2368
@item
2369
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2370
@item
2371
PL181 MultiMedia Card Interface with SD card.
2372
@end itemize
2373

    
2374
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2375
and "Terrier") emulation includes the following peripherals:
2376

    
2377
@itemize @minus
2378
@item
2379
Intel PXA270 System-on-chip (ARM V5TE core)
2380
@item
2381
NAND Flash memory
2382
@item
2383
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2384
@item
2385
On-chip OHCI USB controller
2386
@item
2387
On-chip LCD controller
2388
@item
2389
On-chip Real Time Clock
2390
@item
2391
TI ADS7846 touchscreen controller on SSP bus
2392
@item
2393
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2394
@item
2395
GPIO-connected keyboard controller and LEDs
2396
@item
2397
Secure Digital card connected to PXA MMC/SD host
2398
@item
2399
Three on-chip UARTs
2400
@item
2401
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2402
@end itemize
2403

    
2404
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2405
following elements:
2406

    
2407
@itemize @minus
2408
@item
2409
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2410
@item
2411
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2412
@item
2413
On-chip LCD controller
2414
@item
2415
On-chip Real Time Clock
2416
@item
2417
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2418
CODEC, connected through MicroWire and I@math{^2}S busses
2419
@item
2420
GPIO-connected matrix keypad
2421
@item
2422
Secure Digital card connected to OMAP MMC/SD host
2423
@item
2424
Three on-chip UARTs
2425
@end itemize
2426

    
2427
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2428
devices:
2429

    
2430
@itemize @minus
2431
@item
2432
Cortex-M3 CPU core.
2433
@item
2434
64k Flash and 8k SRAM.
2435
@item
2436
Timers, UARTs, ADC and I@math{^2}C interface.
2437
@item
2438
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2439
@end itemize
2440

    
2441
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2442
devices:
2443

    
2444
@itemize @minus
2445
@item
2446
Cortex-M3 CPU core.
2447
@item
2448
256k Flash and 64k SRAM.
2449
@item
2450
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2451
@item
2452
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2453
@end itemize
2454

    
2455
A Linux 2.6 test image is available on the QEMU web site. More
2456
information is available in the QEMU mailing-list archive.
2457

    
2458
@node ColdFire System emulator
2459
@section ColdFire System emulator
2460

    
2461
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2462
The emulator is able to boot a uClinux kernel.
2463

    
2464
The M5208EVB emulation includes the following devices:
2465

    
2466
@itemize @minus
2467
@item
2468
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2469
@item
2470
Three Two on-chip UARTs.
2471
@item
2472
Fast Ethernet Controller (FEC)
2473
@end itemize
2474

    
2475
The AN5206 emulation includes the following devices:
2476

    
2477
@itemize @minus
2478
@item
2479
MCF5206 ColdFire V2 Microprocessor.
2480
@item
2481
Two on-chip UARTs.
2482
@end itemize
2483

    
2484
@node QEMU User space emulator
2485
@chapter QEMU User space emulator
2486

    
2487
@menu
2488
* Supported Operating Systems ::
2489
* Linux User space emulator::
2490
* Mac OS X/Darwin User space emulator ::
2491
@end menu
2492

    
2493
@node Supported Operating Systems
2494
@section Supported Operating Systems
2495

    
2496
The following OS are supported in user space emulation:
2497

    
2498
@itemize @minus
2499
@item
2500
Linux (referred as qemu-linux-user)
2501
@item
2502
Mac OS X/Darwin (referred as qemu-darwin-user)
2503
@end itemize
2504

    
2505
@node Linux User space emulator
2506
@section Linux User space emulator
2507

    
2508
@menu
2509
* Quick Start::
2510
* Wine launch::
2511
* Command line options::
2512
* Other binaries::
2513
@end menu
2514

    
2515
@node Quick Start
2516
@subsection Quick Start
2517

    
2518
In order to launch a Linux process, QEMU needs the process executable
2519
itself and all the target (x86) dynamic libraries used by it.
2520

    
2521
@itemize
2522

    
2523
@item On x86, you can just try to launch any process by using the native
2524
libraries:
2525

    
2526
@example
2527
qemu-i386 -L / /bin/ls
2528
@end example
2529

    
2530
@code{-L /} tells that the x86 dynamic linker must be searched with a
2531
@file{/} prefix.
2532

    
2533
@item Since QEMU is also a linux process, you can launch qemu with
2534
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2535

    
2536
@example
2537
qemu-i386 -L / qemu-i386 -L / /bin/ls
2538
@end example
2539

    
2540
@item On non x86 CPUs, you need first to download at least an x86 glibc
2541
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2542
@code{LD_LIBRARY_PATH} is not set:
2543

    
2544
@example
2545
unset LD_LIBRARY_PATH
2546
@end example
2547

    
2548
Then you can launch the precompiled @file{ls} x86 executable:
2549

    
2550
@example
2551
qemu-i386 tests/i386/ls
2552
@end example
2553
You can look at @file{qemu-binfmt-conf.sh} so that
2554
QEMU is automatically launched by the Linux kernel when you try to
2555
launch x86 executables. It requires the @code{binfmt_misc} module in the
2556
Linux kernel.
2557

    
2558
@item The x86 version of QEMU is also included. You can try weird things such as:
2559
@example
2560
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2561
          /usr/local/qemu-i386/bin/ls-i386
2562
@end example
2563

    
2564
@end itemize
2565

    
2566
@node Wine launch
2567
@subsection Wine launch
2568

    
2569
@itemize
2570

    
2571
@item Ensure that you have a working QEMU with the x86 glibc
2572
distribution (see previous section). In order to verify it, you must be
2573
able to do:
2574

    
2575
@example
2576
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2577
@end example
2578

    
2579
@item Download the binary x86 Wine install
2580
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2581

    
2582
@item Configure Wine on your account. Look at the provided script
2583
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2584
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2585

    
2586
@item Then you can try the example @file{putty.exe}:
2587

    
2588
@example
2589
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2590
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2591
@end example
2592

    
2593
@end itemize
2594

    
2595
@node Command line options
2596
@subsection Command line options
2597

    
2598
@example
2599
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2600
@end example
2601

    
2602
@table @option
2603
@item -h
2604
Print the help
2605
@item -L path
2606
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2607
@item -s size
2608
Set the x86 stack size in bytes (default=524288)
2609
@end table
2610

    
2611
Debug options:
2612

    
2613
@table @option
2614
@item -d
2615
Activate log (logfile=/tmp/qemu.log)
2616
@item -p pagesize
2617
Act as if the host page size was 'pagesize' bytes
2618
@end table
2619

    
2620
Environment variables:
2621

    
2622
@table @env
2623
@item QEMU_STRACE
2624
Print system calls and arguments similar to the 'strace' program
2625
(NOTE: the actual 'strace' program will not work because the user
2626
space emulator hasn't implemented ptrace).  At the moment this is
2627
incomplete.  All system calls that don't have a specific argument
2628
format are printed with information for six arguments.  Many
2629
flag-style arguments don't have decoders and will show up as numbers.
2630
@end table
2631

    
2632
@node Other binaries
2633
@subsection Other binaries
2634

    
2635
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2636
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2637
configurations), and arm-uclinux bFLT format binaries.
2638

    
2639
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2640
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2641
coldfire uClinux bFLT format binaries.
2642

    
2643
The binary format is detected automatically.
2644

    
2645
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2646
(Sparc64 CPU, 32 bit ABI).
2647

    
2648
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2649
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2650

    
2651
@node Mac OS X/Darwin User space emulator
2652
@section Mac OS X/Darwin User space emulator
2653

    
2654
@menu
2655
* Mac OS X/Darwin Status::
2656
* Mac OS X/Darwin Quick Start::
2657
* Mac OS X/Darwin Command line options::
2658
@end menu
2659

    
2660
@node Mac OS X/Darwin Status
2661
@subsection Mac OS X/Darwin Status
2662

    
2663
@itemize @minus
2664
@item
2665
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2666
@item
2667
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2668
@item
2669
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2670
@item
2671
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2672
@end itemize
2673

    
2674
[1] If you're host commpage can be executed by qemu.
2675

    
2676
@node Mac OS X/Darwin Quick Start
2677
@subsection Quick Start
2678

    
2679
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2680
itself and all the target dynamic libraries used by it. If you don't have the FAT
2681
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2682
CD or compile them by hand.
2683

    
2684
@itemize
2685

    
2686
@item On x86, you can just try to launch any process by using the native
2687
libraries:
2688

    
2689
@example
2690
qemu-i386 /bin/ls
2691
@end example
2692

    
2693
or to run the ppc version of the executable:
2694

    
2695
@example
2696
qemu-ppc /bin/ls
2697
@end example
2698

    
2699
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2700
are installed:
2701

    
2702
@example
2703
qemu-i386 -L /opt/x86_root/ /bin/ls
2704
@end example
2705

    
2706
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2707
@file{/opt/x86_root/usr/bin/dyld}.
2708

    
2709
@end itemize
2710

    
2711
@node Mac OS X/Darwin Command line options
2712
@subsection Command line options
2713

    
2714
@example
2715
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2716
@end example
2717

    
2718
@table @option
2719
@item -h
2720
Print the help
2721
@item -L path
2722
Set the library root path (default=/)
2723
@item -s size
2724
Set the stack size in bytes (default=524288)
2725
@end table
2726

    
2727
Debug options:
2728

    
2729
@table @option
2730
@item -d
2731
Activate log (logfile=/tmp/qemu.log)
2732
@item -p pagesize
2733
Act as if the host page size was 'pagesize' bytes
2734
@end table
2735

    
2736
@node compilation
2737
@chapter Compilation from the sources
2738

    
2739
@menu
2740
* Linux/Unix::
2741
* Windows::
2742
* Cross compilation for Windows with Linux::
2743
* Mac OS X::
2744
@end menu
2745

    
2746
@node Linux/Unix
2747
@section Linux/Unix
2748

    
2749
@subsection Compilation
2750

    
2751
First you must decompress the sources:
2752
@example
2753
cd /tmp
2754
tar zxvf qemu-x.y.z.tar.gz
2755
cd qemu-x.y.z
2756
@end example
2757

    
2758
Then you configure QEMU and build it (usually no options are needed):
2759
@example
2760
./configure
2761
make
2762
@end example
2763

    
2764
Then type as root user:
2765
@example
2766
make install
2767
@end example
2768
to install QEMU in @file{/usr/local}.
2769

    
2770
@subsection GCC version
2771

    
2772
In order to compile QEMU successfully, it is very important that you
2773
have the right tools. The most important one is gcc. On most hosts and
2774
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2775
Linux distribution includes a gcc 4.x compiler, you can usually
2776
install an older version (it is invoked by @code{gcc32} or
2777
@code{gcc34}). The QEMU configure script automatically probes for
2778
these older versions so that usually you don't have to do anything.
2779

    
2780
@node Windows
2781
@section Windows
2782

    
2783
@itemize
2784
@item Install the current versions of MSYS and MinGW from
2785
@url{http://www.mingw.org/}. You can find detailed installation
2786
instructions in the download section and the FAQ.
2787

    
2788
@item Download
2789
the MinGW development library of SDL 1.2.x
2790
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2791
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2792
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2793
directory. Edit the @file{sdl-config} script so that it gives the
2794
correct SDL directory when invoked.
2795

    
2796
@item Extract the current version of QEMU.
2797

    
2798
@item Start the MSYS shell (file @file{msys.bat}).
2799

    
2800
@item Change to the QEMU directory. Launch @file{./configure} and
2801
@file{make}.  If you have problems using SDL, verify that
2802
@file{sdl-config} can be launched from the MSYS command line.
2803

    
2804
@item You can install QEMU in @file{Program Files/Qemu} by typing
2805
@file{make install}. Don't forget to copy @file{SDL.dll} in
2806
@file{Program Files/Qemu}.
2807

    
2808
@end itemize
2809

    
2810
@node Cross compilation for Windows with Linux
2811
@section Cross compilation for Windows with Linux
2812

    
2813
@itemize
2814
@item
2815
Install the MinGW cross compilation tools available at
2816
@url{http://www.mingw.org/}.
2817

    
2818
@item
2819
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2820
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2821
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2822
the QEMU configuration script.
2823

    
2824
@item
2825
Configure QEMU for Windows cross compilation:
2826
@example
2827
./configure --enable-mingw32
2828
@end example
2829
If necessary, you can change the cross-prefix according to the prefix
2830
chosen for the MinGW tools with --cross-prefix. You can also use
2831
--prefix to set the Win32 install path.
2832

    
2833
@item You can install QEMU in the installation directory by typing
2834
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2835
installation directory.
2836

    
2837
@end itemize
2838

    
2839
Note: Currently, Wine does not seem able to launch
2840
QEMU for Win32.
2841

    
2842
@node Mac OS X
2843
@section Mac OS X
2844

    
2845
The Mac OS X patches are not fully merged in QEMU, so you should look
2846
at the QEMU mailing list archive to have all the necessary
2847
information.
2848

    
2849
@node Index
2850
@chapter Index
2851
@printindex cp
2852

    
2853
@bye