Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ 079d0b7f

History | View | Annotate | Download (68.3 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 */
24

    
25
#include "hw.h"
26
#include "qemu-timer.h"
27
#include "usb.h"
28
#include "pci.h"
29
#include "monitor.h"
30
#include "trace.h"
31
#include "dma.h"
32

    
33
#define EHCI_DEBUG   0
34

    
35
#if EHCI_DEBUG
36
#define DPRINTF printf
37
#else
38
#define DPRINTF(...)
39
#endif
40

    
41
/* internal processing - reset HC to try and recover */
42
#define USB_RET_PROCERR   (-99)
43

    
44
#define MMIO_SIZE        0x1000
45

    
46
/* Capability Registers Base Address - section 2.2 */
47
#define CAPREGBASE       0x0000
48
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
49
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
50
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
51
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
52
#define EECP             HCCPARAMS + 1
53
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
54
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
55

    
56
#define OPREGBASE        0x0020        // Operational Registers Base Address
57

    
58
#define USBCMD           OPREGBASE + 0x0000
59
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
60
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
61
#define USBCMD_FLS       (3 << 2)      // Frame List Size
62
#define USBCMD_FLS_SH    2             // Frame List Size Shift
63
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
64
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
65
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
66
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
67
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
68
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
69
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
70
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
71

    
72
#define USBSTS           OPREGBASE + 0x0004
73
#define USBSTS_RO_MASK   0x0000003f
74
#define USBSTS_INT       (1 << 0)      // USB Interrupt
75
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
76
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
77
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
78
#define USBSTS_HSE       (1 << 4)      // Host System Error
79
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
80
#define USBSTS_HALT      (1 << 12)     // HC Halted
81
#define USBSTS_REC       (1 << 13)     // Reclamation
82
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
83
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
84

    
85
/*
86
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
87
 *  so no need to redefine here.
88
 */
89
#define USBINTR              OPREGBASE + 0x0008
90
#define USBINTR_MASK         0x0000003f
91

    
92
#define FRINDEX              OPREGBASE + 0x000c
93
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
94
#define PERIODICLISTBASE     OPREGBASE + 0x0014
95
#define ASYNCLISTADDR        OPREGBASE + 0x0018
96
#define ASYNCLISTADDR_MASK   0xffffffe0
97

    
98
#define CONFIGFLAG           OPREGBASE + 0x0040
99

    
100
#define PORTSC               (OPREGBASE + 0x0044)
101
#define PORTSC_BEGIN         PORTSC
102
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
103
/*
104
 * Bits that are reserved or are read-only are masked out of values
105
 * written to us by software
106
 */
107
#define PORTSC_RO_MASK       0x007001c0
108
#define PORTSC_RWC_MASK      0x0000002a
109
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
110
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
111
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
112
#define PORTSC_PTC           (15 << 16)   // Port Test Control
113
#define PORTSC_PTC_SH        16           // Port Test Control shift
114
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
115
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
116
#define PORTSC_POWNER        (1 << 13)    // Port Owner
117
#define PORTSC_PPOWER        (1 << 12)    // Port Power
118
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
119
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
120
#define PORTSC_PRESET        (1 << 8)     // Port Reset
121
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
122
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
123
#define PORTSC_OCC           (1 << 5)     // Over Current Change
124
#define PORTSC_OCA           (1 << 4)     // Over Current Active
125
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
126
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
127
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
128
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
129

    
130
#define FRAME_TIMER_FREQ 1000
131
#define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
132

    
133
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
134
#define NB_PORTS         6        // Number of downstream ports
135
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
136
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
137
#define MAX_QH           100      // Max allowable queue heads in a chain
138

    
139
/*  Internal periodic / asynchronous schedule state machine states
140
 */
141
typedef enum {
142
    EST_INACTIVE = 1000,
143
    EST_ACTIVE,
144
    EST_EXECUTING,
145
    EST_SLEEPING,
146
    /*  The following states are internal to the state machine function
147
    */
148
    EST_WAITLISTHEAD,
149
    EST_FETCHENTRY,
150
    EST_FETCHQH,
151
    EST_FETCHITD,
152
    EST_FETCHSITD,
153
    EST_ADVANCEQUEUE,
154
    EST_FETCHQTD,
155
    EST_EXECUTE,
156
    EST_WRITEBACK,
157
    EST_HORIZONTALQH
158
} EHCI_STATES;
159

    
160
/* macros for accessing fields within next link pointer entry */
161
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
162
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
163
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
164

    
165
/* link pointer types */
166
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
167
#define NLPTR_TYPE_QH            1     // queue head
168
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
169
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
170

    
171

    
172
/*  EHCI spec version 1.0 Section 3.3
173
 */
174
typedef struct EHCIitd {
175
    uint32_t next;
176

    
177
    uint32_t transact[8];
178
#define ITD_XACT_ACTIVE          (1 << 31)
179
#define ITD_XACT_DBERROR         (1 << 30)
180
#define ITD_XACT_BABBLE          (1 << 29)
181
#define ITD_XACT_XACTERR         (1 << 28)
182
#define ITD_XACT_LENGTH_MASK     0x0fff0000
183
#define ITD_XACT_LENGTH_SH       16
184
#define ITD_XACT_IOC             (1 << 15)
185
#define ITD_XACT_PGSEL_MASK      0x00007000
186
#define ITD_XACT_PGSEL_SH        12
187
#define ITD_XACT_OFFSET_MASK     0x00000fff
188

    
189
    uint32_t bufptr[7];
190
#define ITD_BUFPTR_MASK          0xfffff000
191
#define ITD_BUFPTR_SH            12
192
#define ITD_BUFPTR_EP_MASK       0x00000f00
193
#define ITD_BUFPTR_EP_SH         8
194
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
195
#define ITD_BUFPTR_DEVADDR_SH    0
196
#define ITD_BUFPTR_DIRECTION     (1 << 11)
197
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
198
#define ITD_BUFPTR_MAXPKT_SH     0
199
#define ITD_BUFPTR_MULT_MASK     0x00000003
200
#define ITD_BUFPTR_MULT_SH       0
201
} EHCIitd;
202

    
203
/*  EHCI spec version 1.0 Section 3.4
204
 */
205
typedef struct EHCIsitd {
206
    uint32_t next;                  // Standard next link pointer
207
    uint32_t epchar;
208
#define SITD_EPCHAR_IO              (1 << 31)
209
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
210
#define SITD_EPCHAR_PORTNUM_SH      24
211
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
212
#define SITD_EPCHAR_HUBADDR_SH      16
213
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
214
#define SITD_EPCHAR_EPNUM_SH        8
215
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
216

    
217
    uint32_t uframe;
218
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
219
#define SITD_UFRAME_CMASK_SH        8
220
#define SITD_UFRAME_SMASK_MASK      0x000000ff
221

    
222
    uint32_t results;
223
#define SITD_RESULTS_IOC              (1 << 31)
224
#define SITD_RESULTS_PGSEL            (1 << 30)
225
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
226
#define SITD_RESULTS_TYBYTES_SH       16
227
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
228
#define SITD_RESULTS_CPROGMASK_SH     8
229
#define SITD_RESULTS_ACTIVE           (1 << 7)
230
#define SITD_RESULTS_ERR              (1 << 6)
231
#define SITD_RESULTS_DBERR            (1 << 5)
232
#define SITD_RESULTS_BABBLE           (1 << 4)
233
#define SITD_RESULTS_XACTERR          (1 << 3)
234
#define SITD_RESULTS_MISSEDUF         (1 << 2)
235
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
236

    
237
    uint32_t bufptr[2];
238
#define SITD_BUFPTR_MASK              0xfffff000
239
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
240
#define SITD_BUFPTR_TPOS_MASK         0x00000018
241
#define SITD_BUFPTR_TPOS_SH           3
242
#define SITD_BUFPTR_TCNT_MASK         0x00000007
243

    
244
    uint32_t backptr;                 // Standard next link pointer
245
} EHCIsitd;
246

    
247
/*  EHCI spec version 1.0 Section 3.5
248
 */
249
typedef struct EHCIqtd {
250
    uint32_t next;                    // Standard next link pointer
251
    uint32_t altnext;                 // Standard next link pointer
252
    uint32_t token;
253
#define QTD_TOKEN_DTOGGLE             (1 << 31)
254
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
255
#define QTD_TOKEN_TBYTES_SH           16
256
#define QTD_TOKEN_IOC                 (1 << 15)
257
#define QTD_TOKEN_CPAGE_MASK          0x00007000
258
#define QTD_TOKEN_CPAGE_SH            12
259
#define QTD_TOKEN_CERR_MASK           0x00000c00
260
#define QTD_TOKEN_CERR_SH             10
261
#define QTD_TOKEN_PID_MASK            0x00000300
262
#define QTD_TOKEN_PID_SH              8
263
#define QTD_TOKEN_ACTIVE              (1 << 7)
264
#define QTD_TOKEN_HALT                (1 << 6)
265
#define QTD_TOKEN_DBERR               (1 << 5)
266
#define QTD_TOKEN_BABBLE              (1 << 4)
267
#define QTD_TOKEN_XACTERR             (1 << 3)
268
#define QTD_TOKEN_MISSEDUF            (1 << 2)
269
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
270
#define QTD_TOKEN_PING                (1 << 0)
271

    
272
    uint32_t bufptr[5];               // Standard buffer pointer
273
#define QTD_BUFPTR_MASK               0xfffff000
274
#define QTD_BUFPTR_SH                 12
275
} EHCIqtd;
276

    
277
/*  EHCI spec version 1.0 Section 3.6
278
 */
279
typedef struct EHCIqh {
280
    uint32_t next;                    // Standard next link pointer
281

    
282
    /* endpoint characteristics */
283
    uint32_t epchar;
284
#define QH_EPCHAR_RL_MASK             0xf0000000
285
#define QH_EPCHAR_RL_SH               28
286
#define QH_EPCHAR_C                   (1 << 27)
287
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
288
#define QH_EPCHAR_MPLEN_SH            16
289
#define QH_EPCHAR_H                   (1 << 15)
290
#define QH_EPCHAR_DTC                 (1 << 14)
291
#define QH_EPCHAR_EPS_MASK            0x00003000
292
#define QH_EPCHAR_EPS_SH              12
293
#define EHCI_QH_EPS_FULL              0
294
#define EHCI_QH_EPS_LOW               1
295
#define EHCI_QH_EPS_HIGH              2
296
#define EHCI_QH_EPS_RESERVED          3
297

    
298
#define QH_EPCHAR_EP_MASK             0x00000f00
299
#define QH_EPCHAR_EP_SH               8
300
#define QH_EPCHAR_I                   (1 << 7)
301
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
302
#define QH_EPCHAR_DEVADDR_SH          0
303

    
304
    /* endpoint capabilities */
305
    uint32_t epcap;
306
#define QH_EPCAP_MULT_MASK            0xc0000000
307
#define QH_EPCAP_MULT_SH              30
308
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
309
#define QH_EPCAP_PORTNUM_SH           23
310
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
311
#define QH_EPCAP_HUBADDR_SH           16
312
#define QH_EPCAP_CMASK_MASK           0x0000ff00
313
#define QH_EPCAP_CMASK_SH             8
314
#define QH_EPCAP_SMASK_MASK           0x000000ff
315
#define QH_EPCAP_SMASK_SH             0
316

    
317
    uint32_t current_qtd;             // Standard next link pointer
318
    uint32_t next_qtd;                // Standard next link pointer
319
    uint32_t altnext_qtd;
320
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
321
#define QH_ALTNEXT_NAKCNT_SH          1
322

    
323
    uint32_t token;                   // Same as QTD token
324
    uint32_t bufptr[5];               // Standard buffer pointer
325
#define BUFPTR_CPROGMASK_MASK         0x000000ff
326
#define BUFPTR_FRAMETAG_MASK          0x0000001f
327
#define BUFPTR_SBYTES_MASK            0x00000fe0
328
#define BUFPTR_SBYTES_SH              5
329
} EHCIqh;
330

    
331
/*  EHCI spec version 1.0 Section 3.7
332
 */
333
typedef struct EHCIfstn {
334
    uint32_t next;                    // Standard next link pointer
335
    uint32_t backptr;                 // Standard next link pointer
336
} EHCIfstn;
337

    
338
typedef struct EHCIQueue EHCIQueue;
339
typedef struct EHCIState EHCIState;
340

    
341
enum async_state {
342
    EHCI_ASYNC_NONE = 0,
343
    EHCI_ASYNC_INFLIGHT,
344
    EHCI_ASYNC_FINISHED,
345
};
346

    
347
struct EHCIQueue {
348
    EHCIState *ehci;
349
    QTAILQ_ENTRY(EHCIQueue) next;
350
    bool async_schedule;
351
    uint32_t seen;
352
    uint64_t ts;
353

    
354
    /* cached data from guest - needs to be flushed
355
     * when guest removes an entry (doorbell, handshake sequence)
356
     */
357
    EHCIqh qh;             // copy of current QH (being worked on)
358
    uint32_t qhaddr;       // address QH read from
359
    EHCIqtd qtd;           // copy of current QTD (being worked on)
360
    uint32_t qtdaddr;      // address QTD read from
361

    
362
    USBPacket packet;
363
    QEMUSGList sgl;
364
    int pid;
365
    uint32_t tbytes;
366
    enum async_state async;
367
    int usb_status;
368
};
369

    
370
struct EHCIState {
371
    PCIDevice dev;
372
    USBBus bus;
373
    qemu_irq irq;
374
    MemoryRegion mem;
375
    int companion_count;
376

    
377
    /* properties */
378
    uint32_t freq;
379
    uint32_t maxframes;
380

    
381
    /*
382
     *  EHCI spec version 1.0 Section 2.3
383
     *  Host Controller Operational Registers
384
     */
385
    union {
386
        uint8_t mmio[MMIO_SIZE];
387
        struct {
388
            uint8_t cap[OPREGBASE];
389
            uint32_t usbcmd;
390
            uint32_t usbsts;
391
            uint32_t usbintr;
392
            uint32_t frindex;
393
            uint32_t ctrldssegment;
394
            uint32_t periodiclistbase;
395
            uint32_t asynclistaddr;
396
            uint32_t notused[9];
397
            uint32_t configflag;
398
            uint32_t portsc[NB_PORTS];
399
        };
400
    };
401

    
402
    /*
403
     *  Internal states, shadow registers, etc
404
     */
405
    uint32_t sofv;
406
    QEMUTimer *frame_timer;
407
    int attach_poll_counter;
408
    int astate;                        // Current state in asynchronous schedule
409
    int pstate;                        // Current state in periodic schedule
410
    USBPort ports[NB_PORTS];
411
    USBPort *companion_ports[NB_PORTS];
412
    uint32_t usbsts_pending;
413
    QTAILQ_HEAD(, EHCIQueue) queues;
414

    
415
    uint32_t a_fetch_addr;   // which address to look at next
416
    uint32_t p_fetch_addr;   // which address to look at next
417

    
418
    USBPacket ipacket;
419
    QEMUSGList isgl;
420
    int isoch_pause;
421

    
422
    uint64_t last_run_ns;
423
};
424

    
425
#define SET_LAST_RUN_CLOCK(s) \
426
    (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
427

    
428
/* nifty macros from Arnon's EHCI version  */
429
#define get_field(data, field) \
430
    (((data) & field##_MASK) >> field##_SH)
431

    
432
#define set_field(data, newval, field) do { \
433
    uint32_t val = *data; \
434
    val &= ~ field##_MASK; \
435
    val |= ((newval) << field##_SH) & field##_MASK; \
436
    *data = val; \
437
    } while(0)
438

    
439
static const char *ehci_state_names[] = {
440
    [EST_INACTIVE]     = "INACTIVE",
441
    [EST_ACTIVE]       = "ACTIVE",
442
    [EST_EXECUTING]    = "EXECUTING",
443
    [EST_SLEEPING]     = "SLEEPING",
444
    [EST_WAITLISTHEAD] = "WAITLISTHEAD",
445
    [EST_FETCHENTRY]   = "FETCH ENTRY",
446
    [EST_FETCHQH]      = "FETCH QH",
447
    [EST_FETCHITD]     = "FETCH ITD",
448
    [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
449
    [EST_FETCHQTD]     = "FETCH QTD",
450
    [EST_EXECUTE]      = "EXECUTE",
451
    [EST_WRITEBACK]    = "WRITEBACK",
452
    [EST_HORIZONTALQH] = "HORIZONTALQH",
453
};
454

    
455
static const char *ehci_mmio_names[] = {
456
    [CAPLENGTH]         = "CAPLENGTH",
457
    [HCIVERSION]        = "HCIVERSION",
458
    [HCSPARAMS]         = "HCSPARAMS",
459
    [HCCPARAMS]         = "HCCPARAMS",
460
    [USBCMD]            = "USBCMD",
461
    [USBSTS]            = "USBSTS",
462
    [USBINTR]           = "USBINTR",
463
    [FRINDEX]           = "FRINDEX",
464
    [PERIODICLISTBASE]  = "P-LIST BASE",
465
    [ASYNCLISTADDR]     = "A-LIST ADDR",
466
    [PORTSC_BEGIN]      = "PORTSC #0",
467
    [PORTSC_BEGIN + 4]  = "PORTSC #1",
468
    [PORTSC_BEGIN + 8]  = "PORTSC #2",
469
    [PORTSC_BEGIN + 12] = "PORTSC #3",
470
    [PORTSC_BEGIN + 16] = "PORTSC #4",
471
    [PORTSC_BEGIN + 20] = "PORTSC #5",
472
    [CONFIGFLAG]        = "CONFIGFLAG",
473
};
474

    
475
static const char *nr2str(const char **n, size_t len, uint32_t nr)
476
{
477
    if (nr < len && n[nr] != NULL) {
478
        return n[nr];
479
    } else {
480
        return "unknown";
481
    }
482
}
483

    
484
static const char *state2str(uint32_t state)
485
{
486
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
487
}
488

    
489
static const char *addr2str(target_phys_addr_t addr)
490
{
491
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
492
}
493

    
494
static void ehci_trace_usbsts(uint32_t mask, int state)
495
{
496
    /* interrupts */
497
    if (mask & USBSTS_INT) {
498
        trace_usb_ehci_usbsts("INT", state);
499
    }
500
    if (mask & USBSTS_ERRINT) {
501
        trace_usb_ehci_usbsts("ERRINT", state);
502
    }
503
    if (mask & USBSTS_PCD) {
504
        trace_usb_ehci_usbsts("PCD", state);
505
    }
506
    if (mask & USBSTS_FLR) {
507
        trace_usb_ehci_usbsts("FLR", state);
508
    }
509
    if (mask & USBSTS_HSE) {
510
        trace_usb_ehci_usbsts("HSE", state);
511
    }
512
    if (mask & USBSTS_IAA) {
513
        trace_usb_ehci_usbsts("IAA", state);
514
    }
515

    
516
    /* status */
517
    if (mask & USBSTS_HALT) {
518
        trace_usb_ehci_usbsts("HALT", state);
519
    }
520
    if (mask & USBSTS_REC) {
521
        trace_usb_ehci_usbsts("REC", state);
522
    }
523
    if (mask & USBSTS_PSS) {
524
        trace_usb_ehci_usbsts("PSS", state);
525
    }
526
    if (mask & USBSTS_ASS) {
527
        trace_usb_ehci_usbsts("ASS", state);
528
    }
529
}
530

    
531
static inline void ehci_set_usbsts(EHCIState *s, int mask)
532
{
533
    if ((s->usbsts & mask) == mask) {
534
        return;
535
    }
536
    ehci_trace_usbsts(mask, 1);
537
    s->usbsts |= mask;
538
}
539

    
540
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
541
{
542
    if ((s->usbsts & mask) == 0) {
543
        return;
544
    }
545
    ehci_trace_usbsts(mask, 0);
546
    s->usbsts &= ~mask;
547
}
548

    
549
static inline void ehci_set_interrupt(EHCIState *s, int intr)
550
{
551
    int level = 0;
552

    
553
    // TODO honour interrupt threshold requests
554

    
555
    ehci_set_usbsts(s, intr);
556

    
557
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
558
        level = 1;
559
    }
560

    
561
    qemu_set_irq(s->irq, level);
562
}
563

    
564
static inline void ehci_record_interrupt(EHCIState *s, int intr)
565
{
566
    s->usbsts_pending |= intr;
567
}
568

    
569
static inline void ehci_commit_interrupt(EHCIState *s)
570
{
571
    if (!s->usbsts_pending) {
572
        return;
573
    }
574
    ehci_set_interrupt(s, s->usbsts_pending);
575
    s->usbsts_pending = 0;
576
}
577

    
578
static void ehci_set_state(EHCIState *s, int async, int state)
579
{
580
    if (async) {
581
        trace_usb_ehci_state("async", state2str(state));
582
        s->astate = state;
583
    } else {
584
        trace_usb_ehci_state("periodic", state2str(state));
585
        s->pstate = state;
586
    }
587
}
588

    
589
static int ehci_get_state(EHCIState *s, int async)
590
{
591
    return async ? s->astate : s->pstate;
592
}
593

    
594
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
595
{
596
    if (async) {
597
        s->a_fetch_addr = addr;
598
    } else {
599
        s->p_fetch_addr = addr;
600
    }
601
}
602

    
603
static int ehci_get_fetch_addr(EHCIState *s, int async)
604
{
605
    return async ? s->a_fetch_addr : s->p_fetch_addr;
606
}
607

    
608
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
609
{
610
    /* need three here due to argument count limits */
611
    trace_usb_ehci_qh_ptrs(q, addr, qh->next,
612
                           qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
613
    trace_usb_ehci_qh_fields(addr,
614
                             get_field(qh->epchar, QH_EPCHAR_RL),
615
                             get_field(qh->epchar, QH_EPCHAR_MPLEN),
616
                             get_field(qh->epchar, QH_EPCHAR_EPS),
617
                             get_field(qh->epchar, QH_EPCHAR_EP),
618
                             get_field(qh->epchar, QH_EPCHAR_DEVADDR));
619
    trace_usb_ehci_qh_bits(addr,
620
                           (bool)(qh->epchar & QH_EPCHAR_C),
621
                           (bool)(qh->epchar & QH_EPCHAR_H),
622
                           (bool)(qh->epchar & QH_EPCHAR_DTC),
623
                           (bool)(qh->epchar & QH_EPCHAR_I));
624
}
625

    
626
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
627
{
628
    /* need three here due to argument count limits */
629
    trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
630
    trace_usb_ehci_qtd_fields(addr,
631
                              get_field(qtd->token, QTD_TOKEN_TBYTES),
632
                              get_field(qtd->token, QTD_TOKEN_CPAGE),
633
                              get_field(qtd->token, QTD_TOKEN_CERR),
634
                              get_field(qtd->token, QTD_TOKEN_PID));
635
    trace_usb_ehci_qtd_bits(addr,
636
                            (bool)(qtd->token & QTD_TOKEN_IOC),
637
                            (bool)(qtd->token & QTD_TOKEN_ACTIVE),
638
                            (bool)(qtd->token & QTD_TOKEN_HALT),
639
                            (bool)(qtd->token & QTD_TOKEN_BABBLE),
640
                            (bool)(qtd->token & QTD_TOKEN_XACTERR));
641
}
642

    
643
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
644
{
645
    trace_usb_ehci_itd(addr, itd->next,
646
                       get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
647
                       get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
648
                       get_field(itd->bufptr[0], ITD_BUFPTR_EP),
649
                       get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
650
}
651

    
652
static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
653
                            EHCIsitd *sitd)
654
{
655
    trace_usb_ehci_sitd(addr, sitd->next,
656
                        (bool)(sitd->results & SITD_RESULTS_ACTIVE));
657
}
658

    
659
/* queue management */
660

    
661
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
662
{
663
    EHCIQueue *q;
664

    
665
    q = g_malloc0(sizeof(*q));
666
    q->ehci = ehci;
667
    q->async_schedule = async;
668
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
669
    trace_usb_ehci_queue_action(q, "alloc");
670
    return q;
671
}
672

    
673
static void ehci_free_queue(EHCIQueue *q)
674
{
675
    trace_usb_ehci_queue_action(q, "free");
676
    if (q->async == EHCI_ASYNC_INFLIGHT) {
677
        usb_cancel_packet(&q->packet);
678
    }
679
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
680
    g_free(q);
681
}
682

    
683
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
684
{
685
    EHCIQueue *q;
686

    
687
    QTAILQ_FOREACH(q, &ehci->queues, next) {
688
        if (addr == q->qhaddr) {
689
            return q;
690
        }
691
    }
692
    return NULL;
693
}
694

    
695
static void ehci_queues_rip_unused(EHCIState *ehci)
696
{
697
    EHCIQueue *q, *tmp;
698

    
699
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
700
        if (q->seen) {
701
            q->seen = 0;
702
            q->ts = ehci->last_run_ns;
703
            continue;
704
        }
705
        if (ehci->last_run_ns < q->ts + 250000000) {
706
            /* allow 0.25 sec idle */
707
            continue;
708
        }
709
        ehci_free_queue(q);
710
    }
711
}
712

    
713
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
714
{
715
    EHCIQueue *q, *tmp;
716

    
717
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
718
        if (!usb_packet_is_inflight(&q->packet) ||
719
            q->packet.ep->dev != dev) {
720
            continue;
721
        }
722
        ehci_free_queue(q);
723
    }
724
}
725

    
726
static void ehci_queues_rip_all(EHCIState *ehci)
727
{
728
    EHCIQueue *q, *tmp;
729

    
730
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
731
        ehci_free_queue(q);
732
    }
733
}
734

    
735
/* Attach or detach a device on root hub */
736

    
737
static void ehci_attach(USBPort *port)
738
{
739
    EHCIState *s = port->opaque;
740
    uint32_t *portsc = &s->portsc[port->index];
741

    
742
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
743

    
744
    if (*portsc & PORTSC_POWNER) {
745
        USBPort *companion = s->companion_ports[port->index];
746
        companion->dev = port->dev;
747
        companion->ops->attach(companion);
748
        return;
749
    }
750

    
751
    *portsc |= PORTSC_CONNECT;
752
    *portsc |= PORTSC_CSC;
753

    
754
    ehci_set_interrupt(s, USBSTS_PCD);
755
}
756

    
757
static void ehci_detach(USBPort *port)
758
{
759
    EHCIState *s = port->opaque;
760
    uint32_t *portsc = &s->portsc[port->index];
761

    
762
    trace_usb_ehci_port_detach(port->index);
763

    
764
    if (*portsc & PORTSC_POWNER) {
765
        USBPort *companion = s->companion_ports[port->index];
766
        companion->ops->detach(companion);
767
        companion->dev = NULL;
768
        /*
769
         * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
770
         * the port ownership is returned immediately to the EHCI controller."
771
         */
772
        *portsc &= ~PORTSC_POWNER;
773
        return;
774
    }
775

    
776
    ehci_queues_rip_device(s, port->dev);
777

    
778
    *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
779
    *portsc |= PORTSC_CSC;
780

    
781
    ehci_set_interrupt(s, USBSTS_PCD);
782
}
783

    
784
static void ehci_child_detach(USBPort *port, USBDevice *child)
785
{
786
    EHCIState *s = port->opaque;
787
    uint32_t portsc = s->portsc[port->index];
788

    
789
    if (portsc & PORTSC_POWNER) {
790
        USBPort *companion = s->companion_ports[port->index];
791
        companion->ops->child_detach(companion, child);
792
        companion->dev = NULL;
793
        return;
794
    }
795

    
796
    ehci_queues_rip_device(s, child);
797
}
798

    
799
static void ehci_wakeup(USBPort *port)
800
{
801
    EHCIState *s = port->opaque;
802
    uint32_t portsc = s->portsc[port->index];
803

    
804
    if (portsc & PORTSC_POWNER) {
805
        USBPort *companion = s->companion_ports[port->index];
806
        if (companion->ops->wakeup) {
807
            companion->ops->wakeup(companion);
808
        }
809
    }
810
}
811

    
812
static int ehci_register_companion(USBBus *bus, USBPort *ports[],
813
                                   uint32_t portcount, uint32_t firstport)
814
{
815
    EHCIState *s = container_of(bus, EHCIState, bus);
816
    uint32_t i;
817

    
818
    if (firstport + portcount > NB_PORTS) {
819
        qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
820
                      "firstport on masterbus");
821
        error_printf_unless_qmp(
822
            "firstport value of %u makes companion take ports %u - %u, which "
823
            "is outside of the valid range of 0 - %u\n", firstport, firstport,
824
            firstport + portcount - 1, NB_PORTS - 1);
825
        return -1;
826
    }
827

    
828
    for (i = 0; i < portcount; i++) {
829
        if (s->companion_ports[firstport + i]) {
830
            qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
831
                          "an USB masterbus");
832
            error_printf_unless_qmp(
833
                "port %u on masterbus %s already has a companion assigned\n",
834
                firstport + i, bus->qbus.name);
835
            return -1;
836
        }
837
    }
838

    
839
    for (i = 0; i < portcount; i++) {
840
        s->companion_ports[firstport + i] = ports[i];
841
        s->ports[firstport + i].speedmask |=
842
            USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
843
        /* Ensure devs attached before the initial reset go to the companion */
844
        s->portsc[firstport + i] = PORTSC_POWNER;
845
    }
846

    
847
    s->companion_count++;
848
    s->mmio[0x05] = (s->companion_count << 4) | portcount;
849

    
850
    return 0;
851
}
852

    
853
static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
854
{
855
    USBDevice *dev;
856
    USBPort *port;
857
    int i;
858

    
859
    for (i = 0; i < NB_PORTS; i++) {
860
        port = &ehci->ports[i];
861
        if (!(ehci->portsc[i] & PORTSC_PED)) {
862
            DPRINTF("Port %d not enabled\n", i);
863
            continue;
864
        }
865
        dev = usb_find_device(port, addr);
866
        if (dev != NULL) {
867
            return dev;
868
        }
869
    }
870
    return NULL;
871
}
872

    
873
/* 4.1 host controller initialization */
874
static void ehci_reset(void *opaque)
875
{
876
    EHCIState *s = opaque;
877
    int i;
878
    USBDevice *devs[NB_PORTS];
879

    
880
    trace_usb_ehci_reset();
881

    
882
    /*
883
     * Do the detach before touching portsc, so that it correctly gets send to
884
     * us or to our companion based on PORTSC_POWNER before the reset.
885
     */
886
    for(i = 0; i < NB_PORTS; i++) {
887
        devs[i] = s->ports[i].dev;
888
        if (devs[i] && devs[i]->attached) {
889
            usb_detach(&s->ports[i]);
890
        }
891
    }
892

    
893
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
894

    
895
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
896
    s->usbsts = USBSTS_HALT;
897

    
898
    s->astate = EST_INACTIVE;
899
    s->pstate = EST_INACTIVE;
900
    s->isoch_pause = -1;
901
    s->attach_poll_counter = 0;
902

    
903
    for(i = 0; i < NB_PORTS; i++) {
904
        if (s->companion_ports[i]) {
905
            s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
906
        } else {
907
            s->portsc[i] = PORTSC_PPOWER;
908
        }
909
        if (devs[i] && devs[i]->attached) {
910
            usb_attach(&s->ports[i]);
911
            usb_device_reset(devs[i]);
912
        }
913
    }
914
    ehci_queues_rip_all(s);
915
}
916

    
917
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
918
{
919
    EHCIState *s = ptr;
920
    uint32_t val;
921

    
922
    val = s->mmio[addr];
923

    
924
    return val;
925
}
926

    
927
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
928
{
929
    EHCIState *s = ptr;
930
    uint32_t val;
931

    
932
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
933

    
934
    return val;
935
}
936

    
937
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
938
{
939
    EHCIState *s = ptr;
940
    uint32_t val;
941

    
942
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
943
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
944

    
945
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
946
    return val;
947
}
948

    
949
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
950
{
951
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
952
    exit(1);
953
}
954

    
955
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
956
{
957
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
958
    exit(1);
959
}
960

    
961
static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
962
{
963
    USBDevice *dev = s->ports[port].dev;
964
    uint32_t *portsc = &s->portsc[port];
965
    uint32_t orig;
966

    
967
    if (s->companion_ports[port] == NULL)
968
        return;
969

    
970
    owner = owner & PORTSC_POWNER;
971
    orig  = *portsc & PORTSC_POWNER;
972

    
973
    if (!(owner ^ orig)) {
974
        return;
975
    }
976

    
977
    if (dev && dev->attached) {
978
        usb_detach(&s->ports[port]);
979
    }
980

    
981
    *portsc &= ~PORTSC_POWNER;
982
    *portsc |= owner;
983

    
984
    if (dev && dev->attached) {
985
        usb_attach(&s->ports[port]);
986
    }
987
}
988

    
989
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
990
{
991
    uint32_t *portsc = &s->portsc[port];
992
    USBDevice *dev = s->ports[port].dev;
993

    
994
    /* Clear rwc bits */
995
    *portsc &= ~(val & PORTSC_RWC_MASK);
996
    /* The guest may clear, but not set the PED bit */
997
    *portsc &= val | ~PORTSC_PED;
998
    /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
999
    handle_port_owner_write(s, port, val);
1000
    /* And finally apply RO_MASK */
1001
    val &= PORTSC_RO_MASK;
1002

    
1003
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1004
        trace_usb_ehci_port_reset(port, 1);
1005
    }
1006

    
1007
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1008
        trace_usb_ehci_port_reset(port, 0);
1009
        if (dev && dev->attached) {
1010
            usb_port_reset(&s->ports[port]);
1011
            *portsc &= ~PORTSC_CSC;
1012
        }
1013

    
1014
        /*
1015
         *  Table 2.16 Set the enable bit(and enable bit change) to indicate
1016
         *  to SW that this port has a high speed device attached
1017
         */
1018
        if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1019
            val |= PORTSC_PED;
1020
        }
1021
    }
1022

    
1023
    *portsc &= ~PORTSC_RO_MASK;
1024
    *portsc |= val;
1025
}
1026

    
1027
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1028
{
1029
    EHCIState *s = ptr;
1030
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1031
    uint32_t old = *mmio;
1032
    int i;
1033

    
1034
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1035

    
1036
    /* Only aligned reads are allowed on OHCI */
1037
    if (addr & 3) {
1038
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1039
                TARGET_FMT_plx "\n", addr);
1040
        return;
1041
    }
1042

    
1043
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1044
        handle_port_status_write(s, (addr-PORTSC)/4, val);
1045
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1046
        return;
1047
    }
1048

    
1049
    if (addr < OPREGBASE) {
1050
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
1051
                TARGET_FMT_plx "\n", addr);
1052
        return;
1053
    }
1054

    
1055

    
1056
    /* Do any register specific pre-write processing here.  */
1057
    switch(addr) {
1058
    case USBCMD:
1059
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1060
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1061
            SET_LAST_RUN_CLOCK(s);
1062
            ehci_clear_usbsts(s, USBSTS_HALT);
1063
        }
1064

    
1065
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1066
            qemu_del_timer(s->frame_timer);
1067
            // TODO - should finish out some stuff before setting halt
1068
            ehci_set_usbsts(s, USBSTS_HALT);
1069
        }
1070

    
1071
        if (val & USBCMD_HCRESET) {
1072
            ehci_reset(s);
1073
            val &= ~USBCMD_HCRESET;
1074
        }
1075

    
1076
        /* not supporting dynamic frame list size at the moment */
1077
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1078
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
1079
                    val & USBCMD_FLS);
1080
            val &= ~USBCMD_FLS;
1081
        }
1082
        break;
1083

    
1084
    case USBSTS:
1085
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
1086
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
1087
        val = s->usbsts;
1088
        ehci_set_interrupt(s, 0);
1089
        break;
1090

    
1091
    case USBINTR:
1092
        val &= USBINTR_MASK;
1093
        break;
1094

    
1095
    case FRINDEX:
1096
        s->sofv = val >> 3;
1097
        break;
1098

    
1099
    case CONFIGFLAG:
1100
        val &= 0x1;
1101
        if (val) {
1102
            for(i = 0; i < NB_PORTS; i++)
1103
                handle_port_owner_write(s, i, 0);
1104
        }
1105
        break;
1106

    
1107
    case PERIODICLISTBASE:
1108
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1109
            fprintf(stderr,
1110
              "ehci: PERIODIC list base register set while periodic schedule\n"
1111
              "      is enabled and HC is enabled\n");
1112
        }
1113
        break;
1114

    
1115
    case ASYNCLISTADDR:
1116
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1117
            fprintf(stderr,
1118
              "ehci: ASYNC list address register set while async schedule\n"
1119
              "      is enabled and HC is enabled\n");
1120
        }
1121
        break;
1122
    }
1123

    
1124
    *mmio = val;
1125
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1126
}
1127

    
1128

    
1129
// TODO : Put in common header file, duplication from usb-ohci.c
1130

    
1131
/* Get an array of dwords from main memory */
1132
static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1133
                             uint32_t *buf, int num)
1134
{
1135
    int i;
1136

    
1137
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1138
        pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1139
        *buf = le32_to_cpu(*buf);
1140
    }
1141

    
1142
    return 1;
1143
}
1144

    
1145
/* Put an array of dwords in to main memory */
1146
static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1147
                             uint32_t *buf, int num)
1148
{
1149
    int i;
1150

    
1151
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1152
        uint32_t tmp = cpu_to_le32(*buf);
1153
        pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1154
    }
1155

    
1156
    return 1;
1157
}
1158

    
1159
// 4.10.2
1160

    
1161
static int ehci_qh_do_overlay(EHCIQueue *q)
1162
{
1163
    int i;
1164
    int dtoggle;
1165
    int ping;
1166
    int eps;
1167
    int reload;
1168

    
1169
    // remember values in fields to preserve in qh after overlay
1170

    
1171
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1172
    ping    = q->qh.token & QTD_TOKEN_PING;
1173

    
1174
    q->qh.current_qtd = q->qtdaddr;
1175
    q->qh.next_qtd    = q->qtd.next;
1176
    q->qh.altnext_qtd = q->qtd.altnext;
1177
    q->qh.token       = q->qtd.token;
1178

    
1179

    
1180
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1181
    if (eps == EHCI_QH_EPS_HIGH) {
1182
        q->qh.token &= ~QTD_TOKEN_PING;
1183
        q->qh.token |= ping;
1184
    }
1185

    
1186
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1187
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1188

    
1189
    for (i = 0; i < 5; i++) {
1190
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1191
    }
1192

    
1193
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1194
        // preserve QH DT bit
1195
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1196
        q->qh.token |= dtoggle;
1197
    }
1198

    
1199
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1200
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1201

    
1202
    put_dwords(q->ehci, NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh,
1203
               sizeof(EHCIqh) >> 2);
1204

    
1205
    return 0;
1206
}
1207

    
1208
static int ehci_init_transfer(EHCIQueue *q)
1209
{
1210
    uint32_t cpage, offset, bytes, plen;
1211
    dma_addr_t page;
1212

    
1213
    cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1214
    bytes  = get_field(q->qh.token, QTD_TOKEN_TBYTES);
1215
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1216
    pci_dma_sglist_init(&q->sgl, &q->ehci->dev, 5);
1217

    
1218
    while (bytes > 0) {
1219
        if (cpage > 4) {
1220
            fprintf(stderr, "cpage out of range (%d)\n", cpage);
1221
            return USB_RET_PROCERR;
1222
        }
1223

    
1224
        page  = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1225
        page += offset;
1226
        plen  = bytes;
1227
        if (plen > 4096 - offset) {
1228
            plen = 4096 - offset;
1229
            offset = 0;
1230
            cpage++;
1231
        }
1232

    
1233
        qemu_sglist_add(&q->sgl, page, plen);
1234
        bytes -= plen;
1235
    }
1236
    return 0;
1237
}
1238

    
1239
static void ehci_finish_transfer(EHCIQueue *q, int status)
1240
{
1241
    uint32_t cpage, offset;
1242

    
1243
    qemu_sglist_destroy(&q->sgl);
1244

    
1245
    if (status > 0) {
1246
        /* update cpage & offset */
1247
        cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1248
        offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1249

    
1250
        offset += status;
1251
        cpage  += offset >> QTD_BUFPTR_SH;
1252
        offset &= ~QTD_BUFPTR_MASK;
1253

    
1254
        set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1255
        q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1256
        q->qh.bufptr[0] |= offset;
1257
    }
1258
}
1259

    
1260
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1261
{
1262
    EHCIQueue *q;
1263
    EHCIState *s = port->opaque;
1264
    uint32_t portsc = s->portsc[port->index];
1265

    
1266
    if (portsc & PORTSC_POWNER) {
1267
        USBPort *companion = s->companion_ports[port->index];
1268
        companion->ops->complete(companion, packet);
1269
        return;
1270
    }
1271

    
1272
    q = container_of(packet, EHCIQueue, packet);
1273
    trace_usb_ehci_queue_action(q, "wakeup");
1274
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1275
    q->async = EHCI_ASYNC_FINISHED;
1276
    q->usb_status = packet->result;
1277
}
1278

    
1279
static void ehci_execute_complete(EHCIQueue *q)
1280
{
1281
    int c_err, reload;
1282

    
1283
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1284
    q->async = EHCI_ASYNC_NONE;
1285

    
1286
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1287
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1288

    
1289
    if (q->usb_status < 0) {
1290
err:
1291
        /* TO-DO: put this is in a function that can be invoked below as well */
1292
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1293
        c_err--;
1294
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1295

    
1296
        switch(q->usb_status) {
1297
        case USB_RET_NODEV:
1298
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1299
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1300
            break;
1301
        case USB_RET_STALL:
1302
            q->qh.token |= QTD_TOKEN_HALT;
1303
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1304
            break;
1305
        case USB_RET_NAK:
1306
            /* 4.10.3 */
1307
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1308
            if ((q->pid == USB_TOKEN_IN) && reload) {
1309
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1310
                nakcnt--;
1311
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1312
            } else if (!reload) {
1313
                return;
1314
            }
1315
            break;
1316
        case USB_RET_BABBLE:
1317
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1318
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1319
            break;
1320
        default:
1321
            /* should not be triggerable */
1322
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1323
            assert(0);
1324
            break;
1325
        }
1326
    } else {
1327
        // DPRINTF("Short packet condition\n");
1328
        // TODO check 4.12 for splits
1329

    
1330
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1331
            q->usb_status = USB_RET_BABBLE;
1332
            goto err;
1333
        }
1334

    
1335
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1336
            q->tbytes -= q->usb_status;
1337
        } else {
1338
            q->tbytes = 0;
1339
        }
1340

    
1341
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1342
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1343
    }
1344
    ehci_finish_transfer(q, q->usb_status);
1345
    usb_packet_unmap(&q->packet);
1346

    
1347
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1348
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1349

    
1350
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1351
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1352
    }
1353
}
1354

    
1355
// 4.10.3
1356

    
1357
static int ehci_execute(EHCIQueue *q)
1358
{
1359
    USBDevice *dev;
1360
    USBEndpoint *ep;
1361
    int ret;
1362
    int endp;
1363
    int devadr;
1364

    
1365
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1366
        fprintf(stderr, "Attempting to execute inactive QH\n");
1367
        return USB_RET_PROCERR;
1368
    }
1369

    
1370
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1371
    if (q->tbytes > BUFF_SIZE) {
1372
        fprintf(stderr, "Request for more bytes than allowed\n");
1373
        return USB_RET_PROCERR;
1374
    }
1375

    
1376
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1377
    switch(q->pid) {
1378
        case 0: q->pid = USB_TOKEN_OUT; break;
1379
        case 1: q->pid = USB_TOKEN_IN; break;
1380
        case 2: q->pid = USB_TOKEN_SETUP; break;
1381
        default: fprintf(stderr, "bad token\n"); break;
1382
    }
1383

    
1384
    if (ehci_init_transfer(q) != 0) {
1385
        return USB_RET_PROCERR;
1386
    }
1387

    
1388
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1389
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1390

    
1391
    /* TODO: associating device with ehci port */
1392
    dev = ehci_find_device(q->ehci, devadr);
1393
    ep = usb_ep_get(dev, q->pid, endp);
1394

    
1395
    usb_packet_setup(&q->packet, q->pid, ep);
1396
    usb_packet_map(&q->packet, &q->sgl);
1397

    
1398
    ret = usb_handle_packet(dev, &q->packet);
1399
    DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1400
            "(total %d) endp %x ret %d\n",
1401
            q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1402
            q->packet.iov.size, q->tbytes, endp, ret);
1403

    
1404
    if (ret > BUFF_SIZE) {
1405
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1406
        return USB_RET_PROCERR;
1407
    }
1408

    
1409
    return ret;
1410
}
1411

    
1412
/*  4.7.2
1413
 */
1414

    
1415
static int ehci_process_itd(EHCIState *ehci,
1416
                            EHCIitd *itd)
1417
{
1418
    USBDevice *dev;
1419
    USBEndpoint *ep;
1420
    int ret;
1421
    uint32_t i, len, pid, dir, devaddr, endp;
1422
    uint32_t pg, off, ptr1, ptr2, max, mult;
1423

    
1424
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1425
    devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1426
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1427
    max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1428
    mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1429

    
1430
    for(i = 0; i < 8; i++) {
1431
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1432
            pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1433
            off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1434
            ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1435
            ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1436
            len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1437

    
1438
            if (len > max * mult) {
1439
                len = max * mult;
1440
            }
1441

    
1442
            if (len > BUFF_SIZE) {
1443
                return USB_RET_PROCERR;
1444
            }
1445

    
1446
            pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1447
            if (off + len > 4096) {
1448
                /* transfer crosses page border */
1449
                uint32_t len2 = off + len - 4096;
1450
                uint32_t len1 = len - len2;
1451
                qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1452
                qemu_sglist_add(&ehci->isgl, ptr2, len2);
1453
            } else {
1454
                qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1455
            }
1456

    
1457
            pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1458

    
1459
            dev = ehci_find_device(ehci, devaddr);
1460
            ep = usb_ep_get(dev, pid, endp);
1461
            usb_packet_setup(&ehci->ipacket, pid, ep);
1462
            usb_packet_map(&ehci->ipacket, &ehci->isgl);
1463

    
1464
            ret = usb_handle_packet(dev, &ehci->ipacket);
1465

    
1466
            usb_packet_unmap(&ehci->ipacket);
1467
            qemu_sglist_destroy(&ehci->isgl);
1468

    
1469
#if 0
1470
            /*  In isoch, there is no facility to indicate a NAK so let's
1471
             *  instead just complete a zero-byte transaction.  Setting
1472
             *  DBERR seems too draconian.
1473
             */
1474

1475
            if (ret == USB_RET_NAK) {
1476
                if (ehci->isoch_pause > 0) {
1477
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1478
                    ehci->isoch_pause--;
1479
                    return 0;
1480
                } else if (ehci->isoch_pause == -1) {
1481
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1482
                    // Pause frindex for up to 50 msec waiting for data from
1483
                    // remote
1484
                    ehci->isoch_pause = 50;
1485
                    return 0;
1486
                } else {
1487
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1488
                    ret = 0;
1489
                }
1490
            } else {
1491
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1492
                ehci->isoch_pause = -1;
1493
            }
1494
#else
1495
            if (ret == USB_RET_NAK) {
1496
                ret = 0;
1497
            }
1498
#endif
1499

    
1500
            if (ret >= 0) {
1501
                if (!dir) {
1502
                    /* OUT */
1503
                    set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1504
                } else {
1505
                    /* IN */
1506
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1507
                }
1508

    
1509
                if (itd->transact[i] & ITD_XACT_IOC) {
1510
                    ehci_record_interrupt(ehci, USBSTS_INT);
1511
                }
1512
            }
1513
            itd->transact[i] &= ~ITD_XACT_ACTIVE;
1514
        }
1515
    }
1516
    return 0;
1517
}
1518

    
1519
/*  This state is the entry point for asynchronous schedule
1520
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1521
 */
1522
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1523
{
1524
    EHCIqh qh;
1525
    int i = 0;
1526
    int again = 0;
1527
    uint32_t entry = ehci->asynclistaddr;
1528

    
1529
    /* set reclamation flag at start event (4.8.6) */
1530
    if (async) {
1531
        ehci_set_usbsts(ehci, USBSTS_REC);
1532
    }
1533

    
1534
    ehci_queues_rip_unused(ehci);
1535

    
1536
    /*  Find the head of the list (4.9.1.1) */
1537
    for(i = 0; i < MAX_QH; i++) {
1538
        get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1539
                   sizeof(EHCIqh) >> 2);
1540
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1541

    
1542
        if (qh.epchar & QH_EPCHAR_H) {
1543
            if (async) {
1544
                entry |= (NLPTR_TYPE_QH << 1);
1545
            }
1546

    
1547
            ehci_set_fetch_addr(ehci, async, entry);
1548
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1549
            again = 1;
1550
            goto out;
1551
        }
1552

    
1553
        entry = qh.next;
1554
        if (entry == ehci->asynclistaddr) {
1555
            break;
1556
        }
1557
    }
1558

    
1559
    /* no head found for list. */
1560

    
1561
    ehci_set_state(ehci, async, EST_ACTIVE);
1562

    
1563
out:
1564
    return again;
1565
}
1566

    
1567

    
1568
/*  This state is the entry point for periodic schedule processing as
1569
 *  well as being a continuation state for async processing.
1570
 */
1571
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1572
{
1573
    int again = 0;
1574
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1575

    
1576
    if (entry < 0x1000) {
1577
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1578
        ehci_set_state(ehci, async, EST_ACTIVE);
1579
        goto out;
1580
    }
1581

    
1582
    /* section 4.8, only QH in async schedule */
1583
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1584
        fprintf(stderr, "non queue head request in async schedule\n");
1585
        return -1;
1586
    }
1587

    
1588
    switch (NLPTR_TYPE_GET(entry)) {
1589
    case NLPTR_TYPE_QH:
1590
        ehci_set_state(ehci, async, EST_FETCHQH);
1591
        again = 1;
1592
        break;
1593

    
1594
    case NLPTR_TYPE_ITD:
1595
        ehci_set_state(ehci, async, EST_FETCHITD);
1596
        again = 1;
1597
        break;
1598

    
1599
    case NLPTR_TYPE_STITD:
1600
        ehci_set_state(ehci, async, EST_FETCHSITD);
1601
        again = 1;
1602
        break;
1603

    
1604
    default:
1605
        /* TODO: handle FSTN type */
1606
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1607
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1608
        return -1;
1609
    }
1610

    
1611
out:
1612
    return again;
1613
}
1614

    
1615
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1616
{
1617
    uint32_t entry;
1618
    EHCIQueue *q;
1619
    int reload;
1620

    
1621
    entry = ehci_get_fetch_addr(ehci, async);
1622
    q = ehci_find_queue_by_qh(ehci, entry);
1623
    if (NULL == q) {
1624
        q = ehci_alloc_queue(ehci, async);
1625
    }
1626
    q->qhaddr = entry;
1627
    q->seen++;
1628

    
1629
    if (q->seen > 1) {
1630
        /* we are going in circles -- stop processing */
1631
        ehci_set_state(ehci, async, EST_ACTIVE);
1632
        q = NULL;
1633
        goto out;
1634
    }
1635

    
1636
    get_dwords(ehci, NLPTR_GET(q->qhaddr),
1637
               (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1638
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1639

    
1640
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1641
        /* I/O still in progress -- skip queue */
1642
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1643
        goto out;
1644
    }
1645
    if (q->async == EHCI_ASYNC_FINISHED) {
1646
        /* I/O finished -- continue processing queue */
1647
        trace_usb_ehci_queue_action(q, "resume");
1648
        ehci_set_state(ehci, async, EST_EXECUTING);
1649
        goto out;
1650
    }
1651

    
1652
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1653

    
1654
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1655
        if (ehci->usbsts & USBSTS_REC) {
1656
            ehci_clear_usbsts(ehci, USBSTS_REC);
1657
        } else {
1658
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1659
                       " - done processing\n", q->qhaddr);
1660
            ehci_set_state(ehci, async, EST_ACTIVE);
1661
            q = NULL;
1662
            goto out;
1663
        }
1664
    }
1665

    
1666
#if EHCI_DEBUG
1667
    if (q->qhaddr != q->qh.next) {
1668
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1669
               q->qhaddr,
1670
               q->qh.epchar & QH_EPCHAR_H,
1671
               q->qh.token & QTD_TOKEN_HALT,
1672
               q->qh.token & QTD_TOKEN_ACTIVE,
1673
               q->qh.next);
1674
    }
1675
#endif
1676

    
1677
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1678
    if (reload) {
1679
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1680
    }
1681

    
1682
    if (q->qh.token & QTD_TOKEN_HALT) {
1683
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1684

    
1685
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1686
        q->qtdaddr = q->qh.current_qtd;
1687
        ehci_set_state(ehci, async, EST_FETCHQTD);
1688

    
1689
    } else {
1690
        /*  EHCI spec version 1.0 Section 4.10.2 */
1691
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1692
    }
1693

    
1694
out:
1695
    return q;
1696
}
1697

    
1698
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1699
{
1700
    uint32_t entry;
1701
    EHCIitd itd;
1702

    
1703
    assert(!async);
1704
    entry = ehci_get_fetch_addr(ehci, async);
1705

    
1706
    get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1707
               sizeof(EHCIitd) >> 2);
1708
    ehci_trace_itd(ehci, entry, &itd);
1709

    
1710
    if (ehci_process_itd(ehci, &itd) != 0) {
1711
        return -1;
1712
    }
1713

    
1714
    put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1715
               sizeof(EHCIitd) >> 2);
1716
    ehci_set_fetch_addr(ehci, async, itd.next);
1717
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1718

    
1719
    return 1;
1720
}
1721

    
1722
static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1723
{
1724
    uint32_t entry;
1725
    EHCIsitd sitd;
1726

    
1727
    assert(!async);
1728
    entry = ehci_get_fetch_addr(ehci, async);
1729

    
1730
    get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1731
               sizeof(EHCIsitd) >> 2);
1732
    ehci_trace_sitd(ehci, entry, &sitd);
1733

    
1734
    if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1735
        /* siTD is not active, nothing to do */;
1736
    } else {
1737
        /* TODO: split transfers are not implemented */
1738
        fprintf(stderr, "WARNING: Skipping active siTD\n");
1739
    }
1740

    
1741
    ehci_set_fetch_addr(ehci, async, sitd.next);
1742
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1743
    return 1;
1744
}
1745

    
1746
/* Section 4.10.2 - paragraph 3 */
1747
static int ehci_state_advqueue(EHCIQueue *q, int async)
1748
{
1749
#if 0
1750
    /* TO-DO: 4.10.2 - paragraph 2
1751
     * if I-bit is set to 1 and QH is not active
1752
     * go to horizontal QH
1753
     */
1754
    if (I-bit set) {
1755
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1756
        goto out;
1757
    }
1758
#endif
1759

    
1760
    /*
1761
     * want data and alt-next qTD is valid
1762
     */
1763
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1764
        (q->qh.altnext_qtd > 0x1000) &&
1765
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1766
        q->qtdaddr = q->qh.altnext_qtd;
1767
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1768

    
1769
    /*
1770
     *  next qTD is valid
1771
     */
1772
    } else if ((q->qh.next_qtd > 0x1000) &&
1773
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1774
        q->qtdaddr = q->qh.next_qtd;
1775
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1776

    
1777
    /*
1778
     *  no valid qTD, try next QH
1779
     */
1780
    } else {
1781
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1782
    }
1783

    
1784
    return 1;
1785
}
1786

    
1787
/* Section 4.10.2 - paragraph 4 */
1788
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1789
{
1790
    int again = 0;
1791

    
1792
    get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qtd,
1793
               sizeof(EHCIqtd) >> 2);
1794
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1795

    
1796
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1797
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1798
        again = 1;
1799
    } else {
1800
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1801
        again = 1;
1802
    }
1803

    
1804
    return again;
1805
}
1806

    
1807
static int ehci_state_horizqh(EHCIQueue *q, int async)
1808
{
1809
    int again = 0;
1810

    
1811
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1812
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1813
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1814
        again = 1;
1815
    } else {
1816
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1817
    }
1818

    
1819
    return again;
1820
}
1821

    
1822
/*
1823
 *  Write the qh back to guest physical memory.  This step isn't
1824
 *  in the EHCI spec but we need to do it since we don't share
1825
 *  physical memory with our guest VM.
1826
 *
1827
 *  The first three dwords are read-only for the EHCI, so skip them
1828
 *  when writing back the qh.
1829
 */
1830
static void ehci_flush_qh(EHCIQueue *q)
1831
{
1832
    uint32_t *qh = (uint32_t *) &q->qh;
1833
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1834
    uint32_t addr = NLPTR_GET(q->qhaddr);
1835

    
1836
    put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1837
}
1838

    
1839
static int ehci_state_execute(EHCIQueue *q, int async)
1840
{
1841
    int again = 0;
1842
    int reload, nakcnt;
1843
    int smask;
1844

    
1845
    if (ehci_qh_do_overlay(q) != 0) {
1846
        return -1;
1847
    }
1848

    
1849
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1850

    
1851
    if (!smask) {
1852
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1853
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1854
        if (reload && !nakcnt) {
1855
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1856
            again = 1;
1857
            goto out;
1858
        }
1859
    }
1860

    
1861
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1862
    // TODO write back ptr to async list when done or out of time
1863
    // TODO Windows does not seem to ever set the MULT field
1864

    
1865
    if (!async) {
1866
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1867
        if (!transactCtr) {
1868
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1869
            again = 1;
1870
            goto out;
1871
        }
1872
    }
1873

    
1874
    if (async) {
1875
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1876
    }
1877

    
1878
    q->usb_status = ehci_execute(q);
1879
    if (q->usb_status == USB_RET_PROCERR) {
1880
        again = -1;
1881
        goto out;
1882
    }
1883
    if (q->usb_status == USB_RET_ASYNC) {
1884
        ehci_flush_qh(q);
1885
        trace_usb_ehci_queue_action(q, "suspend");
1886
        q->async = EHCI_ASYNC_INFLIGHT;
1887
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1888
        again = 1;
1889
        goto out;
1890
    }
1891

    
1892
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1893
    again = 1;
1894

    
1895
out:
1896
    return again;
1897
}
1898

    
1899
static int ehci_state_executing(EHCIQueue *q, int async)
1900
{
1901
    int again = 0;
1902
    int reload, nakcnt;
1903

    
1904
    ehci_execute_complete(q);
1905
    if (q->usb_status == USB_RET_ASYNC) {
1906
        goto out;
1907
    }
1908
    if (q->usb_status == USB_RET_PROCERR) {
1909
        again = -1;
1910
        goto out;
1911
    }
1912

    
1913
    // 4.10.3
1914
    if (!async) {
1915
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1916
        transactCtr--;
1917
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1918
        // 4.10.3, bottom of page 82, should exit this state when transaction
1919
        // counter decrements to 0
1920
    }
1921

    
1922
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1923
    if (reload) {
1924
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1925
        if (q->usb_status == USB_RET_NAK) {
1926
            if (nakcnt) {
1927
                nakcnt--;
1928
            }
1929
        } else {
1930
            nakcnt = reload;
1931
        }
1932
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1933
    }
1934

    
1935
    /* 4.10.5 */
1936
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1937
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1938
    } else {
1939
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1940
    }
1941

    
1942
    again = 1;
1943

    
1944
out:
1945
    ehci_flush_qh(q);
1946
    return again;
1947
}
1948

    
1949

    
1950
static int ehci_state_writeback(EHCIQueue *q, int async)
1951
{
1952
    int again = 0;
1953

    
1954
    /*  Write back the QTD from the QH area */
1955
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1956
    put_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qh.next_qtd,
1957
               sizeof(EHCIqtd) >> 2);
1958

    
1959
    /*
1960
     * EHCI specs say go horizontal here.
1961
     *
1962
     * We can also advance the queue here for performance reasons.  We
1963
     * need to take care to only take that shortcut in case we've
1964
     * processed the qtd just written back without errors, i.e. halt
1965
     * bit is clear.
1966
     */
1967
    if (q->qh.token & QTD_TOKEN_HALT) {
1968
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1969
        again = 1;
1970
    } else {
1971
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1972
        again = 1;
1973
    }
1974
    return again;
1975
}
1976

    
1977
/*
1978
 * This is the state machine that is common to both async and periodic
1979
 */
1980

    
1981
static void ehci_advance_state(EHCIState *ehci,
1982
                               int async)
1983
{
1984
    EHCIQueue *q = NULL;
1985
    int again;
1986
    int iter = 0;
1987

    
1988
    do {
1989
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1990
            iter++;
1991
            /* if we are roaming a lot of QH without executing a qTD
1992
             * something is wrong with the linked list. TO-DO: why is
1993
             * this hack needed?
1994
             */
1995
            assert(iter < MAX_ITERATIONS);
1996
#if 0
1997
            if (iter > MAX_ITERATIONS) {
1998
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1999
                ehci_set_state(ehci, async, EST_ACTIVE);
2000
                break;
2001
            }
2002
#endif
2003
        }
2004
        switch(ehci_get_state(ehci, async)) {
2005
        case EST_WAITLISTHEAD:
2006
            again = ehci_state_waitlisthead(ehci, async);
2007
            break;
2008

    
2009
        case EST_FETCHENTRY:
2010
            again = ehci_state_fetchentry(ehci, async);
2011
            break;
2012

    
2013
        case EST_FETCHQH:
2014
            q = ehci_state_fetchqh(ehci, async);
2015
            again = q ? 1 : 0;
2016
            break;
2017

    
2018
        case EST_FETCHITD:
2019
            again = ehci_state_fetchitd(ehci, async);
2020
            break;
2021

    
2022
        case EST_FETCHSITD:
2023
            again = ehci_state_fetchsitd(ehci, async);
2024
            break;
2025

    
2026
        case EST_ADVANCEQUEUE:
2027
            again = ehci_state_advqueue(q, async);
2028
            break;
2029

    
2030
        case EST_FETCHQTD:
2031
            again = ehci_state_fetchqtd(q, async);
2032
            break;
2033

    
2034
        case EST_HORIZONTALQH:
2035
            again = ehci_state_horizqh(q, async);
2036
            break;
2037

    
2038
        case EST_EXECUTE:
2039
            iter = 0;
2040
            again = ehci_state_execute(q, async);
2041
            break;
2042

    
2043
        case EST_EXECUTING:
2044
            assert(q != NULL);
2045
            again = ehci_state_executing(q, async);
2046
            break;
2047

    
2048
        case EST_WRITEBACK:
2049
            assert(q != NULL);
2050
            again = ehci_state_writeback(q, async);
2051
            break;
2052

    
2053
        default:
2054
            fprintf(stderr, "Bad state!\n");
2055
            again = -1;
2056
            assert(0);
2057
            break;
2058
        }
2059

    
2060
        if (again < 0) {
2061
            fprintf(stderr, "processing error - resetting ehci HC\n");
2062
            ehci_reset(ehci);
2063
            again = 0;
2064
            assert(0);
2065
        }
2066
    }
2067
    while (again);
2068

    
2069
    ehci_commit_interrupt(ehci);
2070
}
2071

    
2072
static void ehci_advance_async_state(EHCIState *ehci)
2073
{
2074
    int async = 1;
2075

    
2076
    switch(ehci_get_state(ehci, async)) {
2077
    case EST_INACTIVE:
2078
        if (!(ehci->usbcmd & USBCMD_ASE)) {
2079
            break;
2080
        }
2081
        ehci_set_usbsts(ehci, USBSTS_ASS);
2082
        ehci_set_state(ehci, async, EST_ACTIVE);
2083
        // No break, fall through to ACTIVE
2084

    
2085
    case EST_ACTIVE:
2086
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
2087
            ehci_clear_usbsts(ehci, USBSTS_ASS);
2088
            ehci_set_state(ehci, async, EST_INACTIVE);
2089
            break;
2090
        }
2091

    
2092
        /* If the doorbell is set, the guest wants to make a change to the
2093
         * schedule. The host controller needs to release cached data.
2094
         * (section 4.8.2)
2095
         */
2096
        if (ehci->usbcmd & USBCMD_IAAD) {
2097
            DPRINTF("ASYNC: doorbell request acknowledged\n");
2098
            ehci->usbcmd &= ~USBCMD_IAAD;
2099
            ehci_set_interrupt(ehci, USBSTS_IAA);
2100
            break;
2101
        }
2102

    
2103
        /* make sure guest has acknowledged */
2104
        /* TO-DO: is this really needed? */
2105
        if (ehci->usbsts & USBSTS_IAA) {
2106
            DPRINTF("IAA status bit still set.\n");
2107
            break;
2108
        }
2109

    
2110
        /* check that address register has been set */
2111
        if (ehci->asynclistaddr == 0) {
2112
            break;
2113
        }
2114

    
2115
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2116
        ehci_advance_state(ehci, async);
2117
        break;
2118

    
2119
    default:
2120
        /* this should only be due to a developer mistake */
2121
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
2122
                "Resetting to active\n", ehci->astate);
2123
        assert(0);
2124
    }
2125
}
2126

    
2127
static void ehci_advance_periodic_state(EHCIState *ehci)
2128
{
2129
    uint32_t entry;
2130
    uint32_t list;
2131
    int async = 0;
2132

    
2133
    // 4.6
2134

    
2135
    switch(ehci_get_state(ehci, async)) {
2136
    case EST_INACTIVE:
2137
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2138
            ehci_set_usbsts(ehci, USBSTS_PSS);
2139
            ehci_set_state(ehci, async, EST_ACTIVE);
2140
            // No break, fall through to ACTIVE
2141
        } else
2142
            break;
2143

    
2144
    case EST_ACTIVE:
2145
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2146
            ehci_clear_usbsts(ehci, USBSTS_PSS);
2147
            ehci_set_state(ehci, async, EST_INACTIVE);
2148
            break;
2149
        }
2150

    
2151
        list = ehci->periodiclistbase & 0xfffff000;
2152
        /* check that register has been set */
2153
        if (list == 0) {
2154
            break;
2155
        }
2156
        list |= ((ehci->frindex & 0x1ff8) >> 1);
2157

    
2158
        pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2159
        entry = le32_to_cpu(entry);
2160

    
2161
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2162
                ehci->frindex / 8, list, entry);
2163
        ehci_set_fetch_addr(ehci, async,entry);
2164
        ehci_set_state(ehci, async, EST_FETCHENTRY);
2165
        ehci_advance_state(ehci, async);
2166
        break;
2167

    
2168
    default:
2169
        /* this should only be due to a developer mistake */
2170
        fprintf(stderr, "ehci: Bad periodic state %d. "
2171
                "Resetting to active\n", ehci->pstate);
2172
        assert(0);
2173
    }
2174
}
2175

    
2176
static void ehci_frame_timer(void *opaque)
2177
{
2178
    EHCIState *ehci = opaque;
2179
    int64_t expire_time, t_now;
2180
    uint64_t ns_elapsed;
2181
    int frames;
2182
    int i;
2183
    int skipped_frames = 0;
2184

    
2185
    t_now = qemu_get_clock_ns(vm_clock);
2186
    expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2187

    
2188
    ns_elapsed = t_now - ehci->last_run_ns;
2189
    frames = ns_elapsed / FRAME_TIMER_NS;
2190

    
2191
    for (i = 0; i < frames; i++) {
2192
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2193
            if (ehci->isoch_pause <= 0) {
2194
                ehci->frindex += 8;
2195
            }
2196

    
2197
            if (ehci->frindex > 0x00001fff) {
2198
                ehci->frindex = 0;
2199
                ehci_set_interrupt(ehci, USBSTS_FLR);
2200
            }
2201

    
2202
            ehci->sofv = (ehci->frindex - 1) >> 3;
2203
            ehci->sofv &= 0x000003ff;
2204
        }
2205

    
2206
        if (frames - i > ehci->maxframes) {
2207
            skipped_frames++;
2208
        } else {
2209
            ehci_advance_periodic_state(ehci);
2210
        }
2211

    
2212
        ehci->last_run_ns += FRAME_TIMER_NS;
2213
    }
2214

    
2215
#if 0
2216
    if (skipped_frames) {
2217
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2218
    }
2219
#endif
2220

    
2221
    /*  Async is not inside loop since it executes everything it can once
2222
     *  called
2223
     */
2224
    ehci_advance_async_state(ehci);
2225

    
2226
    qemu_mod_timer(ehci->frame_timer, expire_time);
2227
}
2228

    
2229

    
2230
static const MemoryRegionOps ehci_mem_ops = {
2231
    .old_mmio = {
2232
        .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2233
        .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2234
    },
2235
    .endianness = DEVICE_LITTLE_ENDIAN,
2236
};
2237

    
2238
static int usb_ehci_initfn(PCIDevice *dev);
2239

    
2240
static USBPortOps ehci_port_ops = {
2241
    .attach = ehci_attach,
2242
    .detach = ehci_detach,
2243
    .child_detach = ehci_child_detach,
2244
    .wakeup = ehci_wakeup,
2245
    .complete = ehci_async_complete_packet,
2246
};
2247

    
2248
static USBBusOps ehci_bus_ops = {
2249
    .register_companion = ehci_register_companion,
2250
};
2251

    
2252
static const VMStateDescription vmstate_ehci = {
2253
    .name = "ehci",
2254
    .unmigratable = 1,
2255
};
2256

    
2257
static Property ehci_properties[] = {
2258
    DEFINE_PROP_UINT32("freq",      EHCIState, freq, FRAME_TIMER_FREQ),
2259
    DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2260
    DEFINE_PROP_END_OF_LIST(),
2261
};
2262

    
2263
static void ehci_class_init(ObjectClass *klass, void *data)
2264
{
2265
    DeviceClass *dc = DEVICE_CLASS(klass);
2266
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2267

    
2268
    k->init = usb_ehci_initfn;
2269
    k->vendor_id = PCI_VENDOR_ID_INTEL;
2270
    k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2271
    k->revision = 0x10;
2272
    k->class_id = PCI_CLASS_SERIAL_USB;
2273
    dc->vmsd = &vmstate_ehci;
2274
    dc->props = ehci_properties;
2275
}
2276

    
2277
static TypeInfo ehci_info = {
2278
    .name          = "usb-ehci",
2279
    .parent        = TYPE_PCI_DEVICE,
2280
    .instance_size = sizeof(EHCIState),
2281
    .class_init    = ehci_class_init,
2282
};
2283

    
2284
static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2285
{
2286
    DeviceClass *dc = DEVICE_CLASS(klass);
2287
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2288

    
2289
    k->init = usb_ehci_initfn;
2290
    k->vendor_id = PCI_VENDOR_ID_INTEL;
2291
    k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2292
    k->revision = 0x03;
2293
    k->class_id = PCI_CLASS_SERIAL_USB;
2294
    dc->vmsd = &vmstate_ehci;
2295
    dc->props = ehci_properties;
2296
}
2297

    
2298
static TypeInfo ich9_ehci_info = {
2299
    .name          = "ich9-usb-ehci1",
2300
    .parent        = TYPE_PCI_DEVICE,
2301
    .instance_size = sizeof(EHCIState),
2302
    .class_init    = ich9_ehci_class_init,
2303
};
2304

    
2305
static int usb_ehci_initfn(PCIDevice *dev)
2306
{
2307
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2308
    uint8_t *pci_conf = s->dev.config;
2309
    int i;
2310

    
2311
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2312

    
2313
    /* capabilities pointer */
2314
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2315
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2316

    
2317
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2318
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2319
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2320

    
2321
    // pci_conf[0x50] = 0x01; // power management caps
2322

    
2323
    pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2324
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2325
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2326

    
2327
    pci_conf[0x64] = 0x00;
2328
    pci_conf[0x65] = 0x00;
2329
    pci_conf[0x66] = 0x00;
2330
    pci_conf[0x67] = 0x00;
2331
    pci_conf[0x68] = 0x01;
2332
    pci_conf[0x69] = 0x00;
2333
    pci_conf[0x6a] = 0x00;
2334
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2335
    pci_conf[0x6c] = 0x00;
2336
    pci_conf[0x6d] = 0x00;
2337
    pci_conf[0x6e] = 0x00;
2338
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2339

    
2340
    // 2.2 host controller interface version
2341
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2342
    s->mmio[0x01] = 0x00;
2343
    s->mmio[0x02] = 0x00;
2344
    s->mmio[0x03] = 0x01;        // HC version
2345
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2346
    s->mmio[0x05] = 0x00;        // No companion ports at present
2347
    s->mmio[0x06] = 0x00;
2348
    s->mmio[0x07] = 0x00;
2349
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2350
    s->mmio[0x09] = 0x68;        // EECP
2351
    s->mmio[0x0a] = 0x00;
2352
    s->mmio[0x0b] = 0x00;
2353

    
2354
    s->irq = s->dev.irq[3];
2355

    
2356
    usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2357
    for(i = 0; i < NB_PORTS; i++) {
2358
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2359
                          USB_SPEED_MASK_HIGH);
2360
        s->ports[i].dev = 0;
2361
    }
2362

    
2363
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2364
    QTAILQ_INIT(&s->queues);
2365

    
2366
    qemu_register_reset(ehci_reset, s);
2367

    
2368
    memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2369
    pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2370

    
2371
    fprintf(stderr, "*** EHCI support is under development ***\n");
2372

    
2373
    return 0;
2374
}
2375

    
2376
static void ehci_register(void)
2377
{
2378
    type_register_static(&ehci_info);
2379
    type_register_static(&ich9_ehci_info);
2380
}
2381
device_init(ehci_register);
2382

    
2383
/*
2384
 * vim: expandtab ts=4
2385
 */