Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 08cea4ee

History | View | Annotate | Download (12.4 kB)

1
/*
2
 *  i386 execution defines 
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "dyngen-exec.h"
21

    
22
/* at least 4 register variables are defines */
23
register struct CPUX86State *env asm(AREG0);
24
register uint32_t T0 asm(AREG1);
25
register uint32_t T1 asm(AREG2);
26
register uint32_t T2 asm(AREG3);
27

    
28
#define A0 T2
29

    
30
/* if more registers are available, we define some registers too */
31
#ifdef AREG4
32
register uint32_t EAX asm(AREG4);
33
#define reg_EAX
34
#endif
35

    
36
#ifdef AREG5
37
register uint32_t ESP asm(AREG5);
38
#define reg_ESP
39
#endif
40

    
41
#ifdef AREG6
42
register uint32_t EBP asm(AREG6);
43
#define reg_EBP
44
#endif
45

    
46
#ifdef AREG7
47
register uint32_t ECX asm(AREG7);
48
#define reg_ECX
49
#endif
50

    
51
#ifdef AREG8
52
register uint32_t EDX asm(AREG8);
53
#define reg_EDX
54
#endif
55

    
56
#ifdef AREG9
57
register uint32_t EBX asm(AREG9);
58
#define reg_EBX
59
#endif
60

    
61
#ifdef AREG10
62
register uint32_t ESI asm(AREG10);
63
#define reg_ESI
64
#endif
65

    
66
#ifdef AREG11
67
register uint32_t EDI asm(AREG11);
68
#define reg_EDI
69
#endif
70

    
71
extern FILE *logfile;
72
extern int loglevel;
73

    
74
#ifndef reg_EAX
75
#define EAX (env->regs[R_EAX])
76
#endif
77
#ifndef reg_ECX
78
#define ECX (env->regs[R_ECX])
79
#endif
80
#ifndef reg_EDX
81
#define EDX (env->regs[R_EDX])
82
#endif
83
#ifndef reg_EBX
84
#define EBX (env->regs[R_EBX])
85
#endif
86
#ifndef reg_ESP
87
#define ESP (env->regs[R_ESP])
88
#endif
89
#ifndef reg_EBP
90
#define EBP (env->regs[R_EBP])
91
#endif
92
#ifndef reg_ESI
93
#define ESI (env->regs[R_ESI])
94
#endif
95
#ifndef reg_EDI
96
#define EDI (env->regs[R_EDI])
97
#endif
98
#define EIP  (env->eip)
99
#define DF  (env->df)
100

    
101
#define CC_SRC (env->cc_src)
102
#define CC_DST (env->cc_dst)
103
#define CC_OP  (env->cc_op)
104

    
105
/* float macros */
106
#define FT0    (env->ft0)
107
#define ST0    (env->fpregs[env->fpstt])
108
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7])
109
#define ST1    ST(1)
110

    
111
#ifdef USE_FP_CONVERT
112
#define FP_CONVERT  (env->fp_convert)
113
#endif
114

    
115
#include "cpu.h"
116
#include "exec-all.h"
117

    
118
typedef struct CCTable {
119
    int (*compute_all)(void); /* return all the flags */
120
    int (*compute_c)(void);  /* return the C flag */
121
} CCTable;
122

    
123
extern CCTable cc_table[];
124

    
125
void load_seg(int seg_reg, int selector);
126
void helper_ljmp_protected_T0_T1(int next_eip);
127
void helper_lcall_real_T0_T1(int shift, int next_eip);
128
void helper_lcall_protected_T0_T1(int shift, int next_eip);
129
void helper_iret_real(int shift);
130
void helper_iret_protected(int shift, int next_eip);
131
void helper_lret_protected(int shift, int addend);
132
void helper_lldt_T0(void);
133
void helper_ltr_T0(void);
134
void helper_movl_crN_T0(int reg);
135
void helper_movl_drN_T0(int reg);
136
void helper_invlpg(unsigned int addr);
137
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
138
void cpu_x86_update_cr3(CPUX86State *env, uint32_t new_cr3);
139
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
140
void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
141
int cpu_x86_handle_mmu_fault(CPUX86State *env, uint32_t addr, 
142
                             int is_write, int is_user, int is_softmmu);
143
void tlb_fill(unsigned long addr, int is_write, int is_user, 
144
              void *retaddr);
145
void __hidden cpu_lock(void);
146
void __hidden cpu_unlock(void);
147
void do_interrupt(int intno, int is_int, int error_code, 
148
                  unsigned int next_eip, int is_hw);
149
void do_interrupt_user(int intno, int is_int, int error_code, 
150
                       unsigned int next_eip);
151
void raise_interrupt(int intno, int is_int, int error_code, 
152
                     unsigned int next_eip);
153
void raise_exception_err(int exception_index, int error_code);
154
void raise_exception(int exception_index);
155
void __hidden cpu_loop_exit(void);
156
void helper_fsave(uint8_t *ptr, int data32);
157
void helper_frstor(uint8_t *ptr, int data32);
158

    
159
void OPPROTO op_movl_eflags_T0(void);
160
void OPPROTO op_movl_T0_eflags(void);
161
void raise_interrupt(int intno, int is_int, int error_code, 
162
                     unsigned int next_eip);
163
void raise_exception_err(int exception_index, int error_code);
164
void raise_exception(int exception_index);
165
void helper_divl_EAX_T0(uint32_t eip);
166
void helper_idivl_EAX_T0(uint32_t eip);
167
void helper_cmpxchg8b(void);
168
void helper_cpuid(void);
169
void helper_rdtsc(void);
170
void helper_rdmsr(void);
171
void helper_wrmsr(void);
172
void helper_lsl(void);
173
void helper_lar(void);
174
void helper_verr(void);
175
void helper_verw(void);
176

    
177
void check_iob_T0(void);
178
void check_iow_T0(void);
179
void check_iol_T0(void);
180
void check_iob_DX(void);
181
void check_iow_DX(void);
182
void check_iol_DX(void);
183

    
184
/* XXX: move that to a generic header */
185
#if !defined(CONFIG_USER_ONLY)
186

    
187
#define ldul_user ldl_user
188
#define ldul_kernel ldl_kernel
189

    
190
#define ACCESS_TYPE 0
191
#define MEMSUFFIX _kernel
192
#define DATA_SIZE 1
193
#include "softmmu_header.h"
194

    
195
#define DATA_SIZE 2
196
#include "softmmu_header.h"
197

    
198
#define DATA_SIZE 4
199
#include "softmmu_header.h"
200

    
201
#define DATA_SIZE 8
202
#include "softmmu_header.h"
203
#undef ACCESS_TYPE
204
#undef MEMSUFFIX
205

    
206
#define ACCESS_TYPE 1
207
#define MEMSUFFIX _user
208
#define DATA_SIZE 1
209
#include "softmmu_header.h"
210

    
211
#define DATA_SIZE 2
212
#include "softmmu_header.h"
213

    
214
#define DATA_SIZE 4
215
#include "softmmu_header.h"
216

    
217
#define DATA_SIZE 8
218
#include "softmmu_header.h"
219
#undef ACCESS_TYPE
220
#undef MEMSUFFIX
221

    
222
/* these access are slower, they must be as rare as possible */
223
#define ACCESS_TYPE 2
224
#define MEMSUFFIX _data
225
#define DATA_SIZE 1
226
#include "softmmu_header.h"
227

    
228
#define DATA_SIZE 2
229
#include "softmmu_header.h"
230

    
231
#define DATA_SIZE 4
232
#include "softmmu_header.h"
233

    
234
#define DATA_SIZE 8
235
#include "softmmu_header.h"
236
#undef ACCESS_TYPE
237
#undef MEMSUFFIX
238

    
239
#define ldub(p) ldub_data(p)
240
#define ldsb(p) ldsb_data(p)
241
#define lduw(p) lduw_data(p)
242
#define ldsw(p) ldsw_data(p)
243
#define ldl(p) ldl_data(p)
244
#define ldq(p) ldq_data(p)
245

    
246
#define stb(p, v) stb_data(p, v)
247
#define stw(p, v) stw_data(p, v)
248
#define stl(p, v) stl_data(p, v)
249
#define stq(p, v) stq_data(p, v)
250

    
251
static inline double ldfq(void *ptr)
252
{
253
    union {
254
        double d;
255
        uint64_t i;
256
    } u;
257
    u.i = ldq(ptr);
258
    return u.d;
259
}
260

    
261
static inline void stfq(void *ptr, double v)
262
{
263
    union {
264
        double d;
265
        uint64_t i;
266
    } u;
267
    u.d = v;
268
    stq(ptr, u.i);
269
}
270

    
271
static inline float ldfl(void *ptr)
272
{
273
    union {
274
        float f;
275
        uint32_t i;
276
    } u;
277
    u.i = ldl(ptr);
278
    return u.f;
279
}
280

    
281
static inline void stfl(void *ptr, float v)
282
{
283
    union {
284
        float f;
285
        uint32_t i;
286
    } u;
287
    u.f = v;
288
    stl(ptr, u.i);
289
}
290

    
291
#endif /* !defined(CONFIG_USER_ONLY) */
292

    
293
#ifdef USE_X86LDOUBLE
294
/* use long double functions */
295
#define lrint lrintl
296
#define llrint llrintl
297
#define fabs fabsl
298
#define sin sinl
299
#define cos cosl
300
#define sqrt sqrtl
301
#define pow powl
302
#define log logl
303
#define tan tanl
304
#define atan2 atan2l
305
#define floor floorl
306
#define ceil ceill
307
#define rint rintl
308
#endif
309

    
310
extern int lrint(CPU86_LDouble x);
311
extern int64_t llrint(CPU86_LDouble x);
312
extern CPU86_LDouble fabs(CPU86_LDouble x);
313
extern CPU86_LDouble sin(CPU86_LDouble x);
314
extern CPU86_LDouble cos(CPU86_LDouble x);
315
extern CPU86_LDouble sqrt(CPU86_LDouble x);
316
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
317
extern CPU86_LDouble log(CPU86_LDouble x);
318
extern CPU86_LDouble tan(CPU86_LDouble x);
319
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
320
extern CPU86_LDouble floor(CPU86_LDouble x);
321
extern CPU86_LDouble ceil(CPU86_LDouble x);
322
extern CPU86_LDouble rint(CPU86_LDouble x);
323

    
324
#define RC_MASK         0xc00
325
#define RC_NEAR                0x000
326
#define RC_DOWN                0x400
327
#define RC_UP                0x800
328
#define RC_CHOP                0xc00
329

    
330
#define MAXTAN 9223372036854775808.0
331

    
332
#ifdef __arm__
333
/* we have no way to do correct rounding - a FPU emulator is needed */
334
#define FE_DOWNWARD   FE_TONEAREST
335
#define FE_UPWARD     FE_TONEAREST
336
#define FE_TOWARDZERO FE_TONEAREST
337
#endif
338

    
339
#ifdef USE_X86LDOUBLE
340

    
341
/* only for x86 */
342
typedef union {
343
    long double d;
344
    struct {
345
        unsigned long long lower;
346
        unsigned short upper;
347
    } l;
348
} CPU86_LDoubleU;
349

    
350
/* the following deal with x86 long double-precision numbers */
351
#define MAXEXPD 0x7fff
352
#define EXPBIAS 16383
353
#define EXPD(fp)        (fp.l.upper & 0x7fff)
354
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
355
#define MANTD(fp)       (fp.l.lower)
356
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
357

    
358
#else
359

    
360
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
361
typedef union {
362
    double d;
363
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
364
    struct {
365
        uint32_t lower;
366
        int32_t upper;
367
    } l;
368
#else
369
    struct {
370
        int32_t upper;
371
        uint32_t lower;
372
    } l;
373
#endif
374
#ifndef __arm__
375
    int64_t ll;
376
#endif
377
} CPU86_LDoubleU;
378

    
379
/* the following deal with IEEE double-precision numbers */
380
#define MAXEXPD 0x7ff
381
#define EXPBIAS 1023
382
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
383
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
384
#ifdef __arm__
385
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
386
#else
387
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
388
#endif
389
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
390
#endif
391

    
392
static inline void fpush(void)
393
{
394
    env->fpstt = (env->fpstt - 1) & 7;
395
    env->fptags[env->fpstt] = 0; /* validate stack entry */
396
}
397

    
398
static inline void fpop(void)
399
{
400
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
401
    env->fpstt = (env->fpstt + 1) & 7;
402
}
403

    
404
#ifndef USE_X86LDOUBLE
405
static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
406
{
407
    CPU86_LDoubleU temp;
408
    int upper, e;
409
    uint64_t ll;
410

    
411
    /* mantissa */
412
    upper = lduw(ptr + 8);
413
    /* XXX: handle overflow ? */
414
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
415
    e |= (upper >> 4) & 0x800; /* sign */
416
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
417
#ifdef __arm__
418
    temp.l.upper = (e << 20) | (ll >> 32);
419
    temp.l.lower = ll;
420
#else
421
    temp.ll = ll | ((uint64_t)e << 52);
422
#endif
423
    return temp.d;
424
}
425

    
426
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
427
{
428
    CPU86_LDoubleU temp;
429
    int e;
430

    
431
    temp.d = f;
432
    /* mantissa */
433
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
434
    /* exponent + sign */
435
    e = EXPD(temp) - EXPBIAS + 16383;
436
    e |= SIGND(temp) >> 16;
437
    stw(ptr + 8, e);
438
}
439
#else
440

    
441
/* XXX: same endianness assumed */
442

    
443
#ifdef CONFIG_USER_ONLY
444

    
445
static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
446
{
447
    return *(CPU86_LDouble *)ptr;
448
}
449

    
450
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
451
{
452
    *(CPU86_LDouble *)ptr = f;
453
}
454

    
455
#else
456

    
457
/* we use memory access macros */
458

    
459
static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
460
{
461
    CPU86_LDoubleU temp;
462

    
463
    temp.l.lower = ldq(ptr);
464
    temp.l.upper = lduw(ptr + 8);
465
    return temp.d;
466
}
467

    
468
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
469
{
470
    CPU86_LDoubleU temp;
471
    
472
    temp.d = f;
473
    stq(ptr, temp.l.lower);
474
    stw(ptr + 8, temp.l.upper);
475
}
476

    
477
#endif /* !CONFIG_USER_ONLY */
478

    
479
#endif /* USE_X86LDOUBLE */
480

    
481
const CPU86_LDouble f15rk[7];
482

    
483
void helper_fldt_ST0_A0(void);
484
void helper_fstt_ST0_A0(void);
485
void helper_fbld_ST0_A0(void);
486
void helper_fbst_ST0_A0(void);
487
void helper_f2xm1(void);
488
void helper_fyl2x(void);
489
void helper_fptan(void);
490
void helper_fpatan(void);
491
void helper_fxtract(void);
492
void helper_fprem1(void);
493
void helper_fprem(void);
494
void helper_fyl2xp1(void);
495
void helper_fsqrt(void);
496
void helper_fsincos(void);
497
void helper_frndint(void);
498
void helper_fscale(void);
499
void helper_fsin(void);
500
void helper_fcos(void);
501
void helper_fxam_ST0(void);
502
void helper_fstenv(uint8_t *ptr, int data32);
503
void helper_fldenv(uint8_t *ptr, int data32);
504
void helper_fsave(uint8_t *ptr, int data32);
505
void helper_frstor(uint8_t *ptr, int data32);
506
void restore_native_fp_state(CPUState *env);
507
void save_native_fp_state(CPUState *env);
508

    
509
const uint8_t parity_table[256];
510
const uint8_t rclw_table[32];
511
const uint8_t rclb_table[32];
512

    
513
static inline uint32_t compute_eflags(void)
514
{
515
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
516
}
517

    
518
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
519
static inline void load_eflags(int eflags, int update_mask)
520
{
521
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
522
    DF = 1 - (2 * ((eflags >> 10) & 1));
523
    env->eflags = (env->eflags & ~update_mask) | 
524
        (eflags & update_mask);
525
}
526