Statistics
| Branch: | Revision:

root / hw / hpet.c @ 072c2c31

History | View | Annotate | Download (22.1 kB)

1
/*
2
 *  High Precisition Event Timer emulation
3
 *
4
 *  Copyright (c) 2007 Alexander Graf
5
 *  Copyright (c) 2008 IBM Corporation
6
 *
7
 *  Authors: Beth Kon <bkon@us.ibm.com>
8
 *
9
 * This library is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2 of the License, or (at your option) any later version.
13
 *
14
 * This library is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21
 *
22
 * *****************************************************************
23
 *
24
 * This driver attempts to emulate an HPET device in software.
25
 */
26

    
27
#include "hw.h"
28
#include "pc.h"
29
#include "console.h"
30
#include "qemu-timer.h"
31
#include "hpet_emul.h"
32
#include "sysbus.h"
33
#include "mc146818rtc.h"
34

    
35
//#define HPET_DEBUG
36
#ifdef HPET_DEBUG
37
#define DPRINTF printf
38
#else
39
#define DPRINTF(...)
40
#endif
41

    
42
#define HPET_MSI_SUPPORT        0
43

    
44
struct HPETState;
45
typedef struct HPETTimer {  /* timers */
46
    uint8_t tn;             /*timer number*/
47
    QEMUTimer *qemu_timer;
48
    struct HPETState *state;
49
    /* Memory-mapped, software visible timer registers */
50
    uint64_t config;        /* configuration/cap */
51
    uint64_t cmp;           /* comparator */
52
    uint64_t fsb;           /* FSB route */
53
    /* Hidden register state */
54
    uint64_t period;        /* Last value written to comparator */
55
    uint8_t wrap_flag;      /* timer pop will indicate wrap for one-shot 32-bit
56
                             * mode. Next pop will be actual timer expiration.
57
                             */
58
} HPETTimer;
59

    
60
typedef struct HPETState {
61
    SysBusDevice busdev;
62
    uint64_t hpet_offset;
63
    qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
64
    uint32_t flags;
65
    uint8_t rtc_irq_level;
66
    uint8_t num_timers;
67
    HPETTimer timer[HPET_MAX_TIMERS];
68

    
69
    /* Memory-mapped, software visible registers */
70
    uint64_t capability;        /* capabilities */
71
    uint64_t config;            /* configuration */
72
    uint64_t isr;               /* interrupt status reg */
73
    uint64_t hpet_counter;      /* main counter */
74
} HPETState;
75

    
76
static uint32_t hpet_in_legacy_mode(HPETState *s)
77
{
78
    return s->config & HPET_CFG_LEGACY;
79
}
80

    
81
static uint32_t timer_int_route(struct HPETTimer *timer)
82
{
83
    return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
84
}
85

    
86
static uint32_t timer_fsb_route(HPETTimer *t)
87
{
88
    return t->config & HPET_TN_FSB_ENABLE;
89
}
90

    
91
static uint32_t hpet_enabled(HPETState *s)
92
{
93
    return s->config & HPET_CFG_ENABLE;
94
}
95

    
96
static uint32_t timer_is_periodic(HPETTimer *t)
97
{
98
    return t->config & HPET_TN_PERIODIC;
99
}
100

    
101
static uint32_t timer_enabled(HPETTimer *t)
102
{
103
    return t->config & HPET_TN_ENABLE;
104
}
105

    
106
static uint32_t hpet_time_after(uint64_t a, uint64_t b)
107
{
108
    return ((int32_t)(b) - (int32_t)(a) < 0);
109
}
110

    
111
static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
112
{
113
    return ((int64_t)(b) - (int64_t)(a) < 0);
114
}
115

    
116
static uint64_t ticks_to_ns(uint64_t value)
117
{
118
    return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
119
}
120

    
121
static uint64_t ns_to_ticks(uint64_t value)
122
{
123
    return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
124
}
125

    
126
static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
127
{
128
    new &= mask;
129
    new |= old & ~mask;
130
    return new;
131
}
132

    
133
static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
134
{
135
    return (!(old & mask) && (new & mask));
136
}
137

    
138
static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
139
{
140
    return ((old & mask) && !(new & mask));
141
}
142

    
143
static uint64_t hpet_get_ticks(HPETState *s)
144
{
145
    return ns_to_ticks(qemu_get_clock(vm_clock) + s->hpet_offset);
146
}
147

    
148
/*
149
 * calculate diff between comparator value and current ticks
150
 */
151
static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
152
{
153

    
154
    if (t->config & HPET_TN_32BIT) {
155
        uint32_t diff, cmp;
156

    
157
        cmp = (uint32_t)t->cmp;
158
        diff = cmp - (uint32_t)current;
159
        diff = (int32_t)diff > 0 ? diff : (uint32_t)0;
160
        return (uint64_t)diff;
161
    } else {
162
        uint64_t diff, cmp;
163

    
164
        cmp = t->cmp;
165
        diff = cmp - current;
166
        diff = (int64_t)diff > 0 ? diff : (uint64_t)0;
167
        return diff;
168
    }
169
}
170

    
171
static void update_irq(struct HPETTimer *timer, int set)
172
{
173
    uint64_t mask;
174
    HPETState *s;
175
    int route;
176

    
177
    if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
178
        /* if LegacyReplacementRoute bit is set, HPET specification requires
179
         * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
180
         * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
181
         */
182
        route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
183
    } else {
184
        route = timer_int_route(timer);
185
    }
186
    s = timer->state;
187
    mask = 1 << timer->tn;
188
    if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
189
        s->isr &= ~mask;
190
        if (!timer_fsb_route(timer)) {
191
            qemu_irq_lower(s->irqs[route]);
192
        }
193
    } else if (timer_fsb_route(timer)) {
194
        stl_phys(timer->fsb >> 32, timer->fsb & 0xffffffff);
195
    } else if (timer->config & HPET_TN_TYPE_LEVEL) {
196
        s->isr |= mask;
197
        qemu_irq_raise(s->irqs[route]);
198
    } else {
199
        s->isr &= ~mask;
200
        qemu_irq_pulse(s->irqs[route]);
201
    }
202
}
203

    
204
static void hpet_pre_save(void *opaque)
205
{
206
    HPETState *s = opaque;
207

    
208
    /* save current counter value */
209
    s->hpet_counter = hpet_get_ticks(s);
210
}
211

    
212
static int hpet_pre_load(void *opaque)
213
{
214
    HPETState *s = opaque;
215

    
216
    /* version 1 only supports 3, later versions will load the actual value */
217
    s->num_timers = HPET_MIN_TIMERS;
218
    return 0;
219
}
220

    
221
static int hpet_post_load(void *opaque, int version_id)
222
{
223
    HPETState *s = opaque;
224

    
225
    /* Recalculate the offset between the main counter and guest time */
226
    s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_get_clock(vm_clock);
227

    
228
    /* Push number of timers into capability returned via HPET_ID */
229
    s->capability &= ~HPET_ID_NUM_TIM_MASK;
230
    s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
231

    
232
    /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
233
    s->flags &= ~(1 << HPET_MSI_SUPPORT);
234
    if (s->timer[0].config & HPET_TN_FSB_CAP) {
235
        s->flags |= 1 << HPET_MSI_SUPPORT;
236
    }
237
    return 0;
238
}
239

    
240
static const VMStateDescription vmstate_hpet_timer = {
241
    .name = "hpet_timer",
242
    .version_id = 1,
243
    .minimum_version_id = 1,
244
    .minimum_version_id_old = 1,
245
    .fields      = (VMStateField []) {
246
        VMSTATE_UINT8(tn, HPETTimer),
247
        VMSTATE_UINT64(config, HPETTimer),
248
        VMSTATE_UINT64(cmp, HPETTimer),
249
        VMSTATE_UINT64(fsb, HPETTimer),
250
        VMSTATE_UINT64(period, HPETTimer),
251
        VMSTATE_UINT8(wrap_flag, HPETTimer),
252
        VMSTATE_TIMER(qemu_timer, HPETTimer),
253
        VMSTATE_END_OF_LIST()
254
    }
255
};
256

    
257
static const VMStateDescription vmstate_hpet = {
258
    .name = "hpet",
259
    .version_id = 2,
260
    .minimum_version_id = 1,
261
    .minimum_version_id_old = 1,
262
    .pre_save = hpet_pre_save,
263
    .pre_load = hpet_pre_load,
264
    .post_load = hpet_post_load,
265
    .fields      = (VMStateField []) {
266
        VMSTATE_UINT64(config, HPETState),
267
        VMSTATE_UINT64(isr, HPETState),
268
        VMSTATE_UINT64(hpet_counter, HPETState),
269
        VMSTATE_UINT8_V(num_timers, HPETState, 2),
270
        VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
271
                                    vmstate_hpet_timer, HPETTimer),
272
        VMSTATE_END_OF_LIST()
273
    }
274
};
275

    
276
/*
277
 * timer expiration callback
278
 */
279
static void hpet_timer(void *opaque)
280
{
281
    HPETTimer *t = opaque;
282
    uint64_t diff;
283

    
284
    uint64_t period = t->period;
285
    uint64_t cur_tick = hpet_get_ticks(t->state);
286

    
287
    if (timer_is_periodic(t) && period != 0) {
288
        if (t->config & HPET_TN_32BIT) {
289
            while (hpet_time_after(cur_tick, t->cmp)) {
290
                t->cmp = (uint32_t)(t->cmp + t->period);
291
            }
292
        } else {
293
            while (hpet_time_after64(cur_tick, t->cmp)) {
294
                t->cmp += period;
295
            }
296
        }
297
        diff = hpet_calculate_diff(t, cur_tick);
298
        qemu_mod_timer(t->qemu_timer,
299
                       qemu_get_clock(vm_clock) + (int64_t)ticks_to_ns(diff));
300
    } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
301
        if (t->wrap_flag) {
302
            diff = hpet_calculate_diff(t, cur_tick);
303
            qemu_mod_timer(t->qemu_timer, qemu_get_clock(vm_clock) +
304
                           (int64_t)ticks_to_ns(diff));
305
            t->wrap_flag = 0;
306
        }
307
    }
308
    update_irq(t, 1);
309
}
310

    
311
static void hpet_set_timer(HPETTimer *t)
312
{
313
    uint64_t diff;
314
    uint32_t wrap_diff;  /* how many ticks until we wrap? */
315
    uint64_t cur_tick = hpet_get_ticks(t->state);
316

    
317
    /* whenever new timer is being set up, make sure wrap_flag is 0 */
318
    t->wrap_flag = 0;
319
    diff = hpet_calculate_diff(t, cur_tick);
320

    
321
    /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
322
     * counter wraps in addition to an interrupt with comparator match.
323
     */
324
    if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
325
        wrap_diff = 0xffffffff - (uint32_t)cur_tick;
326
        if (wrap_diff < (uint32_t)diff) {
327
            diff = wrap_diff;
328
            t->wrap_flag = 1;
329
        }
330
    }
331
    qemu_mod_timer(t->qemu_timer,
332
                   qemu_get_clock(vm_clock) + (int64_t)ticks_to_ns(diff));
333
}
334

    
335
static void hpet_del_timer(HPETTimer *t)
336
{
337
    qemu_del_timer(t->qemu_timer);
338
    update_irq(t, 0);
339
}
340

    
341
#ifdef HPET_DEBUG
342
static uint32_t hpet_ram_readb(void *opaque, target_phys_addr_t addr)
343
{
344
    printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
345
    return 0;
346
}
347

    
348
static uint32_t hpet_ram_readw(void *opaque, target_phys_addr_t addr)
349
{
350
    printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
351
    return 0;
352
}
353
#endif
354

    
355
static uint32_t hpet_ram_readl(void *opaque, target_phys_addr_t addr)
356
{
357
    HPETState *s = opaque;
358
    uint64_t cur_tick, index;
359

    
360
    DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
361
    index = addr;
362
    /*address range of all TN regs*/
363
    if (index >= 0x100 && index <= 0x3ff) {
364
        uint8_t timer_id = (addr - 0x100) / 0x20;
365
        HPETTimer *timer = &s->timer[timer_id];
366

    
367
        if (timer_id > s->num_timers) {
368
            DPRINTF("qemu: timer id out of range\n");
369
            return 0;
370
        }
371

    
372
        switch ((addr - 0x100) % 0x20) {
373
        case HPET_TN_CFG:
374
            return timer->config;
375
        case HPET_TN_CFG + 4: // Interrupt capabilities
376
            return timer->config >> 32;
377
        case HPET_TN_CMP: // comparator register
378
            return timer->cmp;
379
        case HPET_TN_CMP + 4:
380
            return timer->cmp >> 32;
381
        case HPET_TN_ROUTE:
382
            return timer->fsb;
383
        case HPET_TN_ROUTE + 4:
384
            return timer->fsb >> 32;
385
        default:
386
            DPRINTF("qemu: invalid hpet_ram_readl\n");
387
            break;
388
        }
389
    } else {
390
        switch (index) {
391
        case HPET_ID:
392
            return s->capability;
393
        case HPET_PERIOD:
394
            return s->capability >> 32;
395
        case HPET_CFG:
396
            return s->config;
397
        case HPET_CFG + 4:
398
            DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl \n");
399
            return 0;
400
        case HPET_COUNTER:
401
            if (hpet_enabled(s)) {
402
                cur_tick = hpet_get_ticks(s);
403
            } else {
404
                cur_tick = s->hpet_counter;
405
            }
406
            DPRINTF("qemu: reading counter  = %" PRIx64 "\n", cur_tick);
407
            return cur_tick;
408
        case HPET_COUNTER + 4:
409
            if (hpet_enabled(s)) {
410
                cur_tick = hpet_get_ticks(s);
411
            } else {
412
                cur_tick = s->hpet_counter;
413
            }
414
            DPRINTF("qemu: reading counter + 4  = %" PRIx64 "\n", cur_tick);
415
            return cur_tick >> 32;
416
        case HPET_STATUS:
417
            return s->isr;
418
        default:
419
            DPRINTF("qemu: invalid hpet_ram_readl\n");
420
            break;
421
        }
422
    }
423
    return 0;
424
}
425

    
426
#ifdef HPET_DEBUG
427
static void hpet_ram_writeb(void *opaque, target_phys_addr_t addr,
428
                            uint32_t value)
429
{
430
    printf("qemu: invalid hpet_write b at %" PRIx64 " = %#x\n",
431
           addr, value);
432
}
433

    
434
static void hpet_ram_writew(void *opaque, target_phys_addr_t addr,
435
                            uint32_t value)
436
{
437
    printf("qemu: invalid hpet_write w at %" PRIx64 " = %#x\n",
438
           addr, value);
439
}
440
#endif
441

    
442
static void hpet_ram_writel(void *opaque, target_phys_addr_t addr,
443
                            uint32_t value)
444
{
445
    int i;
446
    HPETState *s = opaque;
447
    uint64_t old_val, new_val, val, index;
448

    
449
    DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
450
    index = addr;
451
    old_val = hpet_ram_readl(opaque, addr);
452
    new_val = value;
453

    
454
    /*address range of all TN regs*/
455
    if (index >= 0x100 && index <= 0x3ff) {
456
        uint8_t timer_id = (addr - 0x100) / 0x20;
457
        HPETTimer *timer = &s->timer[timer_id];
458

    
459
        DPRINTF("qemu: hpet_ram_writel timer_id = %#x \n", timer_id);
460
        if (timer_id > s->num_timers) {
461
            DPRINTF("qemu: timer id out of range\n");
462
            return;
463
        }
464
        switch ((addr - 0x100) % 0x20) {
465
        case HPET_TN_CFG:
466
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
467
            if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
468
                update_irq(timer, 0);
469
            }
470
            val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
471
            timer->config = (timer->config & 0xffffffff00000000ULL) | val;
472
            if (new_val & HPET_TN_32BIT) {
473
                timer->cmp = (uint32_t)timer->cmp;
474
                timer->period = (uint32_t)timer->period;
475
            }
476
            if (activating_bit(old_val, new_val, HPET_TN_ENABLE)) {
477
                hpet_set_timer(timer);
478
            } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
479
                hpet_del_timer(timer);
480
            }
481
            break;
482
        case HPET_TN_CFG + 4: // Interrupt capabilities
483
            DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
484
            break;
485
        case HPET_TN_CMP: // comparator register
486
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP \n");
487
            if (timer->config & HPET_TN_32BIT) {
488
                new_val = (uint32_t)new_val;
489
            }
490
            if (!timer_is_periodic(timer)
491
                || (timer->config & HPET_TN_SETVAL)) {
492
                timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
493
            }
494
            if (timer_is_periodic(timer)) {
495
                /*
496
                 * FIXME: Clamp period to reasonable min value?
497
                 * Clamp period to reasonable max value
498
                 */
499
                new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
500
                timer->period =
501
                    (timer->period & 0xffffffff00000000ULL) | new_val;
502
            }
503
            timer->config &= ~HPET_TN_SETVAL;
504
            if (hpet_enabled(s)) {
505
                hpet_set_timer(timer);
506
            }
507
            break;
508
        case HPET_TN_CMP + 4: // comparator register high order
509
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
510
            if (!timer_is_periodic(timer)
511
                || (timer->config & HPET_TN_SETVAL)) {
512
                timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
513
            } else {
514
                /*
515
                 * FIXME: Clamp period to reasonable min value?
516
                 * Clamp period to reasonable max value
517
                 */
518
                new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
519
                timer->period =
520
                    (timer->period & 0xffffffffULL) | new_val << 32;
521
                }
522
                timer->config &= ~HPET_TN_SETVAL;
523
                if (hpet_enabled(s)) {
524
                    hpet_set_timer(timer);
525
                }
526
                break;
527
        case HPET_TN_ROUTE:
528
            timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
529
            break;
530
        case HPET_TN_ROUTE + 4:
531
            timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
532
            break;
533
        default:
534
            DPRINTF("qemu: invalid hpet_ram_writel\n");
535
            break;
536
        }
537
        return;
538
    } else {
539
        switch (index) {
540
        case HPET_ID:
541
            return;
542
        case HPET_CFG:
543
            val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
544
            s->config = (s->config & 0xffffffff00000000ULL) | val;
545
            if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
546
                /* Enable main counter and interrupt generation. */
547
                s->hpet_offset =
548
                    ticks_to_ns(s->hpet_counter) - qemu_get_clock(vm_clock);
549
                for (i = 0; i < s->num_timers; i++) {
550
                    if ((&s->timer[i])->cmp != ~0ULL) {
551
                        hpet_set_timer(&s->timer[i]);
552
                    }
553
                }
554
            } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
555
                /* Halt main counter and disable interrupt generation. */
556
                s->hpet_counter = hpet_get_ticks(s);
557
                for (i = 0; i < s->num_timers; i++) {
558
                    hpet_del_timer(&s->timer[i]);
559
                }
560
            }
561
            /* i8254 and RTC are disabled when HPET is in legacy mode */
562
            if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
563
                hpet_pit_disable();
564
                qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
565
            } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
566
                hpet_pit_enable();
567
                qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
568
            }
569
            break;
570
        case HPET_CFG + 4:
571
            DPRINTF("qemu: invalid HPET_CFG+4 write \n");
572
            break;
573
        case HPET_STATUS:
574
            val = new_val & s->isr;
575
            for (i = 0; i < s->num_timers; i++) {
576
                if (val & (1 << i)) {
577
                    update_irq(&s->timer[i], 0);
578
                }
579
            }
580
            break;
581
        case HPET_COUNTER:
582
            if (hpet_enabled(s)) {
583
                DPRINTF("qemu: Writing counter while HPET enabled!\n");
584
            }
585
            s->hpet_counter =
586
                (s->hpet_counter & 0xffffffff00000000ULL) | value;
587
            DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
588
                    value, s->hpet_counter);
589
            break;
590
        case HPET_COUNTER + 4:
591
            if (hpet_enabled(s)) {
592
                DPRINTF("qemu: Writing counter while HPET enabled!\n");
593
            }
594
            s->hpet_counter =
595
                (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
596
            DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
597
                    value, s->hpet_counter);
598
            break;
599
        default:
600
            DPRINTF("qemu: invalid hpet_ram_writel\n");
601
            break;
602
        }
603
    }
604
}
605

    
606
static CPUReadMemoryFunc * const hpet_ram_read[] = {
607
#ifdef HPET_DEBUG
608
    hpet_ram_readb,
609
    hpet_ram_readw,
610
#else
611
    NULL,
612
    NULL,
613
#endif
614
    hpet_ram_readl,
615
};
616

    
617
static CPUWriteMemoryFunc * const hpet_ram_write[] = {
618
#ifdef HPET_DEBUG
619
    hpet_ram_writeb,
620
    hpet_ram_writew,
621
#else
622
    NULL,
623
    NULL,
624
#endif
625
    hpet_ram_writel,
626
};
627

    
628
static void hpet_reset(DeviceState *d)
629
{
630
    HPETState *s = FROM_SYSBUS(HPETState, sysbus_from_qdev(d));
631
    int i;
632
    static int count = 0;
633

    
634
    for (i = 0; i < s->num_timers; i++) {
635
        HPETTimer *timer = &s->timer[i];
636

    
637
        hpet_del_timer(timer);
638
        timer->cmp = ~0ULL;
639
        timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
640
        if (s->flags & (1 << HPET_MSI_SUPPORT)) {
641
            timer->config |= HPET_TN_FSB_CAP;
642
        }
643
        /* advertise availability of ioapic inti2 */
644
        timer->config |=  0x00000004ULL << 32;
645
        timer->period = 0ULL;
646
        timer->wrap_flag = 0;
647
    }
648

    
649
    s->hpet_counter = 0ULL;
650
    s->hpet_offset = 0ULL;
651
    s->config = 0ULL;
652
    if (count > 0) {
653
        /* we don't enable pit when hpet_reset is first called (by hpet_init)
654
         * because hpet is taking over for pit here. On subsequent invocations,
655
         * hpet_reset is called due to system reset. At this point control must
656
         * be returned to pit until SW reenables hpet.
657
         */
658
        hpet_pit_enable();
659
    }
660
    count = 1;
661
}
662

    
663
static void hpet_handle_rtc_irq(void *opaque, int n, int level)
664
{
665
    HPETState *s = FROM_SYSBUS(HPETState, opaque);
666

    
667
    s->rtc_irq_level = level;
668
    if (!hpet_in_legacy_mode(s)) {
669
        qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
670
    }
671
}
672

    
673
static int hpet_init(SysBusDevice *dev)
674
{
675
    HPETState *s = FROM_SYSBUS(HPETState, dev);
676
    int i, iomemtype;
677
    HPETTimer *timer;
678

    
679
    for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
680
        sysbus_init_irq(dev, &s->irqs[i]);
681
    }
682

    
683
    if (s->num_timers < HPET_MIN_TIMERS) {
684
        s->num_timers = HPET_MIN_TIMERS;
685
    } else if (s->num_timers > HPET_MAX_TIMERS) {
686
        s->num_timers = HPET_MAX_TIMERS;
687
    }
688
    for (i = 0; i < HPET_MAX_TIMERS; i++) {
689
        timer = &s->timer[i];
690
        timer->qemu_timer = qemu_new_timer(vm_clock, hpet_timer, timer);
691
        timer->tn = i;
692
        timer->state = s;
693
    }
694

    
695
    /* 64-bit main counter; LegacyReplacementRoute. */
696
    s->capability = 0x8086a001ULL;
697
    s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
698
    s->capability |= ((HPET_CLK_PERIOD) << 32);
699

    
700
    isa_reserve_irq(RTC_ISA_IRQ);
701
    qdev_init_gpio_in(&dev->qdev, hpet_handle_rtc_irq, 1);
702

    
703
    /* HPET Area */
704
    iomemtype = cpu_register_io_memory(hpet_ram_read,
705
                                       hpet_ram_write, s);
706
    sysbus_init_mmio(dev, 0x400, iomemtype);
707
    return 0;
708
}
709

    
710
static SysBusDeviceInfo hpet_device_info = {
711
    .qdev.name    = "hpet",
712
    .qdev.size    = sizeof(HPETState),
713
    .qdev.no_user = 1,
714
    .qdev.vmsd    = &vmstate_hpet,
715
    .qdev.reset   = hpet_reset,
716
    .init         = hpet_init,
717
    .qdev.props = (Property[]) {
718
        DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
719
        DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
720
        DEFINE_PROP_END_OF_LIST(),
721
    },
722
};
723

    
724
static void hpet_register_device(void)
725
{
726
    sysbus_register_withprop(&hpet_device_info);
727
}
728

    
729
device_init(hpet_register_device)