Statistics
| Branch: | Revision:

root / cpu-exec.c @ 0573fbfc

History | View | Annotate | Download (50.8 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 *
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
void cpu_loop_exit(void)
44
{
45
    /* NOTE: the register at this point must be saved by hand because
46
       longjmp restore them */
47
    regs_to_env();
48
    longjmp(env->jmp_env, 1);
49
}
50

    
51
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52
#define reg_T2
53
#endif
54

    
55
/* exit the current TB from a signal handler. The host registers are
56
   restored in a state compatible with the CPU emulator
57
 */
58
void cpu_resume_from_signal(CPUState *env1, void *puc)
59
{
60
#if !defined(CONFIG_SOFTMMU)
61
    struct ucontext *uc = puc;
62
#endif
63

    
64
    env = env1;
65

    
66
    /* XXX: restore cpu registers saved in host registers */
67

    
68
#if !defined(CONFIG_SOFTMMU)
69
    if (puc) {
70
        /* XXX: use siglongjmp ? */
71
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72
    }
73
#endif
74
    longjmp(env->jmp_env, 1);
75
}
76

    
77

    
78
static TranslationBlock *tb_find_slow(target_ulong pc,
79
                                      target_ulong cs_base,
80
                                      uint64_t flags)
81
{
82
    TranslationBlock *tb, **ptb1;
83
    int code_gen_size;
84
    unsigned int h;
85
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86
    uint8_t *tc_ptr;
87

    
88
    spin_lock(&tb_lock);
89

    
90
    tb_invalidated_flag = 0;
91

    
92
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93

    
94
    /* find translated block using physical mappings */
95
    phys_pc = get_phys_addr_code(env, pc);
96
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
97
    phys_page2 = -1;
98
    h = tb_phys_hash_func(phys_pc);
99
    ptb1 = &tb_phys_hash[h];
100
    for(;;) {
101
        tb = *ptb1;
102
        if (!tb)
103
            goto not_found;
104
        if (tb->pc == pc &&
105
            tb->page_addr[0] == phys_page1 &&
106
            tb->cs_base == cs_base &&
107
            tb->flags == flags) {
108
            /* check next page if needed */
109
            if (tb->page_addr[1] != -1) {
110
                virt_page2 = (pc & TARGET_PAGE_MASK) +
111
                    TARGET_PAGE_SIZE;
112
                phys_page2 = get_phys_addr_code(env, virt_page2);
113
                if (tb->page_addr[1] == phys_page2)
114
                    goto found;
115
            } else {
116
                goto found;
117
            }
118
        }
119
        ptb1 = &tb->phys_hash_next;
120
    }
121
 not_found:
122
    /* if no translated code available, then translate it now */
123
    tb = tb_alloc(pc);
124
    if (!tb) {
125
        /* flush must be done */
126
        tb_flush(env);
127
        /* cannot fail at this point */
128
        tb = tb_alloc(pc);
129
        /* don't forget to invalidate previous TB info */
130
        tb_invalidated_flag = 1;
131
    }
132
    tc_ptr = code_gen_ptr;
133
    tb->tc_ptr = tc_ptr;
134
    tb->cs_base = cs_base;
135
    tb->flags = flags;
136
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138

    
139
    /* check next page if needed */
140
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141
    phys_page2 = -1;
142
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143
        phys_page2 = get_phys_addr_code(env, virt_page2);
144
    }
145
    tb_link_phys(tb, phys_pc, phys_page2);
146

    
147
 found:
148
    /* we add the TB in the virtual pc hash table */
149
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150
    spin_unlock(&tb_lock);
151
    return tb;
152
}
153

    
154
static inline TranslationBlock *tb_find_fast(void)
155
{
156
    TranslationBlock *tb;
157
    target_ulong cs_base, pc;
158
    uint64_t flags;
159

    
160
    /* we record a subset of the CPU state. It will
161
       always be the same before a given translated block
162
       is executed. */
163
#if defined(TARGET_I386)
164
    flags = env->hflags;
165
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166
    flags |= env->intercept;
167
    cs_base = env->segs[R_CS].base;
168
    pc = cs_base + env->eip;
169
#elif defined(TARGET_ARM)
170
    flags = env->thumb | (env->vfp.vec_len << 1)
171
            | (env->vfp.vec_stride << 4);
172
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
173
        flags |= (1 << 6);
174
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
175
        flags |= (1 << 7);
176
    cs_base = 0;
177
    pc = env->regs[15];
178
#elif defined(TARGET_SPARC)
179
#ifdef TARGET_SPARC64
180
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
181
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
182
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
183
#else
184
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
185
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
186
        | env->psrs;
187
#endif
188
    cs_base = env->npc;
189
    pc = env->pc;
190
#elif defined(TARGET_PPC)
191
    flags = env->hflags;
192
    cs_base = 0;
193
    pc = env->nip;
194
#elif defined(TARGET_MIPS)
195
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196
    cs_base = 0;
197
    pc = env->PC[env->current_tc];
198
#elif defined(TARGET_M68K)
199
    flags = (env->fpcr & M68K_FPCR_PREC)  /* Bit  6 */
200
            | (env->sr & SR_S)            /* Bit  13 */
201
            | ((env->macsr >> 4) & 0xf);  /* Bits 0-3 */
202
    cs_base = 0;
203
    pc = env->pc;
204
#elif defined(TARGET_SH4)
205
    flags = env->sr & (SR_MD | SR_RB);
206
    cs_base = 0;         /* XXXXX */
207
    pc = env->pc;
208
#elif defined(TARGET_ALPHA)
209
    flags = env->ps;
210
    cs_base = 0;
211
    pc = env->pc;
212
#else
213
#error unsupported CPU
214
#endif
215
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
216
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
217
                         tb->flags != flags, 0)) {
218
        tb = tb_find_slow(pc, cs_base, flags);
219
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
220
           doing it in tb_find_slow */
221
        if (tb_invalidated_flag) {
222
            /* as some TB could have been invalidated because
223
               of memory exceptions while generating the code, we
224
               must recompute the hash index here */
225
            T0 = 0;
226
        }
227
    }
228
    return tb;
229
}
230

    
231

    
232
/* main execution loop */
233

    
234
int cpu_exec(CPUState *env1)
235
{
236
#define DECLARE_HOST_REGS 1
237
#include "hostregs_helper.h"
238
#if defined(TARGET_SPARC)
239
#if defined(reg_REGWPTR)
240
    uint32_t *saved_regwptr;
241
#endif
242
#endif
243
#if defined(__sparc__) && !defined(HOST_SOLARIS)
244
    int saved_i7;
245
    target_ulong tmp_T0;
246
#endif
247
    int ret, interrupt_request;
248
    void (*gen_func)(void);
249
    TranslationBlock *tb;
250
    uint8_t *tc_ptr;
251

    
252
    if (cpu_halted(env1) == EXCP_HALTED)
253
        return EXCP_HALTED;
254

    
255
    cpu_single_env = env1;
256

    
257
    /* first we save global registers */
258
#define SAVE_HOST_REGS 1
259
#include "hostregs_helper.h"
260
    env = env1;
261
#if defined(__sparc__) && !defined(HOST_SOLARIS)
262
    /* we also save i7 because longjmp may not restore it */
263
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
264
#endif
265

    
266
    env_to_regs();
267
#if defined(TARGET_I386)
268
    /* put eflags in CPU temporary format */
269
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
270
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
271
    CC_OP = CC_OP_EFLAGS;
272
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
273
#elif defined(TARGET_SPARC)
274
#if defined(reg_REGWPTR)
275
    saved_regwptr = REGWPTR;
276
#endif
277
#elif defined(TARGET_M68K)
278
    env->cc_op = CC_OP_FLAGS;
279
    env->cc_dest = env->sr & 0xf;
280
    env->cc_x = (env->sr >> 4) & 1;
281
#elif defined(TARGET_ALPHA)
282
#elif defined(TARGET_ARM)
283
#elif defined(TARGET_PPC)
284
#elif defined(TARGET_MIPS)
285
#elif defined(TARGET_SH4)
286
    /* XXXXX */
287
#else
288
#error unsupported target CPU
289
#endif
290
    env->exception_index = -1;
291

    
292
    /* prepare setjmp context for exception handling */
293
    for(;;) {
294
        if (setjmp(env->jmp_env) == 0) {
295
            env->current_tb = NULL;
296
            /* if an exception is pending, we execute it here */
297
            if (env->exception_index >= 0) {
298
                if (env->exception_index >= EXCP_INTERRUPT) {
299
                    /* exit request from the cpu execution loop */
300
                    ret = env->exception_index;
301
                    break;
302
                } else if (env->user_mode_only) {
303
                    /* if user mode only, we simulate a fake exception
304
                       which will be handled outside the cpu execution
305
                       loop */
306
#if defined(TARGET_I386)
307
                    do_interrupt_user(env->exception_index,
308
                                      env->exception_is_int,
309
                                      env->error_code,
310
                                      env->exception_next_eip);
311
#endif
312
                    ret = env->exception_index;
313
                    break;
314
                } else {
315
#if defined(TARGET_I386)
316
                    /* simulate a real cpu exception. On i386, it can
317
                       trigger new exceptions, but we do not handle
318
                       double or triple faults yet. */
319
                    do_interrupt(env->exception_index,
320
                                 env->exception_is_int,
321
                                 env->error_code,
322
                                 env->exception_next_eip, 0);
323
                    /* successfully delivered */
324
                    env->old_exception = -1;
325
#elif defined(TARGET_PPC)
326
                    do_interrupt(env);
327
#elif defined(TARGET_MIPS)
328
                    do_interrupt(env);
329
#elif defined(TARGET_SPARC)
330
                    do_interrupt(env->exception_index);
331
#elif defined(TARGET_ARM)
332
                    do_interrupt(env);
333
#elif defined(TARGET_SH4)
334
                    do_interrupt(env);
335
#elif defined(TARGET_ALPHA)
336
                    do_interrupt(env);
337
#elif defined(TARGET_M68K)
338
                    do_interrupt(0);
339
#endif
340
                }
341
                env->exception_index = -1;
342
            }
343
#ifdef USE_KQEMU
344
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
345
                int ret;
346
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
347
                ret = kqemu_cpu_exec(env);
348
                /* put eflags in CPU temporary format */
349
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
350
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
351
                CC_OP = CC_OP_EFLAGS;
352
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
353
                if (ret == 1) {
354
                    /* exception */
355
                    longjmp(env->jmp_env, 1);
356
                } else if (ret == 2) {
357
                    /* softmmu execution needed */
358
                } else {
359
                    if (env->interrupt_request != 0) {
360
                        /* hardware interrupt will be executed just after */
361
                    } else {
362
                        /* otherwise, we restart */
363
                        longjmp(env->jmp_env, 1);
364
                    }
365
                }
366
            }
367
#endif
368

    
369
            T0 = 0; /* force lookup of first TB */
370
            for(;;) {
371
#if defined(__sparc__) && !defined(HOST_SOLARIS)
372
                /* g1 can be modified by some libc? functions */
373
                tmp_T0 = T0;
374
#endif
375
                interrupt_request = env->interrupt_request;
376
                if (__builtin_expect(interrupt_request, 0)
377
#if defined(TARGET_I386)
378
                        && env->hflags & HF_GIF_MASK
379
#endif
380
                                ) {
381
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
382
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
383
                        env->exception_index = EXCP_DEBUG;
384
                        cpu_loop_exit();
385
                    }
386
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
387
    defined(TARGET_PPC) || defined(TARGET_ALPHA)
388
                    if (interrupt_request & CPU_INTERRUPT_HALT) {
389
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
390
                        env->halted = 1;
391
                        env->exception_index = EXCP_HLT;
392
                        cpu_loop_exit();
393
                    }
394
#endif
395
#if defined(TARGET_I386)
396
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
397
                        !(env->hflags & HF_SMM_MASK)) {
398
                        svm_check_intercept(SVM_EXIT_SMI);
399
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
400
                        do_smm_enter();
401
#if defined(__sparc__) && !defined(HOST_SOLARIS)
402
                        tmp_T0 = 0;
403
#else
404
                        T0 = 0;
405
#endif
406
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
407
                        (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
408
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
409
                        int intno;
410
                        svm_check_intercept(SVM_EXIT_INTR);
411
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
412
                        intno = cpu_get_pic_interrupt(env);
413
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
414
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
415
                        }
416
                        do_interrupt(intno, 0, 0, 0, 1);
417
                        /* ensure that no TB jump will be modified as
418
                           the program flow was changed */
419
#if defined(__sparc__) && !defined(HOST_SOLARIS)
420
                        tmp_T0 = 0;
421
#else
422
                        T0 = 0;
423
#endif
424
#if !defined(CONFIG_USER_ONLY)
425
                    } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
426
                        (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
427
                         int intno;
428
                         /* FIXME: this should respect TPR */
429
                         env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
430
                         stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
431
                                  ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
432
                         intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
433
                         if (loglevel & CPU_LOG_TB_IN_ASM)
434
                             fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
435
                         do_interrupt(intno, 0, 0, -1, 1);
436
#if defined(__sparc__) && !defined(HOST_SOLARIS)
437
                         tmp_T0 = 0;
438
#else
439
                         T0 = 0;
440
#endif
441
#endif
442
                    }
443
#elif defined(TARGET_PPC)
444
#if 0
445
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
446
                        cpu_ppc_reset(env);
447
                    }
448
#endif
449
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
450
                        ppc_hw_interrupt(env);
451
                        if (env->pending_interrupts == 0)
452
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
453
#if defined(__sparc__) && !defined(HOST_SOLARIS)
454
                        tmp_T0 = 0;
455
#else
456
                        T0 = 0;
457
#endif
458
                    }
459
#elif defined(TARGET_MIPS)
460
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
461
                        (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
462
                        (env->CP0_Status & (1 << CP0St_IE)) &&
463
                        !(env->CP0_Status & (1 << CP0St_EXL)) &&
464
                        !(env->CP0_Status & (1 << CP0St_ERL)) &&
465
                        !(env->hflags & MIPS_HFLAG_DM)) {
466
                        /* Raise it */
467
                        env->exception_index = EXCP_EXT_INTERRUPT;
468
                        env->error_code = 0;
469
                        do_interrupt(env);
470
#if defined(__sparc__) && !defined(HOST_SOLARIS)
471
                        tmp_T0 = 0;
472
#else
473
                        T0 = 0;
474
#endif
475
                    }
476
#elif defined(TARGET_SPARC)
477
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
478
                        (env->psret != 0)) {
479
                        int pil = env->interrupt_index & 15;
480
                        int type = env->interrupt_index & 0xf0;
481

    
482
                        if (((type == TT_EXTINT) &&
483
                             (pil == 15 || pil > env->psrpil)) ||
484
                            type != TT_EXTINT) {
485
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
486
                            do_interrupt(env->interrupt_index);
487
                            env->interrupt_index = 0;
488
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
489
                            cpu_check_irqs(env);
490
#endif
491
#if defined(__sparc__) && !defined(HOST_SOLARIS)
492
                            tmp_T0 = 0;
493
#else
494
                            T0 = 0;
495
#endif
496
                        }
497
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
498
                        //do_interrupt(0, 0, 0, 0, 0);
499
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
500
                    }
501
#elif defined(TARGET_ARM)
502
                    if (interrupt_request & CPU_INTERRUPT_FIQ
503
                        && !(env->uncached_cpsr & CPSR_F)) {
504
                        env->exception_index = EXCP_FIQ;
505
                        do_interrupt(env);
506
                    }
507
                    if (interrupt_request & CPU_INTERRUPT_HARD
508
                        && !(env->uncached_cpsr & CPSR_I)) {
509
                        env->exception_index = EXCP_IRQ;
510
                        do_interrupt(env);
511
                    }
512
#elif defined(TARGET_SH4)
513
                    /* XXXXX */
514
#elif defined(TARGET_ALPHA)
515
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
516
                        do_interrupt(env);
517
                    }
518
#elif defined(TARGET_M68K)
519
                    if (interrupt_request & CPU_INTERRUPT_HARD
520
                        && ((env->sr & SR_I) >> SR_I_SHIFT)
521
                            < env->pending_level) {
522
                        /* Real hardware gets the interrupt vector via an
523
                           IACK cycle at this point.  Current emulated
524
                           hardware doesn't rely on this, so we
525
                           provide/save the vector when the interrupt is
526
                           first signalled.  */
527
                        env->exception_index = env->pending_vector;
528
                        do_interrupt(1);
529
                    }
530
#endif
531
                   /* Don't use the cached interupt_request value,
532
                      do_interrupt may have updated the EXITTB flag. */
533
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
534
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
535
                        /* ensure that no TB jump will be modified as
536
                           the program flow was changed */
537
#if defined(__sparc__) && !defined(HOST_SOLARIS)
538
                        tmp_T0 = 0;
539
#else
540
                        T0 = 0;
541
#endif
542
                    }
543
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
544
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
545
                        env->exception_index = EXCP_INTERRUPT;
546
                        cpu_loop_exit();
547
                    }
548
                }
549
#ifdef DEBUG_EXEC
550
                if ((loglevel & CPU_LOG_TB_CPU)) {
551
                    /* restore flags in standard format */
552
                    regs_to_env();
553
#if defined(TARGET_I386)
554
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
555
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
556
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
557
#elif defined(TARGET_ARM)
558
                    cpu_dump_state(env, logfile, fprintf, 0);
559
#elif defined(TARGET_SPARC)
560
                    REGWPTR = env->regbase + (env->cwp * 16);
561
                    env->regwptr = REGWPTR;
562
                    cpu_dump_state(env, logfile, fprintf, 0);
563
#elif defined(TARGET_PPC)
564
                    cpu_dump_state(env, logfile, fprintf, 0);
565
#elif defined(TARGET_M68K)
566
                    cpu_m68k_flush_flags(env, env->cc_op);
567
                    env->cc_op = CC_OP_FLAGS;
568
                    env->sr = (env->sr & 0xffe0)
569
                              | env->cc_dest | (env->cc_x << 4);
570
                    cpu_dump_state(env, logfile, fprintf, 0);
571
#elif defined(TARGET_MIPS)
572
                    cpu_dump_state(env, logfile, fprintf, 0);
573
#elif defined(TARGET_SH4)
574
                    cpu_dump_state(env, logfile, fprintf, 0);
575
#elif defined(TARGET_ALPHA)
576
                    cpu_dump_state(env, logfile, fprintf, 0);
577
#else
578
#error unsupported target CPU
579
#endif
580
                }
581
#endif
582
                tb = tb_find_fast();
583
#ifdef DEBUG_EXEC
584
                if ((loglevel & CPU_LOG_EXEC)) {
585
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
586
                            (long)tb->tc_ptr, tb->pc,
587
                            lookup_symbol(tb->pc));
588
                }
589
#endif
590
#if defined(__sparc__) && !defined(HOST_SOLARIS)
591
                T0 = tmp_T0;
592
#endif
593
                /* see if we can patch the calling TB. When the TB
594
                   spans two pages, we cannot safely do a direct
595
                   jump. */
596
                {
597
                    if (T0 != 0 &&
598
#if USE_KQEMU
599
                        (env->kqemu_enabled != 2) &&
600
#endif
601
                        tb->page_addr[1] == -1
602
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
603
                    && (tb->cflags & CF_CODE_COPY) ==
604
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
605
#endif
606
                    ) {
607
                    spin_lock(&tb_lock);
608
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
609
#if defined(USE_CODE_COPY)
610
                    /* propagates the FP use info */
611
                    ((TranslationBlock *)(T0 & ~3))->cflags |=
612
                        (tb->cflags & CF_FP_USED);
613
#endif
614
                    spin_unlock(&tb_lock);
615
                }
616
                }
617
                tc_ptr = tb->tc_ptr;
618
                env->current_tb = tb;
619
                /* execute the generated code */
620
                gen_func = (void *)tc_ptr;
621
#if defined(__sparc__)
622
                __asm__ __volatile__("call        %0\n\t"
623
                                     "mov        %%o7,%%i0"
624
                                     : /* no outputs */
625
                                     : "r" (gen_func)
626
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
627
                                       "o0", "o1", "o2", "o3", "o4", "o5",
628
                                       "l0", "l1", "l2", "l3", "l4", "l5",
629
                                       "l6", "l7");
630
#elif defined(__arm__)
631
                asm volatile ("mov pc, %0\n\t"
632
                              ".global exec_loop\n\t"
633
                              "exec_loop:\n\t"
634
                              : /* no outputs */
635
                              : "r" (gen_func)
636
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
637
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
638
{
639
    if (!(tb->cflags & CF_CODE_COPY)) {
640
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
641
            save_native_fp_state(env);
642
        }
643
        gen_func();
644
    } else {
645
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
646
            restore_native_fp_state(env);
647
        }
648
        /* we work with native eflags */
649
        CC_SRC = cc_table[CC_OP].compute_all();
650
        CC_OP = CC_OP_EFLAGS;
651
        asm(".globl exec_loop\n"
652
            "\n"
653
            "debug1:\n"
654
            "    pushl %%ebp\n"
655
            "    fs movl %10, %9\n"
656
            "    fs movl %11, %%eax\n"
657
            "    andl $0x400, %%eax\n"
658
            "    fs orl %8, %%eax\n"
659
            "    pushl %%eax\n"
660
            "    popf\n"
661
            "    fs movl %%esp, %12\n"
662
            "    fs movl %0, %%eax\n"
663
            "    fs movl %1, %%ecx\n"
664
            "    fs movl %2, %%edx\n"
665
            "    fs movl %3, %%ebx\n"
666
            "    fs movl %4, %%esp\n"
667
            "    fs movl %5, %%ebp\n"
668
            "    fs movl %6, %%esi\n"
669
            "    fs movl %7, %%edi\n"
670
            "    fs jmp *%9\n"
671
            "exec_loop:\n"
672
            "    fs movl %%esp, %4\n"
673
            "    fs movl %12, %%esp\n"
674
            "    fs movl %%eax, %0\n"
675
            "    fs movl %%ecx, %1\n"
676
            "    fs movl %%edx, %2\n"
677
            "    fs movl %%ebx, %3\n"
678
            "    fs movl %%ebp, %5\n"
679
            "    fs movl %%esi, %6\n"
680
            "    fs movl %%edi, %7\n"
681
            "    pushf\n"
682
            "    popl %%eax\n"
683
            "    movl %%eax, %%ecx\n"
684
            "    andl $0x400, %%ecx\n"
685
            "    shrl $9, %%ecx\n"
686
            "    andl $0x8d5, %%eax\n"
687
            "    fs movl %%eax, %8\n"
688
            "    movl $1, %%eax\n"
689
            "    subl %%ecx, %%eax\n"
690
            "    fs movl %%eax, %11\n"
691
            "    fs movl %9, %%ebx\n" /* get T0 value */
692
            "    popl %%ebp\n"
693
            :
694
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
695
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
696
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
697
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
698
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
699
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
700
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
701
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
702
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
703
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
704
            "a" (gen_func),
705
            "m" (*(uint8_t *)offsetof(CPUState, df)),
706
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
707
            : "%ecx", "%edx"
708
            );
709
    }
710
}
711
#elif defined(__ia64)
712
                struct fptr {
713
                        void *ip;
714
                        void *gp;
715
                } fp;
716

    
717
                fp.ip = tc_ptr;
718
                fp.gp = code_gen_buffer + 2 * (1 << 20);
719
                (*(void (*)(void)) &fp)();
720
#else
721
                gen_func();
722
#endif
723
                env->current_tb = NULL;
724
                /* reset soft MMU for next block (it can currently
725
                   only be set by a memory fault) */
726
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
727
                if (env->hflags & HF_SOFTMMU_MASK) {
728
                    env->hflags &= ~HF_SOFTMMU_MASK;
729
                    /* do not allow linking to another block */
730
                    T0 = 0;
731
                }
732
#endif
733
#if defined(USE_KQEMU)
734
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
735
                if (kqemu_is_ok(env) &&
736
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
737
                    cpu_loop_exit();
738
                }
739
#endif
740
            } /* for(;;) */
741
        } else {
742
            env_to_regs();
743
        }
744
    } /* for(;;) */
745

    
746

    
747
#if defined(TARGET_I386)
748
#if defined(USE_CODE_COPY)
749
    if (env->native_fp_regs) {
750
        save_native_fp_state(env);
751
    }
752
#endif
753
    /* restore flags in standard format */
754
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
755
#elif defined(TARGET_ARM)
756
    /* XXX: Save/restore host fpu exception state?.  */
757
#elif defined(TARGET_SPARC)
758
#if defined(reg_REGWPTR)
759
    REGWPTR = saved_regwptr;
760
#endif
761
#elif defined(TARGET_PPC)
762
#elif defined(TARGET_M68K)
763
    cpu_m68k_flush_flags(env, env->cc_op);
764
    env->cc_op = CC_OP_FLAGS;
765
    env->sr = (env->sr & 0xffe0)
766
              | env->cc_dest | (env->cc_x << 4);
767
#elif defined(TARGET_MIPS)
768
#elif defined(TARGET_SH4)
769
#elif defined(TARGET_ALPHA)
770
    /* XXXXX */
771
#else
772
#error unsupported target CPU
773
#endif
774

    
775
    /* restore global registers */
776
#if defined(__sparc__) && !defined(HOST_SOLARIS)
777
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
778
#endif
779
#include "hostregs_helper.h"
780

    
781
    /* fail safe : never use cpu_single_env outside cpu_exec() */
782
    cpu_single_env = NULL;
783
    return ret;
784
}
785

    
786
/* must only be called from the generated code as an exception can be
787
   generated */
788
void tb_invalidate_page_range(target_ulong start, target_ulong end)
789
{
790
    /* XXX: cannot enable it yet because it yields to MMU exception
791
       where NIP != read address on PowerPC */
792
#if 0
793
    target_ulong phys_addr;
794
    phys_addr = get_phys_addr_code(env, start);
795
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
796
#endif
797
}
798

    
799
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
800

    
801
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
802
{
803
    CPUX86State *saved_env;
804

    
805
    saved_env = env;
806
    env = s;
807
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
808
        selector &= 0xffff;
809
        cpu_x86_load_seg_cache(env, seg_reg, selector,
810
                               (selector << 4), 0xffff, 0);
811
    } else {
812
        load_seg(seg_reg, selector);
813
    }
814
    env = saved_env;
815
}
816

    
817
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
818
{
819
    CPUX86State *saved_env;
820

    
821
    saved_env = env;
822
    env = s;
823

    
824
    helper_fsave((target_ulong)ptr, data32);
825

    
826
    env = saved_env;
827
}
828

    
829
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
830
{
831
    CPUX86State *saved_env;
832

    
833
    saved_env = env;
834
    env = s;
835

    
836
    helper_frstor((target_ulong)ptr, data32);
837

    
838
    env = saved_env;
839
}
840

    
841
#endif /* TARGET_I386 */
842

    
843
#if !defined(CONFIG_SOFTMMU)
844

    
845
#if defined(TARGET_I386)
846

    
847
/* 'pc' is the host PC at which the exception was raised. 'address' is
848
   the effective address of the memory exception. 'is_write' is 1 if a
849
   write caused the exception and otherwise 0'. 'old_set' is the
850
   signal set which should be restored */
851
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
852
                                    int is_write, sigset_t *old_set,
853
                                    void *puc)
854
{
855
    TranslationBlock *tb;
856
    int ret;
857

    
858
    if (cpu_single_env)
859
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
860
#if defined(DEBUG_SIGNAL)
861
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
862
                pc, address, is_write, *(unsigned long *)old_set);
863
#endif
864
    /* XXX: locking issue */
865
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
866
        return 1;
867
    }
868

    
869
    /* see if it is an MMU fault */
870
    ret = cpu_x86_handle_mmu_fault(env, address, is_write,
871
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
872
    if (ret < 0)
873
        return 0; /* not an MMU fault */
874
    if (ret == 0)
875
        return 1; /* the MMU fault was handled without causing real CPU fault */
876
    /* now we have a real cpu fault */
877
    tb = tb_find_pc(pc);
878
    if (tb) {
879
        /* the PC is inside the translated code. It means that we have
880
           a virtual CPU fault */
881
        cpu_restore_state(tb, env, pc, puc);
882
    }
883
    if (ret == 1) {
884
#if 0
885
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
886
               env->eip, env->cr[2], env->error_code);
887
#endif
888
        /* we restore the process signal mask as the sigreturn should
889
           do it (XXX: use sigsetjmp) */
890
        sigprocmask(SIG_SETMASK, old_set, NULL);
891
        raise_exception_err(env->exception_index, env->error_code);
892
    } else {
893
        /* activate soft MMU for this block */
894
        env->hflags |= HF_SOFTMMU_MASK;
895
        cpu_resume_from_signal(env, puc);
896
    }
897
    /* never comes here */
898
    return 1;
899
}
900

    
901
#elif defined(TARGET_ARM)
902
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
903
                                    int is_write, sigset_t *old_set,
904
                                    void *puc)
905
{
906
    TranslationBlock *tb;
907
    int ret;
908

    
909
    if (cpu_single_env)
910
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
911
#if defined(DEBUG_SIGNAL)
912
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
913
           pc, address, is_write, *(unsigned long *)old_set);
914
#endif
915
    /* XXX: locking issue */
916
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
917
        return 1;
918
    }
919
    /* see if it is an MMU fault */
920
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
921
    if (ret < 0)
922
        return 0; /* not an MMU fault */
923
    if (ret == 0)
924
        return 1; /* the MMU fault was handled without causing real CPU fault */
925
    /* now we have a real cpu fault */
926
    tb = tb_find_pc(pc);
927
    if (tb) {
928
        /* the PC is inside the translated code. It means that we have
929
           a virtual CPU fault */
930
        cpu_restore_state(tb, env, pc, puc);
931
    }
932
    /* we restore the process signal mask as the sigreturn should
933
       do it (XXX: use sigsetjmp) */
934
    sigprocmask(SIG_SETMASK, old_set, NULL);
935
    cpu_loop_exit();
936
}
937
#elif defined(TARGET_SPARC)
938
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
939
                                    int is_write, sigset_t *old_set,
940
                                    void *puc)
941
{
942
    TranslationBlock *tb;
943
    int ret;
944

    
945
    if (cpu_single_env)
946
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
947
#if defined(DEBUG_SIGNAL)
948
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
949
           pc, address, is_write, *(unsigned long *)old_set);
950
#endif
951
    /* XXX: locking issue */
952
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
953
        return 1;
954
    }
955
    /* see if it is an MMU fault */
956
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
957
    if (ret < 0)
958
        return 0; /* not an MMU fault */
959
    if (ret == 0)
960
        return 1; /* the MMU fault was handled without causing real CPU fault */
961
    /* now we have a real cpu fault */
962
    tb = tb_find_pc(pc);
963
    if (tb) {
964
        /* the PC is inside the translated code. It means that we have
965
           a virtual CPU fault */
966
        cpu_restore_state(tb, env, pc, puc);
967
    }
968
    /* we restore the process signal mask as the sigreturn should
969
       do it (XXX: use sigsetjmp) */
970
    sigprocmask(SIG_SETMASK, old_set, NULL);
971
    cpu_loop_exit();
972
}
973
#elif defined (TARGET_PPC)
974
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
975
                                    int is_write, sigset_t *old_set,
976
                                    void *puc)
977
{
978
    TranslationBlock *tb;
979
    int ret;
980

    
981
    if (cpu_single_env)
982
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
983
#if defined(DEBUG_SIGNAL)
984
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
985
           pc, address, is_write, *(unsigned long *)old_set);
986
#endif
987
    /* XXX: locking issue */
988
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
989
        return 1;
990
    }
991

    
992
    /* see if it is an MMU fault */
993
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
994
    if (ret < 0)
995
        return 0; /* not an MMU fault */
996
    if (ret == 0)
997
        return 1; /* the MMU fault was handled without causing real CPU fault */
998

    
999
    /* now we have a real cpu fault */
1000
    tb = tb_find_pc(pc);
1001
    if (tb) {
1002
        /* the PC is inside the translated code. It means that we have
1003
           a virtual CPU fault */
1004
        cpu_restore_state(tb, env, pc, puc);
1005
    }
1006
    if (ret == 1) {
1007
#if 0
1008
        printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1009
               env->nip, env->error_code, tb);
1010
#endif
1011
    /* we restore the process signal mask as the sigreturn should
1012
       do it (XXX: use sigsetjmp) */
1013
        sigprocmask(SIG_SETMASK, old_set, NULL);
1014
        do_raise_exception_err(env->exception_index, env->error_code);
1015
    } else {
1016
        /* activate soft MMU for this block */
1017
        cpu_resume_from_signal(env, puc);
1018
    }
1019
    /* never comes here */
1020
    return 1;
1021
}
1022

    
1023
#elif defined(TARGET_M68K)
1024
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1025
                                    int is_write, sigset_t *old_set,
1026
                                    void *puc)
1027
{
1028
    TranslationBlock *tb;
1029
    int ret;
1030

    
1031
    if (cpu_single_env)
1032
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1033
#if defined(DEBUG_SIGNAL)
1034
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1035
           pc, address, is_write, *(unsigned long *)old_set);
1036
#endif
1037
    /* XXX: locking issue */
1038
    if (is_write && page_unprotect(address, pc, puc)) {
1039
        return 1;
1040
    }
1041
    /* see if it is an MMU fault */
1042
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1043
    if (ret < 0)
1044
        return 0; /* not an MMU fault */
1045
    if (ret == 0)
1046
        return 1; /* the MMU fault was handled without causing real CPU fault */
1047
    /* now we have a real cpu fault */
1048
    tb = tb_find_pc(pc);
1049
    if (tb) {
1050
        /* the PC is inside the translated code. It means that we have
1051
           a virtual CPU fault */
1052
        cpu_restore_state(tb, env, pc, puc);
1053
    }
1054
    /* we restore the process signal mask as the sigreturn should
1055
       do it (XXX: use sigsetjmp) */
1056
    sigprocmask(SIG_SETMASK, old_set, NULL);
1057
    cpu_loop_exit();
1058
    /* never comes here */
1059
    return 1;
1060
}
1061

    
1062
#elif defined (TARGET_MIPS)
1063
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1064
                                    int is_write, sigset_t *old_set,
1065
                                    void *puc)
1066
{
1067
    TranslationBlock *tb;
1068
    int ret;
1069

    
1070
    if (cpu_single_env)
1071
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1072
#if defined(DEBUG_SIGNAL)
1073
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1074
           pc, address, is_write, *(unsigned long *)old_set);
1075
#endif
1076
    /* XXX: locking issue */
1077
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1078
        return 1;
1079
    }
1080

    
1081
    /* see if it is an MMU fault */
1082
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1083
    if (ret < 0)
1084
        return 0; /* not an MMU fault */
1085
    if (ret == 0)
1086
        return 1; /* the MMU fault was handled without causing real CPU fault */
1087

    
1088
    /* now we have a real cpu fault */
1089
    tb = tb_find_pc(pc);
1090
    if (tb) {
1091
        /* the PC is inside the translated code. It means that we have
1092
           a virtual CPU fault */
1093
        cpu_restore_state(tb, env, pc, puc);
1094
    }
1095
    if (ret == 1) {
1096
#if 0
1097
        printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1098
               env->PC, env->error_code, tb);
1099
#endif
1100
    /* we restore the process signal mask as the sigreturn should
1101
       do it (XXX: use sigsetjmp) */
1102
        sigprocmask(SIG_SETMASK, old_set, NULL);
1103
        do_raise_exception_err(env->exception_index, env->error_code);
1104
    } else {
1105
        /* activate soft MMU for this block */
1106
        cpu_resume_from_signal(env, puc);
1107
    }
1108
    /* never comes here */
1109
    return 1;
1110
}
1111

    
1112
#elif defined (TARGET_SH4)
1113
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1114
                                    int is_write, sigset_t *old_set,
1115
                                    void *puc)
1116
{
1117
    TranslationBlock *tb;
1118
    int ret;
1119

    
1120
    if (cpu_single_env)
1121
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1122
#if defined(DEBUG_SIGNAL)
1123
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1124
           pc, address, is_write, *(unsigned long *)old_set);
1125
#endif
1126
    /* XXX: locking issue */
1127
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1128
        return 1;
1129
    }
1130

    
1131
    /* see if it is an MMU fault */
1132
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1133
    if (ret < 0)
1134
        return 0; /* not an MMU fault */
1135
    if (ret == 0)
1136
        return 1; /* the MMU fault was handled without causing real CPU fault */
1137

    
1138
    /* now we have a real cpu fault */
1139
    tb = tb_find_pc(pc);
1140
    if (tb) {
1141
        /* the PC is inside the translated code. It means that we have
1142
           a virtual CPU fault */
1143
        cpu_restore_state(tb, env, pc, puc);
1144
    }
1145
#if 0
1146
        printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1147
               env->nip, env->error_code, tb);
1148
#endif
1149
    /* we restore the process signal mask as the sigreturn should
1150
       do it (XXX: use sigsetjmp) */
1151
    sigprocmask(SIG_SETMASK, old_set, NULL);
1152
    cpu_loop_exit();
1153
    /* never comes here */
1154
    return 1;
1155
}
1156

    
1157
#elif defined (TARGET_ALPHA)
1158
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1159
                                    int is_write, sigset_t *old_set,
1160
                                    void *puc)
1161
{
1162
    TranslationBlock *tb;
1163
    int ret;
1164

    
1165
    if (cpu_single_env)
1166
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1167
#if defined(DEBUG_SIGNAL)
1168
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1169
           pc, address, is_write, *(unsigned long *)old_set);
1170
#endif
1171
    /* XXX: locking issue */
1172
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1173
        return 1;
1174
    }
1175

    
1176
    /* see if it is an MMU fault */
1177
    ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1178
    if (ret < 0)
1179
        return 0; /* not an MMU fault */
1180
    if (ret == 0)
1181
        return 1; /* the MMU fault was handled without causing real CPU fault */
1182

    
1183
    /* now we have a real cpu fault */
1184
    tb = tb_find_pc(pc);
1185
    if (tb) {
1186
        /* the PC is inside the translated code. It means that we have
1187
           a virtual CPU fault */
1188
        cpu_restore_state(tb, env, pc, puc);
1189
    }
1190
#if 0
1191
        printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1192
               env->nip, env->error_code, tb);
1193
#endif
1194
    /* we restore the process signal mask as the sigreturn should
1195
       do it (XXX: use sigsetjmp) */
1196
    sigprocmask(SIG_SETMASK, old_set, NULL);
1197
    cpu_loop_exit();
1198
    /* never comes here */
1199
    return 1;
1200
}
1201
#else
1202
#error unsupported target CPU
1203
#endif
1204

    
1205
#if defined(__i386__)
1206

    
1207
#if defined(__APPLE__)
1208
# include <sys/ucontext.h>
1209

    
1210
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1211
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1212
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1213
#else
1214
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1215
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1216
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1217
#endif
1218

    
1219
#if defined(USE_CODE_COPY)
1220
static void cpu_send_trap(unsigned long pc, int trap,
1221
                          struct ucontext *uc)
1222
{
1223
    TranslationBlock *tb;
1224

    
1225
    if (cpu_single_env)
1226
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1227
    /* now we have a real cpu fault */
1228
    tb = tb_find_pc(pc);
1229
    if (tb) {
1230
        /* the PC is inside the translated code. It means that we have
1231
           a virtual CPU fault */
1232
        cpu_restore_state(tb, env, pc, uc);
1233
    }
1234
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1235
    raise_exception_err(trap, env->error_code);
1236
}
1237
#endif
1238

    
1239
int cpu_signal_handler(int host_signum, void *pinfo,
1240
                       void *puc)
1241
{
1242
    siginfo_t *info = pinfo;
1243
    struct ucontext *uc = puc;
1244
    unsigned long pc;
1245
    int trapno;
1246

    
1247
#ifndef REG_EIP
1248
/* for glibc 2.1 */
1249
#define REG_EIP    EIP
1250
#define REG_ERR    ERR
1251
#define REG_TRAPNO TRAPNO
1252
#endif
1253
    pc = EIP_sig(uc);
1254
    trapno = TRAP_sig(uc);
1255
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1256
    if (trapno == 0x00 || trapno == 0x05) {
1257
        /* send division by zero or bound exception */
1258
        cpu_send_trap(pc, trapno, uc);
1259
        return 1;
1260
    } else
1261
#endif
1262
        return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1263
                                 trapno == 0xe ?
1264
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1265
                                 &uc->uc_sigmask, puc);
1266
}
1267

    
1268
#elif defined(__x86_64__)
1269

    
1270
int cpu_signal_handler(int host_signum, void *pinfo,
1271
                       void *puc)
1272
{
1273
    siginfo_t *info = pinfo;
1274
    struct ucontext *uc = puc;
1275
    unsigned long pc;
1276

    
1277
    pc = uc->uc_mcontext.gregs[REG_RIP];
1278
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1279
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1280
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1281
                             &uc->uc_sigmask, puc);
1282
}
1283

    
1284
#elif defined(__powerpc__)
1285

    
1286
/***********************************************************************
1287
 * signal context platform-specific definitions
1288
 * From Wine
1289
 */
1290
#ifdef linux
1291
/* All Registers access - only for local access */
1292
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1293
/* Gpr Registers access  */
1294
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1295
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1296
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1297
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1298
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1299
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1300
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1301
/* Float Registers access  */
1302
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1303
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1304
/* Exception Registers access */
1305
# define DAR_sig(context)                        REG_sig(dar, context)
1306
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1307
# define TRAP_sig(context)                        REG_sig(trap, context)
1308
#endif /* linux */
1309

    
1310
#ifdef __APPLE__
1311
# include <sys/ucontext.h>
1312
typedef struct ucontext SIGCONTEXT;
1313
/* All Registers access - only for local access */
1314
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1315
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1316
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1317
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1318
/* Gpr Registers access */
1319
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1320
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1321
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1322
# define CTR_sig(context)                        REG_sig(ctr, context)
1323
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1324
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1325
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1326
/* Float Registers access */
1327
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1328
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1329
/* Exception Registers access */
1330
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1331
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1332
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1333
#endif /* __APPLE__ */
1334

    
1335
int cpu_signal_handler(int host_signum, void *pinfo,
1336
                       void *puc)
1337
{
1338
    siginfo_t *info = pinfo;
1339
    struct ucontext *uc = puc;
1340
    unsigned long pc;
1341
    int is_write;
1342

    
1343
    pc = IAR_sig(uc);
1344
    is_write = 0;
1345
#if 0
1346
    /* ppc 4xx case */
1347
    if (DSISR_sig(uc) & 0x00800000)
1348
        is_write = 1;
1349
#else
1350
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1351
        is_write = 1;
1352
#endif
1353
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1354
                             is_write, &uc->uc_sigmask, puc);
1355
}
1356

    
1357
#elif defined(__alpha__)
1358

    
1359
int cpu_signal_handler(int host_signum, void *pinfo,
1360
                           void *puc)
1361
{
1362
    siginfo_t *info = pinfo;
1363
    struct ucontext *uc = puc;
1364
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1365
    uint32_t insn = *pc;
1366
    int is_write = 0;
1367

    
1368
    /* XXX: need kernel patch to get write flag faster */
1369
    switch (insn >> 26) {
1370
    case 0x0d: // stw
1371
    case 0x0e: // stb
1372
    case 0x0f: // stq_u
1373
    case 0x24: // stf
1374
    case 0x25: // stg
1375
    case 0x26: // sts
1376
    case 0x27: // stt
1377
    case 0x2c: // stl
1378
    case 0x2d: // stq
1379
    case 0x2e: // stl_c
1380
    case 0x2f: // stq_c
1381
        is_write = 1;
1382
    }
1383

    
1384
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1385
                             is_write, &uc->uc_sigmask, puc);
1386
}
1387
#elif defined(__sparc__)
1388

    
1389
int cpu_signal_handler(int host_signum, void *pinfo,
1390
                       void *puc)
1391
{
1392
    siginfo_t *info = pinfo;
1393
    uint32_t *regs = (uint32_t *)(info + 1);
1394
    void *sigmask = (regs + 20);
1395
    unsigned long pc;
1396
    int is_write;
1397
    uint32_t insn;
1398

    
1399
    /* XXX: is there a standard glibc define ? */
1400
    pc = regs[1];
1401
    /* XXX: need kernel patch to get write flag faster */
1402
    is_write = 0;
1403
    insn = *(uint32_t *)pc;
1404
    if ((insn >> 30) == 3) {
1405
      switch((insn >> 19) & 0x3f) {
1406
      case 0x05: // stb
1407
      case 0x06: // sth
1408
      case 0x04: // st
1409
      case 0x07: // std
1410
      case 0x24: // stf
1411
      case 0x27: // stdf
1412
      case 0x25: // stfsr
1413
        is_write = 1;
1414
        break;
1415
      }
1416
    }
1417
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1418
                             is_write, sigmask, NULL);
1419
}
1420

    
1421
#elif defined(__arm__)
1422

    
1423
int cpu_signal_handler(int host_signum, void *pinfo,
1424
                       void *puc)
1425
{
1426
    siginfo_t *info = pinfo;
1427
    struct ucontext *uc = puc;
1428
    unsigned long pc;
1429
    int is_write;
1430

    
1431
    pc = uc->uc_mcontext.gregs[R15];
1432
    /* XXX: compute is_write */
1433
    is_write = 0;
1434
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1435
                             is_write,
1436
                             &uc->uc_sigmask, puc);
1437
}
1438

    
1439
#elif defined(__mc68000)
1440

    
1441
int cpu_signal_handler(int host_signum, void *pinfo,
1442
                       void *puc)
1443
{
1444
    siginfo_t *info = pinfo;
1445
    struct ucontext *uc = puc;
1446
    unsigned long pc;
1447
    int is_write;
1448

    
1449
    pc = uc->uc_mcontext.gregs[16];
1450
    /* XXX: compute is_write */
1451
    is_write = 0;
1452
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1453
                             is_write,
1454
                             &uc->uc_sigmask, puc);
1455
}
1456

    
1457
#elif defined(__ia64)
1458

    
1459
#ifndef __ISR_VALID
1460
  /* This ought to be in <bits/siginfo.h>... */
1461
# define __ISR_VALID        1
1462
#endif
1463

    
1464
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1465
{
1466
    siginfo_t *info = pinfo;
1467
    struct ucontext *uc = puc;
1468
    unsigned long ip;
1469
    int is_write = 0;
1470

    
1471
    ip = uc->uc_mcontext.sc_ip;
1472
    switch (host_signum) {
1473
      case SIGILL:
1474
      case SIGFPE:
1475
      case SIGSEGV:
1476
      case SIGBUS:
1477
      case SIGTRAP:
1478
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1479
              /* ISR.W (write-access) is bit 33:  */
1480
              is_write = (info->si_isr >> 33) & 1;
1481
          break;
1482

    
1483
      default:
1484
          break;
1485
    }
1486
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1487
                             is_write,
1488
                             &uc->uc_sigmask, puc);
1489
}
1490

    
1491
#elif defined(__s390__)
1492

    
1493
int cpu_signal_handler(int host_signum, void *pinfo,
1494
                       void *puc)
1495
{
1496
    siginfo_t *info = pinfo;
1497
    struct ucontext *uc = puc;
1498
    unsigned long pc;
1499
    int is_write;
1500

    
1501
    pc = uc->uc_mcontext.psw.addr;
1502
    /* XXX: compute is_write */
1503
    is_write = 0;
1504
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1505
                             is_write, &uc->uc_sigmask, puc);
1506
}
1507

    
1508
#elif defined(__mips__)
1509

    
1510
int cpu_signal_handler(int host_signum, void *pinfo,
1511
                       void *puc)
1512
{
1513
    siginfo_t *info = pinfo;
1514
    struct ucontext *uc = puc;
1515
    greg_t pc = uc->uc_mcontext.pc;
1516
    int is_write;
1517

    
1518
    /* XXX: compute is_write */
1519
    is_write = 0;
1520
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1521
                             is_write, &uc->uc_sigmask, puc);
1522
}
1523

    
1524
#else
1525

    
1526
#error host CPU specific signal handler needed
1527

    
1528
#endif
1529

    
1530
#endif /* !defined(CONFIG_SOFTMMU) */