Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ 09487205

History | View | Annotate | Download (116.4 kB)

1 e8af50a3 bellard
#include "exec.h"
2 eed152bb blueswir1
#include "host-utils.h"
3 1a2fb1c0 blueswir1
#include "helper.h"
4 e8af50a3 bellard
5 e80cfcfc bellard
//#define DEBUG_MMU
6 952a328f blueswir1
//#define DEBUG_MXCC
7 94554550 blueswir1
//#define DEBUG_UNALIGNED
8 6c36d3fa blueswir1
//#define DEBUG_UNASSIGNED
9 8543e2cf blueswir1
//#define DEBUG_ASI
10 d81fd722 blueswir1
//#define DEBUG_PCALL
11 7e8695ed Igor V. Kovalenko
//#define DEBUG_PSTATE
12 e80cfcfc bellard
13 952a328f blueswir1
#ifdef DEBUG_MMU
14 001faf32 Blue Swirl
#define DPRINTF_MMU(fmt, ...)                                   \
15 001faf32 Blue Swirl
    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
16 952a328f blueswir1
#else
17 001faf32 Blue Swirl
#define DPRINTF_MMU(fmt, ...) do {} while (0)
18 952a328f blueswir1
#endif
19 952a328f blueswir1
20 952a328f blueswir1
#ifdef DEBUG_MXCC
21 001faf32 Blue Swirl
#define DPRINTF_MXCC(fmt, ...)                                  \
22 001faf32 Blue Swirl
    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
23 952a328f blueswir1
#else
24 001faf32 Blue Swirl
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
25 952a328f blueswir1
#endif
26 952a328f blueswir1
27 8543e2cf blueswir1
#ifdef DEBUG_ASI
28 001faf32 Blue Swirl
#define DPRINTF_ASI(fmt, ...)                                   \
29 001faf32 Blue Swirl
    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
30 8543e2cf blueswir1
#endif
31 8543e2cf blueswir1
32 7e8695ed Igor V. Kovalenko
#ifdef DEBUG_PSTATE
33 7e8695ed Igor V. Kovalenko
#define DPRINTF_PSTATE(fmt, ...)                                   \
34 7e8695ed Igor V. Kovalenko
    do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
35 7e8695ed Igor V. Kovalenko
#else
36 7e8695ed Igor V. Kovalenko
#define DPRINTF_PSTATE(fmt, ...) do {} while (0)
37 7e8695ed Igor V. Kovalenko
#endif
38 7e8695ed Igor V. Kovalenko
39 2cade6a3 blueswir1
#ifdef TARGET_SPARC64
40 2cade6a3 blueswir1
#ifndef TARGET_ABI32
41 2cade6a3 blueswir1
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
42 c2bc0e38 blueswir1
#else
43 2cade6a3 blueswir1
#define AM_CHECK(env1) (1)
44 2cade6a3 blueswir1
#endif
45 c2bc0e38 blueswir1
#endif
46 c2bc0e38 blueswir1
47 21ffd181 Blue Swirl
#define DT0 (env->dt0)
48 21ffd181 Blue Swirl
#define DT1 (env->dt1)
49 21ffd181 Blue Swirl
#define QT0 (env->qt0)
50 21ffd181 Blue Swirl
#define QT1 (env->qt1)
51 21ffd181 Blue Swirl
52 3c7b48b7 Paul Brook
#if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
53 3c7b48b7 Paul Brook
static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
54 3c7b48b7 Paul Brook
                          int is_asi, int size);
55 3c7b48b7 Paul Brook
#endif
56 3c7b48b7 Paul Brook
57 9c22a623 Blue Swirl
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
58 697a77e6 Igor Kovalenko
// Calculates TSB pointer value for fault page size 8k or 64k
59 697a77e6 Igor Kovalenko
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
60 697a77e6 Igor Kovalenko
                                       uint64_t tag_access_register,
61 697a77e6 Igor Kovalenko
                                       int page_size)
62 697a77e6 Igor Kovalenko
{
63 697a77e6 Igor Kovalenko
    uint64_t tsb_base = tsb_register & ~0x1fffULL;
64 6e8e7d4c Igor Kovalenko
    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
65 6e8e7d4c Igor Kovalenko
    int tsb_size  = tsb_register & 0xf;
66 697a77e6 Igor Kovalenko
67 697a77e6 Igor Kovalenko
    // discard lower 13 bits which hold tag access context
68 697a77e6 Igor Kovalenko
    uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
69 697a77e6 Igor Kovalenko
70 697a77e6 Igor Kovalenko
    // now reorder bits
71 697a77e6 Igor Kovalenko
    uint64_t tsb_base_mask = ~0x1fffULL;
72 697a77e6 Igor Kovalenko
    uint64_t va = tag_access_va;
73 697a77e6 Igor Kovalenko
74 697a77e6 Igor Kovalenko
    // move va bits to correct position
75 697a77e6 Igor Kovalenko
    if (page_size == 8*1024) {
76 697a77e6 Igor Kovalenko
        va >>= 9;
77 697a77e6 Igor Kovalenko
    } else if (page_size == 64*1024) {
78 697a77e6 Igor Kovalenko
        va >>= 12;
79 697a77e6 Igor Kovalenko
    }
80 697a77e6 Igor Kovalenko
81 697a77e6 Igor Kovalenko
    if (tsb_size) {
82 697a77e6 Igor Kovalenko
        tsb_base_mask <<= tsb_size;
83 697a77e6 Igor Kovalenko
    }
84 697a77e6 Igor Kovalenko
85 697a77e6 Igor Kovalenko
    // calculate tsb_base mask and adjust va if split is in use
86 697a77e6 Igor Kovalenko
    if (tsb_split) {
87 697a77e6 Igor Kovalenko
        if (page_size == 8*1024) {
88 697a77e6 Igor Kovalenko
            va &= ~(1ULL << (13 + tsb_size));
89 697a77e6 Igor Kovalenko
        } else if (page_size == 64*1024) {
90 697a77e6 Igor Kovalenko
            va |= (1ULL << (13 + tsb_size));
91 697a77e6 Igor Kovalenko
        }
92 697a77e6 Igor Kovalenko
        tsb_base_mask <<= 1;
93 697a77e6 Igor Kovalenko
    }
94 697a77e6 Igor Kovalenko
95 697a77e6 Igor Kovalenko
    return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
96 697a77e6 Igor Kovalenko
}
97 697a77e6 Igor Kovalenko
98 697a77e6 Igor Kovalenko
// Calculates tag target register value by reordering bits
99 697a77e6 Igor Kovalenko
// in tag access register
100 697a77e6 Igor Kovalenko
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
101 697a77e6 Igor Kovalenko
{
102 697a77e6 Igor Kovalenko
    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
103 697a77e6 Igor Kovalenko
}
104 697a77e6 Igor Kovalenko
105 f707726e Igor Kovalenko
static void replace_tlb_entry(SparcTLBEntry *tlb,
106 f707726e Igor Kovalenko
                              uint64_t tlb_tag, uint64_t tlb_tte,
107 f707726e Igor Kovalenko
                              CPUState *env1)
108 6e8e7d4c Igor Kovalenko
{
109 6e8e7d4c Igor Kovalenko
    target_ulong mask, size, va, offset;
110 6e8e7d4c Igor Kovalenko
111 6e8e7d4c Igor Kovalenko
    // flush page range if translation is valid
112 f707726e Igor Kovalenko
    if (TTE_IS_VALID(tlb->tte)) {
113 6e8e7d4c Igor Kovalenko
114 6e8e7d4c Igor Kovalenko
        mask = 0xffffffffffffe000ULL;
115 6e8e7d4c Igor Kovalenko
        mask <<= 3 * ((tlb->tte >> 61) & 3);
116 6e8e7d4c Igor Kovalenko
        size = ~mask + 1;
117 6e8e7d4c Igor Kovalenko
118 6e8e7d4c Igor Kovalenko
        va = tlb->tag & mask;
119 6e8e7d4c Igor Kovalenko
120 6e8e7d4c Igor Kovalenko
        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
121 6e8e7d4c Igor Kovalenko
            tlb_flush_page(env1, va + offset);
122 6e8e7d4c Igor Kovalenko
        }
123 6e8e7d4c Igor Kovalenko
    }
124 6e8e7d4c Igor Kovalenko
125 6e8e7d4c Igor Kovalenko
    tlb->tag = tlb_tag;
126 6e8e7d4c Igor Kovalenko
    tlb->tte = tlb_tte;
127 6e8e7d4c Igor Kovalenko
}
128 6e8e7d4c Igor Kovalenko
129 6e8e7d4c Igor Kovalenko
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
130 f707726e Igor Kovalenko
                      const char* strmmu, CPUState *env1)
131 6e8e7d4c Igor Kovalenko
{
132 6e8e7d4c Igor Kovalenko
    unsigned int i;
133 6e8e7d4c Igor Kovalenko
    target_ulong mask;
134 299b520c Igor V. Kovalenko
    uint64_t context;
135 299b520c Igor V. Kovalenko
136 299b520c Igor V. Kovalenko
    int is_demap_context = (demap_addr >> 6) & 1;
137 299b520c Igor V. Kovalenko
138 299b520c Igor V. Kovalenko
    // demap context
139 299b520c Igor V. Kovalenko
    switch ((demap_addr >> 4) & 3) {
140 299b520c Igor V. Kovalenko
    case 0: // primary
141 299b520c Igor V. Kovalenko
        context = env1->dmmu.mmu_primary_context;
142 299b520c Igor V. Kovalenko
        break;
143 299b520c Igor V. Kovalenko
    case 1: // secondary
144 299b520c Igor V. Kovalenko
        context = env1->dmmu.mmu_secondary_context;
145 299b520c Igor V. Kovalenko
        break;
146 299b520c Igor V. Kovalenko
    case 2: // nucleus
147 299b520c Igor V. Kovalenko
        context = 0;
148 299b520c Igor V. Kovalenko
        break;
149 299b520c Igor V. Kovalenko
    case 3: // reserved
150 299b520c Igor V. Kovalenko
    default:
151 299b520c Igor V. Kovalenko
        return;
152 299b520c Igor V. Kovalenko
    }
153 6e8e7d4c Igor Kovalenko
154 6e8e7d4c Igor Kovalenko
    for (i = 0; i < 64; i++) {
155 f707726e Igor Kovalenko
        if (TTE_IS_VALID(tlb[i].tte)) {
156 6e8e7d4c Igor Kovalenko
157 299b520c Igor V. Kovalenko
            if (is_demap_context) {
158 299b520c Igor V. Kovalenko
                // will remove non-global entries matching context value
159 299b520c Igor V. Kovalenko
                if (TTE_IS_GLOBAL(tlb[i].tte) ||
160 299b520c Igor V. Kovalenko
                    !tlb_compare_context(&tlb[i], context)) {
161 299b520c Igor V. Kovalenko
                    continue;
162 299b520c Igor V. Kovalenko
                }
163 299b520c Igor V. Kovalenko
            } else {
164 299b520c Igor V. Kovalenko
                // demap page
165 299b520c Igor V. Kovalenko
                // will remove any entry matching VA
166 299b520c Igor V. Kovalenko
                mask = 0xffffffffffffe000ULL;
167 299b520c Igor V. Kovalenko
                mask <<= 3 * ((tlb[i].tte >> 61) & 3);
168 299b520c Igor V. Kovalenko
169 299b520c Igor V. Kovalenko
                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
170 299b520c Igor V. Kovalenko
                    continue;
171 299b520c Igor V. Kovalenko
                }
172 299b520c Igor V. Kovalenko
173 299b520c Igor V. Kovalenko
                // entry should be global or matching context value
174 299b520c Igor V. Kovalenko
                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
175 299b520c Igor V. Kovalenko
                    !tlb_compare_context(&tlb[i], context)) {
176 299b520c Igor V. Kovalenko
                    continue;
177 299b520c Igor V. Kovalenko
                }
178 299b520c Igor V. Kovalenko
            }
179 6e8e7d4c Igor Kovalenko
180 299b520c Igor V. Kovalenko
            replace_tlb_entry(&tlb[i], 0, 0, env1);
181 6e8e7d4c Igor Kovalenko
#ifdef DEBUG_MMU
182 299b520c Igor V. Kovalenko
            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
183 299b520c Igor V. Kovalenko
            dump_mmu(env1);
184 6e8e7d4c Igor Kovalenko
#endif
185 6e8e7d4c Igor Kovalenko
        }
186 6e8e7d4c Igor Kovalenko
    }
187 6e8e7d4c Igor Kovalenko
}
188 6e8e7d4c Igor Kovalenko
189 f707726e Igor Kovalenko
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
190 f707726e Igor Kovalenko
                                 uint64_t tlb_tag, uint64_t tlb_tte,
191 f707726e Igor Kovalenko
                                 const char* strmmu, CPUState *env1)
192 f707726e Igor Kovalenko
{
193 f707726e Igor Kovalenko
    unsigned int i, replace_used;
194 f707726e Igor Kovalenko
195 f707726e Igor Kovalenko
    // Try replacing invalid entry
196 f707726e Igor Kovalenko
    for (i = 0; i < 64; i++) {
197 f707726e Igor Kovalenko
        if (!TTE_IS_VALID(tlb[i].tte)) {
198 f707726e Igor Kovalenko
            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
199 f707726e Igor Kovalenko
#ifdef DEBUG_MMU
200 f707726e Igor Kovalenko
            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
201 f707726e Igor Kovalenko
            dump_mmu(env1);
202 f707726e Igor Kovalenko
#endif
203 f707726e Igor Kovalenko
            return;
204 f707726e Igor Kovalenko
        }
205 f707726e Igor Kovalenko
    }
206 f707726e Igor Kovalenko
207 f707726e Igor Kovalenko
    // All entries are valid, try replacing unlocked entry
208 f707726e Igor Kovalenko
209 f707726e Igor Kovalenko
    for (replace_used = 0; replace_used < 2; ++replace_used) {
210 f707726e Igor Kovalenko
211 f707726e Igor Kovalenko
        // Used entries are not replaced on first pass
212 f707726e Igor Kovalenko
213 f707726e Igor Kovalenko
        for (i = 0; i < 64; i++) {
214 f707726e Igor Kovalenko
            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
215 f707726e Igor Kovalenko
216 f707726e Igor Kovalenko
                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
217 f707726e Igor Kovalenko
#ifdef DEBUG_MMU
218 f707726e Igor Kovalenko
                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
219 f707726e Igor Kovalenko
                            strmmu, (replace_used?"used":"unused"), i);
220 f707726e Igor Kovalenko
                dump_mmu(env1);
221 f707726e Igor Kovalenko
#endif
222 f707726e Igor Kovalenko
                return;
223 f707726e Igor Kovalenko
            }
224 f707726e Igor Kovalenko
        }
225 f707726e Igor Kovalenko
226 f707726e Igor Kovalenko
        // Now reset used bit and search for unused entries again
227 f707726e Igor Kovalenko
228 f707726e Igor Kovalenko
        for (i = 0; i < 64; i++) {
229 f707726e Igor Kovalenko
            TTE_SET_UNUSED(tlb[i].tte);
230 f707726e Igor Kovalenko
        }
231 f707726e Igor Kovalenko
    }
232 f707726e Igor Kovalenko
233 f707726e Igor Kovalenko
#ifdef DEBUG_MMU
234 f707726e Igor Kovalenko
    DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
235 f707726e Igor Kovalenko
#endif
236 f707726e Igor Kovalenko
    // error state?
237 f707726e Igor Kovalenko
}
238 f707726e Igor Kovalenko
239 697a77e6 Igor Kovalenko
#endif
240 697a77e6 Igor Kovalenko
241 41db525e Richard Henderson
static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
242 2cade6a3 blueswir1
{
243 2cade6a3 blueswir1
#ifdef TARGET_SPARC64
244 2cade6a3 blueswir1
    if (AM_CHECK(env1))
245 41db525e Richard Henderson
        addr &= 0xffffffffULL;
246 2cade6a3 blueswir1
#endif
247 41db525e Richard Henderson
    return addr;
248 2cade6a3 blueswir1
}
249 2cade6a3 blueswir1
250 1295001c Igor V. Kovalenko
/* returns true if access using this ASI is to have address translated by MMU
251 1295001c Igor V. Kovalenko
   otherwise access is to raw physical address */
252 1295001c Igor V. Kovalenko
static inline int is_translating_asi(int asi)
253 1295001c Igor V. Kovalenko
{
254 1295001c Igor V. Kovalenko
#ifdef TARGET_SPARC64
255 1295001c Igor V. Kovalenko
    /* Ultrasparc IIi translating asi
256 1295001c Igor V. Kovalenko
       - note this list is defined by cpu implementation
257 1295001c Igor V. Kovalenko
     */
258 1295001c Igor V. Kovalenko
    switch (asi) {
259 1295001c Igor V. Kovalenko
    case 0x04 ... 0x11:
260 1295001c Igor V. Kovalenko
    case 0x18 ... 0x19:
261 1295001c Igor V. Kovalenko
    case 0x24 ... 0x2C:
262 1295001c Igor V. Kovalenko
    case 0x70 ... 0x73:
263 1295001c Igor V. Kovalenko
    case 0x78 ... 0x79:
264 1295001c Igor V. Kovalenko
    case 0x80 ... 0xFF:
265 1295001c Igor V. Kovalenko
        return 1;
266 1295001c Igor V. Kovalenko
267 1295001c Igor V. Kovalenko
    default:
268 1295001c Igor V. Kovalenko
        return 0;
269 1295001c Igor V. Kovalenko
    }
270 1295001c Igor V. Kovalenko
#else
271 1295001c Igor V. Kovalenko
    /* TODO: check sparc32 bits */
272 1295001c Igor V. Kovalenko
    return 0;
273 1295001c Igor V. Kovalenko
#endif
274 1295001c Igor V. Kovalenko
}
275 1295001c Igor V. Kovalenko
276 1295001c Igor V. Kovalenko
static inline target_ulong asi_address_mask(CPUState *env1,
277 1295001c Igor V. Kovalenko
                                            int asi, target_ulong addr)
278 1295001c Igor V. Kovalenko
{
279 1295001c Igor V. Kovalenko
    if (is_translating_asi(asi)) {
280 1295001c Igor V. Kovalenko
        return address_mask(env, addr);
281 1295001c Igor V. Kovalenko
    } else {
282 1295001c Igor V. Kovalenko
        return addr;
283 1295001c Igor V. Kovalenko
    }
284 1295001c Igor V. Kovalenko
}
285 1295001c Igor V. Kovalenko
286 f4a5a5ba blueswir1
static void raise_exception(int tt)
287 9d893301 bellard
{
288 9d893301 bellard
    env->exception_index = tt;
289 9d893301 bellard
    cpu_loop_exit();
290 3b46e624 ths
}
291 9d893301 bellard
292 a7812ae4 pbrook
void HELPER(raise_exception)(int tt)
293 a7812ae4 pbrook
{
294 a7812ae4 pbrook
    raise_exception(tt);
295 a7812ae4 pbrook
}
296 a7812ae4 pbrook
297 2b29924f blueswir1
void helper_check_align(target_ulong addr, uint32_t align)
298 2b29924f blueswir1
{
299 c2bc0e38 blueswir1
    if (addr & align) {
300 c2bc0e38 blueswir1
#ifdef DEBUG_UNALIGNED
301 c2bc0e38 blueswir1
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
302 c2bc0e38 blueswir1
           "\n", addr, env->pc);
303 c2bc0e38 blueswir1
#endif
304 2b29924f blueswir1
        raise_exception(TT_UNALIGNED);
305 c2bc0e38 blueswir1
    }
306 2b29924f blueswir1
}
307 2b29924f blueswir1
308 44e7757c blueswir1
#define F_HELPER(name, p) void helper_f##name##p(void)
309 44e7757c blueswir1
310 44e7757c blueswir1
#define F_BINOP(name)                                           \
311 714547bb blueswir1
    float32 helper_f ## name ## s (float32 src1, float32 src2)  \
312 44e7757c blueswir1
    {                                                           \
313 714547bb blueswir1
        return float32_ ## name (src1, src2, &env->fp_status);  \
314 44e7757c blueswir1
    }                                                           \
315 44e7757c blueswir1
    F_HELPER(name, d)                                           \
316 44e7757c blueswir1
    {                                                           \
317 44e7757c blueswir1
        DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \
318 4e14008f blueswir1
    }                                                           \
319 4e14008f blueswir1
    F_HELPER(name, q)                                           \
320 4e14008f blueswir1
    {                                                           \
321 4e14008f blueswir1
        QT0 = float128_ ## name (QT0, QT1, &env->fp_status);    \
322 44e7757c blueswir1
    }
323 44e7757c blueswir1
324 44e7757c blueswir1
F_BINOP(add);
325 44e7757c blueswir1
F_BINOP(sub);
326 44e7757c blueswir1
F_BINOP(mul);
327 44e7757c blueswir1
F_BINOP(div);
328 44e7757c blueswir1
#undef F_BINOP
329 44e7757c blueswir1
330 d84763bc blueswir1
void helper_fsmuld(float32 src1, float32 src2)
331 1a2fb1c0 blueswir1
{
332 d84763bc blueswir1
    DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
333 d84763bc blueswir1
                      float32_to_float64(src2, &env->fp_status),
334 44e7757c blueswir1
                      &env->fp_status);
335 44e7757c blueswir1
}
336 1a2fb1c0 blueswir1
337 4e14008f blueswir1
void helper_fdmulq(void)
338 4e14008f blueswir1
{
339 4e14008f blueswir1
    QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
340 4e14008f blueswir1
                       float64_to_float128(DT1, &env->fp_status),
341 4e14008f blueswir1
                       &env->fp_status);
342 4e14008f blueswir1
}
343 4e14008f blueswir1
344 714547bb blueswir1
float32 helper_fnegs(float32 src)
345 44e7757c blueswir1
{
346 714547bb blueswir1
    return float32_chs(src);
347 417454b0 blueswir1
}
348 417454b0 blueswir1
349 44e7757c blueswir1
#ifdef TARGET_SPARC64
350 44e7757c blueswir1
F_HELPER(neg, d)
351 7e8c2b6c blueswir1
{
352 44e7757c blueswir1
    DT0 = float64_chs(DT1);
353 7e8c2b6c blueswir1
}
354 4e14008f blueswir1
355 4e14008f blueswir1
F_HELPER(neg, q)
356 4e14008f blueswir1
{
357 4e14008f blueswir1
    QT0 = float128_chs(QT1);
358 4e14008f blueswir1
}
359 4e14008f blueswir1
#endif
360 44e7757c blueswir1
361 44e7757c blueswir1
/* Integer to float conversion.  */
362 714547bb blueswir1
float32 helper_fitos(int32_t src)
363 a0c4cb4a bellard
{
364 714547bb blueswir1
    return int32_to_float32(src, &env->fp_status);
365 a0c4cb4a bellard
}
366 a0c4cb4a bellard
367 d84763bc blueswir1
void helper_fitod(int32_t src)
368 a0c4cb4a bellard
{
369 d84763bc blueswir1
    DT0 = int32_to_float64(src, &env->fp_status);
370 a0c4cb4a bellard
}
371 9c2b428e blueswir1
372 c5d04e99 blueswir1
void helper_fitoq(int32_t src)
373 4e14008f blueswir1
{
374 c5d04e99 blueswir1
    QT0 = int32_to_float128(src, &env->fp_status);
375 4e14008f blueswir1
}
376 4e14008f blueswir1
377 1e64e78d blueswir1
#ifdef TARGET_SPARC64
378 d84763bc blueswir1
float32 helper_fxtos(void)
379 1e64e78d blueswir1
{
380 d84763bc blueswir1
    return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
381 1e64e78d blueswir1
}
382 1e64e78d blueswir1
383 44e7757c blueswir1
F_HELPER(xto, d)
384 1e64e78d blueswir1
{
385 1e64e78d blueswir1
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
386 1e64e78d blueswir1
}
387 64a88d5d blueswir1
388 4e14008f blueswir1
F_HELPER(xto, q)
389 4e14008f blueswir1
{
390 4e14008f blueswir1
    QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
391 4e14008f blueswir1
}
392 4e14008f blueswir1
#endif
393 44e7757c blueswir1
#undef F_HELPER
394 44e7757c blueswir1
395 44e7757c blueswir1
/* floating point conversion */
396 d84763bc blueswir1
float32 helper_fdtos(void)
397 44e7757c blueswir1
{
398 d84763bc blueswir1
    return float64_to_float32(DT1, &env->fp_status);
399 44e7757c blueswir1
}
400 44e7757c blueswir1
401 d84763bc blueswir1
void helper_fstod(float32 src)
402 44e7757c blueswir1
{
403 d84763bc blueswir1
    DT0 = float32_to_float64(src, &env->fp_status);
404 44e7757c blueswir1
}
405 9c2b428e blueswir1
406 c5d04e99 blueswir1
float32 helper_fqtos(void)
407 4e14008f blueswir1
{
408 c5d04e99 blueswir1
    return float128_to_float32(QT1, &env->fp_status);
409 4e14008f blueswir1
}
410 4e14008f blueswir1
411 c5d04e99 blueswir1
void helper_fstoq(float32 src)
412 4e14008f blueswir1
{
413 c5d04e99 blueswir1
    QT0 = float32_to_float128(src, &env->fp_status);
414 4e14008f blueswir1
}
415 4e14008f blueswir1
416 4e14008f blueswir1
void helper_fqtod(void)
417 4e14008f blueswir1
{
418 4e14008f blueswir1
    DT0 = float128_to_float64(QT1, &env->fp_status);
419 4e14008f blueswir1
}
420 4e14008f blueswir1
421 4e14008f blueswir1
void helper_fdtoq(void)
422 4e14008f blueswir1
{
423 4e14008f blueswir1
    QT0 = float64_to_float128(DT1, &env->fp_status);
424 4e14008f blueswir1
}
425 4e14008f blueswir1
426 44e7757c blueswir1
/* Float to integer conversion.  */
427 714547bb blueswir1
int32_t helper_fstoi(float32 src)
428 44e7757c blueswir1
{
429 714547bb blueswir1
    return float32_to_int32_round_to_zero(src, &env->fp_status);
430 44e7757c blueswir1
}
431 44e7757c blueswir1
432 d84763bc blueswir1
int32_t helper_fdtoi(void)
433 44e7757c blueswir1
{
434 d84763bc blueswir1
    return float64_to_int32_round_to_zero(DT1, &env->fp_status);
435 44e7757c blueswir1
}
436 44e7757c blueswir1
437 c5d04e99 blueswir1
int32_t helper_fqtoi(void)
438 4e14008f blueswir1
{
439 c5d04e99 blueswir1
    return float128_to_int32_round_to_zero(QT1, &env->fp_status);
440 4e14008f blueswir1
}
441 4e14008f blueswir1
442 44e7757c blueswir1
#ifdef TARGET_SPARC64
443 d84763bc blueswir1
void helper_fstox(float32 src)
444 44e7757c blueswir1
{
445 d84763bc blueswir1
    *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
446 44e7757c blueswir1
}
447 44e7757c blueswir1
448 44e7757c blueswir1
void helper_fdtox(void)
449 44e7757c blueswir1
{
450 44e7757c blueswir1
    *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
451 44e7757c blueswir1
}
452 44e7757c blueswir1
453 4e14008f blueswir1
void helper_fqtox(void)
454 4e14008f blueswir1
{
455 4e14008f blueswir1
    *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
456 4e14008f blueswir1
}
457 4e14008f blueswir1
458 44e7757c blueswir1
void helper_faligndata(void)
459 44e7757c blueswir1
{
460 44e7757c blueswir1
    uint64_t tmp;
461 44e7757c blueswir1
462 44e7757c blueswir1
    tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
463 06057e6f blueswir1
    /* on many architectures a shift of 64 does nothing */
464 06057e6f blueswir1
    if ((env->gsr & 7) != 0) {
465 06057e6f blueswir1
        tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
466 06057e6f blueswir1
    }
467 44e7757c blueswir1
    *((uint64_t *)&DT0) = tmp;
468 44e7757c blueswir1
}
469 44e7757c blueswir1
470 e2542fe2 Juan Quintela
#ifdef HOST_WORDS_BIGENDIAN
471 44e7757c blueswir1
#define VIS_B64(n) b[7 - (n)]
472 44e7757c blueswir1
#define VIS_W64(n) w[3 - (n)]
473 44e7757c blueswir1
#define VIS_SW64(n) sw[3 - (n)]
474 44e7757c blueswir1
#define VIS_L64(n) l[1 - (n)]
475 44e7757c blueswir1
#define VIS_B32(n) b[3 - (n)]
476 44e7757c blueswir1
#define VIS_W32(n) w[1 - (n)]
477 44e7757c blueswir1
#else
478 44e7757c blueswir1
#define VIS_B64(n) b[n]
479 44e7757c blueswir1
#define VIS_W64(n) w[n]
480 44e7757c blueswir1
#define VIS_SW64(n) sw[n]
481 44e7757c blueswir1
#define VIS_L64(n) l[n]
482 44e7757c blueswir1
#define VIS_B32(n) b[n]
483 44e7757c blueswir1
#define VIS_W32(n) w[n]
484 44e7757c blueswir1
#endif
485 44e7757c blueswir1
486 44e7757c blueswir1
typedef union {
487 44e7757c blueswir1
    uint8_t b[8];
488 44e7757c blueswir1
    uint16_t w[4];
489 44e7757c blueswir1
    int16_t sw[4];
490 44e7757c blueswir1
    uint32_t l[2];
491 44e7757c blueswir1
    float64 d;
492 44e7757c blueswir1
} vis64;
493 44e7757c blueswir1
494 44e7757c blueswir1
typedef union {
495 44e7757c blueswir1
    uint8_t b[4];
496 44e7757c blueswir1
    uint16_t w[2];
497 44e7757c blueswir1
    uint32_t l;
498 44e7757c blueswir1
    float32 f;
499 44e7757c blueswir1
} vis32;
500 44e7757c blueswir1
501 44e7757c blueswir1
void helper_fpmerge(void)
502 44e7757c blueswir1
{
503 44e7757c blueswir1
    vis64 s, d;
504 44e7757c blueswir1
505 44e7757c blueswir1
    s.d = DT0;
506 44e7757c blueswir1
    d.d = DT1;
507 44e7757c blueswir1
508 44e7757c blueswir1
    // Reverse calculation order to handle overlap
509 44e7757c blueswir1
    d.VIS_B64(7) = s.VIS_B64(3);
510 44e7757c blueswir1
    d.VIS_B64(6) = d.VIS_B64(3);
511 44e7757c blueswir1
    d.VIS_B64(5) = s.VIS_B64(2);
512 44e7757c blueswir1
    d.VIS_B64(4) = d.VIS_B64(2);
513 44e7757c blueswir1
    d.VIS_B64(3) = s.VIS_B64(1);
514 44e7757c blueswir1
    d.VIS_B64(2) = d.VIS_B64(1);
515 44e7757c blueswir1
    d.VIS_B64(1) = s.VIS_B64(0);
516 44e7757c blueswir1
    //d.VIS_B64(0) = d.VIS_B64(0);
517 44e7757c blueswir1
518 44e7757c blueswir1
    DT0 = d.d;
519 44e7757c blueswir1
}
520 44e7757c blueswir1
521 44e7757c blueswir1
void helper_fmul8x16(void)
522 44e7757c blueswir1
{
523 44e7757c blueswir1
    vis64 s, d;
524 44e7757c blueswir1
    uint32_t tmp;
525 44e7757c blueswir1
526 44e7757c blueswir1
    s.d = DT0;
527 44e7757c blueswir1
    d.d = DT1;
528 44e7757c blueswir1
529 44e7757c blueswir1
#define PMUL(r)                                                 \
530 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r);       \
531 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                    \
532 44e7757c blueswir1
        tmp += 0x100;                                           \
533 44e7757c blueswir1
    d.VIS_W64(r) = tmp >> 8;
534 44e7757c blueswir1
535 44e7757c blueswir1
    PMUL(0);
536 44e7757c blueswir1
    PMUL(1);
537 44e7757c blueswir1
    PMUL(2);
538 44e7757c blueswir1
    PMUL(3);
539 44e7757c blueswir1
#undef PMUL
540 44e7757c blueswir1
541 44e7757c blueswir1
    DT0 = d.d;
542 44e7757c blueswir1
}
543 44e7757c blueswir1
544 44e7757c blueswir1
void helper_fmul8x16al(void)
545 44e7757c blueswir1
{
546 44e7757c blueswir1
    vis64 s, d;
547 44e7757c blueswir1
    uint32_t tmp;
548 44e7757c blueswir1
549 44e7757c blueswir1
    s.d = DT0;
550 44e7757c blueswir1
    d.d = DT1;
551 44e7757c blueswir1
552 44e7757c blueswir1
#define PMUL(r)                                                 \
553 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r);       \
554 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                    \
555 44e7757c blueswir1
        tmp += 0x100;                                           \
556 44e7757c blueswir1
    d.VIS_W64(r) = tmp >> 8;
557 44e7757c blueswir1
558 44e7757c blueswir1
    PMUL(0);
559 44e7757c blueswir1
    PMUL(1);
560 44e7757c blueswir1
    PMUL(2);
561 44e7757c blueswir1
    PMUL(3);
562 44e7757c blueswir1
#undef PMUL
563 44e7757c blueswir1
564 44e7757c blueswir1
    DT0 = d.d;
565 44e7757c blueswir1
}
566 44e7757c blueswir1
567 44e7757c blueswir1
void helper_fmul8x16au(void)
568 44e7757c blueswir1
{
569 44e7757c blueswir1
    vis64 s, d;
570 44e7757c blueswir1
    uint32_t tmp;
571 44e7757c blueswir1
572 44e7757c blueswir1
    s.d = DT0;
573 44e7757c blueswir1
    d.d = DT1;
574 44e7757c blueswir1
575 44e7757c blueswir1
#define PMUL(r)                                                 \
576 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r);       \
577 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                    \
578 44e7757c blueswir1
        tmp += 0x100;                                           \
579 44e7757c blueswir1
    d.VIS_W64(r) = tmp >> 8;
580 44e7757c blueswir1
581 44e7757c blueswir1
    PMUL(0);
582 44e7757c blueswir1
    PMUL(1);
583 44e7757c blueswir1
    PMUL(2);
584 44e7757c blueswir1
    PMUL(3);
585 44e7757c blueswir1
#undef PMUL
586 44e7757c blueswir1
587 44e7757c blueswir1
    DT0 = d.d;
588 44e7757c blueswir1
}
589 44e7757c blueswir1
590 44e7757c blueswir1
void helper_fmul8sux16(void)
591 44e7757c blueswir1
{
592 44e7757c blueswir1
    vis64 s, d;
593 44e7757c blueswir1
    uint32_t tmp;
594 44e7757c blueswir1
595 44e7757c blueswir1
    s.d = DT0;
596 44e7757c blueswir1
    d.d = DT1;
597 44e7757c blueswir1
598 44e7757c blueswir1
#define PMUL(r)                                                         \
599 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
600 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                            \
601 44e7757c blueswir1
        tmp += 0x100;                                                   \
602 44e7757c blueswir1
    d.VIS_W64(r) = tmp >> 8;
603 44e7757c blueswir1
604 44e7757c blueswir1
    PMUL(0);
605 44e7757c blueswir1
    PMUL(1);
606 44e7757c blueswir1
    PMUL(2);
607 44e7757c blueswir1
    PMUL(3);
608 44e7757c blueswir1
#undef PMUL
609 44e7757c blueswir1
610 44e7757c blueswir1
    DT0 = d.d;
611 44e7757c blueswir1
}
612 44e7757c blueswir1
613 44e7757c blueswir1
void helper_fmul8ulx16(void)
614 44e7757c blueswir1
{
615 44e7757c blueswir1
    vis64 s, d;
616 44e7757c blueswir1
    uint32_t tmp;
617 44e7757c blueswir1
618 44e7757c blueswir1
    s.d = DT0;
619 44e7757c blueswir1
    d.d = DT1;
620 44e7757c blueswir1
621 44e7757c blueswir1
#define PMUL(r)                                                         \
622 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
623 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                            \
624 44e7757c blueswir1
        tmp += 0x100;                                                   \
625 44e7757c blueswir1
    d.VIS_W64(r) = tmp >> 8;
626 44e7757c blueswir1
627 44e7757c blueswir1
    PMUL(0);
628 44e7757c blueswir1
    PMUL(1);
629 44e7757c blueswir1
    PMUL(2);
630 44e7757c blueswir1
    PMUL(3);
631 44e7757c blueswir1
#undef PMUL
632 44e7757c blueswir1
633 44e7757c blueswir1
    DT0 = d.d;
634 44e7757c blueswir1
}
635 44e7757c blueswir1
636 44e7757c blueswir1
void helper_fmuld8sux16(void)
637 44e7757c blueswir1
{
638 44e7757c blueswir1
    vis64 s, d;
639 44e7757c blueswir1
    uint32_t tmp;
640 44e7757c blueswir1
641 44e7757c blueswir1
    s.d = DT0;
642 44e7757c blueswir1
    d.d = DT1;
643 44e7757c blueswir1
644 44e7757c blueswir1
#define PMUL(r)                                                         \
645 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
646 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                            \
647 44e7757c blueswir1
        tmp += 0x100;                                                   \
648 44e7757c blueswir1
    d.VIS_L64(r) = tmp;
649 44e7757c blueswir1
650 44e7757c blueswir1
    // Reverse calculation order to handle overlap
651 44e7757c blueswir1
    PMUL(1);
652 44e7757c blueswir1
    PMUL(0);
653 44e7757c blueswir1
#undef PMUL
654 44e7757c blueswir1
655 44e7757c blueswir1
    DT0 = d.d;
656 44e7757c blueswir1
}
657 44e7757c blueswir1
658 44e7757c blueswir1
void helper_fmuld8ulx16(void)
659 44e7757c blueswir1
{
660 44e7757c blueswir1
    vis64 s, d;
661 44e7757c blueswir1
    uint32_t tmp;
662 44e7757c blueswir1
663 44e7757c blueswir1
    s.d = DT0;
664 44e7757c blueswir1
    d.d = DT1;
665 44e7757c blueswir1
666 44e7757c blueswir1
#define PMUL(r)                                                         \
667 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
668 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                            \
669 44e7757c blueswir1
        tmp += 0x100;                                                   \
670 44e7757c blueswir1
    d.VIS_L64(r) = tmp;
671 44e7757c blueswir1
672 44e7757c blueswir1
    // Reverse calculation order to handle overlap
673 44e7757c blueswir1
    PMUL(1);
674 44e7757c blueswir1
    PMUL(0);
675 44e7757c blueswir1
#undef PMUL
676 44e7757c blueswir1
677 44e7757c blueswir1
    DT0 = d.d;
678 44e7757c blueswir1
}
679 44e7757c blueswir1
680 44e7757c blueswir1
void helper_fexpand(void)
681 44e7757c blueswir1
{
682 44e7757c blueswir1
    vis32 s;
683 44e7757c blueswir1
    vis64 d;
684 44e7757c blueswir1
685 44e7757c blueswir1
    s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
686 44e7757c blueswir1
    d.d = DT1;
687 c55bda30 blueswir1
    d.VIS_W64(0) = s.VIS_B32(0) << 4;
688 c55bda30 blueswir1
    d.VIS_W64(1) = s.VIS_B32(1) << 4;
689 c55bda30 blueswir1
    d.VIS_W64(2) = s.VIS_B32(2) << 4;
690 c55bda30 blueswir1
    d.VIS_W64(3) = s.VIS_B32(3) << 4;
691 44e7757c blueswir1
692 44e7757c blueswir1
    DT0 = d.d;
693 44e7757c blueswir1
}
694 44e7757c blueswir1
695 44e7757c blueswir1
#define VIS_HELPER(name, F)                             \
696 44e7757c blueswir1
    void name##16(void)                                 \
697 44e7757c blueswir1
    {                                                   \
698 44e7757c blueswir1
        vis64 s, d;                                     \
699 44e7757c blueswir1
                                                        \
700 44e7757c blueswir1
        s.d = DT0;                                      \
701 44e7757c blueswir1
        d.d = DT1;                                      \
702 44e7757c blueswir1
                                                        \
703 44e7757c blueswir1
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0));   \
704 44e7757c blueswir1
        d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1));   \
705 44e7757c blueswir1
        d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2));   \
706 44e7757c blueswir1
        d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3));   \
707 44e7757c blueswir1
                                                        \
708 44e7757c blueswir1
        DT0 = d.d;                                      \
709 44e7757c blueswir1
    }                                                   \
710 44e7757c blueswir1
                                                        \
711 1d01299d blueswir1
    uint32_t name##16s(uint32_t src1, uint32_t src2)    \
712 44e7757c blueswir1
    {                                                   \
713 44e7757c blueswir1
        vis32 s, d;                                     \
714 44e7757c blueswir1
                                                        \
715 1d01299d blueswir1
        s.l = src1;                                     \
716 1d01299d blueswir1
        d.l = src2;                                     \
717 44e7757c blueswir1
                                                        \
718 44e7757c blueswir1
        d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0));   \
719 44e7757c blueswir1
        d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1));   \
720 44e7757c blueswir1
                                                        \
721 1d01299d blueswir1
        return d.l;                                     \
722 44e7757c blueswir1
    }                                                   \
723 44e7757c blueswir1
                                                        \
724 44e7757c blueswir1
    void name##32(void)                                 \
725 44e7757c blueswir1
    {                                                   \
726 44e7757c blueswir1
        vis64 s, d;                                     \
727 44e7757c blueswir1
                                                        \
728 44e7757c blueswir1
        s.d = DT0;                                      \
729 44e7757c blueswir1
        d.d = DT1;                                      \
730 44e7757c blueswir1
                                                        \
731 44e7757c blueswir1
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0));   \
732 44e7757c blueswir1
        d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1));   \
733 44e7757c blueswir1
                                                        \
734 44e7757c blueswir1
        DT0 = d.d;                                      \
735 44e7757c blueswir1
    }                                                   \
736 44e7757c blueswir1
                                                        \
737 1d01299d blueswir1
    uint32_t name##32s(uint32_t src1, uint32_t src2)    \
738 44e7757c blueswir1
    {                                                   \
739 44e7757c blueswir1
        vis32 s, d;                                     \
740 44e7757c blueswir1
                                                        \
741 1d01299d blueswir1
        s.l = src1;                                     \
742 1d01299d blueswir1
        d.l = src2;                                     \
743 44e7757c blueswir1
                                                        \
744 44e7757c blueswir1
        d.l = F(d.l, s.l);                              \
745 44e7757c blueswir1
                                                        \
746 1d01299d blueswir1
        return d.l;                                     \
747 44e7757c blueswir1
    }
748 44e7757c blueswir1
749 44e7757c blueswir1
#define FADD(a, b) ((a) + (b))
750 44e7757c blueswir1
#define FSUB(a, b) ((a) - (b))
751 44e7757c blueswir1
VIS_HELPER(helper_fpadd, FADD)
752 44e7757c blueswir1
VIS_HELPER(helper_fpsub, FSUB)
753 44e7757c blueswir1
754 44e7757c blueswir1
#define VIS_CMPHELPER(name, F)                                        \
755 44e7757c blueswir1
    void name##16(void)                                           \
756 44e7757c blueswir1
    {                                                             \
757 44e7757c blueswir1
        vis64 s, d;                                               \
758 44e7757c blueswir1
                                                                  \
759 44e7757c blueswir1
        s.d = DT0;                                                \
760 44e7757c blueswir1
        d.d = DT1;                                                \
761 44e7757c blueswir1
                                                                  \
762 44e7757c blueswir1
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0;       \
763 44e7757c blueswir1
        d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0;      \
764 44e7757c blueswir1
        d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0;      \
765 44e7757c blueswir1
        d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0;      \
766 44e7757c blueswir1
                                                                  \
767 44e7757c blueswir1
        DT0 = d.d;                                                \
768 44e7757c blueswir1
    }                                                             \
769 44e7757c blueswir1
                                                                  \
770 44e7757c blueswir1
    void name##32(void)                                           \
771 44e7757c blueswir1
    {                                                             \
772 44e7757c blueswir1
        vis64 s, d;                                               \
773 44e7757c blueswir1
                                                                  \
774 44e7757c blueswir1
        s.d = DT0;                                                \
775 44e7757c blueswir1
        d.d = DT1;                                                \
776 44e7757c blueswir1
                                                                  \
777 44e7757c blueswir1
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0;       \
778 44e7757c blueswir1
        d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0;      \
779 44e7757c blueswir1
                                                                  \
780 44e7757c blueswir1
        DT0 = d.d;                                                \
781 44e7757c blueswir1
    }
782 44e7757c blueswir1
783 44e7757c blueswir1
#define FCMPGT(a, b) ((a) > (b))
784 44e7757c blueswir1
#define FCMPEQ(a, b) ((a) == (b))
785 44e7757c blueswir1
#define FCMPLE(a, b) ((a) <= (b))
786 44e7757c blueswir1
#define FCMPNE(a, b) ((a) != (b))
787 44e7757c blueswir1
788 44e7757c blueswir1
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
789 44e7757c blueswir1
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
790 44e7757c blueswir1
VIS_CMPHELPER(helper_fcmple, FCMPLE)
791 44e7757c blueswir1
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
792 44e7757c blueswir1
#endif
793 44e7757c blueswir1
794 44e7757c blueswir1
void helper_check_ieee_exceptions(void)
795 44e7757c blueswir1
{
796 44e7757c blueswir1
    target_ulong status;
797 44e7757c blueswir1
798 44e7757c blueswir1
    status = get_float_exception_flags(&env->fp_status);
799 44e7757c blueswir1
    if (status) {
800 44e7757c blueswir1
        /* Copy IEEE 754 flags into FSR */
801 44e7757c blueswir1
        if (status & float_flag_invalid)
802 44e7757c blueswir1
            env->fsr |= FSR_NVC;
803 44e7757c blueswir1
        if (status & float_flag_overflow)
804 44e7757c blueswir1
            env->fsr |= FSR_OFC;
805 44e7757c blueswir1
        if (status & float_flag_underflow)
806 44e7757c blueswir1
            env->fsr |= FSR_UFC;
807 44e7757c blueswir1
        if (status & float_flag_divbyzero)
808 44e7757c blueswir1
            env->fsr |= FSR_DZC;
809 44e7757c blueswir1
        if (status & float_flag_inexact)
810 44e7757c blueswir1
            env->fsr |= FSR_NXC;
811 44e7757c blueswir1
812 44e7757c blueswir1
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
813 44e7757c blueswir1
            /* Unmasked exception, generate a trap */
814 44e7757c blueswir1
            env->fsr |= FSR_FTT_IEEE_EXCP;
815 44e7757c blueswir1
            raise_exception(TT_FP_EXCP);
816 44e7757c blueswir1
        } else {
817 44e7757c blueswir1
            /* Accumulate exceptions */
818 44e7757c blueswir1
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
819 44e7757c blueswir1
        }
820 44e7757c blueswir1
    }
821 44e7757c blueswir1
}
822 44e7757c blueswir1
823 44e7757c blueswir1
void helper_clear_float_exceptions(void)
824 44e7757c blueswir1
{
825 44e7757c blueswir1
    set_float_exception_flags(0, &env->fp_status);
826 44e7757c blueswir1
}
827 44e7757c blueswir1
828 714547bb blueswir1
float32 helper_fabss(float32 src)
829 e8af50a3 bellard
{
830 714547bb blueswir1
    return float32_abs(src);
831 e8af50a3 bellard
}
832 e8af50a3 bellard
833 3475187d bellard
#ifdef TARGET_SPARC64
834 7e8c2b6c blueswir1
void helper_fabsd(void)
835 3475187d bellard
{
836 3475187d bellard
    DT0 = float64_abs(DT1);
837 3475187d bellard
}
838 4e14008f blueswir1
839 4e14008f blueswir1
void helper_fabsq(void)
840 4e14008f blueswir1
{
841 4e14008f blueswir1
    QT0 = float128_abs(QT1);
842 4e14008f blueswir1
}
843 4e14008f blueswir1
#endif
844 3475187d bellard
845 714547bb blueswir1
float32 helper_fsqrts(float32 src)
846 e8af50a3 bellard
{
847 714547bb blueswir1
    return float32_sqrt(src, &env->fp_status);
848 e8af50a3 bellard
}
849 e8af50a3 bellard
850 7e8c2b6c blueswir1
void helper_fsqrtd(void)
851 e8af50a3 bellard
{
852 7a0e1f41 bellard
    DT0 = float64_sqrt(DT1, &env->fp_status);
853 e8af50a3 bellard
}
854 e8af50a3 bellard
855 4e14008f blueswir1
void helper_fsqrtq(void)
856 4e14008f blueswir1
{
857 4e14008f blueswir1
    QT0 = float128_sqrt(QT1, &env->fp_status);
858 4e14008f blueswir1
}
859 4e14008f blueswir1
860 417454b0 blueswir1
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
861 7e8c2b6c blueswir1
    void glue(helper_, name) (void)                                     \
862 65ce8c2f bellard
    {                                                                   \
863 1a2fb1c0 blueswir1
        target_ulong new_fsr;                                           \
864 1a2fb1c0 blueswir1
                                                                        \
865 65ce8c2f bellard
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
866 65ce8c2f bellard
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
867 65ce8c2f bellard
        case float_relation_unordered:                                  \
868 1a2fb1c0 blueswir1
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
869 417454b0 blueswir1
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
870 1a2fb1c0 blueswir1
                env->fsr |= new_fsr;                                    \
871 417454b0 blueswir1
                env->fsr |= FSR_NVC;                                    \
872 417454b0 blueswir1
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
873 65ce8c2f bellard
                raise_exception(TT_FP_EXCP);                            \
874 65ce8c2f bellard
            } else {                                                    \
875 65ce8c2f bellard
                env->fsr |= FSR_NVA;                                    \
876 65ce8c2f bellard
            }                                                           \
877 65ce8c2f bellard
            break;                                                      \
878 65ce8c2f bellard
        case float_relation_less:                                       \
879 1a2fb1c0 blueswir1
            new_fsr = FSR_FCC0 << FS;                                   \
880 65ce8c2f bellard
            break;                                                      \
881 65ce8c2f bellard
        case float_relation_greater:                                    \
882 1a2fb1c0 blueswir1
            new_fsr = FSR_FCC1 << FS;                                   \
883 65ce8c2f bellard
            break;                                                      \
884 65ce8c2f bellard
        default:                                                        \
885 1a2fb1c0 blueswir1
            new_fsr = 0;                                                \
886 65ce8c2f bellard
            break;                                                      \
887 65ce8c2f bellard
        }                                                               \
888 1a2fb1c0 blueswir1
        env->fsr |= new_fsr;                                            \
889 e8af50a3 bellard
    }
890 714547bb blueswir1
#define GEN_FCMPS(name, size, FS, TRAP)                                 \
891 714547bb blueswir1
    void glue(helper_, name)(float32 src1, float32 src2)                \
892 714547bb blueswir1
    {                                                                   \
893 714547bb blueswir1
        target_ulong new_fsr;                                           \
894 714547bb blueswir1
                                                                        \
895 714547bb blueswir1
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
896 714547bb blueswir1
        switch (glue(size, _compare) (src1, src2, &env->fp_status)) {   \
897 714547bb blueswir1
        case float_relation_unordered:                                  \
898 714547bb blueswir1
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
899 714547bb blueswir1
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
900 714547bb blueswir1
                env->fsr |= new_fsr;                                    \
901 714547bb blueswir1
                env->fsr |= FSR_NVC;                                    \
902 714547bb blueswir1
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
903 714547bb blueswir1
                raise_exception(TT_FP_EXCP);                            \
904 714547bb blueswir1
            } else {                                                    \
905 714547bb blueswir1
                env->fsr |= FSR_NVA;                                    \
906 714547bb blueswir1
            }                                                           \
907 714547bb blueswir1
            break;                                                      \
908 714547bb blueswir1
        case float_relation_less:                                       \
909 714547bb blueswir1
            new_fsr = FSR_FCC0 << FS;                                   \
910 714547bb blueswir1
            break;                                                      \
911 714547bb blueswir1
        case float_relation_greater:                                    \
912 714547bb blueswir1
            new_fsr = FSR_FCC1 << FS;                                   \
913 714547bb blueswir1
            break;                                                      \
914 714547bb blueswir1
        default:                                                        \
915 714547bb blueswir1
            new_fsr = 0;                                                \
916 714547bb blueswir1
            break;                                                      \
917 714547bb blueswir1
        }                                                               \
918 714547bb blueswir1
        env->fsr |= new_fsr;                                            \
919 714547bb blueswir1
    }
920 e8af50a3 bellard
921 714547bb blueswir1
GEN_FCMPS(fcmps, float32, 0, 0);
922 417454b0 blueswir1
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
923 417454b0 blueswir1
924 714547bb blueswir1
GEN_FCMPS(fcmpes, float32, 0, 1);
925 417454b0 blueswir1
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
926 3475187d bellard
927 4e14008f blueswir1
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
928 4e14008f blueswir1
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
929 4e14008f blueswir1
930 8393617c Blue Swirl
static uint32_t compute_all_flags(void)
931 8393617c Blue Swirl
{
932 8393617c Blue Swirl
    return env->psr & PSR_ICC;
933 8393617c Blue Swirl
}
934 8393617c Blue Swirl
935 8393617c Blue Swirl
static uint32_t compute_C_flags(void)
936 8393617c Blue Swirl
{
937 8393617c Blue Swirl
    return env->psr & PSR_CARRY;
938 8393617c Blue Swirl
}
939 8393617c Blue Swirl
940 5a4bb580 Richard Henderson
static inline uint32_t get_NZ_icc(int32_t dst)
941 bdf9f35d Blue Swirl
{
942 bdf9f35d Blue Swirl
    uint32_t ret = 0;
943 bdf9f35d Blue Swirl
944 5a4bb580 Richard Henderson
    if (dst == 0) {
945 5a4bb580 Richard Henderson
        ret = PSR_ZERO;
946 5a4bb580 Richard Henderson
    } else if (dst < 0) {
947 5a4bb580 Richard Henderson
        ret = PSR_NEG;
948 5a4bb580 Richard Henderson
    }
949 bdf9f35d Blue Swirl
    return ret;
950 bdf9f35d Blue Swirl
}
951 bdf9f35d Blue Swirl
952 8393617c Blue Swirl
#ifdef TARGET_SPARC64
953 8393617c Blue Swirl
static uint32_t compute_all_flags_xcc(void)
954 8393617c Blue Swirl
{
955 8393617c Blue Swirl
    return env->xcc & PSR_ICC;
956 8393617c Blue Swirl
}
957 8393617c Blue Swirl
958 8393617c Blue Swirl
static uint32_t compute_C_flags_xcc(void)
959 8393617c Blue Swirl
{
960 8393617c Blue Swirl
    return env->xcc & PSR_CARRY;
961 8393617c Blue Swirl
}
962 8393617c Blue Swirl
963 5a4bb580 Richard Henderson
static inline uint32_t get_NZ_xcc(target_long dst)
964 bdf9f35d Blue Swirl
{
965 bdf9f35d Blue Swirl
    uint32_t ret = 0;
966 bdf9f35d Blue Swirl
967 5a4bb580 Richard Henderson
    if (!dst) {
968 5a4bb580 Richard Henderson
        ret = PSR_ZERO;
969 5a4bb580 Richard Henderson
    } else if (dst < 0) {
970 5a4bb580 Richard Henderson
        ret = PSR_NEG;
971 5a4bb580 Richard Henderson
    }
972 bdf9f35d Blue Swirl
    return ret;
973 bdf9f35d Blue Swirl
}
974 bdf9f35d Blue Swirl
#endif
975 bdf9f35d Blue Swirl
976 6c78ea32 Blue Swirl
static inline uint32_t get_V_div_icc(target_ulong src2)
977 6c78ea32 Blue Swirl
{
978 6c78ea32 Blue Swirl
    uint32_t ret = 0;
979 6c78ea32 Blue Swirl
980 5a4bb580 Richard Henderson
    if (src2 != 0) {
981 5a4bb580 Richard Henderson
        ret = PSR_OVF;
982 5a4bb580 Richard Henderson
    }
983 6c78ea32 Blue Swirl
    return ret;
984 6c78ea32 Blue Swirl
}
985 6c78ea32 Blue Swirl
986 6c78ea32 Blue Swirl
static uint32_t compute_all_div(void)
987 6c78ea32 Blue Swirl
{
988 6c78ea32 Blue Swirl
    uint32_t ret;
989 6c78ea32 Blue Swirl
990 6c78ea32 Blue Swirl
    ret = get_NZ_icc(CC_DST);
991 6c78ea32 Blue Swirl
    ret |= get_V_div_icc(CC_SRC2);
992 6c78ea32 Blue Swirl
    return ret;
993 6c78ea32 Blue Swirl
}
994 6c78ea32 Blue Swirl
995 6c78ea32 Blue Swirl
static uint32_t compute_C_div(void)
996 6c78ea32 Blue Swirl
{
997 6c78ea32 Blue Swirl
    return 0;
998 6c78ea32 Blue Swirl
}
999 6c78ea32 Blue Swirl
1000 5a4bb580 Richard Henderson
static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
1001 bdf9f35d Blue Swirl
{
1002 bdf9f35d Blue Swirl
    uint32_t ret = 0;
1003 bdf9f35d Blue Swirl
1004 5a4bb580 Richard Henderson
    if (dst < src1) {
1005 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1006 5a4bb580 Richard Henderson
    }
1007 bdf9f35d Blue Swirl
    return ret;
1008 bdf9f35d Blue Swirl
}
1009 bdf9f35d Blue Swirl
1010 5a4bb580 Richard Henderson
static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
1011 5a4bb580 Richard Henderson
                                      uint32_t src2)
1012 bdf9f35d Blue Swirl
{
1013 bdf9f35d Blue Swirl
    uint32_t ret = 0;
1014 bdf9f35d Blue Swirl
1015 5a4bb580 Richard Henderson
    if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
1016 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1017 5a4bb580 Richard Henderson
    }
1018 5a4bb580 Richard Henderson
    return ret;
1019 5a4bb580 Richard Henderson
}
1020 5a4bb580 Richard Henderson
1021 5a4bb580 Richard Henderson
static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
1022 5a4bb580 Richard Henderson
                                     uint32_t src2)
1023 5a4bb580 Richard Henderson
{
1024 5a4bb580 Richard Henderson
    uint32_t ret = 0;
1025 5a4bb580 Richard Henderson
1026 5a4bb580 Richard Henderson
    if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
1027 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1028 5a4bb580 Richard Henderson
    }
1029 bdf9f35d Blue Swirl
    return ret;
1030 bdf9f35d Blue Swirl
}
1031 bdf9f35d Blue Swirl
1032 bdf9f35d Blue Swirl
#ifdef TARGET_SPARC64
1033 bdf9f35d Blue Swirl
static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
1034 bdf9f35d Blue Swirl
{
1035 bdf9f35d Blue Swirl
    uint32_t ret = 0;
1036 bdf9f35d Blue Swirl
1037 5a4bb580 Richard Henderson
    if (dst < src1) {
1038 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1039 5a4bb580 Richard Henderson
    }
1040 5a4bb580 Richard Henderson
    return ret;
1041 5a4bb580 Richard Henderson
}
1042 5a4bb580 Richard Henderson
1043 5a4bb580 Richard Henderson
static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
1044 5a4bb580 Richard Henderson
                                      target_ulong src2)
1045 5a4bb580 Richard Henderson
{
1046 5a4bb580 Richard Henderson
    uint32_t ret = 0;
1047 5a4bb580 Richard Henderson
1048 5a4bb580 Richard Henderson
    if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
1049 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1050 5a4bb580 Richard Henderson
    }
1051 bdf9f35d Blue Swirl
    return ret;
1052 bdf9f35d Blue Swirl
}
1053 bdf9f35d Blue Swirl
1054 bdf9f35d Blue Swirl
static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
1055 bdf9f35d Blue Swirl
                                         target_ulong src2)
1056 bdf9f35d Blue Swirl
{
1057 bdf9f35d Blue Swirl
    uint32_t ret = 0;
1058 bdf9f35d Blue Swirl
1059 5a4bb580 Richard Henderson
    if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
1060 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1061 5a4bb580 Richard Henderson
    }
1062 bdf9f35d Blue Swirl
    return ret;
1063 bdf9f35d Blue Swirl
}
1064 bdf9f35d Blue Swirl
1065 bdf9f35d Blue Swirl
static uint32_t compute_all_add_xcc(void)
1066 bdf9f35d Blue Swirl
{
1067 bdf9f35d Blue Swirl
    uint32_t ret;
1068 bdf9f35d Blue Swirl
1069 bdf9f35d Blue Swirl
    ret = get_NZ_xcc(CC_DST);
1070 bdf9f35d Blue Swirl
    ret |= get_C_add_xcc(CC_DST, CC_SRC);
1071 bdf9f35d Blue Swirl
    ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1072 bdf9f35d Blue Swirl
    return ret;
1073 bdf9f35d Blue Swirl
}
1074 bdf9f35d Blue Swirl
1075 bdf9f35d Blue Swirl
static uint32_t compute_C_add_xcc(void)
1076 bdf9f35d Blue Swirl
{
1077 bdf9f35d Blue Swirl
    return get_C_add_xcc(CC_DST, CC_SRC);
1078 bdf9f35d Blue Swirl
}
1079 8393617c Blue Swirl
#endif
1080 8393617c Blue Swirl
1081 3e6ba503 Artyom Tarasenko
static uint32_t compute_all_add(void)
1082 789c91ef Blue Swirl
{
1083 789c91ef Blue Swirl
    uint32_t ret;
1084 789c91ef Blue Swirl
1085 789c91ef Blue Swirl
    ret = get_NZ_icc(CC_DST);
1086 5a4bb580 Richard Henderson
    ret |= get_C_add_icc(CC_DST, CC_SRC);
1087 789c91ef Blue Swirl
    ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1088 789c91ef Blue Swirl
    return ret;
1089 789c91ef Blue Swirl
}
1090 789c91ef Blue Swirl
1091 3e6ba503 Artyom Tarasenko
static uint32_t compute_C_add(void)
1092 789c91ef Blue Swirl
{
1093 5a4bb580 Richard Henderson
    return get_C_add_icc(CC_DST, CC_SRC);
1094 789c91ef Blue Swirl
}
1095 789c91ef Blue Swirl
1096 789c91ef Blue Swirl
#ifdef TARGET_SPARC64
1097 789c91ef Blue Swirl
static uint32_t compute_all_addx_xcc(void)
1098 789c91ef Blue Swirl
{
1099 789c91ef Blue Swirl
    uint32_t ret;
1100 789c91ef Blue Swirl
1101 789c91ef Blue Swirl
    ret = get_NZ_xcc(CC_DST);
1102 5a4bb580 Richard Henderson
    ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1103 789c91ef Blue Swirl
    ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1104 789c91ef Blue Swirl
    return ret;
1105 789c91ef Blue Swirl
}
1106 789c91ef Blue Swirl
1107 789c91ef Blue Swirl
static uint32_t compute_C_addx_xcc(void)
1108 789c91ef Blue Swirl
{
1109 789c91ef Blue Swirl
    uint32_t ret;
1110 789c91ef Blue Swirl
1111 5a4bb580 Richard Henderson
    ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1112 789c91ef Blue Swirl
    return ret;
1113 789c91ef Blue Swirl
}
1114 789c91ef Blue Swirl
#endif
1115 789c91ef Blue Swirl
1116 5a4bb580 Richard Henderson
static uint32_t compute_all_addx(void)
1117 5a4bb580 Richard Henderson
{
1118 5a4bb580 Richard Henderson
    uint32_t ret;
1119 5a4bb580 Richard Henderson
1120 5a4bb580 Richard Henderson
    ret = get_NZ_icc(CC_DST);
1121 5a4bb580 Richard Henderson
    ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1122 5a4bb580 Richard Henderson
    ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1123 5a4bb580 Richard Henderson
    return ret;
1124 5a4bb580 Richard Henderson
}
1125 5a4bb580 Richard Henderson
1126 5a4bb580 Richard Henderson
static uint32_t compute_C_addx(void)
1127 5a4bb580 Richard Henderson
{
1128 5a4bb580 Richard Henderson
    uint32_t ret;
1129 5a4bb580 Richard Henderson
1130 5a4bb580 Richard Henderson
    ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1131 5a4bb580 Richard Henderson
    return ret;
1132 5a4bb580 Richard Henderson
}
1133 5a4bb580 Richard Henderson
1134 3b2d1e92 Blue Swirl
static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1135 3b2d1e92 Blue Swirl
{
1136 3b2d1e92 Blue Swirl
    uint32_t ret = 0;
1137 3b2d1e92 Blue Swirl
1138 5a4bb580 Richard Henderson
    if ((src1 | src2) & 0x3) {
1139 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1140 5a4bb580 Richard Henderson
    }
1141 3b2d1e92 Blue Swirl
    return ret;
1142 3b2d1e92 Blue Swirl
}
1143 3b2d1e92 Blue Swirl
1144 3b2d1e92 Blue Swirl
static uint32_t compute_all_tadd(void)
1145 3b2d1e92 Blue Swirl
{
1146 3b2d1e92 Blue Swirl
    uint32_t ret;
1147 3b2d1e92 Blue Swirl
1148 3b2d1e92 Blue Swirl
    ret = get_NZ_icc(CC_DST);
1149 5a4bb580 Richard Henderson
    ret |= get_C_add_icc(CC_DST, CC_SRC);
1150 3b2d1e92 Blue Swirl
    ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1151 3b2d1e92 Blue Swirl
    ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1152 3b2d1e92 Blue Swirl
    return ret;
1153 3b2d1e92 Blue Swirl
}
1154 3b2d1e92 Blue Swirl
1155 3b2d1e92 Blue Swirl
static uint32_t compute_all_taddtv(void)
1156 3b2d1e92 Blue Swirl
{
1157 3b2d1e92 Blue Swirl
    uint32_t ret;
1158 3b2d1e92 Blue Swirl
1159 3b2d1e92 Blue Swirl
    ret = get_NZ_icc(CC_DST);
1160 5a4bb580 Richard Henderson
    ret |= get_C_add_icc(CC_DST, CC_SRC);
1161 3b2d1e92 Blue Swirl
    return ret;
1162 3b2d1e92 Blue Swirl
}
1163 3b2d1e92 Blue Swirl
1164 5a4bb580 Richard Henderson
static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
1165 3b2d1e92 Blue Swirl
{
1166 5a4bb580 Richard Henderson
    uint32_t ret = 0;
1167 5a4bb580 Richard Henderson
1168 5a4bb580 Richard Henderson
    if (src1 < src2) {
1169 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1170 5a4bb580 Richard Henderson
    }
1171 5a4bb580 Richard Henderson
    return ret;
1172 3b2d1e92 Blue Swirl
}
1173 3b2d1e92 Blue Swirl
1174 5a4bb580 Richard Henderson
static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
1175 5a4bb580 Richard Henderson
                                      uint32_t src2)
1176 d4b0d468 Blue Swirl
{
1177 d4b0d468 Blue Swirl
    uint32_t ret = 0;
1178 d4b0d468 Blue Swirl
1179 5a4bb580 Richard Henderson
    if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
1180 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1181 5a4bb580 Richard Henderson
    }
1182 d4b0d468 Blue Swirl
    return ret;
1183 d4b0d468 Blue Swirl
}
1184 d4b0d468 Blue Swirl
1185 5a4bb580 Richard Henderson
static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
1186 5a4bb580 Richard Henderson
                                     uint32_t src2)
1187 d4b0d468 Blue Swirl
{
1188 d4b0d468 Blue Swirl
    uint32_t ret = 0;
1189 d4b0d468 Blue Swirl
1190 5a4bb580 Richard Henderson
    if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
1191 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1192 5a4bb580 Richard Henderson
    }
1193 d4b0d468 Blue Swirl
    return ret;
1194 d4b0d468 Blue Swirl
}
1195 d4b0d468 Blue Swirl
1196 d4b0d468 Blue Swirl
1197 d4b0d468 Blue Swirl
#ifdef TARGET_SPARC64
1198 d4b0d468 Blue Swirl
static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1199 d4b0d468 Blue Swirl
{
1200 d4b0d468 Blue Swirl
    uint32_t ret = 0;
1201 d4b0d468 Blue Swirl
1202 5a4bb580 Richard Henderson
    if (src1 < src2) {
1203 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1204 5a4bb580 Richard Henderson
    }
1205 5a4bb580 Richard Henderson
    return ret;
1206 5a4bb580 Richard Henderson
}
1207 5a4bb580 Richard Henderson
1208 5a4bb580 Richard Henderson
static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
1209 5a4bb580 Richard Henderson
                                      target_ulong src2)
1210 5a4bb580 Richard Henderson
{
1211 5a4bb580 Richard Henderson
    uint32_t ret = 0;
1212 5a4bb580 Richard Henderson
1213 5a4bb580 Richard Henderson
    if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
1214 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1215 5a4bb580 Richard Henderson
    }
1216 d4b0d468 Blue Swirl
    return ret;
1217 d4b0d468 Blue Swirl
}
1218 d4b0d468 Blue Swirl
1219 d4b0d468 Blue Swirl
static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1220 d4b0d468 Blue Swirl
                                     target_ulong src2)
1221 d4b0d468 Blue Swirl
{
1222 d4b0d468 Blue Swirl
    uint32_t ret = 0;
1223 d4b0d468 Blue Swirl
1224 5a4bb580 Richard Henderson
    if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
1225 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1226 5a4bb580 Richard Henderson
    }
1227 d4b0d468 Blue Swirl
    return ret;
1228 d4b0d468 Blue Swirl
}
1229 d4b0d468 Blue Swirl
1230 d4b0d468 Blue Swirl
static uint32_t compute_all_sub_xcc(void)
1231 d4b0d468 Blue Swirl
{
1232 d4b0d468 Blue Swirl
    uint32_t ret;
1233 d4b0d468 Blue Swirl
1234 d4b0d468 Blue Swirl
    ret = get_NZ_xcc(CC_DST);
1235 d4b0d468 Blue Swirl
    ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1236 d4b0d468 Blue Swirl
    ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1237 d4b0d468 Blue Swirl
    return ret;
1238 d4b0d468 Blue Swirl
}
1239 d4b0d468 Blue Swirl
1240 d4b0d468 Blue Swirl
static uint32_t compute_C_sub_xcc(void)
1241 d4b0d468 Blue Swirl
{
1242 d4b0d468 Blue Swirl
    return get_C_sub_xcc(CC_SRC, CC_SRC2);
1243 d4b0d468 Blue Swirl
}
1244 d4b0d468 Blue Swirl
#endif
1245 d4b0d468 Blue Swirl
1246 3e6ba503 Artyom Tarasenko
static uint32_t compute_all_sub(void)
1247 2ca1d92b Blue Swirl
{
1248 2ca1d92b Blue Swirl
    uint32_t ret;
1249 2ca1d92b Blue Swirl
1250 2ca1d92b Blue Swirl
    ret = get_NZ_icc(CC_DST);
1251 5a4bb580 Richard Henderson
    ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1252 2ca1d92b Blue Swirl
    ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1253 2ca1d92b Blue Swirl
    return ret;
1254 2ca1d92b Blue Swirl
}
1255 2ca1d92b Blue Swirl
1256 3e6ba503 Artyom Tarasenko
static uint32_t compute_C_sub(void)
1257 2ca1d92b Blue Swirl
{
1258 5a4bb580 Richard Henderson
    return get_C_sub_icc(CC_SRC, CC_SRC2);
1259 2ca1d92b Blue Swirl
}
1260 2ca1d92b Blue Swirl
1261 2ca1d92b Blue Swirl
#ifdef TARGET_SPARC64
1262 2ca1d92b Blue Swirl
static uint32_t compute_all_subx_xcc(void)
1263 2ca1d92b Blue Swirl
{
1264 2ca1d92b Blue Swirl
    uint32_t ret;
1265 2ca1d92b Blue Swirl
1266 2ca1d92b Blue Swirl
    ret = get_NZ_xcc(CC_DST);
1267 5a4bb580 Richard Henderson
    ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1268 2ca1d92b Blue Swirl
    ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1269 2ca1d92b Blue Swirl
    return ret;
1270 2ca1d92b Blue Swirl
}
1271 2ca1d92b Blue Swirl
1272 2ca1d92b Blue Swirl
static uint32_t compute_C_subx_xcc(void)
1273 2ca1d92b Blue Swirl
{
1274 2ca1d92b Blue Swirl
    uint32_t ret;
1275 2ca1d92b Blue Swirl
1276 5a4bb580 Richard Henderson
    ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1277 2ca1d92b Blue Swirl
    return ret;
1278 2ca1d92b Blue Swirl
}
1279 2ca1d92b Blue Swirl
#endif
1280 2ca1d92b Blue Swirl
1281 5a4bb580 Richard Henderson
static uint32_t compute_all_subx(void)
1282 3b2d1e92 Blue Swirl
{
1283 3b2d1e92 Blue Swirl
    uint32_t ret;
1284 3b2d1e92 Blue Swirl
1285 3b2d1e92 Blue Swirl
    ret = get_NZ_icc(CC_DST);
1286 5a4bb580 Richard Henderson
    ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1287 3b2d1e92 Blue Swirl
    ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1288 3b2d1e92 Blue Swirl
    return ret;
1289 3b2d1e92 Blue Swirl
}
1290 3b2d1e92 Blue Swirl
1291 5a4bb580 Richard Henderson
static uint32_t compute_C_subx(void)
1292 3b2d1e92 Blue Swirl
{
1293 5a4bb580 Richard Henderson
    uint32_t ret;
1294 5a4bb580 Richard Henderson
1295 5a4bb580 Richard Henderson
    ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1296 5a4bb580 Richard Henderson
    return ret;
1297 3b2d1e92 Blue Swirl
}
1298 3b2d1e92 Blue Swirl
1299 5a4bb580 Richard Henderson
static uint32_t compute_all_tsub(void)
1300 3b2d1e92 Blue Swirl
{
1301 3b2d1e92 Blue Swirl
    uint32_t ret;
1302 3b2d1e92 Blue Swirl
1303 3b2d1e92 Blue Swirl
    ret = get_NZ_icc(CC_DST);
1304 5a4bb580 Richard Henderson
    ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1305 5a4bb580 Richard Henderson
    ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1306 5a4bb580 Richard Henderson
    ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1307 3b2d1e92 Blue Swirl
    return ret;
1308 3b2d1e92 Blue Swirl
}
1309 3b2d1e92 Blue Swirl
1310 5a4bb580 Richard Henderson
static uint32_t compute_all_tsubtv(void)
1311 3b2d1e92 Blue Swirl
{
1312 5a4bb580 Richard Henderson
    uint32_t ret;
1313 5a4bb580 Richard Henderson
1314 5a4bb580 Richard Henderson
    ret = get_NZ_icc(CC_DST);
1315 5a4bb580 Richard Henderson
    ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1316 5a4bb580 Richard Henderson
    return ret;
1317 3b2d1e92 Blue Swirl
}
1318 3b2d1e92 Blue Swirl
1319 38482a77 Blue Swirl
static uint32_t compute_all_logic(void)
1320 38482a77 Blue Swirl
{
1321 38482a77 Blue Swirl
    return get_NZ_icc(CC_DST);
1322 38482a77 Blue Swirl
}
1323 38482a77 Blue Swirl
1324 38482a77 Blue Swirl
static uint32_t compute_C_logic(void)
1325 38482a77 Blue Swirl
{
1326 38482a77 Blue Swirl
    return 0;
1327 38482a77 Blue Swirl
}
1328 38482a77 Blue Swirl
1329 38482a77 Blue Swirl
#ifdef TARGET_SPARC64
1330 38482a77 Blue Swirl
static uint32_t compute_all_logic_xcc(void)
1331 38482a77 Blue Swirl
{
1332 38482a77 Blue Swirl
    return get_NZ_xcc(CC_DST);
1333 38482a77 Blue Swirl
}
1334 38482a77 Blue Swirl
#endif
1335 38482a77 Blue Swirl
1336 8393617c Blue Swirl
typedef struct CCTable {
1337 8393617c Blue Swirl
    uint32_t (*compute_all)(void); /* return all the flags */
1338 8393617c Blue Swirl
    uint32_t (*compute_c)(void);  /* return the C flag */
1339 8393617c Blue Swirl
} CCTable;
1340 8393617c Blue Swirl
1341 8393617c Blue Swirl
static const CCTable icc_table[CC_OP_NB] = {
1342 8393617c Blue Swirl
    /* CC_OP_DYNAMIC should never happen */
1343 8393617c Blue Swirl
    [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1344 6c78ea32 Blue Swirl
    [CC_OP_DIV] = { compute_all_div, compute_C_div },
1345 bdf9f35d Blue Swirl
    [CC_OP_ADD] = { compute_all_add, compute_C_add },
1346 5a4bb580 Richard Henderson
    [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1347 5a4bb580 Richard Henderson
    [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
1348 5a4bb580 Richard Henderson
    [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
1349 d4b0d468 Blue Swirl
    [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1350 5a4bb580 Richard Henderson
    [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1351 5a4bb580 Richard Henderson
    [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
1352 5a4bb580 Richard Henderson
    [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
1353 38482a77 Blue Swirl
    [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1354 8393617c Blue Swirl
};
1355 8393617c Blue Swirl
1356 8393617c Blue Swirl
#ifdef TARGET_SPARC64
1357 8393617c Blue Swirl
static const CCTable xcc_table[CC_OP_NB] = {
1358 8393617c Blue Swirl
    /* CC_OP_DYNAMIC should never happen */
1359 8393617c Blue Swirl
    [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1360 6c78ea32 Blue Swirl
    [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1361 bdf9f35d Blue Swirl
    [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1362 789c91ef Blue Swirl
    [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1363 3b2d1e92 Blue Swirl
    [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1364 3b2d1e92 Blue Swirl
    [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1365 d4b0d468 Blue Swirl
    [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1366 2ca1d92b Blue Swirl
    [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1367 3b2d1e92 Blue Swirl
    [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1368 3b2d1e92 Blue Swirl
    [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1369 38482a77 Blue Swirl
    [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1370 8393617c Blue Swirl
};
1371 8393617c Blue Swirl
#endif
1372 8393617c Blue Swirl
1373 8393617c Blue Swirl
void helper_compute_psr(void)
1374 8393617c Blue Swirl
{
1375 8393617c Blue Swirl
    uint32_t new_psr;
1376 8393617c Blue Swirl
1377 8393617c Blue Swirl
    new_psr = icc_table[CC_OP].compute_all();
1378 8393617c Blue Swirl
    env->psr = new_psr;
1379 8393617c Blue Swirl
#ifdef TARGET_SPARC64
1380 8393617c Blue Swirl
    new_psr = xcc_table[CC_OP].compute_all();
1381 8393617c Blue Swirl
    env->xcc = new_psr;
1382 8393617c Blue Swirl
#endif
1383 8393617c Blue Swirl
    CC_OP = CC_OP_FLAGS;
1384 8393617c Blue Swirl
}
1385 8393617c Blue Swirl
1386 70c48285 Richard Henderson
uint32_t helper_compute_C_icc(void)
1387 8393617c Blue Swirl
{
1388 8393617c Blue Swirl
    uint32_t ret;
1389 8393617c Blue Swirl
1390 8393617c Blue Swirl
    ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1391 8393617c Blue Swirl
    return ret;
1392 8393617c Blue Swirl
}
1393 8393617c Blue Swirl
1394 5a834bb4 Blue Swirl
static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1395 5a834bb4 Blue Swirl
{
1396 5a834bb4 Blue Swirl
    dst[0] = src[0];
1397 5a834bb4 Blue Swirl
    dst[1] = src[1];
1398 5a834bb4 Blue Swirl
    dst[2] = src[2];
1399 5a834bb4 Blue Swirl
    dst[3] = src[3];
1400 5a834bb4 Blue Swirl
    dst[4] = src[4];
1401 5a834bb4 Blue Swirl
    dst[5] = src[5];
1402 5a834bb4 Blue Swirl
    dst[6] = src[6];
1403 5a834bb4 Blue Swirl
    dst[7] = src[7];
1404 5a834bb4 Blue Swirl
}
1405 5a834bb4 Blue Swirl
1406 5a834bb4 Blue Swirl
static void set_cwp(int new_cwp)
1407 5a834bb4 Blue Swirl
{
1408 5a834bb4 Blue Swirl
    /* put the modified wrap registers at their proper location */
1409 5a834bb4 Blue Swirl
    if (env->cwp == env->nwindows - 1) {
1410 5a834bb4 Blue Swirl
        memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1411 5a834bb4 Blue Swirl
    }
1412 5a834bb4 Blue Swirl
    env->cwp = new_cwp;
1413 5a834bb4 Blue Swirl
1414 5a834bb4 Blue Swirl
    /* put the wrap registers at their temporary location */
1415 5a834bb4 Blue Swirl
    if (new_cwp == env->nwindows - 1) {
1416 5a834bb4 Blue Swirl
        memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1417 5a834bb4 Blue Swirl
    }
1418 5a834bb4 Blue Swirl
    env->regwptr = env->regbase + (new_cwp * 16);
1419 5a834bb4 Blue Swirl
}
1420 5a834bb4 Blue Swirl
1421 5a834bb4 Blue Swirl
void cpu_set_cwp(CPUState *env1, int new_cwp)
1422 5a834bb4 Blue Swirl
{
1423 5a834bb4 Blue Swirl
    CPUState *saved_env;
1424 5a834bb4 Blue Swirl
1425 5a834bb4 Blue Swirl
    saved_env = env;
1426 5a834bb4 Blue Swirl
    env = env1;
1427 5a834bb4 Blue Swirl
    set_cwp(new_cwp);
1428 5a834bb4 Blue Swirl
    env = saved_env;
1429 5a834bb4 Blue Swirl
}
1430 5a834bb4 Blue Swirl
1431 5a834bb4 Blue Swirl
static target_ulong get_psr(void)
1432 5a834bb4 Blue Swirl
{
1433 5a834bb4 Blue Swirl
    helper_compute_psr();
1434 5a834bb4 Blue Swirl
1435 5a834bb4 Blue Swirl
#if !defined (TARGET_SPARC64)
1436 5a834bb4 Blue Swirl
    return env->version | (env->psr & PSR_ICC) |
1437 5a834bb4 Blue Swirl
        (env->psref? PSR_EF : 0) |
1438 5a834bb4 Blue Swirl
        (env->psrpil << 8) |
1439 5a834bb4 Blue Swirl
        (env->psrs? PSR_S : 0) |
1440 5a834bb4 Blue Swirl
        (env->psrps? PSR_PS : 0) |
1441 5a834bb4 Blue Swirl
        (env->psret? PSR_ET : 0) | env->cwp;
1442 5a834bb4 Blue Swirl
#else
1443 2aae2b8e Igor V. Kovalenko
    return env->psr & PSR_ICC;
1444 5a834bb4 Blue Swirl
#endif
1445 5a834bb4 Blue Swirl
}
1446 5a834bb4 Blue Swirl
1447 5a834bb4 Blue Swirl
target_ulong cpu_get_psr(CPUState *env1)
1448 5a834bb4 Blue Swirl
{
1449 5a834bb4 Blue Swirl
    CPUState *saved_env;
1450 5a834bb4 Blue Swirl
    target_ulong ret;
1451 5a834bb4 Blue Swirl
1452 5a834bb4 Blue Swirl
    saved_env = env;
1453 5a834bb4 Blue Swirl
    env = env1;
1454 5a834bb4 Blue Swirl
    ret = get_psr();
1455 5a834bb4 Blue Swirl
    env = saved_env;
1456 5a834bb4 Blue Swirl
    return ret;
1457 5a834bb4 Blue Swirl
}
1458 5a834bb4 Blue Swirl
1459 5a834bb4 Blue Swirl
static void put_psr(target_ulong val)
1460 5a834bb4 Blue Swirl
{
1461 5a834bb4 Blue Swirl
    env->psr = val & PSR_ICC;
1462 2aae2b8e Igor V. Kovalenko
#if !defined (TARGET_SPARC64)
1463 5a834bb4 Blue Swirl
    env->psref = (val & PSR_EF)? 1 : 0;
1464 5a834bb4 Blue Swirl
    env->psrpil = (val & PSR_PIL) >> 8;
1465 2aae2b8e Igor V. Kovalenko
#endif
1466 5a834bb4 Blue Swirl
#if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1467 5a834bb4 Blue Swirl
    cpu_check_irqs(env);
1468 5a834bb4 Blue Swirl
#endif
1469 2aae2b8e Igor V. Kovalenko
#if !defined (TARGET_SPARC64)
1470 5a834bb4 Blue Swirl
    env->psrs = (val & PSR_S)? 1 : 0;
1471 5a834bb4 Blue Swirl
    env->psrps = (val & PSR_PS)? 1 : 0;
1472 5a834bb4 Blue Swirl
    env->psret = (val & PSR_ET)? 1 : 0;
1473 5a834bb4 Blue Swirl
    set_cwp(val & PSR_CWP);
1474 2aae2b8e Igor V. Kovalenko
#endif
1475 5a834bb4 Blue Swirl
    env->cc_op = CC_OP_FLAGS;
1476 5a834bb4 Blue Swirl
}
1477 5a834bb4 Blue Swirl
1478 5a834bb4 Blue Swirl
void cpu_put_psr(CPUState *env1, target_ulong val)
1479 5a834bb4 Blue Swirl
{
1480 5a834bb4 Blue Swirl
    CPUState *saved_env;
1481 5a834bb4 Blue Swirl
1482 5a834bb4 Blue Swirl
    saved_env = env;
1483 5a834bb4 Blue Swirl
    env = env1;
1484 5a834bb4 Blue Swirl
    put_psr(val);
1485 5a834bb4 Blue Swirl
    env = saved_env;
1486 5a834bb4 Blue Swirl
}
1487 5a834bb4 Blue Swirl
1488 5a834bb4 Blue Swirl
static int cwp_inc(int cwp)
1489 5a834bb4 Blue Swirl
{
1490 5a834bb4 Blue Swirl
    if (unlikely(cwp >= env->nwindows)) {
1491 5a834bb4 Blue Swirl
        cwp -= env->nwindows;
1492 5a834bb4 Blue Swirl
    }
1493 5a834bb4 Blue Swirl
    return cwp;
1494 5a834bb4 Blue Swirl
}
1495 5a834bb4 Blue Swirl
1496 5a834bb4 Blue Swirl
int cpu_cwp_inc(CPUState *env1, int cwp)
1497 5a834bb4 Blue Swirl
{
1498 5a834bb4 Blue Swirl
    CPUState *saved_env;
1499 5a834bb4 Blue Swirl
    target_ulong ret;
1500 5a834bb4 Blue Swirl
1501 5a834bb4 Blue Swirl
    saved_env = env;
1502 5a834bb4 Blue Swirl
    env = env1;
1503 5a834bb4 Blue Swirl
    ret = cwp_inc(cwp);
1504 5a834bb4 Blue Swirl
    env = saved_env;
1505 5a834bb4 Blue Swirl
    return ret;
1506 5a834bb4 Blue Swirl
}
1507 5a834bb4 Blue Swirl
1508 5a834bb4 Blue Swirl
static int cwp_dec(int cwp)
1509 5a834bb4 Blue Swirl
{
1510 5a834bb4 Blue Swirl
    if (unlikely(cwp < 0)) {
1511 5a834bb4 Blue Swirl
        cwp += env->nwindows;
1512 5a834bb4 Blue Swirl
    }
1513 5a834bb4 Blue Swirl
    return cwp;
1514 5a834bb4 Blue Swirl
}
1515 5a834bb4 Blue Swirl
1516 5a834bb4 Blue Swirl
int cpu_cwp_dec(CPUState *env1, int cwp)
1517 5a834bb4 Blue Swirl
{
1518 5a834bb4 Blue Swirl
    CPUState *saved_env;
1519 5a834bb4 Blue Swirl
    target_ulong ret;
1520 5a834bb4 Blue Swirl
1521 5a834bb4 Blue Swirl
    saved_env = env;
1522 5a834bb4 Blue Swirl
    env = env1;
1523 5a834bb4 Blue Swirl
    ret = cwp_dec(cwp);
1524 5a834bb4 Blue Swirl
    env = saved_env;
1525 5a834bb4 Blue Swirl
    return ret;
1526 5a834bb4 Blue Swirl
}
1527 5a834bb4 Blue Swirl
1528 3475187d bellard
#ifdef TARGET_SPARC64
1529 714547bb blueswir1
GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1530 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1531 64a88d5d blueswir1
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1532 417454b0 blueswir1
1533 714547bb blueswir1
GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1534 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1535 64a88d5d blueswir1
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1536 417454b0 blueswir1
1537 714547bb blueswir1
GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1538 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1539 64a88d5d blueswir1
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1540 417454b0 blueswir1
1541 714547bb blueswir1
GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1542 417454b0 blueswir1
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1543 64a88d5d blueswir1
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1544 3475187d bellard
1545 714547bb blueswir1
GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1546 417454b0 blueswir1
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1547 64a88d5d blueswir1
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1548 3475187d bellard
1549 714547bb blueswir1
GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1550 417454b0 blueswir1
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1551 4e14008f blueswir1
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1552 4e14008f blueswir1
#endif
1553 714547bb blueswir1
#undef GEN_FCMPS
1554 3475187d bellard
1555 77f193da blueswir1
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1556 77f193da blueswir1
    defined(DEBUG_MXCC)
1557 952a328f blueswir1
static void dump_mxcc(CPUState *env)
1558 952a328f blueswir1
{
1559 0bf9e31a Blue Swirl
    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1560 0bf9e31a Blue Swirl
           "\n",
1561 77f193da blueswir1
           env->mxccdata[0], env->mxccdata[1],
1562 77f193da blueswir1
           env->mxccdata[2], env->mxccdata[3]);
1563 0bf9e31a Blue Swirl
    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1564 0bf9e31a Blue Swirl
           "\n"
1565 0bf9e31a Blue Swirl
           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1566 0bf9e31a Blue Swirl
           "\n",
1567 77f193da blueswir1
           env->mxccregs[0], env->mxccregs[1],
1568 77f193da blueswir1
           env->mxccregs[2], env->mxccregs[3],
1569 77f193da blueswir1
           env->mxccregs[4], env->mxccregs[5],
1570 77f193da blueswir1
           env->mxccregs[6], env->mxccregs[7]);
1571 952a328f blueswir1
}
1572 952a328f blueswir1
#endif
1573 952a328f blueswir1
1574 1a2fb1c0 blueswir1
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1575 1a2fb1c0 blueswir1
    && defined(DEBUG_ASI)
1576 1a2fb1c0 blueswir1
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1577 1a2fb1c0 blueswir1
                     uint64_t r1)
1578 8543e2cf blueswir1
{
1579 8543e2cf blueswir1
    switch (size)
1580 8543e2cf blueswir1
    {
1581 8543e2cf blueswir1
    case 1:
1582 1a2fb1c0 blueswir1
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1583 1a2fb1c0 blueswir1
                    addr, asi, r1 & 0xff);
1584 8543e2cf blueswir1
        break;
1585 8543e2cf blueswir1
    case 2:
1586 1a2fb1c0 blueswir1
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1587 1a2fb1c0 blueswir1
                    addr, asi, r1 & 0xffff);
1588 8543e2cf blueswir1
        break;
1589 8543e2cf blueswir1
    case 4:
1590 1a2fb1c0 blueswir1
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1591 1a2fb1c0 blueswir1
                    addr, asi, r1 & 0xffffffff);
1592 8543e2cf blueswir1
        break;
1593 8543e2cf blueswir1
    case 8:
1594 1a2fb1c0 blueswir1
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1595 1a2fb1c0 blueswir1
                    addr, asi, r1);
1596 8543e2cf blueswir1
        break;
1597 8543e2cf blueswir1
    }
1598 8543e2cf blueswir1
}
1599 8543e2cf blueswir1
#endif
1600 8543e2cf blueswir1
1601 1a2fb1c0 blueswir1
#ifndef TARGET_SPARC64
1602 1a2fb1c0 blueswir1
#ifndef CONFIG_USER_ONLY
1603 1a2fb1c0 blueswir1
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1604 e8af50a3 bellard
{
1605 1a2fb1c0 blueswir1
    uint64_t ret = 0;
1606 8543e2cf blueswir1
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1607 1a2fb1c0 blueswir1
    uint32_t last_addr = addr;
1608 952a328f blueswir1
#endif
1609 e80cfcfc bellard
1610 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
1611 e80cfcfc bellard
    switch (asi) {
1612 6c36d3fa blueswir1
    case 2: /* SuperSparc MXCC registers */
1613 1a2fb1c0 blueswir1
        switch (addr) {
1614 952a328f blueswir1
        case 0x01c00a00: /* MXCC control register */
1615 1a2fb1c0 blueswir1
            if (size == 8)
1616 1a2fb1c0 blueswir1
                ret = env->mxccregs[3];
1617 1a2fb1c0 blueswir1
            else
1618 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1619 77f193da blueswir1
                             size);
1620 952a328f blueswir1
            break;
1621 952a328f blueswir1
        case 0x01c00a04: /* MXCC control register */
1622 952a328f blueswir1
            if (size == 4)
1623 952a328f blueswir1
                ret = env->mxccregs[3];
1624 952a328f blueswir1
            else
1625 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1626 77f193da blueswir1
                             size);
1627 952a328f blueswir1
            break;
1628 295db113 blueswir1
        case 0x01c00c00: /* Module reset register */
1629 295db113 blueswir1
            if (size == 8) {
1630 1a2fb1c0 blueswir1
                ret = env->mxccregs[5];
1631 295db113 blueswir1
                // should we do something here?
1632 295db113 blueswir1
            } else
1633 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1634 77f193da blueswir1
                             size);
1635 295db113 blueswir1
            break;
1636 952a328f blueswir1
        case 0x01c00f00: /* MBus port address register */
1637 1a2fb1c0 blueswir1
            if (size == 8)
1638 1a2fb1c0 blueswir1
                ret = env->mxccregs[7];
1639 1a2fb1c0 blueswir1
            else
1640 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1641 77f193da blueswir1
                             size);
1642 952a328f blueswir1
            break;
1643 952a328f blueswir1
        default:
1644 77f193da blueswir1
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1645 77f193da blueswir1
                         size);
1646 952a328f blueswir1
            break;
1647 952a328f blueswir1
        }
1648 77f193da blueswir1
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1649 9827e450 blueswir1
                     "addr = %08x -> ret = %" PRIx64 ","
1650 1a2fb1c0 blueswir1
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1651 952a328f blueswir1
#ifdef DEBUG_MXCC
1652 952a328f blueswir1
        dump_mxcc(env);
1653 952a328f blueswir1
#endif
1654 6c36d3fa blueswir1
        break;
1655 e8af50a3 bellard
    case 3: /* MMU probe */
1656 0f8a249a blueswir1
        {
1657 0f8a249a blueswir1
            int mmulev;
1658 0f8a249a blueswir1
1659 1a2fb1c0 blueswir1
            mmulev = (addr >> 8) & 15;
1660 0f8a249a blueswir1
            if (mmulev > 4)
1661 0f8a249a blueswir1
                ret = 0;
1662 1a2fb1c0 blueswir1
            else
1663 1a2fb1c0 blueswir1
                ret = mmu_probe(env, addr, mmulev);
1664 1a2fb1c0 blueswir1
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1665 1a2fb1c0 blueswir1
                        addr, mmulev, ret);
1666 0f8a249a blueswir1
        }
1667 0f8a249a blueswir1
        break;
1668 e8af50a3 bellard
    case 4: /* read MMU regs */
1669 0f8a249a blueswir1
        {
1670 1a2fb1c0 blueswir1
            int reg = (addr >> 8) & 0x1f;
1671 3b46e624 ths
1672 0f8a249a blueswir1
            ret = env->mmuregs[reg];
1673 0f8a249a blueswir1
            if (reg == 3) /* Fault status cleared on read */
1674 3dd9a152 blueswir1
                env->mmuregs[3] = 0;
1675 3dd9a152 blueswir1
            else if (reg == 0x13) /* Fault status read */
1676 3dd9a152 blueswir1
                ret = env->mmuregs[3];
1677 3dd9a152 blueswir1
            else if (reg == 0x14) /* Fault address read */
1678 3dd9a152 blueswir1
                ret = env->mmuregs[4];
1679 1a2fb1c0 blueswir1
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1680 0f8a249a blueswir1
        }
1681 0f8a249a blueswir1
        break;
1682 045380be blueswir1
    case 5: // Turbosparc ITLB Diagnostic
1683 045380be blueswir1
    case 6: // Turbosparc DTLB Diagnostic
1684 045380be blueswir1
    case 7: // Turbosparc IOTLB Diagnostic
1685 045380be blueswir1
        break;
1686 6c36d3fa blueswir1
    case 9: /* Supervisor code access */
1687 6c36d3fa blueswir1
        switch(size) {
1688 6c36d3fa blueswir1
        case 1:
1689 1a2fb1c0 blueswir1
            ret = ldub_code(addr);
1690 6c36d3fa blueswir1
            break;
1691 6c36d3fa blueswir1
        case 2:
1692 a4e7dd52 blueswir1
            ret = lduw_code(addr);
1693 6c36d3fa blueswir1
            break;
1694 6c36d3fa blueswir1
        default:
1695 6c36d3fa blueswir1
        case 4:
1696 a4e7dd52 blueswir1
            ret = ldl_code(addr);
1697 6c36d3fa blueswir1
            break;
1698 6c36d3fa blueswir1
        case 8:
1699 a4e7dd52 blueswir1
            ret = ldq_code(addr);
1700 6c36d3fa blueswir1
            break;
1701 6c36d3fa blueswir1
        }
1702 6c36d3fa blueswir1
        break;
1703 81ad8ba2 blueswir1
    case 0xa: /* User data access */
1704 81ad8ba2 blueswir1
        switch(size) {
1705 81ad8ba2 blueswir1
        case 1:
1706 1a2fb1c0 blueswir1
            ret = ldub_user(addr);
1707 81ad8ba2 blueswir1
            break;
1708 81ad8ba2 blueswir1
        case 2:
1709 a4e7dd52 blueswir1
            ret = lduw_user(addr);
1710 81ad8ba2 blueswir1
            break;
1711 81ad8ba2 blueswir1
        default:
1712 81ad8ba2 blueswir1
        case 4:
1713 a4e7dd52 blueswir1
            ret = ldl_user(addr);
1714 81ad8ba2 blueswir1
            break;
1715 81ad8ba2 blueswir1
        case 8:
1716 a4e7dd52 blueswir1
            ret = ldq_user(addr);
1717 81ad8ba2 blueswir1
            break;
1718 81ad8ba2 blueswir1
        }
1719 81ad8ba2 blueswir1
        break;
1720 81ad8ba2 blueswir1
    case 0xb: /* Supervisor data access */
1721 81ad8ba2 blueswir1
        switch(size) {
1722 81ad8ba2 blueswir1
        case 1:
1723 1a2fb1c0 blueswir1
            ret = ldub_kernel(addr);
1724 81ad8ba2 blueswir1
            break;
1725 81ad8ba2 blueswir1
        case 2:
1726 a4e7dd52 blueswir1
            ret = lduw_kernel(addr);
1727 81ad8ba2 blueswir1
            break;
1728 81ad8ba2 blueswir1
        default:
1729 81ad8ba2 blueswir1
        case 4:
1730 a4e7dd52 blueswir1
            ret = ldl_kernel(addr);
1731 81ad8ba2 blueswir1
            break;
1732 81ad8ba2 blueswir1
        case 8:
1733 a4e7dd52 blueswir1
            ret = ldq_kernel(addr);
1734 81ad8ba2 blueswir1
            break;
1735 81ad8ba2 blueswir1
        }
1736 81ad8ba2 blueswir1
        break;
1737 6c36d3fa blueswir1
    case 0xc: /* I-cache tag */
1738 6c36d3fa blueswir1
    case 0xd: /* I-cache data */
1739 6c36d3fa blueswir1
    case 0xe: /* D-cache tag */
1740 6c36d3fa blueswir1
    case 0xf: /* D-cache data */
1741 6c36d3fa blueswir1
        break;
1742 6c36d3fa blueswir1
    case 0x20: /* MMU passthrough */
1743 02aab46a bellard
        switch(size) {
1744 02aab46a bellard
        case 1:
1745 1a2fb1c0 blueswir1
            ret = ldub_phys(addr);
1746 02aab46a bellard
            break;
1747 02aab46a bellard
        case 2:
1748 a4e7dd52 blueswir1
            ret = lduw_phys(addr);
1749 02aab46a bellard
            break;
1750 02aab46a bellard
        default:
1751 02aab46a bellard
        case 4:
1752 a4e7dd52 blueswir1
            ret = ldl_phys(addr);
1753 02aab46a bellard
            break;
1754 9e61bde5 bellard
        case 8:
1755 a4e7dd52 blueswir1
            ret = ldq_phys(addr);
1756 0f8a249a blueswir1
            break;
1757 02aab46a bellard
        }
1758 0f8a249a blueswir1
        break;
1759 7d85892b blueswir1
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1760 5dcb6b91 blueswir1
        switch(size) {
1761 5dcb6b91 blueswir1
        case 1:
1762 c227f099 Anthony Liguori
            ret = ldub_phys((target_phys_addr_t)addr
1763 c227f099 Anthony Liguori
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1764 5dcb6b91 blueswir1
            break;
1765 5dcb6b91 blueswir1
        case 2:
1766 c227f099 Anthony Liguori
            ret = lduw_phys((target_phys_addr_t)addr
1767 c227f099 Anthony Liguori
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1768 5dcb6b91 blueswir1
            break;
1769 5dcb6b91 blueswir1
        default:
1770 5dcb6b91 blueswir1
        case 4:
1771 c227f099 Anthony Liguori
            ret = ldl_phys((target_phys_addr_t)addr
1772 c227f099 Anthony Liguori
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1773 5dcb6b91 blueswir1
            break;
1774 5dcb6b91 blueswir1
        case 8:
1775 c227f099 Anthony Liguori
            ret = ldq_phys((target_phys_addr_t)addr
1776 c227f099 Anthony Liguori
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1777 0f8a249a blueswir1
            break;
1778 5dcb6b91 blueswir1
        }
1779 0f8a249a blueswir1
        break;
1780 045380be blueswir1
    case 0x30: // Turbosparc secondary cache diagnostic
1781 045380be blueswir1
    case 0x31: // Turbosparc RAM snoop
1782 045380be blueswir1
    case 0x32: // Turbosparc page table descriptor diagnostic
1783 666c87aa blueswir1
    case 0x39: /* data cache diagnostic register */
1784 da7ed379 Artyom Tarasenko
    case 0x4c: /* SuperSPARC MMU Breakpoint Action register */
1785 666c87aa blueswir1
        ret = 0;
1786 666c87aa blueswir1
        break;
1787 4017190e blueswir1
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1788 4017190e blueswir1
        {
1789 4017190e blueswir1
            int reg = (addr >> 8) & 3;
1790 4017190e blueswir1
1791 4017190e blueswir1
            switch(reg) {
1792 4017190e blueswir1
            case 0: /* Breakpoint Value (Addr) */
1793 4017190e blueswir1
                ret = env->mmubpregs[reg];
1794 4017190e blueswir1
                break;
1795 4017190e blueswir1
            case 1: /* Breakpoint Mask */
1796 4017190e blueswir1
                ret = env->mmubpregs[reg];
1797 4017190e blueswir1
                break;
1798 4017190e blueswir1
            case 2: /* Breakpoint Control */
1799 4017190e blueswir1
                ret = env->mmubpregs[reg];
1800 4017190e blueswir1
                break;
1801 4017190e blueswir1
            case 3: /* Breakpoint Status */
1802 4017190e blueswir1
                ret = env->mmubpregs[reg];
1803 4017190e blueswir1
                env->mmubpregs[reg] = 0ULL;
1804 4017190e blueswir1
                break;
1805 4017190e blueswir1
            }
1806 0bf9e31a Blue Swirl
            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1807 0bf9e31a Blue Swirl
                        ret);
1808 4017190e blueswir1
        }
1809 4017190e blueswir1
        break;
1810 045380be blueswir1
    case 8: /* User code access, XXX */
1811 e8af50a3 bellard
    default:
1812 e18231a3 blueswir1
        do_unassigned_access(addr, 0, 0, asi, size);
1813 0f8a249a blueswir1
        ret = 0;
1814 0f8a249a blueswir1
        break;
1815 e8af50a3 bellard
    }
1816 81ad8ba2 blueswir1
    if (sign) {
1817 81ad8ba2 blueswir1
        switch(size) {
1818 81ad8ba2 blueswir1
        case 1:
1819 1a2fb1c0 blueswir1
            ret = (int8_t) ret;
1820 e32664fb blueswir1
            break;
1821 81ad8ba2 blueswir1
        case 2:
1822 1a2fb1c0 blueswir1
            ret = (int16_t) ret;
1823 1a2fb1c0 blueswir1
            break;
1824 1a2fb1c0 blueswir1
        case 4:
1825 1a2fb1c0 blueswir1
            ret = (int32_t) ret;
1826 e32664fb blueswir1
            break;
1827 81ad8ba2 blueswir1
        default:
1828 81ad8ba2 blueswir1
            break;
1829 81ad8ba2 blueswir1
        }
1830 81ad8ba2 blueswir1
    }
1831 8543e2cf blueswir1
#ifdef DEBUG_ASI
1832 1a2fb1c0 blueswir1
    dump_asi("read ", last_addr, asi, size, ret);
1833 8543e2cf blueswir1
#endif
1834 1a2fb1c0 blueswir1
    return ret;
1835 e8af50a3 bellard
}
1836 e8af50a3 bellard
1837 1a2fb1c0 blueswir1
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1838 e8af50a3 bellard
{
1839 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
1840 e8af50a3 bellard
    switch(asi) {
1841 6c36d3fa blueswir1
    case 2: /* SuperSparc MXCC registers */
1842 1a2fb1c0 blueswir1
        switch (addr) {
1843 952a328f blueswir1
        case 0x01c00000: /* MXCC stream data register 0 */
1844 952a328f blueswir1
            if (size == 8)
1845 1a2fb1c0 blueswir1
                env->mxccdata[0] = val;
1846 952a328f blueswir1
            else
1847 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1848 77f193da blueswir1
                             size);
1849 952a328f blueswir1
            break;
1850 952a328f blueswir1
        case 0x01c00008: /* MXCC stream data register 1 */
1851 952a328f blueswir1
            if (size == 8)
1852 1a2fb1c0 blueswir1
                env->mxccdata[1] = val;
1853 952a328f blueswir1
            else
1854 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1855 77f193da blueswir1
                             size);
1856 952a328f blueswir1
            break;
1857 952a328f blueswir1
        case 0x01c00010: /* MXCC stream data register 2 */
1858 952a328f blueswir1
            if (size == 8)
1859 1a2fb1c0 blueswir1
                env->mxccdata[2] = val;
1860 952a328f blueswir1
            else
1861 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1862 77f193da blueswir1
                             size);
1863 952a328f blueswir1
            break;
1864 952a328f blueswir1
        case 0x01c00018: /* MXCC stream data register 3 */
1865 952a328f blueswir1
            if (size == 8)
1866 1a2fb1c0 blueswir1
                env->mxccdata[3] = val;
1867 952a328f blueswir1
            else
1868 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1869 77f193da blueswir1
                             size);
1870 952a328f blueswir1
            break;
1871 952a328f blueswir1
        case 0x01c00100: /* MXCC stream source */
1872 952a328f blueswir1
            if (size == 8)
1873 1a2fb1c0 blueswir1
                env->mxccregs[0] = val;
1874 952a328f blueswir1
            else
1875 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1876 77f193da blueswir1
                             size);
1877 77f193da blueswir1
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1878 77f193da blueswir1
                                        0);
1879 77f193da blueswir1
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1880 77f193da blueswir1
                                        8);
1881 77f193da blueswir1
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1882 77f193da blueswir1
                                        16);
1883 77f193da blueswir1
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1884 77f193da blueswir1
                                        24);
1885 952a328f blueswir1
            break;
1886 952a328f blueswir1
        case 0x01c00200: /* MXCC stream destination */
1887 952a328f blueswir1
            if (size == 8)
1888 1a2fb1c0 blueswir1
                env->mxccregs[1] = val;
1889 952a328f blueswir1
            else
1890 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1891 77f193da blueswir1
                             size);
1892 77f193da blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0,
1893 77f193da blueswir1
                     env->mxccdata[0]);
1894 77f193da blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8,
1895 77f193da blueswir1
                     env->mxccdata[1]);
1896 77f193da blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1897 77f193da blueswir1
                     env->mxccdata[2]);
1898 77f193da blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1899 77f193da blueswir1
                     env->mxccdata[3]);
1900 952a328f blueswir1
            break;
1901 952a328f blueswir1
        case 0x01c00a00: /* MXCC control register */
1902 952a328f blueswir1
            if (size == 8)
1903 1a2fb1c0 blueswir1
                env->mxccregs[3] = val;
1904 952a328f blueswir1
            else
1905 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1906 77f193da blueswir1
                             size);
1907 952a328f blueswir1
            break;
1908 952a328f blueswir1
        case 0x01c00a04: /* MXCC control register */
1909 952a328f blueswir1
            if (size == 4)
1910 9f4576f0 blueswir1
                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1911 77f193da blueswir1
                    | val;
1912 952a328f blueswir1
            else
1913 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1914 77f193da blueswir1
                             size);
1915 952a328f blueswir1
            break;
1916 952a328f blueswir1
        case 0x01c00e00: /* MXCC error register  */
1917 bbf7d96b blueswir1
            // writing a 1 bit clears the error
1918 952a328f blueswir1
            if (size == 8)
1919 1a2fb1c0 blueswir1
                env->mxccregs[6] &= ~val;
1920 952a328f blueswir1
            else
1921 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1922 77f193da blueswir1
                             size);
1923 952a328f blueswir1
            break;
1924 952a328f blueswir1
        case 0x01c00f00: /* MBus port address register */
1925 952a328f blueswir1
            if (size == 8)
1926 1a2fb1c0 blueswir1
                env->mxccregs[7] = val;
1927 952a328f blueswir1
            else
1928 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1929 77f193da blueswir1
                             size);
1930 952a328f blueswir1
            break;
1931 952a328f blueswir1
        default:
1932 77f193da blueswir1
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1933 77f193da blueswir1
                         size);
1934 952a328f blueswir1
            break;
1935 952a328f blueswir1
        }
1936 9827e450 blueswir1
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1937 9827e450 blueswir1
                     asi, size, addr, val);
1938 952a328f blueswir1
#ifdef DEBUG_MXCC
1939 952a328f blueswir1
        dump_mxcc(env);
1940 952a328f blueswir1
#endif
1941 6c36d3fa blueswir1
        break;
1942 e8af50a3 bellard
    case 3: /* MMU flush */
1943 0f8a249a blueswir1
        {
1944 0f8a249a blueswir1
            int mmulev;
1945 e80cfcfc bellard
1946 1a2fb1c0 blueswir1
            mmulev = (addr >> 8) & 15;
1947 952a328f blueswir1
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
1948 0f8a249a blueswir1
            switch (mmulev) {
1949 0f8a249a blueswir1
            case 0: // flush page
1950 1a2fb1c0 blueswir1
                tlb_flush_page(env, addr & 0xfffff000);
1951 0f8a249a blueswir1
                break;
1952 0f8a249a blueswir1
            case 1: // flush segment (256k)
1953 0f8a249a blueswir1
            case 2: // flush region (16M)
1954 0f8a249a blueswir1
            case 3: // flush context (4G)
1955 0f8a249a blueswir1
            case 4: // flush entire
1956 0f8a249a blueswir1
                tlb_flush(env, 1);
1957 0f8a249a blueswir1
                break;
1958 0f8a249a blueswir1
            default:
1959 0f8a249a blueswir1
                break;
1960 0f8a249a blueswir1
            }
1961 55754d9e bellard
#ifdef DEBUG_MMU
1962 0f8a249a blueswir1
            dump_mmu(env);
1963 55754d9e bellard
#endif
1964 0f8a249a blueswir1
        }
1965 8543e2cf blueswir1
        break;
1966 e8af50a3 bellard
    case 4: /* write MMU regs */
1967 0f8a249a blueswir1
        {
1968 1a2fb1c0 blueswir1
            int reg = (addr >> 8) & 0x1f;
1969 0f8a249a blueswir1
            uint32_t oldreg;
1970 3b46e624 ths
1971 0f8a249a blueswir1
            oldreg = env->mmuregs[reg];
1972 55754d9e bellard
            switch(reg) {
1973 3deaeab7 blueswir1
            case 0: // Control Register
1974 3dd9a152 blueswir1
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1975 1a2fb1c0 blueswir1
                                    (val & 0x00ffffff);
1976 0f8a249a blueswir1
                // Mappings generated during no-fault mode or MMU
1977 0f8a249a blueswir1
                // disabled mode are invalid in normal mode
1978 5578ceab blueswir1
                if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1979 5578ceab blueswir1
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1980 55754d9e bellard
                    tlb_flush(env, 1);
1981 55754d9e bellard
                break;
1982 3deaeab7 blueswir1
            case 1: // Context Table Pointer Register
1983 5578ceab blueswir1
                env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1984 3deaeab7 blueswir1
                break;
1985 3deaeab7 blueswir1
            case 2: // Context Register
1986 5578ceab blueswir1
                env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1987 55754d9e bellard
                if (oldreg != env->mmuregs[reg]) {
1988 55754d9e bellard
                    /* we flush when the MMU context changes because
1989 55754d9e bellard
                       QEMU has no MMU context support */
1990 55754d9e bellard
                    tlb_flush(env, 1);
1991 55754d9e bellard
                }
1992 55754d9e bellard
                break;
1993 3deaeab7 blueswir1
            case 3: // Synchronous Fault Status Register with Clear
1994 3deaeab7 blueswir1
            case 4: // Synchronous Fault Address Register
1995 3deaeab7 blueswir1
                break;
1996 3deaeab7 blueswir1
            case 0x10: // TLB Replacement Control Register
1997 5578ceab blueswir1
                env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1998 55754d9e bellard
                break;
1999 3deaeab7 blueswir1
            case 0x13: // Synchronous Fault Status Register with Read and Clear
2000 5578ceab blueswir1
                env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
2001 3dd9a152 blueswir1
                break;
2002 3deaeab7 blueswir1
            case 0x14: // Synchronous Fault Address Register
2003 1a2fb1c0 blueswir1
                env->mmuregs[4] = val;
2004 3dd9a152 blueswir1
                break;
2005 55754d9e bellard
            default:
2006 1a2fb1c0 blueswir1
                env->mmuregs[reg] = val;
2007 55754d9e bellard
                break;
2008 55754d9e bellard
            }
2009 55754d9e bellard
            if (oldreg != env->mmuregs[reg]) {
2010 77f193da blueswir1
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
2011 77f193da blueswir1
                            reg, oldreg, env->mmuregs[reg]);
2012 55754d9e bellard
            }
2013 952a328f blueswir1
#ifdef DEBUG_MMU
2014 0f8a249a blueswir1
            dump_mmu(env);
2015 55754d9e bellard
#endif
2016 0f8a249a blueswir1
        }
2017 8543e2cf blueswir1
        break;
2018 045380be blueswir1
    case 5: // Turbosparc ITLB Diagnostic
2019 045380be blueswir1
    case 6: // Turbosparc DTLB Diagnostic
2020 045380be blueswir1
    case 7: // Turbosparc IOTLB Diagnostic
2021 045380be blueswir1
        break;
2022 81ad8ba2 blueswir1
    case 0xa: /* User data access */
2023 81ad8ba2 blueswir1
        switch(size) {
2024 81ad8ba2 blueswir1
        case 1:
2025 1a2fb1c0 blueswir1
            stb_user(addr, val);
2026 81ad8ba2 blueswir1
            break;
2027 81ad8ba2 blueswir1
        case 2:
2028 a4e7dd52 blueswir1
            stw_user(addr, val);
2029 81ad8ba2 blueswir1
            break;
2030 81ad8ba2 blueswir1
        default:
2031 81ad8ba2 blueswir1
        case 4:
2032 a4e7dd52 blueswir1
            stl_user(addr, val);
2033 81ad8ba2 blueswir1
            break;
2034 81ad8ba2 blueswir1
        case 8:
2035 a4e7dd52 blueswir1
            stq_user(addr, val);
2036 81ad8ba2 blueswir1
            break;
2037 81ad8ba2 blueswir1
        }
2038 81ad8ba2 blueswir1
        break;
2039 81ad8ba2 blueswir1
    case 0xb: /* Supervisor data access */
2040 81ad8ba2 blueswir1
        switch(size) {
2041 81ad8ba2 blueswir1
        case 1:
2042 1a2fb1c0 blueswir1
            stb_kernel(addr, val);
2043 81ad8ba2 blueswir1
            break;
2044 81ad8ba2 blueswir1
        case 2:
2045 a4e7dd52 blueswir1
            stw_kernel(addr, val);
2046 81ad8ba2 blueswir1
            break;
2047 81ad8ba2 blueswir1
        default:
2048 81ad8ba2 blueswir1
        case 4:
2049 a4e7dd52 blueswir1
            stl_kernel(addr, val);
2050 81ad8ba2 blueswir1
            break;
2051 81ad8ba2 blueswir1
        case 8:
2052 a4e7dd52 blueswir1
            stq_kernel(addr, val);
2053 81ad8ba2 blueswir1
            break;
2054 81ad8ba2 blueswir1
        }
2055 81ad8ba2 blueswir1
        break;
2056 6c36d3fa blueswir1
    case 0xc: /* I-cache tag */
2057 6c36d3fa blueswir1
    case 0xd: /* I-cache data */
2058 6c36d3fa blueswir1
    case 0xe: /* D-cache tag */
2059 6c36d3fa blueswir1
    case 0xf: /* D-cache data */
2060 6c36d3fa blueswir1
    case 0x10: /* I/D-cache flush page */
2061 6c36d3fa blueswir1
    case 0x11: /* I/D-cache flush segment */
2062 6c36d3fa blueswir1
    case 0x12: /* I/D-cache flush region */
2063 6c36d3fa blueswir1
    case 0x13: /* I/D-cache flush context */
2064 6c36d3fa blueswir1
    case 0x14: /* I/D-cache flush user */
2065 6c36d3fa blueswir1
        break;
2066 e80cfcfc bellard
    case 0x17: /* Block copy, sta access */
2067 0f8a249a blueswir1
        {
2068 1a2fb1c0 blueswir1
            // val = src
2069 1a2fb1c0 blueswir1
            // addr = dst
2070 0f8a249a blueswir1
            // copy 32 bytes
2071 6c36d3fa blueswir1
            unsigned int i;
2072 1a2fb1c0 blueswir1
            uint32_t src = val & ~3, dst = addr & ~3, temp;
2073 3b46e624 ths
2074 6c36d3fa blueswir1
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
2075 6c36d3fa blueswir1
                temp = ldl_kernel(src);
2076 6c36d3fa blueswir1
                stl_kernel(dst, temp);
2077 6c36d3fa blueswir1
            }
2078 0f8a249a blueswir1
        }
2079 8543e2cf blueswir1
        break;
2080 e80cfcfc bellard
    case 0x1f: /* Block fill, stda access */
2081 0f8a249a blueswir1
        {
2082 1a2fb1c0 blueswir1
            // addr = dst
2083 1a2fb1c0 blueswir1
            // fill 32 bytes with val
2084 6c36d3fa blueswir1
            unsigned int i;
2085 1a2fb1c0 blueswir1
            uint32_t dst = addr & 7;
2086 6c36d3fa blueswir1
2087 6c36d3fa blueswir1
            for (i = 0; i < 32; i += 8, dst += 8)
2088 6c36d3fa blueswir1
                stq_kernel(dst, val);
2089 0f8a249a blueswir1
        }
2090 8543e2cf blueswir1
        break;
2091 6c36d3fa blueswir1
    case 0x20: /* MMU passthrough */
2092 0f8a249a blueswir1
        {
2093 02aab46a bellard
            switch(size) {
2094 02aab46a bellard
            case 1:
2095 1a2fb1c0 blueswir1
                stb_phys(addr, val);
2096 02aab46a bellard
                break;
2097 02aab46a bellard
            case 2:
2098 a4e7dd52 blueswir1
                stw_phys(addr, val);
2099 02aab46a bellard
                break;
2100 02aab46a bellard
            case 4:
2101 02aab46a bellard
            default:
2102 a4e7dd52 blueswir1
                stl_phys(addr, val);
2103 02aab46a bellard
                break;
2104 9e61bde5 bellard
            case 8:
2105 a4e7dd52 blueswir1
                stq_phys(addr, val);
2106 9e61bde5 bellard
                break;
2107 02aab46a bellard
            }
2108 0f8a249a blueswir1
        }
2109 8543e2cf blueswir1
        break;
2110 045380be blueswir1
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2111 0f8a249a blueswir1
        {
2112 5dcb6b91 blueswir1
            switch(size) {
2113 5dcb6b91 blueswir1
            case 1:
2114 c227f099 Anthony Liguori
                stb_phys((target_phys_addr_t)addr
2115 c227f099 Anthony Liguori
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2116 5dcb6b91 blueswir1
                break;
2117 5dcb6b91 blueswir1
            case 2:
2118 c227f099 Anthony Liguori
                stw_phys((target_phys_addr_t)addr
2119 c227f099 Anthony Liguori
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2120 5dcb6b91 blueswir1
                break;
2121 5dcb6b91 blueswir1
            case 4:
2122 5dcb6b91 blueswir1
            default:
2123 c227f099 Anthony Liguori
                stl_phys((target_phys_addr_t)addr
2124 c227f099 Anthony Liguori
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2125 5dcb6b91 blueswir1
                break;
2126 5dcb6b91 blueswir1
            case 8:
2127 c227f099 Anthony Liguori
                stq_phys((target_phys_addr_t)addr
2128 c227f099 Anthony Liguori
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2129 5dcb6b91 blueswir1
                break;
2130 5dcb6b91 blueswir1
            }
2131 0f8a249a blueswir1
        }
2132 8543e2cf blueswir1
        break;
2133 045380be blueswir1
    case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2134 045380be blueswir1
    case 0x31: // store buffer data, Ross RT620 I-cache flush or
2135 045380be blueswir1
               // Turbosparc snoop RAM
2136 77f193da blueswir1
    case 0x32: // store buffer control or Turbosparc page table
2137 77f193da blueswir1
               // descriptor diagnostic
2138 6c36d3fa blueswir1
    case 0x36: /* I-cache flash clear */
2139 6c36d3fa blueswir1
    case 0x37: /* D-cache flash clear */
2140 666c87aa blueswir1
    case 0x4c: /* breakpoint action */
2141 6c36d3fa blueswir1
        break;
2142 4017190e blueswir1
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2143 4017190e blueswir1
        {
2144 4017190e blueswir1
            int reg = (addr >> 8) & 3;
2145 4017190e blueswir1
2146 4017190e blueswir1
            switch(reg) {
2147 4017190e blueswir1
            case 0: /* Breakpoint Value (Addr) */
2148 4017190e blueswir1
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
2149 4017190e blueswir1
                break;
2150 4017190e blueswir1
            case 1: /* Breakpoint Mask */
2151 4017190e blueswir1
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
2152 4017190e blueswir1
                break;
2153 4017190e blueswir1
            case 2: /* Breakpoint Control */
2154 4017190e blueswir1
                env->mmubpregs[reg] = (val & 0x7fULL);
2155 4017190e blueswir1
                break;
2156 4017190e blueswir1
            case 3: /* Breakpoint Status */
2157 4017190e blueswir1
                env->mmubpregs[reg] = (val & 0xfULL);
2158 4017190e blueswir1
                break;
2159 4017190e blueswir1
            }
2160 0bf9e31a Blue Swirl
            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2161 4017190e blueswir1
                        env->mmuregs[reg]);
2162 4017190e blueswir1
        }
2163 4017190e blueswir1
        break;
2164 045380be blueswir1
    case 8: /* User code access, XXX */
2165 6c36d3fa blueswir1
    case 9: /* Supervisor code access, XXX */
2166 e8af50a3 bellard
    default:
2167 e18231a3 blueswir1
        do_unassigned_access(addr, 1, 0, asi, size);
2168 8543e2cf blueswir1
        break;
2169 e8af50a3 bellard
    }
2170 8543e2cf blueswir1
#ifdef DEBUG_ASI
2171 1a2fb1c0 blueswir1
    dump_asi("write", addr, asi, size, val);
2172 8543e2cf blueswir1
#endif
2173 e8af50a3 bellard
}
2174 e8af50a3 bellard
2175 81ad8ba2 blueswir1
#endif /* CONFIG_USER_ONLY */
2176 81ad8ba2 blueswir1
#else /* TARGET_SPARC64 */
2177 81ad8ba2 blueswir1
2178 81ad8ba2 blueswir1
#ifdef CONFIG_USER_ONLY
2179 1a2fb1c0 blueswir1
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2180 81ad8ba2 blueswir1
{
2181 81ad8ba2 blueswir1
    uint64_t ret = 0;
2182 1a2fb1c0 blueswir1
#if defined(DEBUG_ASI)
2183 1a2fb1c0 blueswir1
    target_ulong last_addr = addr;
2184 1a2fb1c0 blueswir1
#endif
2185 81ad8ba2 blueswir1
2186 81ad8ba2 blueswir1
    if (asi < 0x80)
2187 81ad8ba2 blueswir1
        raise_exception(TT_PRIV_ACT);
2188 81ad8ba2 blueswir1
2189 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
2190 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
2191 c2bc0e38 blueswir1
2192 81ad8ba2 blueswir1
    switch (asi) {
2193 81ad8ba2 blueswir1
    case 0x82: // Primary no-fault
2194 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
2195 e83ce550 blueswir1
        if (page_check_range(addr, size, PAGE_READ) == -1) {
2196 e83ce550 blueswir1
#ifdef DEBUG_ASI
2197 e83ce550 blueswir1
            dump_asi("read ", last_addr, asi, size, ret);
2198 e83ce550 blueswir1
#endif
2199 e83ce550 blueswir1
            return 0;
2200 e83ce550 blueswir1
        }
2201 e83ce550 blueswir1
        // Fall through
2202 e83ce550 blueswir1
    case 0x80: // Primary
2203 e83ce550 blueswir1
    case 0x88: // Primary LE
2204 81ad8ba2 blueswir1
        {
2205 81ad8ba2 blueswir1
            switch(size) {
2206 81ad8ba2 blueswir1
            case 1:
2207 1a2fb1c0 blueswir1
                ret = ldub_raw(addr);
2208 81ad8ba2 blueswir1
                break;
2209 81ad8ba2 blueswir1
            case 2:
2210 a4e7dd52 blueswir1
                ret = lduw_raw(addr);
2211 81ad8ba2 blueswir1
                break;
2212 81ad8ba2 blueswir1
            case 4:
2213 a4e7dd52 blueswir1
                ret = ldl_raw(addr);
2214 81ad8ba2 blueswir1
                break;
2215 81ad8ba2 blueswir1
            default:
2216 81ad8ba2 blueswir1
            case 8:
2217 a4e7dd52 blueswir1
                ret = ldq_raw(addr);
2218 81ad8ba2 blueswir1
                break;
2219 81ad8ba2 blueswir1
            }
2220 81ad8ba2 blueswir1
        }
2221 81ad8ba2 blueswir1
        break;
2222 81ad8ba2 blueswir1
    case 0x83: // Secondary no-fault
2223 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
2224 e83ce550 blueswir1
        if (page_check_range(addr, size, PAGE_READ) == -1) {
2225 e83ce550 blueswir1
#ifdef DEBUG_ASI
2226 e83ce550 blueswir1
            dump_asi("read ", last_addr, asi, size, ret);
2227 e83ce550 blueswir1
#endif
2228 e83ce550 blueswir1
            return 0;
2229 e83ce550 blueswir1
        }
2230 e83ce550 blueswir1
        // Fall through
2231 e83ce550 blueswir1
    case 0x81: // Secondary
2232 e83ce550 blueswir1
    case 0x89: // Secondary LE
2233 81ad8ba2 blueswir1
        // XXX
2234 81ad8ba2 blueswir1
        break;
2235 81ad8ba2 blueswir1
    default:
2236 81ad8ba2 blueswir1
        break;
2237 81ad8ba2 blueswir1
    }
2238 81ad8ba2 blueswir1
2239 81ad8ba2 blueswir1
    /* Convert from little endian */
2240 81ad8ba2 blueswir1
    switch (asi) {
2241 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2242 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
2243 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
2244 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
2245 81ad8ba2 blueswir1
        switch(size) {
2246 81ad8ba2 blueswir1
        case 2:
2247 81ad8ba2 blueswir1
            ret = bswap16(ret);
2248 e32664fb blueswir1
            break;
2249 81ad8ba2 blueswir1
        case 4:
2250 81ad8ba2 blueswir1
            ret = bswap32(ret);
2251 e32664fb blueswir1
            break;
2252 81ad8ba2 blueswir1
        case 8:
2253 81ad8ba2 blueswir1
            ret = bswap64(ret);
2254 e32664fb blueswir1
            break;
2255 81ad8ba2 blueswir1
        default:
2256 81ad8ba2 blueswir1
            break;
2257 81ad8ba2 blueswir1
        }
2258 81ad8ba2 blueswir1
    default:
2259 81ad8ba2 blueswir1
        break;
2260 81ad8ba2 blueswir1
    }
2261 81ad8ba2 blueswir1
2262 81ad8ba2 blueswir1
    /* Convert to signed number */
2263 81ad8ba2 blueswir1
    if (sign) {
2264 81ad8ba2 blueswir1
        switch(size) {
2265 81ad8ba2 blueswir1
        case 1:
2266 81ad8ba2 blueswir1
            ret = (int8_t) ret;
2267 e32664fb blueswir1
            break;
2268 81ad8ba2 blueswir1
        case 2:
2269 81ad8ba2 blueswir1
            ret = (int16_t) ret;
2270 e32664fb blueswir1
            break;
2271 81ad8ba2 blueswir1
        case 4:
2272 81ad8ba2 blueswir1
            ret = (int32_t) ret;
2273 e32664fb blueswir1
            break;
2274 81ad8ba2 blueswir1
        default:
2275 81ad8ba2 blueswir1
            break;
2276 81ad8ba2 blueswir1
        }
2277 81ad8ba2 blueswir1
    }
2278 1a2fb1c0 blueswir1
#ifdef DEBUG_ASI
2279 1a2fb1c0 blueswir1
    dump_asi("read ", last_addr, asi, size, ret);
2280 1a2fb1c0 blueswir1
#endif
2281 1a2fb1c0 blueswir1
    return ret;
2282 81ad8ba2 blueswir1
}
2283 81ad8ba2 blueswir1
2284 1a2fb1c0 blueswir1
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2285 81ad8ba2 blueswir1
{
2286 1a2fb1c0 blueswir1
#ifdef DEBUG_ASI
2287 1a2fb1c0 blueswir1
    dump_asi("write", addr, asi, size, val);
2288 1a2fb1c0 blueswir1
#endif
2289 81ad8ba2 blueswir1
    if (asi < 0x80)
2290 81ad8ba2 blueswir1
        raise_exception(TT_PRIV_ACT);
2291 81ad8ba2 blueswir1
2292 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
2293 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
2294 c2bc0e38 blueswir1
2295 81ad8ba2 blueswir1
    /* Convert to little endian */
2296 81ad8ba2 blueswir1
    switch (asi) {
2297 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2298 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
2299 81ad8ba2 blueswir1
        switch(size) {
2300 81ad8ba2 blueswir1
        case 2:
2301 5b0f0bec Igor Kovalenko
            val = bswap16(val);
2302 e32664fb blueswir1
            break;
2303 81ad8ba2 blueswir1
        case 4:
2304 5b0f0bec Igor Kovalenko
            val = bswap32(val);
2305 e32664fb blueswir1
            break;
2306 81ad8ba2 blueswir1
        case 8:
2307 5b0f0bec Igor Kovalenko
            val = bswap64(val);
2308 e32664fb blueswir1
            break;
2309 81ad8ba2 blueswir1
        default:
2310 81ad8ba2 blueswir1
            break;
2311 81ad8ba2 blueswir1
        }
2312 81ad8ba2 blueswir1
    default:
2313 81ad8ba2 blueswir1
        break;
2314 81ad8ba2 blueswir1
    }
2315 81ad8ba2 blueswir1
2316 81ad8ba2 blueswir1
    switch(asi) {
2317 81ad8ba2 blueswir1
    case 0x80: // Primary
2318 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2319 81ad8ba2 blueswir1
        {
2320 81ad8ba2 blueswir1
            switch(size) {
2321 81ad8ba2 blueswir1
            case 1:
2322 1a2fb1c0 blueswir1
                stb_raw(addr, val);
2323 81ad8ba2 blueswir1
                break;
2324 81ad8ba2 blueswir1
            case 2:
2325 a4e7dd52 blueswir1
                stw_raw(addr, val);
2326 81ad8ba2 blueswir1
                break;
2327 81ad8ba2 blueswir1
            case 4:
2328 a4e7dd52 blueswir1
                stl_raw(addr, val);
2329 81ad8ba2 blueswir1
                break;
2330 81ad8ba2 blueswir1
            case 8:
2331 81ad8ba2 blueswir1
            default:
2332 a4e7dd52 blueswir1
                stq_raw(addr, val);
2333 81ad8ba2 blueswir1
                break;
2334 81ad8ba2 blueswir1
            }
2335 81ad8ba2 blueswir1
        }
2336 81ad8ba2 blueswir1
        break;
2337 81ad8ba2 blueswir1
    case 0x81: // Secondary
2338 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
2339 81ad8ba2 blueswir1
        // XXX
2340 81ad8ba2 blueswir1
        return;
2341 81ad8ba2 blueswir1
2342 81ad8ba2 blueswir1
    case 0x82: // Primary no-fault, RO
2343 81ad8ba2 blueswir1
    case 0x83: // Secondary no-fault, RO
2344 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE, RO
2345 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE, RO
2346 81ad8ba2 blueswir1
    default:
2347 e18231a3 blueswir1
        do_unassigned_access(addr, 1, 0, 1, size);
2348 81ad8ba2 blueswir1
        return;
2349 81ad8ba2 blueswir1
    }
2350 81ad8ba2 blueswir1
}
2351 81ad8ba2 blueswir1
2352 81ad8ba2 blueswir1
#else /* CONFIG_USER_ONLY */
2353 3475187d bellard
2354 1a2fb1c0 blueswir1
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2355 3475187d bellard
{
2356 83469015 bellard
    uint64_t ret = 0;
2357 1a2fb1c0 blueswir1
#if defined(DEBUG_ASI)
2358 1a2fb1c0 blueswir1
    target_ulong last_addr = addr;
2359 1a2fb1c0 blueswir1
#endif
2360 3475187d bellard
2361 01b5d4e5 Igor V. Kovalenko
    asi &= 0xff;
2362 01b5d4e5 Igor V. Kovalenko
2363 6f27aba6 blueswir1
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2364 2aae2b8e Igor V. Kovalenko
        || (cpu_has_hypervisor(env)
2365 5578ceab blueswir1
            && asi >= 0x30 && asi < 0x80
2366 fb79ceb9 blueswir1
            && !(env->hpstate & HS_PRIV)))
2367 0f8a249a blueswir1
        raise_exception(TT_PRIV_ACT);
2368 3475187d bellard
2369 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
2370 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
2371 1295001c Igor V. Kovalenko
2372 3475187d bellard
    switch (asi) {
2373 e83ce550 blueswir1
    case 0x82: // Primary no-fault
2374 e83ce550 blueswir1
    case 0x8a: // Primary no-fault LE
2375 2065061e Igor V. Kovalenko
    case 0x83: // Secondary no-fault
2376 2065061e Igor V. Kovalenko
    case 0x8b: // Secondary no-fault LE
2377 2065061e Igor V. Kovalenko
        {
2378 2065061e Igor V. Kovalenko
            /* secondary space access has lowest asi bit equal to 1 */
2379 2065061e Igor V. Kovalenko
            int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2380 2065061e Igor V. Kovalenko
                                             : MMU_KERNEL_SECONDARY_IDX;
2381 2065061e Igor V. Kovalenko
2382 2065061e Igor V. Kovalenko
            if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
2383 e83ce550 blueswir1
#ifdef DEBUG_ASI
2384 2065061e Igor V. Kovalenko
                dump_asi("read ", last_addr, asi, size, ret);
2385 e83ce550 blueswir1
#endif
2386 2065061e Igor V. Kovalenko
                return 0;
2387 2065061e Igor V. Kovalenko
            }
2388 e83ce550 blueswir1
        }
2389 e83ce550 blueswir1
        // Fall through
2390 81ad8ba2 blueswir1
    case 0x10: // As if user primary
2391 2065061e Igor V. Kovalenko
    case 0x11: // As if user secondary
2392 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
2393 2065061e Igor V. Kovalenko
    case 0x19: // As if user secondary LE
2394 81ad8ba2 blueswir1
    case 0x80: // Primary
2395 2065061e Igor V. Kovalenko
    case 0x81: // Secondary
2396 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2397 2065061e Igor V. Kovalenko
    case 0x89: // Secondary LE
2398 c99657d3 blueswir1
    case 0xe2: // UA2007 Primary block init
2399 c99657d3 blueswir1
    case 0xe3: // UA2007 Secondary block init
2400 81ad8ba2 blueswir1
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2401 2aae2b8e Igor V. Kovalenko
            if (cpu_hypervisor_mode(env)) {
2402 6f27aba6 blueswir1
                switch(size) {
2403 6f27aba6 blueswir1
                case 1:
2404 1a2fb1c0 blueswir1
                    ret = ldub_hypv(addr);
2405 6f27aba6 blueswir1
                    break;
2406 6f27aba6 blueswir1
                case 2:
2407 a4e7dd52 blueswir1
                    ret = lduw_hypv(addr);
2408 6f27aba6 blueswir1
                    break;
2409 6f27aba6 blueswir1
                case 4:
2410 a4e7dd52 blueswir1
                    ret = ldl_hypv(addr);
2411 6f27aba6 blueswir1
                    break;
2412 6f27aba6 blueswir1
                default:
2413 6f27aba6 blueswir1
                case 8:
2414 a4e7dd52 blueswir1
                    ret = ldq_hypv(addr);
2415 6f27aba6 blueswir1
                    break;
2416 6f27aba6 blueswir1
                }
2417 6f27aba6 blueswir1
            } else {
2418 2065061e Igor V. Kovalenko
                /* secondary space access has lowest asi bit equal to 1 */
2419 2065061e Igor V. Kovalenko
                if (asi & 1) {
2420 2065061e Igor V. Kovalenko
                    switch(size) {
2421 2065061e Igor V. Kovalenko
                    case 1:
2422 2065061e Igor V. Kovalenko
                        ret = ldub_kernel_secondary(addr);
2423 2065061e Igor V. Kovalenko
                        break;
2424 2065061e Igor V. Kovalenko
                    case 2:
2425 2065061e Igor V. Kovalenko
                        ret = lduw_kernel_secondary(addr);
2426 2065061e Igor V. Kovalenko
                        break;
2427 2065061e Igor V. Kovalenko
                    case 4:
2428 2065061e Igor V. Kovalenko
                        ret = ldl_kernel_secondary(addr);
2429 2065061e Igor V. Kovalenko
                        break;
2430 2065061e Igor V. Kovalenko
                    default:
2431 2065061e Igor V. Kovalenko
                    case 8:
2432 2065061e Igor V. Kovalenko
                        ret = ldq_kernel_secondary(addr);
2433 2065061e Igor V. Kovalenko
                        break;
2434 2065061e Igor V. Kovalenko
                    }
2435 2065061e Igor V. Kovalenko
                } else {
2436 2065061e Igor V. Kovalenko
                    switch(size) {
2437 2065061e Igor V. Kovalenko
                    case 1:
2438 2065061e Igor V. Kovalenko
                        ret = ldub_kernel(addr);
2439 2065061e Igor V. Kovalenko
                        break;
2440 2065061e Igor V. Kovalenko
                    case 2:
2441 2065061e Igor V. Kovalenko
                        ret = lduw_kernel(addr);
2442 2065061e Igor V. Kovalenko
                        break;
2443 2065061e Igor V. Kovalenko
                    case 4:
2444 2065061e Igor V. Kovalenko
                        ret = ldl_kernel(addr);
2445 2065061e Igor V. Kovalenko
                        break;
2446 2065061e Igor V. Kovalenko
                    default:
2447 2065061e Igor V. Kovalenko
                    case 8:
2448 2065061e Igor V. Kovalenko
                        ret = ldq_kernel(addr);
2449 2065061e Igor V. Kovalenko
                        break;
2450 2065061e Igor V. Kovalenko
                    }
2451 2065061e Igor V. Kovalenko
                }
2452 2065061e Igor V. Kovalenko
            }
2453 2065061e Igor V. Kovalenko
        } else {
2454 2065061e Igor V. Kovalenko
            /* secondary space access has lowest asi bit equal to 1 */
2455 2065061e Igor V. Kovalenko
            if (asi & 1) {
2456 6f27aba6 blueswir1
                switch(size) {
2457 6f27aba6 blueswir1
                case 1:
2458 2065061e Igor V. Kovalenko
                    ret = ldub_user_secondary(addr);
2459 6f27aba6 blueswir1
                    break;
2460 6f27aba6 blueswir1
                case 2:
2461 2065061e Igor V. Kovalenko
                    ret = lduw_user_secondary(addr);
2462 6f27aba6 blueswir1
                    break;
2463 6f27aba6 blueswir1
                case 4:
2464 2065061e Igor V. Kovalenko
                    ret = ldl_user_secondary(addr);
2465 6f27aba6 blueswir1
                    break;
2466 6f27aba6 blueswir1
                default:
2467 6f27aba6 blueswir1
                case 8:
2468 2065061e Igor V. Kovalenko
                    ret = ldq_user_secondary(addr);
2469 2065061e Igor V. Kovalenko
                    break;
2470 2065061e Igor V. Kovalenko
                }
2471 2065061e Igor V. Kovalenko
            } else {
2472 2065061e Igor V. Kovalenko
                switch(size) {
2473 2065061e Igor V. Kovalenko
                case 1:
2474 2065061e Igor V. Kovalenko
                    ret = ldub_user(addr);
2475 2065061e Igor V. Kovalenko
                    break;
2476 2065061e Igor V. Kovalenko
                case 2:
2477 2065061e Igor V. Kovalenko
                    ret = lduw_user(addr);
2478 2065061e Igor V. Kovalenko
                    break;
2479 2065061e Igor V. Kovalenko
                case 4:
2480 2065061e Igor V. Kovalenko
                    ret = ldl_user(addr);
2481 2065061e Igor V. Kovalenko
                    break;
2482 2065061e Igor V. Kovalenko
                default:
2483 2065061e Igor V. Kovalenko
                case 8:
2484 2065061e Igor V. Kovalenko
                    ret = ldq_user(addr);
2485 6f27aba6 blueswir1
                    break;
2486 6f27aba6 blueswir1
                }
2487 81ad8ba2 blueswir1
            }
2488 81ad8ba2 blueswir1
        }
2489 81ad8ba2 blueswir1
        break;
2490 3475187d bellard
    case 0x14: // Bypass
2491 3475187d bellard
    case 0x15: // Bypass, non-cacheable
2492 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
2493 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
2494 0f8a249a blueswir1
        {
2495 02aab46a bellard
            switch(size) {
2496 02aab46a bellard
            case 1:
2497 1a2fb1c0 blueswir1
                ret = ldub_phys(addr);
2498 02aab46a bellard
                break;
2499 02aab46a bellard
            case 2:
2500 a4e7dd52 blueswir1
                ret = lduw_phys(addr);
2501 02aab46a bellard
                break;
2502 02aab46a bellard
            case 4:
2503 a4e7dd52 blueswir1
                ret = ldl_phys(addr);
2504 02aab46a bellard
                break;
2505 02aab46a bellard
            default:
2506 02aab46a bellard
            case 8:
2507 a4e7dd52 blueswir1
                ret = ldq_phys(addr);
2508 02aab46a bellard
                break;
2509 02aab46a bellard
            }
2510 0f8a249a blueswir1
            break;
2511 0f8a249a blueswir1
        }
2512 db166940 blueswir1
    case 0x24: // Nucleus quad LDD 128 bit atomic
2513 db166940 blueswir1
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2514 db166940 blueswir1
        //  Only ldda allowed
2515 db166940 blueswir1
        raise_exception(TT_ILL_INSN);
2516 db166940 blueswir1
        return 0;
2517 83469015 bellard
    case 0x04: // Nucleus
2518 83469015 bellard
    case 0x0c: // Nucleus Little Endian (LE)
2519 2065061e Igor V. Kovalenko
    {
2520 2065061e Igor V. Kovalenko
        switch(size) {
2521 2065061e Igor V. Kovalenko
        case 1:
2522 2065061e Igor V. Kovalenko
            ret = ldub_nucleus(addr);
2523 2065061e Igor V. Kovalenko
            break;
2524 2065061e Igor V. Kovalenko
        case 2:
2525 2065061e Igor V. Kovalenko
            ret = lduw_nucleus(addr);
2526 2065061e Igor V. Kovalenko
            break;
2527 2065061e Igor V. Kovalenko
        case 4:
2528 2065061e Igor V. Kovalenko
            ret = ldl_nucleus(addr);
2529 2065061e Igor V. Kovalenko
            break;
2530 2065061e Igor V. Kovalenko
        default:
2531 2065061e Igor V. Kovalenko
        case 8:
2532 2065061e Igor V. Kovalenko
            ret = ldq_nucleus(addr);
2533 2065061e Igor V. Kovalenko
            break;
2534 2065061e Igor V. Kovalenko
        }
2535 2065061e Igor V. Kovalenko
        break;
2536 2065061e Igor V. Kovalenko
    }
2537 83469015 bellard
    case 0x4a: // UPA config
2538 0f8a249a blueswir1
        // XXX
2539 0f8a249a blueswir1
        break;
2540 3475187d bellard
    case 0x45: // LSU
2541 0f8a249a blueswir1
        ret = env->lsu;
2542 0f8a249a blueswir1
        break;
2543 3475187d bellard
    case 0x50: // I-MMU regs
2544 0f8a249a blueswir1
        {
2545 1a2fb1c0 blueswir1
            int reg = (addr >> 3) & 0xf;
2546 3475187d bellard
2547 697a77e6 Igor Kovalenko
            if (reg == 0) {
2548 697a77e6 Igor Kovalenko
                // I-TSB Tag Target register
2549 6e8e7d4c Igor Kovalenko
                ret = ultrasparc_tag_target(env->immu.tag_access);
2550 697a77e6 Igor Kovalenko
            } else {
2551 697a77e6 Igor Kovalenko
                ret = env->immuregs[reg];
2552 697a77e6 Igor Kovalenko
            }
2553 697a77e6 Igor Kovalenko
2554 0f8a249a blueswir1
            break;
2555 0f8a249a blueswir1
        }
2556 3475187d bellard
    case 0x51: // I-MMU 8k TSB pointer
2557 697a77e6 Igor Kovalenko
        {
2558 697a77e6 Igor Kovalenko
            // env->immuregs[5] holds I-MMU TSB register value
2559 697a77e6 Igor Kovalenko
            // env->immuregs[6] holds I-MMU Tag Access register value
2560 6e8e7d4c Igor Kovalenko
            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2561 697a77e6 Igor Kovalenko
                                         8*1024);
2562 697a77e6 Igor Kovalenko
            break;
2563 697a77e6 Igor Kovalenko
        }
2564 3475187d bellard
    case 0x52: // I-MMU 64k TSB pointer
2565 697a77e6 Igor Kovalenko
        {
2566 697a77e6 Igor Kovalenko
            // env->immuregs[5] holds I-MMU TSB register value
2567 697a77e6 Igor Kovalenko
            // env->immuregs[6] holds I-MMU Tag Access register value
2568 6e8e7d4c Igor Kovalenko
            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2569 697a77e6 Igor Kovalenko
                                         64*1024);
2570 697a77e6 Igor Kovalenko
            break;
2571 697a77e6 Igor Kovalenko
        }
2572 a5a52cf2 blueswir1
    case 0x55: // I-MMU data access
2573 a5a52cf2 blueswir1
        {
2574 a5a52cf2 blueswir1
            int reg = (addr >> 3) & 0x3f;
2575 a5a52cf2 blueswir1
2576 6e8e7d4c Igor Kovalenko
            ret = env->itlb[reg].tte;
2577 a5a52cf2 blueswir1
            break;
2578 a5a52cf2 blueswir1
        }
2579 83469015 bellard
    case 0x56: // I-MMU tag read
2580 0f8a249a blueswir1
        {
2581 43e9e742 blueswir1
            int reg = (addr >> 3) & 0x3f;
2582 0f8a249a blueswir1
2583 6e8e7d4c Igor Kovalenko
            ret = env->itlb[reg].tag;
2584 0f8a249a blueswir1
            break;
2585 0f8a249a blueswir1
        }
2586 3475187d bellard
    case 0x58: // D-MMU regs
2587 0f8a249a blueswir1
        {
2588 1a2fb1c0 blueswir1
            int reg = (addr >> 3) & 0xf;
2589 3475187d bellard
2590 697a77e6 Igor Kovalenko
            if (reg == 0) {
2591 697a77e6 Igor Kovalenko
                // D-TSB Tag Target register
2592 6e8e7d4c Igor Kovalenko
                ret = ultrasparc_tag_target(env->dmmu.tag_access);
2593 697a77e6 Igor Kovalenko
            } else {
2594 697a77e6 Igor Kovalenko
                ret = env->dmmuregs[reg];
2595 697a77e6 Igor Kovalenko
            }
2596 697a77e6 Igor Kovalenko
            break;
2597 697a77e6 Igor Kovalenko
        }
2598 697a77e6 Igor Kovalenko
    case 0x59: // D-MMU 8k TSB pointer
2599 697a77e6 Igor Kovalenko
        {
2600 697a77e6 Igor Kovalenko
            // env->dmmuregs[5] holds D-MMU TSB register value
2601 697a77e6 Igor Kovalenko
            // env->dmmuregs[6] holds D-MMU Tag Access register value
2602 6e8e7d4c Igor Kovalenko
            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2603 697a77e6 Igor Kovalenko
                                         8*1024);
2604 697a77e6 Igor Kovalenko
            break;
2605 697a77e6 Igor Kovalenko
        }
2606 697a77e6 Igor Kovalenko
    case 0x5a: // D-MMU 64k TSB pointer
2607 697a77e6 Igor Kovalenko
        {
2608 697a77e6 Igor Kovalenko
            // env->dmmuregs[5] holds D-MMU TSB register value
2609 697a77e6 Igor Kovalenko
            // env->dmmuregs[6] holds D-MMU Tag Access register value
2610 6e8e7d4c Igor Kovalenko
            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2611 697a77e6 Igor Kovalenko
                                         64*1024);
2612 0f8a249a blueswir1
            break;
2613 0f8a249a blueswir1
        }
2614 a5a52cf2 blueswir1
    case 0x5d: // D-MMU data access
2615 a5a52cf2 blueswir1
        {
2616 a5a52cf2 blueswir1
            int reg = (addr >> 3) & 0x3f;
2617 a5a52cf2 blueswir1
2618 6e8e7d4c Igor Kovalenko
            ret = env->dtlb[reg].tte;
2619 a5a52cf2 blueswir1
            break;
2620 a5a52cf2 blueswir1
        }
2621 83469015 bellard
    case 0x5e: // D-MMU tag read
2622 0f8a249a blueswir1
        {
2623 43e9e742 blueswir1
            int reg = (addr >> 3) & 0x3f;
2624 0f8a249a blueswir1
2625 6e8e7d4c Igor Kovalenko
            ret = env->dtlb[reg].tag;
2626 0f8a249a blueswir1
            break;
2627 0f8a249a blueswir1
        }
2628 f7350b47 blueswir1
    case 0x46: // D-cache data
2629 f7350b47 blueswir1
    case 0x47: // D-cache tag access
2630 a5a52cf2 blueswir1
    case 0x4b: // E-cache error enable
2631 a5a52cf2 blueswir1
    case 0x4c: // E-cache asynchronous fault status
2632 a5a52cf2 blueswir1
    case 0x4d: // E-cache asynchronous fault address
2633 f7350b47 blueswir1
    case 0x4e: // E-cache tag data
2634 f7350b47 blueswir1
    case 0x66: // I-cache instruction access
2635 f7350b47 blueswir1
    case 0x67: // I-cache tag access
2636 f7350b47 blueswir1
    case 0x6e: // I-cache predecode
2637 f7350b47 blueswir1
    case 0x6f: // I-cache LRU etc.
2638 f7350b47 blueswir1
    case 0x76: // E-cache tag
2639 f7350b47 blueswir1
    case 0x7e: // E-cache tag
2640 f7350b47 blueswir1
        break;
2641 3475187d bellard
    case 0x5b: // D-MMU data pointer
2642 83469015 bellard
    case 0x48: // Interrupt dispatch, RO
2643 83469015 bellard
    case 0x49: // Interrupt data receive
2644 83469015 bellard
    case 0x7f: // Incoming interrupt vector, RO
2645 0f8a249a blueswir1
        // XXX
2646 0f8a249a blueswir1
        break;
2647 3475187d bellard
    case 0x54: // I-MMU data in, WO
2648 3475187d bellard
    case 0x57: // I-MMU demap, WO
2649 3475187d bellard
    case 0x5c: // D-MMU data in, WO
2650 3475187d bellard
    case 0x5f: // D-MMU demap, WO
2651 83469015 bellard
    case 0x77: // Interrupt vector, WO
2652 3475187d bellard
    default:
2653 e18231a3 blueswir1
        do_unassigned_access(addr, 0, 0, 1, size);
2654 0f8a249a blueswir1
        ret = 0;
2655 0f8a249a blueswir1
        break;
2656 3475187d bellard
    }
2657 81ad8ba2 blueswir1
2658 81ad8ba2 blueswir1
    /* Convert from little endian */
2659 81ad8ba2 blueswir1
    switch (asi) {
2660 81ad8ba2 blueswir1
    case 0x0c: // Nucleus Little Endian (LE)
2661 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
2662 81ad8ba2 blueswir1
    case 0x19: // As if user secondary LE
2663 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
2664 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
2665 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2666 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
2667 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
2668 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
2669 81ad8ba2 blueswir1
        switch(size) {
2670 81ad8ba2 blueswir1
        case 2:
2671 81ad8ba2 blueswir1
            ret = bswap16(ret);
2672 e32664fb blueswir1
            break;
2673 81ad8ba2 blueswir1
        case 4:
2674 81ad8ba2 blueswir1
            ret = bswap32(ret);
2675 e32664fb blueswir1
            break;
2676 81ad8ba2 blueswir1
        case 8:
2677 81ad8ba2 blueswir1
            ret = bswap64(ret);
2678 e32664fb blueswir1
            break;
2679 81ad8ba2 blueswir1
        default:
2680 81ad8ba2 blueswir1
            break;
2681 81ad8ba2 blueswir1
        }
2682 81ad8ba2 blueswir1
    default:
2683 81ad8ba2 blueswir1
        break;
2684 81ad8ba2 blueswir1
    }
2685 81ad8ba2 blueswir1
2686 81ad8ba2 blueswir1
    /* Convert to signed number */
2687 81ad8ba2 blueswir1
    if (sign) {
2688 81ad8ba2 blueswir1
        switch(size) {
2689 81ad8ba2 blueswir1
        case 1:
2690 81ad8ba2 blueswir1
            ret = (int8_t) ret;
2691 e32664fb blueswir1
            break;
2692 81ad8ba2 blueswir1
        case 2:
2693 81ad8ba2 blueswir1
            ret = (int16_t) ret;
2694 e32664fb blueswir1
            break;
2695 81ad8ba2 blueswir1
        case 4:
2696 81ad8ba2 blueswir1
            ret = (int32_t) ret;
2697 e32664fb blueswir1
            break;
2698 81ad8ba2 blueswir1
        default:
2699 81ad8ba2 blueswir1
            break;
2700 81ad8ba2 blueswir1
        }
2701 81ad8ba2 blueswir1
    }
2702 1a2fb1c0 blueswir1
#ifdef DEBUG_ASI
2703 1a2fb1c0 blueswir1
    dump_asi("read ", last_addr, asi, size, ret);
2704 1a2fb1c0 blueswir1
#endif
2705 1a2fb1c0 blueswir1
    return ret;
2706 3475187d bellard
}
2707 3475187d bellard
2708 1a2fb1c0 blueswir1
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2709 3475187d bellard
{
2710 1a2fb1c0 blueswir1
#ifdef DEBUG_ASI
2711 1a2fb1c0 blueswir1
    dump_asi("write", addr, asi, size, val);
2712 1a2fb1c0 blueswir1
#endif
2713 01b5d4e5 Igor V. Kovalenko
2714 01b5d4e5 Igor V. Kovalenko
    asi &= 0xff;
2715 01b5d4e5 Igor V. Kovalenko
2716 6f27aba6 blueswir1
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2717 2aae2b8e Igor V. Kovalenko
        || (cpu_has_hypervisor(env)
2718 5578ceab blueswir1
            && asi >= 0x30 && asi < 0x80
2719 fb79ceb9 blueswir1
            && !(env->hpstate & HS_PRIV)))
2720 0f8a249a blueswir1
        raise_exception(TT_PRIV_ACT);
2721 3475187d bellard
2722 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
2723 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
2724 1295001c Igor V. Kovalenko
2725 81ad8ba2 blueswir1
    /* Convert to little endian */
2726 81ad8ba2 blueswir1
    switch (asi) {
2727 81ad8ba2 blueswir1
    case 0x0c: // Nucleus Little Endian (LE)
2728 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
2729 81ad8ba2 blueswir1
    case 0x19: // As if user secondary LE
2730 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
2731 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
2732 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2733 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
2734 81ad8ba2 blueswir1
        switch(size) {
2735 81ad8ba2 blueswir1
        case 2:
2736 5b0f0bec Igor Kovalenko
            val = bswap16(val);
2737 e32664fb blueswir1
            break;
2738 81ad8ba2 blueswir1
        case 4:
2739 5b0f0bec Igor Kovalenko
            val = bswap32(val);
2740 e32664fb blueswir1
            break;
2741 81ad8ba2 blueswir1
        case 8:
2742 5b0f0bec Igor Kovalenko
            val = bswap64(val);
2743 e32664fb blueswir1
            break;
2744 81ad8ba2 blueswir1
        default:
2745 81ad8ba2 blueswir1
            break;
2746 81ad8ba2 blueswir1
        }
2747 81ad8ba2 blueswir1
    default:
2748 81ad8ba2 blueswir1
        break;
2749 81ad8ba2 blueswir1
    }
2750 81ad8ba2 blueswir1
2751 3475187d bellard
    switch(asi) {
2752 81ad8ba2 blueswir1
    case 0x10: // As if user primary
2753 2065061e Igor V. Kovalenko
    case 0x11: // As if user secondary
2754 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
2755 2065061e Igor V. Kovalenko
    case 0x19: // As if user secondary LE
2756 81ad8ba2 blueswir1
    case 0x80: // Primary
2757 2065061e Igor V. Kovalenko
    case 0x81: // Secondary
2758 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2759 2065061e Igor V. Kovalenko
    case 0x89: // Secondary LE
2760 c99657d3 blueswir1
    case 0xe2: // UA2007 Primary block init
2761 c99657d3 blueswir1
    case 0xe3: // UA2007 Secondary block init
2762 81ad8ba2 blueswir1
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2763 2aae2b8e Igor V. Kovalenko
            if (cpu_hypervisor_mode(env)) {
2764 6f27aba6 blueswir1
                switch(size) {
2765 6f27aba6 blueswir1
                case 1:
2766 1a2fb1c0 blueswir1
                    stb_hypv(addr, val);
2767 6f27aba6 blueswir1
                    break;
2768 6f27aba6 blueswir1
                case 2:
2769 a4e7dd52 blueswir1
                    stw_hypv(addr, val);
2770 6f27aba6 blueswir1
                    break;
2771 6f27aba6 blueswir1
                case 4:
2772 a4e7dd52 blueswir1
                    stl_hypv(addr, val);
2773 6f27aba6 blueswir1
                    break;
2774 6f27aba6 blueswir1
                case 8:
2775 6f27aba6 blueswir1
                default:
2776 a4e7dd52 blueswir1
                    stq_hypv(addr, val);
2777 6f27aba6 blueswir1
                    break;
2778 6f27aba6 blueswir1
                }
2779 6f27aba6 blueswir1
            } else {
2780 2065061e Igor V. Kovalenko
                /* secondary space access has lowest asi bit equal to 1 */
2781 2065061e Igor V. Kovalenko
                if (asi & 1) {
2782 2065061e Igor V. Kovalenko
                    switch(size) {
2783 2065061e Igor V. Kovalenko
                    case 1:
2784 2065061e Igor V. Kovalenko
                        stb_kernel_secondary(addr, val);
2785 2065061e Igor V. Kovalenko
                        break;
2786 2065061e Igor V. Kovalenko
                    case 2:
2787 2065061e Igor V. Kovalenko
                        stw_kernel_secondary(addr, val);
2788 2065061e Igor V. Kovalenko
                        break;
2789 2065061e Igor V. Kovalenko
                    case 4:
2790 2065061e Igor V. Kovalenko
                        stl_kernel_secondary(addr, val);
2791 2065061e Igor V. Kovalenko
                        break;
2792 2065061e Igor V. Kovalenko
                    case 8:
2793 2065061e Igor V. Kovalenko
                    default:
2794 2065061e Igor V. Kovalenko
                        stq_kernel_secondary(addr, val);
2795 2065061e Igor V. Kovalenko
                        break;
2796 2065061e Igor V. Kovalenko
                    }
2797 2065061e Igor V. Kovalenko
                } else {
2798 2065061e Igor V. Kovalenko
                    switch(size) {
2799 2065061e Igor V. Kovalenko
                    case 1:
2800 2065061e Igor V. Kovalenko
                        stb_kernel(addr, val);
2801 2065061e Igor V. Kovalenko
                        break;
2802 2065061e Igor V. Kovalenko
                    case 2:
2803 2065061e Igor V. Kovalenko
                        stw_kernel(addr, val);
2804 2065061e Igor V. Kovalenko
                        break;
2805 2065061e Igor V. Kovalenko
                    case 4:
2806 2065061e Igor V. Kovalenko
                        stl_kernel(addr, val);
2807 2065061e Igor V. Kovalenko
                        break;
2808 2065061e Igor V. Kovalenko
                    case 8:
2809 2065061e Igor V. Kovalenko
                    default:
2810 2065061e Igor V. Kovalenko
                        stq_kernel(addr, val);
2811 2065061e Igor V. Kovalenko
                        break;
2812 2065061e Igor V. Kovalenko
                    }
2813 2065061e Igor V. Kovalenko
                }
2814 2065061e Igor V. Kovalenko
            }
2815 2065061e Igor V. Kovalenko
        } else {
2816 2065061e Igor V. Kovalenko
            /* secondary space access has lowest asi bit equal to 1 */
2817 2065061e Igor V. Kovalenko
            if (asi & 1) {
2818 6f27aba6 blueswir1
                switch(size) {
2819 6f27aba6 blueswir1
                case 1:
2820 2065061e Igor V. Kovalenko
                    stb_user_secondary(addr, val);
2821 6f27aba6 blueswir1
                    break;
2822 6f27aba6 blueswir1
                case 2:
2823 2065061e Igor V. Kovalenko
                    stw_user_secondary(addr, val);
2824 6f27aba6 blueswir1
                    break;
2825 6f27aba6 blueswir1
                case 4:
2826 2065061e Igor V. Kovalenko
                    stl_user_secondary(addr, val);
2827 6f27aba6 blueswir1
                    break;
2828 6f27aba6 blueswir1
                case 8:
2829 6f27aba6 blueswir1
                default:
2830 2065061e Igor V. Kovalenko
                    stq_user_secondary(addr, val);
2831 2065061e Igor V. Kovalenko
                    break;
2832 2065061e Igor V. Kovalenko
                }
2833 2065061e Igor V. Kovalenko
            } else {
2834 2065061e Igor V. Kovalenko
                switch(size) {
2835 2065061e Igor V. Kovalenko
                case 1:
2836 2065061e Igor V. Kovalenko
                    stb_user(addr, val);
2837 2065061e Igor V. Kovalenko
                    break;
2838 2065061e Igor V. Kovalenko
                case 2:
2839 2065061e Igor V. Kovalenko
                    stw_user(addr, val);
2840 2065061e Igor V. Kovalenko
                    break;
2841 2065061e Igor V. Kovalenko
                case 4:
2842 2065061e Igor V. Kovalenko
                    stl_user(addr, val);
2843 2065061e Igor V. Kovalenko
                    break;
2844 2065061e Igor V. Kovalenko
                case 8:
2845 2065061e Igor V. Kovalenko
                default:
2846 2065061e Igor V. Kovalenko
                    stq_user(addr, val);
2847 6f27aba6 blueswir1
                    break;
2848 6f27aba6 blueswir1
                }
2849 81ad8ba2 blueswir1
            }
2850 81ad8ba2 blueswir1
        }
2851 81ad8ba2 blueswir1
        break;
2852 3475187d bellard
    case 0x14: // Bypass
2853 3475187d bellard
    case 0x15: // Bypass, non-cacheable
2854 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
2855 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
2856 0f8a249a blueswir1
        {
2857 02aab46a bellard
            switch(size) {
2858 02aab46a bellard
            case 1:
2859 1a2fb1c0 blueswir1
                stb_phys(addr, val);
2860 02aab46a bellard
                break;
2861 02aab46a bellard
            case 2:
2862 a4e7dd52 blueswir1
                stw_phys(addr, val);
2863 02aab46a bellard
                break;
2864 02aab46a bellard
            case 4:
2865 a4e7dd52 blueswir1
                stl_phys(addr, val);
2866 02aab46a bellard
                break;
2867 02aab46a bellard
            case 8:
2868 02aab46a bellard
            default:
2869 a4e7dd52 blueswir1
                stq_phys(addr, val);
2870 02aab46a bellard
                break;
2871 02aab46a bellard
            }
2872 0f8a249a blueswir1
        }
2873 0f8a249a blueswir1
        return;
2874 db166940 blueswir1
    case 0x24: // Nucleus quad LDD 128 bit atomic
2875 db166940 blueswir1
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2876 db166940 blueswir1
        //  Only ldda allowed
2877 db166940 blueswir1
        raise_exception(TT_ILL_INSN);
2878 db166940 blueswir1
        return;
2879 83469015 bellard
    case 0x04: // Nucleus
2880 83469015 bellard
    case 0x0c: // Nucleus Little Endian (LE)
2881 2065061e Igor V. Kovalenko
    {
2882 2065061e Igor V. Kovalenko
        switch(size) {
2883 2065061e Igor V. Kovalenko
        case 1:
2884 2065061e Igor V. Kovalenko
            stb_nucleus(addr, val);
2885 2065061e Igor V. Kovalenko
            break;
2886 2065061e Igor V. Kovalenko
        case 2:
2887 2065061e Igor V. Kovalenko
            stw_nucleus(addr, val);
2888 2065061e Igor V. Kovalenko
            break;
2889 2065061e Igor V. Kovalenko
        case 4:
2890 2065061e Igor V. Kovalenko
            stl_nucleus(addr, val);
2891 2065061e Igor V. Kovalenko
            break;
2892 2065061e Igor V. Kovalenko
        default:
2893 2065061e Igor V. Kovalenko
        case 8:
2894 2065061e Igor V. Kovalenko
            stq_nucleus(addr, val);
2895 2065061e Igor V. Kovalenko
            break;
2896 2065061e Igor V. Kovalenko
        }
2897 2065061e Igor V. Kovalenko
        break;
2898 2065061e Igor V. Kovalenko
    }
2899 2065061e Igor V. Kovalenko
2900 83469015 bellard
    case 0x4a: // UPA config
2901 0f8a249a blueswir1
        // XXX
2902 0f8a249a blueswir1
        return;
2903 3475187d bellard
    case 0x45: // LSU
2904 0f8a249a blueswir1
        {
2905 0f8a249a blueswir1
            uint64_t oldreg;
2906 0f8a249a blueswir1
2907 0f8a249a blueswir1
            oldreg = env->lsu;
2908 1a2fb1c0 blueswir1
            env->lsu = val & (DMMU_E | IMMU_E);
2909 0f8a249a blueswir1
            // Mappings generated during D/I MMU disabled mode are
2910 0f8a249a blueswir1
            // invalid in normal mode
2911 0f8a249a blueswir1
            if (oldreg != env->lsu) {
2912 77f193da blueswir1
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2913 77f193da blueswir1
                            oldreg, env->lsu);
2914 83469015 bellard
#ifdef DEBUG_MMU
2915 0f8a249a blueswir1
                dump_mmu(env);
2916 83469015 bellard
#endif
2917 0f8a249a blueswir1
                tlb_flush(env, 1);
2918 0f8a249a blueswir1
            }
2919 0f8a249a blueswir1
            return;
2920 0f8a249a blueswir1
        }
2921 3475187d bellard
    case 0x50: // I-MMU regs
2922 0f8a249a blueswir1
        {
2923 1a2fb1c0 blueswir1
            int reg = (addr >> 3) & 0xf;
2924 0f8a249a blueswir1
            uint64_t oldreg;
2925 3b46e624 ths
2926 0f8a249a blueswir1
            oldreg = env->immuregs[reg];
2927 3475187d bellard
            switch(reg) {
2928 3475187d bellard
            case 0: // RO
2929 3475187d bellard
                return;
2930 3475187d bellard
            case 1: // Not in I-MMU
2931 3475187d bellard
            case 2:
2932 3475187d bellard
                return;
2933 3475187d bellard
            case 3: // SFSR
2934 1a2fb1c0 blueswir1
                if ((val & 1) == 0)
2935 1a2fb1c0 blueswir1
                    val = 0; // Clear SFSR
2936 6e8e7d4c Igor Kovalenko
                env->immu.sfsr = val;
2937 3475187d bellard
                break;
2938 6e8e7d4c Igor Kovalenko
            case 4: // RO
2939 6e8e7d4c Igor Kovalenko
                return;
2940 3475187d bellard
            case 5: // TSB access
2941 6e8e7d4c Igor Kovalenko
                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2942 6e8e7d4c Igor Kovalenko
                            PRIx64 "\n", env->immu.tsb, val);
2943 6e8e7d4c Igor Kovalenko
                env->immu.tsb = val;
2944 6e8e7d4c Igor Kovalenko
                break;
2945 3475187d bellard
            case 6: // Tag access
2946 6e8e7d4c Igor Kovalenko
                env->immu.tag_access = val;
2947 6e8e7d4c Igor Kovalenko
                break;
2948 6e8e7d4c Igor Kovalenko
            case 7:
2949 6e8e7d4c Igor Kovalenko
            case 8:
2950 6e8e7d4c Igor Kovalenko
                return;
2951 3475187d bellard
            default:
2952 3475187d bellard
                break;
2953 3475187d bellard
            }
2954 6e8e7d4c Igor Kovalenko
2955 3475187d bellard
            if (oldreg != env->immuregs[reg]) {
2956 6e8e7d4c Igor Kovalenko
                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2957 77f193da blueswir1
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2958 3475187d bellard
            }
2959 952a328f blueswir1
#ifdef DEBUG_MMU
2960 0f8a249a blueswir1
            dump_mmu(env);
2961 3475187d bellard
#endif
2962 0f8a249a blueswir1
            return;
2963 0f8a249a blueswir1
        }
2964 3475187d bellard
    case 0x54: // I-MMU data in
2965 f707726e Igor Kovalenko
        replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2966 f707726e Igor Kovalenko
        return;
2967 3475187d bellard
    case 0x55: // I-MMU data access
2968 0f8a249a blueswir1
        {
2969 cc6747f4 blueswir1
            // TODO: auto demap
2970 cc6747f4 blueswir1
2971 1a2fb1c0 blueswir1
            unsigned int i = (addr >> 3) & 0x3f;
2972 3475187d bellard
2973 f707726e Igor Kovalenko
            replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2974 6e8e7d4c Igor Kovalenko
2975 6e8e7d4c Igor Kovalenko
#ifdef DEBUG_MMU
2976 f707726e Igor Kovalenko
            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2977 6e8e7d4c Igor Kovalenko
            dump_mmu(env);
2978 6e8e7d4c Igor Kovalenko
#endif
2979 0f8a249a blueswir1
            return;
2980 0f8a249a blueswir1
        }
2981 3475187d bellard
    case 0x57: // I-MMU demap
2982 170f4c55 Igor V. Kovalenko
        demap_tlb(env->itlb, addr, "immu", env);
2983 0f8a249a blueswir1
        return;
2984 3475187d bellard
    case 0x58: // D-MMU regs
2985 0f8a249a blueswir1
        {
2986 1a2fb1c0 blueswir1
            int reg = (addr >> 3) & 0xf;
2987 0f8a249a blueswir1
            uint64_t oldreg;
2988 3b46e624 ths
2989 0f8a249a blueswir1
            oldreg = env->dmmuregs[reg];
2990 3475187d bellard
            switch(reg) {
2991 3475187d bellard
            case 0: // RO
2992 3475187d bellard
            case 4:
2993 3475187d bellard
                return;
2994 3475187d bellard
            case 3: // SFSR
2995 1a2fb1c0 blueswir1
                if ((val & 1) == 0) {
2996 1a2fb1c0 blueswir1
                    val = 0; // Clear SFSR, Fault address
2997 6e8e7d4c Igor Kovalenko
                    env->dmmu.sfar = 0;
2998 0f8a249a blueswir1
                }
2999 6e8e7d4c Igor Kovalenko
                env->dmmu.sfsr = val;
3000 3475187d bellard
                break;
3001 3475187d bellard
            case 1: // Primary context
3002 6e8e7d4c Igor Kovalenko
                env->dmmu.mmu_primary_context = val;
3003 664a65b0 Igor V. Kovalenko
                /* can be optimized to only flush MMU_USER_IDX
3004 664a65b0 Igor V. Kovalenko
                   and MMU_KERNEL_IDX entries */
3005 664a65b0 Igor V. Kovalenko
                tlb_flush(env, 1);
3006 6e8e7d4c Igor Kovalenko
                break;
3007 3475187d bellard
            case 2: // Secondary context
3008 6e8e7d4c Igor Kovalenko
                env->dmmu.mmu_secondary_context = val;
3009 664a65b0 Igor V. Kovalenko
                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
3010 664a65b0 Igor V. Kovalenko
                   and MMU_KERNEL_SECONDARY_IDX entries */
3011 664a65b0 Igor V. Kovalenko
                tlb_flush(env, 1);
3012 6e8e7d4c Igor Kovalenko
                break;
3013 3475187d bellard
            case 5: // TSB access
3014 6e8e7d4c Igor Kovalenko
                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
3015 6e8e7d4c Igor Kovalenko
                            PRIx64 "\n", env->dmmu.tsb, val);
3016 6e8e7d4c Igor Kovalenko
                env->dmmu.tsb = val;
3017 6e8e7d4c Igor Kovalenko
                break;
3018 3475187d bellard
            case 6: // Tag access
3019 6e8e7d4c Igor Kovalenko
                env->dmmu.tag_access = val;
3020 6e8e7d4c Igor Kovalenko
                break;
3021 3475187d bellard
            case 7: // Virtual Watchpoint
3022 3475187d bellard
            case 8: // Physical Watchpoint
3023 3475187d bellard
            default:
3024 6e8e7d4c Igor Kovalenko
                env->dmmuregs[reg] = val;
3025 3475187d bellard
                break;
3026 3475187d bellard
            }
3027 6e8e7d4c Igor Kovalenko
3028 3475187d bellard
            if (oldreg != env->dmmuregs[reg]) {
3029 6e8e7d4c Igor Kovalenko
                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3030 77f193da blueswir1
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3031 3475187d bellard
            }
3032 952a328f blueswir1
#ifdef DEBUG_MMU
3033 0f8a249a blueswir1
            dump_mmu(env);
3034 3475187d bellard
#endif
3035 0f8a249a blueswir1
            return;
3036 0f8a249a blueswir1
        }
3037 3475187d bellard
    case 0x5c: // D-MMU data in
3038 f707726e Igor Kovalenko
        replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
3039 f707726e Igor Kovalenko
        return;
3040 3475187d bellard
    case 0x5d: // D-MMU data access
3041 0f8a249a blueswir1
        {
3042 1a2fb1c0 blueswir1
            unsigned int i = (addr >> 3) & 0x3f;
3043 3475187d bellard
3044 f707726e Igor Kovalenko
            replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
3045 f707726e Igor Kovalenko
3046 6e8e7d4c Igor Kovalenko
#ifdef DEBUG_MMU
3047 f707726e Igor Kovalenko
            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
3048 6e8e7d4c Igor Kovalenko
            dump_mmu(env);
3049 6e8e7d4c Igor Kovalenko
#endif
3050 0f8a249a blueswir1
            return;
3051 0f8a249a blueswir1
        }
3052 3475187d bellard
    case 0x5f: // D-MMU demap
3053 170f4c55 Igor V. Kovalenko
        demap_tlb(env->dtlb, addr, "dmmu", env);
3054 cc6747f4 blueswir1
        return;
3055 83469015 bellard
    case 0x49: // Interrupt data receive
3056 0f8a249a blueswir1
        // XXX
3057 0f8a249a blueswir1
        return;
3058 f7350b47 blueswir1
    case 0x46: // D-cache data
3059 f7350b47 blueswir1
    case 0x47: // D-cache tag access
3060 a5a52cf2 blueswir1
    case 0x4b: // E-cache error enable
3061 a5a52cf2 blueswir1
    case 0x4c: // E-cache asynchronous fault status
3062 a5a52cf2 blueswir1
    case 0x4d: // E-cache asynchronous fault address
3063 f7350b47 blueswir1
    case 0x4e: // E-cache tag data
3064 f7350b47 blueswir1
    case 0x66: // I-cache instruction access
3065 f7350b47 blueswir1
    case 0x67: // I-cache tag access
3066 f7350b47 blueswir1
    case 0x6e: // I-cache predecode
3067 f7350b47 blueswir1
    case 0x6f: // I-cache LRU etc.
3068 f7350b47 blueswir1
    case 0x76: // E-cache tag
3069 f7350b47 blueswir1
    case 0x7e: // E-cache tag
3070 f7350b47 blueswir1
        return;
3071 3475187d bellard
    case 0x51: // I-MMU 8k TSB pointer, RO
3072 3475187d bellard
    case 0x52: // I-MMU 64k TSB pointer, RO
3073 3475187d bellard
    case 0x56: // I-MMU tag read, RO
3074 3475187d bellard
    case 0x59: // D-MMU 8k TSB pointer, RO
3075 3475187d bellard
    case 0x5a: // D-MMU 64k TSB pointer, RO
3076 3475187d bellard
    case 0x5b: // D-MMU data pointer, RO
3077 3475187d bellard
    case 0x5e: // D-MMU tag read, RO
3078 83469015 bellard
    case 0x48: // Interrupt dispatch, RO
3079 83469015 bellard
    case 0x7f: // Incoming interrupt vector, RO
3080 83469015 bellard
    case 0x82: // Primary no-fault, RO
3081 83469015 bellard
    case 0x83: // Secondary no-fault, RO
3082 83469015 bellard
    case 0x8a: // Primary no-fault LE, RO
3083 83469015 bellard
    case 0x8b: // Secondary no-fault LE, RO
3084 3475187d bellard
    default:
3085 e18231a3 blueswir1
        do_unassigned_access(addr, 1, 0, 1, size);
3086 0f8a249a blueswir1
        return;
3087 3475187d bellard
    }
3088 3475187d bellard
}
3089 81ad8ba2 blueswir1
#endif /* CONFIG_USER_ONLY */
3090 3391c818 blueswir1
3091 db166940 blueswir1
void helper_ldda_asi(target_ulong addr, int asi, int rd)
3092 db166940 blueswir1
{
3093 db166940 blueswir1
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
3094 2aae2b8e Igor V. Kovalenko
        || (cpu_has_hypervisor(env)
3095 5578ceab blueswir1
            && asi >= 0x30 && asi < 0x80
3096 fb79ceb9 blueswir1
            && !(env->hpstate & HS_PRIV)))
3097 db166940 blueswir1
        raise_exception(TT_PRIV_ACT);
3098 db166940 blueswir1
3099 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
3100 1295001c Igor V. Kovalenko
3101 db166940 blueswir1
    switch (asi) {
3102 03ae77d6 Blue Swirl
#if !defined(CONFIG_USER_ONLY)
3103 db166940 blueswir1
    case 0x24: // Nucleus quad LDD 128 bit atomic
3104 db166940 blueswir1
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3105 db166940 blueswir1
        helper_check_align(addr, 0xf);
3106 db166940 blueswir1
        if (rd == 0) {
3107 54a3c0f0 Igor V. Kovalenko
            env->gregs[1] = ldq_nucleus(addr + 8);
3108 db166940 blueswir1
            if (asi == 0x2c)
3109 db166940 blueswir1
                bswap64s(&env->gregs[1]);
3110 db166940 blueswir1
        } else if (rd < 8) {
3111 54a3c0f0 Igor V. Kovalenko
            env->gregs[rd] = ldq_nucleus(addr);
3112 54a3c0f0 Igor V. Kovalenko
            env->gregs[rd + 1] = ldq_nucleus(addr + 8);
3113 db166940 blueswir1
            if (asi == 0x2c) {
3114 db166940 blueswir1
                bswap64s(&env->gregs[rd]);
3115 db166940 blueswir1
                bswap64s(&env->gregs[rd + 1]);
3116 db166940 blueswir1
            }
3117 db166940 blueswir1
        } else {
3118 54a3c0f0 Igor V. Kovalenko
            env->regwptr[rd] = ldq_nucleus(addr);
3119 54a3c0f0 Igor V. Kovalenko
            env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
3120 db166940 blueswir1
            if (asi == 0x2c) {
3121 db166940 blueswir1
                bswap64s(&env->regwptr[rd]);
3122 db166940 blueswir1
                bswap64s(&env->regwptr[rd + 1]);
3123 db166940 blueswir1
            }
3124 db166940 blueswir1
        }
3125 db166940 blueswir1
        break;
3126 03ae77d6 Blue Swirl
#endif
3127 db166940 blueswir1
    default:
3128 db166940 blueswir1
        helper_check_align(addr, 0x3);
3129 db166940 blueswir1
        if (rd == 0)
3130 db166940 blueswir1
            env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3131 db166940 blueswir1
        else if (rd < 8) {
3132 db166940 blueswir1
            env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3133 db166940 blueswir1
            env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3134 db166940 blueswir1
        } else {
3135 db166940 blueswir1
            env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3136 db166940 blueswir1
            env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3137 db166940 blueswir1
        }
3138 db166940 blueswir1
        break;
3139 db166940 blueswir1
    }
3140 db166940 blueswir1
}
3141 db166940 blueswir1
3142 1a2fb1c0 blueswir1
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3143 3391c818 blueswir1
{
3144 3391c818 blueswir1
    unsigned int i;
3145 1a2fb1c0 blueswir1
    target_ulong val;
3146 3391c818 blueswir1
3147 c2bc0e38 blueswir1
    helper_check_align(addr, 3);
3148 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
3149 1295001c Igor V. Kovalenko
3150 3391c818 blueswir1
    switch (asi) {
3151 3391c818 blueswir1
    case 0xf0: // Block load primary
3152 3391c818 blueswir1
    case 0xf1: // Block load secondary
3153 3391c818 blueswir1
    case 0xf8: // Block load primary LE
3154 3391c818 blueswir1
    case 0xf9: // Block load secondary LE
3155 51996525 blueswir1
        if (rd & 7) {
3156 51996525 blueswir1
            raise_exception(TT_ILL_INSN);
3157 51996525 blueswir1
            return;
3158 51996525 blueswir1
        }
3159 c2bc0e38 blueswir1
        helper_check_align(addr, 0x3f);
3160 51996525 blueswir1
        for (i = 0; i < 16; i++) {
3161 77f193da blueswir1
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3162 77f193da blueswir1
                                                         0);
3163 1a2fb1c0 blueswir1
            addr += 4;
3164 3391c818 blueswir1
        }
3165 3391c818 blueswir1
3166 3391c818 blueswir1
        return;
3167 0e2fa9ca Igor V. Kovalenko
    case 0x70: // Block load primary, user privilege
3168 0e2fa9ca Igor V. Kovalenko
    case 0x71: // Block load secondary, user privilege
3169 0e2fa9ca Igor V. Kovalenko
        if (rd & 7) {
3170 0e2fa9ca Igor V. Kovalenko
            raise_exception(TT_ILL_INSN);
3171 0e2fa9ca Igor V. Kovalenko
            return;
3172 0e2fa9ca Igor V. Kovalenko
        }
3173 0e2fa9ca Igor V. Kovalenko
        helper_check_align(addr, 0x3f);
3174 0e2fa9ca Igor V. Kovalenko
        for (i = 0; i < 16; i++) {
3175 0e2fa9ca Igor V. Kovalenko
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x1f, 4,
3176 0e2fa9ca Igor V. Kovalenko
                                                         0);
3177 0e2fa9ca Igor V. Kovalenko
            addr += 4;
3178 0e2fa9ca Igor V. Kovalenko
        }
3179 0e2fa9ca Igor V. Kovalenko
3180 0e2fa9ca Igor V. Kovalenko
        return;
3181 3391c818 blueswir1
    default:
3182 3391c818 blueswir1
        break;
3183 3391c818 blueswir1
    }
3184 3391c818 blueswir1
3185 1a2fb1c0 blueswir1
    val = helper_ld_asi(addr, asi, size, 0);
3186 3391c818 blueswir1
    switch(size) {
3187 3391c818 blueswir1
    default:
3188 3391c818 blueswir1
    case 4:
3189 714547bb blueswir1
        *((uint32_t *)&env->fpr[rd]) = val;
3190 3391c818 blueswir1
        break;
3191 3391c818 blueswir1
    case 8:
3192 1a2fb1c0 blueswir1
        *((int64_t *)&DT0) = val;
3193 3391c818 blueswir1
        break;
3194 1f587329 blueswir1
    case 16:
3195 1f587329 blueswir1
        // XXX
3196 1f587329 blueswir1
        break;
3197 3391c818 blueswir1
    }
3198 3391c818 blueswir1
}
3199 3391c818 blueswir1
3200 1a2fb1c0 blueswir1
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3201 3391c818 blueswir1
{
3202 3391c818 blueswir1
    unsigned int i;
3203 1a2fb1c0 blueswir1
    target_ulong val = 0;
3204 3391c818 blueswir1
3205 c2bc0e38 blueswir1
    helper_check_align(addr, 3);
3206 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
3207 1295001c Igor V. Kovalenko
3208 3391c818 blueswir1
    switch (asi) {
3209 c99657d3 blueswir1
    case 0xe0: // UA2007 Block commit store primary (cache flush)
3210 c99657d3 blueswir1
    case 0xe1: // UA2007 Block commit store secondary (cache flush)
3211 3391c818 blueswir1
    case 0xf0: // Block store primary
3212 3391c818 blueswir1
    case 0xf1: // Block store secondary
3213 3391c818 blueswir1
    case 0xf8: // Block store primary LE
3214 3391c818 blueswir1
    case 0xf9: // Block store secondary LE
3215 51996525 blueswir1
        if (rd & 7) {
3216 51996525 blueswir1
            raise_exception(TT_ILL_INSN);
3217 51996525 blueswir1
            return;
3218 51996525 blueswir1
        }
3219 c2bc0e38 blueswir1
        helper_check_align(addr, 0x3f);
3220 51996525 blueswir1
        for (i = 0; i < 16; i++) {
3221 1a2fb1c0 blueswir1
            val = *(uint32_t *)&env->fpr[rd++];
3222 1a2fb1c0 blueswir1
            helper_st_asi(addr, val, asi & 0x8f, 4);
3223 1a2fb1c0 blueswir1
            addr += 4;
3224 3391c818 blueswir1
        }
3225 3391c818 blueswir1
3226 3391c818 blueswir1
        return;
3227 0e2fa9ca Igor V. Kovalenko
    case 0x70: // Block store primary, user privilege
3228 0e2fa9ca Igor V. Kovalenko
    case 0x71: // Block store secondary, user privilege
3229 0e2fa9ca Igor V. Kovalenko
        if (rd & 7) {
3230 0e2fa9ca Igor V. Kovalenko
            raise_exception(TT_ILL_INSN);
3231 0e2fa9ca Igor V. Kovalenko
            return;
3232 0e2fa9ca Igor V. Kovalenko
        }
3233 0e2fa9ca Igor V. Kovalenko
        helper_check_align(addr, 0x3f);
3234 0e2fa9ca Igor V. Kovalenko
        for (i = 0; i < 16; i++) {
3235 0e2fa9ca Igor V. Kovalenko
            val = *(uint32_t *)&env->fpr[rd++];
3236 0e2fa9ca Igor V. Kovalenko
            helper_st_asi(addr, val, asi & 0x1f, 4);
3237 0e2fa9ca Igor V. Kovalenko
            addr += 4;
3238 0e2fa9ca Igor V. Kovalenko
        }
3239 0e2fa9ca Igor V. Kovalenko
3240 0e2fa9ca Igor V. Kovalenko
        return;
3241 3391c818 blueswir1
    default:
3242 3391c818 blueswir1
        break;
3243 3391c818 blueswir1
    }
3244 3391c818 blueswir1
3245 3391c818 blueswir1
    switch(size) {
3246 3391c818 blueswir1
    default:
3247 3391c818 blueswir1
    case 4:
3248 714547bb blueswir1
        val = *((uint32_t *)&env->fpr[rd]);
3249 3391c818 blueswir1
        break;
3250 3391c818 blueswir1
    case 8:
3251 1a2fb1c0 blueswir1
        val = *((int64_t *)&DT0);
3252 3391c818 blueswir1
        break;
3253 1f587329 blueswir1
    case 16:
3254 1f587329 blueswir1
        // XXX
3255 1f587329 blueswir1
        break;
3256 3391c818 blueswir1
    }
3257 1a2fb1c0 blueswir1
    helper_st_asi(addr, val, asi, size);
3258 1a2fb1c0 blueswir1
}
3259 1a2fb1c0 blueswir1
3260 1a2fb1c0 blueswir1
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3261 1a2fb1c0 blueswir1
                            target_ulong val2, uint32_t asi)
3262 1a2fb1c0 blueswir1
{
3263 1a2fb1c0 blueswir1
    target_ulong ret;
3264 1a2fb1c0 blueswir1
3265 1121f879 blueswir1
    val2 &= 0xffffffffUL;
3266 1a2fb1c0 blueswir1
    ret = helper_ld_asi(addr, asi, 4, 0);
3267 1a2fb1c0 blueswir1
    ret &= 0xffffffffUL;
3268 1121f879 blueswir1
    if (val2 == ret)
3269 1121f879 blueswir1
        helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3270 1a2fb1c0 blueswir1
    return ret;
3271 3391c818 blueswir1
}
3272 3391c818 blueswir1
3273 1a2fb1c0 blueswir1
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3274 1a2fb1c0 blueswir1
                             target_ulong val2, uint32_t asi)
3275 1a2fb1c0 blueswir1
{
3276 1a2fb1c0 blueswir1
    target_ulong ret;
3277 1a2fb1c0 blueswir1
3278 1a2fb1c0 blueswir1
    ret = helper_ld_asi(addr, asi, 8, 0);
3279 1121f879 blueswir1
    if (val2 == ret)
3280 1121f879 blueswir1
        helper_st_asi(addr, val1, asi, 8);
3281 1a2fb1c0 blueswir1
    return ret;
3282 1a2fb1c0 blueswir1
}
3283 81ad8ba2 blueswir1
#endif /* TARGET_SPARC64 */
3284 3475187d bellard
3285 3475187d bellard
#ifndef TARGET_SPARC64
3286 1a2fb1c0 blueswir1
void helper_rett(void)
3287 e8af50a3 bellard
{
3288 af7bf89b bellard
    unsigned int cwp;
3289 af7bf89b bellard
3290 d4218d99 blueswir1
    if (env->psret == 1)
3291 d4218d99 blueswir1
        raise_exception(TT_ILL_INSN);
3292 d4218d99 blueswir1
3293 e8af50a3 bellard
    env->psret = 1;
3294 5a834bb4 Blue Swirl
    cwp = cwp_inc(env->cwp + 1) ;
3295 e8af50a3 bellard
    if (env->wim & (1 << cwp)) {
3296 e8af50a3 bellard
        raise_exception(TT_WIN_UNF);
3297 e8af50a3 bellard
    }
3298 e8af50a3 bellard
    set_cwp(cwp);
3299 e8af50a3 bellard
    env->psrs = env->psrps;
3300 e8af50a3 bellard
}
3301 3475187d bellard
#endif
3302 e8af50a3 bellard
3303 3b89f26c blueswir1
target_ulong helper_udiv(target_ulong a, target_ulong b)
3304 3b89f26c blueswir1
{
3305 3b89f26c blueswir1
    uint64_t x0;
3306 3b89f26c blueswir1
    uint32_t x1;
3307 3b89f26c blueswir1
3308 7621a90d blueswir1
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3309 09487205 Igor V. Kovalenko
    x1 = (b & 0xffffffff);
3310 3b89f26c blueswir1
3311 3b89f26c blueswir1
    if (x1 == 0) {
3312 3b89f26c blueswir1
        raise_exception(TT_DIV_ZERO);
3313 3b89f26c blueswir1
    }
3314 3b89f26c blueswir1
3315 3b89f26c blueswir1
    x0 = x0 / x1;
3316 3b89f26c blueswir1
    if (x0 > 0xffffffff) {
3317 3b89f26c blueswir1
        env->cc_src2 = 1;
3318 3b89f26c blueswir1
        return 0xffffffff;
3319 3b89f26c blueswir1
    } else {
3320 3b89f26c blueswir1
        env->cc_src2 = 0;
3321 3b89f26c blueswir1
        return x0;
3322 3b89f26c blueswir1
    }
3323 3b89f26c blueswir1
}
3324 3b89f26c blueswir1
3325 3b89f26c blueswir1
target_ulong helper_sdiv(target_ulong a, target_ulong b)
3326 3b89f26c blueswir1
{
3327 3b89f26c blueswir1
    int64_t x0;
3328 3b89f26c blueswir1
    int32_t x1;
3329 3b89f26c blueswir1
3330 7621a90d blueswir1
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3331 09487205 Igor V. Kovalenko
    x1 = (b & 0xffffffff);
3332 3b89f26c blueswir1
3333 3b89f26c blueswir1
    if (x1 == 0) {
3334 3b89f26c blueswir1
        raise_exception(TT_DIV_ZERO);
3335 3b89f26c blueswir1
    }
3336 3b89f26c blueswir1
3337 3b89f26c blueswir1
    x0 = x0 / x1;
3338 3b89f26c blueswir1
    if ((int32_t) x0 != x0) {
3339 3b89f26c blueswir1
        env->cc_src2 = 1;
3340 3b89f26c blueswir1
        return x0 < 0? 0x80000000: 0x7fffffff;
3341 3b89f26c blueswir1
    } else {
3342 3b89f26c blueswir1
        env->cc_src2 = 0;
3343 3b89f26c blueswir1
        return x0;
3344 3b89f26c blueswir1
    }
3345 3b89f26c blueswir1
}
3346 3b89f26c blueswir1
3347 7fa76c0b blueswir1
void helper_stdf(target_ulong addr, int mem_idx)
3348 7fa76c0b blueswir1
{
3349 c2bc0e38 blueswir1
    helper_check_align(addr, 7);
3350 7fa76c0b blueswir1
#if !defined(CONFIG_USER_ONLY)
3351 7fa76c0b blueswir1
    switch (mem_idx) {
3352 b219094a Igor V. Kovalenko
    case MMU_USER_IDX:
3353 c2bc0e38 blueswir1
        stfq_user(addr, DT0);
3354 7fa76c0b blueswir1
        break;
3355 b219094a Igor V. Kovalenko
    case MMU_KERNEL_IDX:
3356 c2bc0e38 blueswir1
        stfq_kernel(addr, DT0);
3357 7fa76c0b blueswir1
        break;
3358 7fa76c0b blueswir1
#ifdef TARGET_SPARC64
3359 b219094a Igor V. Kovalenko
    case MMU_HYPV_IDX:
3360 c2bc0e38 blueswir1
        stfq_hypv(addr, DT0);
3361 7fa76c0b blueswir1
        break;
3362 7fa76c0b blueswir1
#endif
3363 7fa76c0b blueswir1
    default:
3364 b219094a Igor V. Kovalenko
        DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
3365 7fa76c0b blueswir1
        break;
3366 7fa76c0b blueswir1
    }
3367 7fa76c0b blueswir1
#else
3368 41db525e Richard Henderson
    stfq_raw(address_mask(env, addr), DT0);
3369 7fa76c0b blueswir1
#endif
3370 7fa76c0b blueswir1
}
3371 7fa76c0b blueswir1
3372 7fa76c0b blueswir1
void helper_lddf(target_ulong addr, int mem_idx)
3373 7fa76c0b blueswir1
{
3374 c2bc0e38 blueswir1
    helper_check_align(addr, 7);
3375 7fa76c0b blueswir1
#if !defined(CONFIG_USER_ONLY)
3376 7fa76c0b blueswir1
    switch (mem_idx) {
3377 b219094a Igor V. Kovalenko
    case MMU_USER_IDX:
3378 c2bc0e38 blueswir1
        DT0 = ldfq_user(addr);
3379 7fa76c0b blueswir1
        break;
3380 b219094a Igor V. Kovalenko
    case MMU_KERNEL_IDX:
3381 c2bc0e38 blueswir1
        DT0 = ldfq_kernel(addr);
3382 7fa76c0b blueswir1
        break;
3383 7fa76c0b blueswir1
#ifdef TARGET_SPARC64
3384 b219094a Igor V. Kovalenko
    case MMU_HYPV_IDX:
3385 c2bc0e38 blueswir1
        DT0 = ldfq_hypv(addr);
3386 7fa76c0b blueswir1
        break;
3387 7fa76c0b blueswir1
#endif
3388 7fa76c0b blueswir1
    default:
3389 b219094a Igor V. Kovalenko
        DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
3390 7fa76c0b blueswir1
        break;
3391 7fa76c0b blueswir1
    }
3392 7fa76c0b blueswir1
#else
3393 41db525e Richard Henderson
    DT0 = ldfq_raw(address_mask(env, addr));
3394 7fa76c0b blueswir1
#endif
3395 7fa76c0b blueswir1
}
3396 7fa76c0b blueswir1
3397 64a88d5d blueswir1
void helper_ldqf(target_ulong addr, int mem_idx)
3398 7fa76c0b blueswir1
{
3399 7fa76c0b blueswir1
    // XXX add 128 bit load
3400 7fa76c0b blueswir1
    CPU_QuadU u;
3401 7fa76c0b blueswir1
3402 c2bc0e38 blueswir1
    helper_check_align(addr, 7);
3403 64a88d5d blueswir1
#if !defined(CONFIG_USER_ONLY)
3404 64a88d5d blueswir1
    switch (mem_idx) {
3405 b219094a Igor V. Kovalenko
    case MMU_USER_IDX:
3406 c2bc0e38 blueswir1
        u.ll.upper = ldq_user(addr);
3407 c2bc0e38 blueswir1
        u.ll.lower = ldq_user(addr + 8);
3408 64a88d5d blueswir1
        QT0 = u.q;
3409 64a88d5d blueswir1
        break;
3410 b219094a Igor V. Kovalenko
    case MMU_KERNEL_IDX:
3411 c2bc0e38 blueswir1
        u.ll.upper = ldq_kernel(addr);
3412 c2bc0e38 blueswir1
        u.ll.lower = ldq_kernel(addr + 8);
3413 64a88d5d blueswir1
        QT0 = u.q;
3414 64a88d5d blueswir1
        break;
3415 64a88d5d blueswir1
#ifdef TARGET_SPARC64
3416 b219094a Igor V. Kovalenko
    case MMU_HYPV_IDX:
3417 c2bc0e38 blueswir1
        u.ll.upper = ldq_hypv(addr);
3418 c2bc0e38 blueswir1
        u.ll.lower = ldq_hypv(addr + 8);
3419 64a88d5d blueswir1
        QT0 = u.q;
3420 64a88d5d blueswir1
        break;
3421 64a88d5d blueswir1
#endif
3422 64a88d5d blueswir1
    default:
3423 b219094a Igor V. Kovalenko
        DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
3424 64a88d5d blueswir1
        break;
3425 64a88d5d blueswir1
    }
3426 64a88d5d blueswir1
#else
3427 41db525e Richard Henderson
    u.ll.upper = ldq_raw(address_mask(env, addr));
3428 41db525e Richard Henderson
    u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3429 7fa76c0b blueswir1
    QT0 = u.q;
3430 64a88d5d blueswir1
#endif
3431 7fa76c0b blueswir1
}
3432 7fa76c0b blueswir1
3433 64a88d5d blueswir1
void helper_stqf(target_ulong addr, int mem_idx)
3434 7fa76c0b blueswir1
{
3435 7fa76c0b blueswir1
    // XXX add 128 bit store
3436 7fa76c0b blueswir1
    CPU_QuadU u;
3437 7fa76c0b blueswir1
3438 c2bc0e38 blueswir1
    helper_check_align(addr, 7);
3439 64a88d5d blueswir1
#if !defined(CONFIG_USER_ONLY)
3440 64a88d5d blueswir1
    switch (mem_idx) {
3441 b219094a Igor V. Kovalenko
    case MMU_USER_IDX:
3442 64a88d5d blueswir1
        u.q = QT0;
3443 c2bc0e38 blueswir1
        stq_user(addr, u.ll.upper);
3444 c2bc0e38 blueswir1
        stq_user(addr + 8, u.ll.lower);
3445 64a88d5d blueswir1
        break;
3446 b219094a Igor V. Kovalenko
    case MMU_KERNEL_IDX:
3447 64a88d5d blueswir1
        u.q = QT0;
3448 c2bc0e38 blueswir1
        stq_kernel(addr, u.ll.upper);
3449 c2bc0e38 blueswir1
        stq_kernel(addr + 8, u.ll.lower);
3450 64a88d5d blueswir1
        break;
3451 64a88d5d blueswir1
#ifdef TARGET_SPARC64
3452 b219094a Igor V. Kovalenko
    case MMU_HYPV_IDX:
3453 64a88d5d blueswir1
        u.q = QT0;
3454 c2bc0e38 blueswir1
        stq_hypv(addr, u.ll.upper);
3455 c2bc0e38 blueswir1
        stq_hypv(addr + 8, u.ll.lower);
3456 64a88d5d blueswir1
        break;
3457 64a88d5d blueswir1
#endif
3458 64a88d5d blueswir1
    default:
3459 b219094a Igor V. Kovalenko
        DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
3460 64a88d5d blueswir1
        break;
3461 64a88d5d blueswir1
    }
3462 64a88d5d blueswir1
#else
3463 7fa76c0b blueswir1
    u.q = QT0;
3464 41db525e Richard Henderson
    stq_raw(address_mask(env, addr), u.ll.upper);
3465 41db525e Richard Henderson
    stq_raw(address_mask(env, addr + 8), u.ll.lower);
3466 7fa76c0b blueswir1
#endif
3467 64a88d5d blueswir1
}
3468 7fa76c0b blueswir1
3469 3a3b925d blueswir1
static inline void set_fsr(void)
3470 e8af50a3 bellard
{
3471 7a0e1f41 bellard
    int rnd_mode;
3472 bb5529bb blueswir1
3473 e8af50a3 bellard
    switch (env->fsr & FSR_RD_MASK) {
3474 e8af50a3 bellard
    case FSR_RD_NEAREST:
3475 7a0e1f41 bellard
        rnd_mode = float_round_nearest_even;
3476 0f8a249a blueswir1
        break;
3477 ed910241 bellard
    default:
3478 e8af50a3 bellard
    case FSR_RD_ZERO:
3479 7a0e1f41 bellard
        rnd_mode = float_round_to_zero;
3480 0f8a249a blueswir1
        break;
3481 e8af50a3 bellard
    case FSR_RD_POS:
3482 7a0e1f41 bellard
        rnd_mode = float_round_up;
3483 0f8a249a blueswir1
        break;
3484 e8af50a3 bellard
    case FSR_RD_NEG:
3485 7a0e1f41 bellard
        rnd_mode = float_round_down;
3486 0f8a249a blueswir1
        break;
3487 e8af50a3 bellard
    }
3488 7a0e1f41 bellard
    set_float_rounding_mode(rnd_mode, &env->fp_status);
3489 e8af50a3 bellard
}
3490 e80cfcfc bellard
3491 3a3b925d blueswir1
void helper_ldfsr(uint32_t new_fsr)
3492 bb5529bb blueswir1
{
3493 3a3b925d blueswir1
    env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3494 3a3b925d blueswir1
    set_fsr();
3495 bb5529bb blueswir1
}
3496 bb5529bb blueswir1
3497 3a3b925d blueswir1
#ifdef TARGET_SPARC64
3498 3a3b925d blueswir1
void helper_ldxfsr(uint64_t new_fsr)
3499 3a3b925d blueswir1
{
3500 3a3b925d blueswir1
    env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3501 3a3b925d blueswir1
    set_fsr();
3502 3a3b925d blueswir1
}
3503 3a3b925d blueswir1
#endif
3504 3a3b925d blueswir1
3505 bb5529bb blueswir1
void helper_debug(void)
3506 e80cfcfc bellard
{
3507 e80cfcfc bellard
    env->exception_index = EXCP_DEBUG;
3508 e80cfcfc bellard
    cpu_loop_exit();
3509 e80cfcfc bellard
}
3510 af7bf89b bellard
3511 3475187d bellard
#ifndef TARGET_SPARC64
3512 72a9747b blueswir1
/* XXX: use another pointer for %iN registers to avoid slow wrapping
3513 72a9747b blueswir1
   handling ? */
3514 72a9747b blueswir1
void helper_save(void)
3515 72a9747b blueswir1
{
3516 72a9747b blueswir1
    uint32_t cwp;
3517 72a9747b blueswir1
3518 5a834bb4 Blue Swirl
    cwp = cwp_dec(env->cwp - 1);
3519 72a9747b blueswir1
    if (env->wim & (1 << cwp)) {
3520 72a9747b blueswir1
        raise_exception(TT_WIN_OVF);
3521 72a9747b blueswir1
    }
3522 72a9747b blueswir1
    set_cwp(cwp);
3523 72a9747b blueswir1
}
3524 72a9747b blueswir1
3525 72a9747b blueswir1
void helper_restore(void)
3526 72a9747b blueswir1
{
3527 72a9747b blueswir1
    uint32_t cwp;
3528 72a9747b blueswir1
3529 5a834bb4 Blue Swirl
    cwp = cwp_inc(env->cwp + 1);
3530 72a9747b blueswir1
    if (env->wim & (1 << cwp)) {
3531 72a9747b blueswir1
        raise_exception(TT_WIN_UNF);
3532 72a9747b blueswir1
    }
3533 72a9747b blueswir1
    set_cwp(cwp);
3534 72a9747b blueswir1
}
3535 72a9747b blueswir1
3536 1a2fb1c0 blueswir1
void helper_wrpsr(target_ulong new_psr)
3537 af7bf89b bellard
{
3538 5a834bb4 Blue Swirl
    if ((new_psr & PSR_CWP) >= env->nwindows) {
3539 d4218d99 blueswir1
        raise_exception(TT_ILL_INSN);
3540 5a834bb4 Blue Swirl
    } else {
3541 5a834bb4 Blue Swirl
        cpu_put_psr(env, new_psr);
3542 5a834bb4 Blue Swirl
    }
3543 af7bf89b bellard
}
3544 af7bf89b bellard
3545 1a2fb1c0 blueswir1
target_ulong helper_rdpsr(void)
3546 af7bf89b bellard
{
3547 5a834bb4 Blue Swirl
    return get_psr();
3548 af7bf89b bellard
}
3549 3475187d bellard
3550 3475187d bellard
#else
3551 72a9747b blueswir1
/* XXX: use another pointer for %iN registers to avoid slow wrapping
3552 72a9747b blueswir1
   handling ? */
3553 72a9747b blueswir1
void helper_save(void)
3554 72a9747b blueswir1
{
3555 72a9747b blueswir1
    uint32_t cwp;
3556 72a9747b blueswir1
3557 5a834bb4 Blue Swirl
    cwp = cwp_dec(env->cwp - 1);
3558 72a9747b blueswir1
    if (env->cansave == 0) {
3559 72a9747b blueswir1
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
3560 72a9747b blueswir1
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3561 72a9747b blueswir1
                                    ((env->wstate & 0x7) << 2)));
3562 72a9747b blueswir1
    } else {
3563 72a9747b blueswir1
        if (env->cleanwin - env->canrestore == 0) {
3564 72a9747b blueswir1
            // XXX Clean windows without trap
3565 72a9747b blueswir1
            raise_exception(TT_CLRWIN);
3566 72a9747b blueswir1
        } else {
3567 72a9747b blueswir1
            env->cansave--;
3568 72a9747b blueswir1
            env->canrestore++;
3569 72a9747b blueswir1
            set_cwp(cwp);
3570 72a9747b blueswir1
        }
3571 72a9747b blueswir1
    }
3572 72a9747b blueswir1
}
3573 72a9747b blueswir1
3574 72a9747b blueswir1
void helper_restore(void)
3575 72a9747b blueswir1
{
3576 72a9747b blueswir1
    uint32_t cwp;
3577 72a9747b blueswir1
3578 5a834bb4 Blue Swirl
    cwp = cwp_inc(env->cwp + 1);
3579 72a9747b blueswir1
    if (env->canrestore == 0) {
3580 72a9747b blueswir1
        raise_exception(TT_FILL | (env->otherwin != 0 ?
3581 72a9747b blueswir1
                                   (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3582 72a9747b blueswir1
                                   ((env->wstate & 0x7) << 2)));
3583 72a9747b blueswir1
    } else {
3584 72a9747b blueswir1
        env->cansave++;
3585 72a9747b blueswir1
        env->canrestore--;
3586 72a9747b blueswir1
        set_cwp(cwp);
3587 72a9747b blueswir1
    }
3588 72a9747b blueswir1
}
3589 72a9747b blueswir1
3590 72a9747b blueswir1
void helper_flushw(void)
3591 72a9747b blueswir1
{
3592 1a14026e blueswir1
    if (env->cansave != env->nwindows - 2) {
3593 72a9747b blueswir1
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
3594 72a9747b blueswir1
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3595 72a9747b blueswir1
                                    ((env->wstate & 0x7) << 2)));
3596 72a9747b blueswir1
    }
3597 72a9747b blueswir1
}
3598 72a9747b blueswir1
3599 72a9747b blueswir1
void helper_saved(void)
3600 72a9747b blueswir1
{
3601 72a9747b blueswir1
    env->cansave++;
3602 72a9747b blueswir1
    if (env->otherwin == 0)
3603 72a9747b blueswir1
        env->canrestore--;
3604 72a9747b blueswir1
    else
3605 72a9747b blueswir1
        env->otherwin--;
3606 72a9747b blueswir1
}
3607 72a9747b blueswir1
3608 72a9747b blueswir1
void helper_restored(void)
3609 72a9747b blueswir1
{
3610 72a9747b blueswir1
    env->canrestore++;
3611 1a14026e blueswir1
    if (env->cleanwin < env->nwindows - 1)
3612 72a9747b blueswir1
        env->cleanwin++;
3613 72a9747b blueswir1
    if (env->otherwin == 0)
3614 72a9747b blueswir1
        env->cansave--;
3615 72a9747b blueswir1
    else
3616 72a9747b blueswir1
        env->otherwin--;
3617 72a9747b blueswir1
}
3618 72a9747b blueswir1
3619 5a834bb4 Blue Swirl
static target_ulong get_ccr(void)
3620 5a834bb4 Blue Swirl
{
3621 5a834bb4 Blue Swirl
    target_ulong psr;
3622 5a834bb4 Blue Swirl
3623 5a834bb4 Blue Swirl
    psr = get_psr();
3624 5a834bb4 Blue Swirl
3625 5a834bb4 Blue Swirl
    return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3626 5a834bb4 Blue Swirl
}
3627 5a834bb4 Blue Swirl
3628 5a834bb4 Blue Swirl
target_ulong cpu_get_ccr(CPUState *env1)
3629 5a834bb4 Blue Swirl
{
3630 5a834bb4 Blue Swirl
    CPUState *saved_env;
3631 5a834bb4 Blue Swirl
    target_ulong ret;
3632 5a834bb4 Blue Swirl
3633 5a834bb4 Blue Swirl
    saved_env = env;
3634 5a834bb4 Blue Swirl
    env = env1;
3635 5a834bb4 Blue Swirl
    ret = get_ccr();
3636 5a834bb4 Blue Swirl
    env = saved_env;
3637 5a834bb4 Blue Swirl
    return ret;
3638 5a834bb4 Blue Swirl
}
3639 5a834bb4 Blue Swirl
3640 5a834bb4 Blue Swirl
static void put_ccr(target_ulong val)
3641 5a834bb4 Blue Swirl
{
3642 5a834bb4 Blue Swirl
    target_ulong tmp = val;
3643 5a834bb4 Blue Swirl
3644 5a834bb4 Blue Swirl
    env->xcc = (tmp >> 4) << 20;
3645 5a834bb4 Blue Swirl
    env->psr = (tmp & 0xf) << 20;
3646 5a834bb4 Blue Swirl
    CC_OP = CC_OP_FLAGS;
3647 5a834bb4 Blue Swirl
}
3648 5a834bb4 Blue Swirl
3649 5a834bb4 Blue Swirl
void cpu_put_ccr(CPUState *env1, target_ulong val)
3650 5a834bb4 Blue Swirl
{
3651 5a834bb4 Blue Swirl
    CPUState *saved_env;
3652 5a834bb4 Blue Swirl
3653 5a834bb4 Blue Swirl
    saved_env = env;
3654 5a834bb4 Blue Swirl
    env = env1;
3655 5a834bb4 Blue Swirl
    put_ccr(val);
3656 5a834bb4 Blue Swirl
    env = saved_env;
3657 5a834bb4 Blue Swirl
}
3658 5a834bb4 Blue Swirl
3659 5a834bb4 Blue Swirl
static target_ulong get_cwp64(void)
3660 5a834bb4 Blue Swirl
{
3661 5a834bb4 Blue Swirl
    return env->nwindows - 1 - env->cwp;
3662 5a834bb4 Blue Swirl
}
3663 5a834bb4 Blue Swirl
3664 5a834bb4 Blue Swirl
target_ulong cpu_get_cwp64(CPUState *env1)
3665 5a834bb4 Blue Swirl
{
3666 5a834bb4 Blue Swirl
    CPUState *saved_env;
3667 5a834bb4 Blue Swirl
    target_ulong ret;
3668 5a834bb4 Blue Swirl
3669 5a834bb4 Blue Swirl
    saved_env = env;
3670 5a834bb4 Blue Swirl
    env = env1;
3671 5a834bb4 Blue Swirl
    ret = get_cwp64();
3672 5a834bb4 Blue Swirl
    env = saved_env;
3673 5a834bb4 Blue Swirl
    return ret;
3674 5a834bb4 Blue Swirl
}
3675 5a834bb4 Blue Swirl
3676 5a834bb4 Blue Swirl
static void put_cwp64(int cwp)
3677 5a834bb4 Blue Swirl
{
3678 5a834bb4 Blue Swirl
    if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3679 5a834bb4 Blue Swirl
        cwp %= env->nwindows;
3680 5a834bb4 Blue Swirl
    }
3681 5a834bb4 Blue Swirl
    set_cwp(env->nwindows - 1 - cwp);
3682 5a834bb4 Blue Swirl
}
3683 5a834bb4 Blue Swirl
3684 5a834bb4 Blue Swirl
void cpu_put_cwp64(CPUState *env1, int cwp)
3685 5a834bb4 Blue Swirl
{
3686 5a834bb4 Blue Swirl
    CPUState *saved_env;
3687 5a834bb4 Blue Swirl
3688 5a834bb4 Blue Swirl
    saved_env = env;
3689 5a834bb4 Blue Swirl
    env = env1;
3690 5a834bb4 Blue Swirl
    put_cwp64(cwp);
3691 5a834bb4 Blue Swirl
    env = saved_env;
3692 5a834bb4 Blue Swirl
}
3693 5a834bb4 Blue Swirl
3694 d35527d9 blueswir1
target_ulong helper_rdccr(void)
3695 d35527d9 blueswir1
{
3696 5a834bb4 Blue Swirl
    return get_ccr();
3697 d35527d9 blueswir1
}
3698 d35527d9 blueswir1
3699 d35527d9 blueswir1
void helper_wrccr(target_ulong new_ccr)
3700 d35527d9 blueswir1
{
3701 5a834bb4 Blue Swirl
    put_ccr(new_ccr);
3702 d35527d9 blueswir1
}
3703 d35527d9 blueswir1
3704 d35527d9 blueswir1
// CWP handling is reversed in V9, but we still use the V8 register
3705 d35527d9 blueswir1
// order.
3706 d35527d9 blueswir1
target_ulong helper_rdcwp(void)
3707 d35527d9 blueswir1
{
3708 5a834bb4 Blue Swirl
    return get_cwp64();
3709 d35527d9 blueswir1
}
3710 d35527d9 blueswir1
3711 d35527d9 blueswir1
void helper_wrcwp(target_ulong new_cwp)
3712 d35527d9 blueswir1
{
3713 5a834bb4 Blue Swirl
    put_cwp64(new_cwp);
3714 d35527d9 blueswir1
}
3715 3475187d bellard
3716 1f5063fb blueswir1
// This function uses non-native bit order
3717 1f5063fb blueswir1
#define GET_FIELD(X, FROM, TO)                                  \
3718 1f5063fb blueswir1
    ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3719 1f5063fb blueswir1
3720 1f5063fb blueswir1
// This function uses the order in the manuals, i.e. bit 0 is 2^0
3721 1f5063fb blueswir1
#define GET_FIELD_SP(X, FROM, TO)               \
3722 1f5063fb blueswir1
    GET_FIELD(X, 63 - (TO), 63 - (FROM))
3723 1f5063fb blueswir1
3724 1f5063fb blueswir1
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3725 1f5063fb blueswir1
{
3726 1f5063fb blueswir1
    return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3727 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3728 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3729 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3730 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3731 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3732 1f5063fb blueswir1
        (((pixel_addr >> 55) & 1) << 4) |
3733 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3734 1f5063fb blueswir1
        GET_FIELD_SP(pixel_addr, 11, 12);
3735 1f5063fb blueswir1
}
3736 1f5063fb blueswir1
3737 1f5063fb blueswir1
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3738 1f5063fb blueswir1
{
3739 1f5063fb blueswir1
    uint64_t tmp;
3740 1f5063fb blueswir1
3741 1f5063fb blueswir1
    tmp = addr + offset;
3742 1f5063fb blueswir1
    env->gsr &= ~7ULL;
3743 1f5063fb blueswir1
    env->gsr |= tmp & 7ULL;
3744 1f5063fb blueswir1
    return tmp & ~7ULL;
3745 1f5063fb blueswir1
}
3746 1f5063fb blueswir1
3747 1a2fb1c0 blueswir1
target_ulong helper_popc(target_ulong val)
3748 3475187d bellard
{
3749 1a2fb1c0 blueswir1
    return ctpop64(val);
3750 3475187d bellard
}
3751 83469015 bellard
3752 d780a466 Igor V. Kovalenko
static inline uint64_t *get_gregset(uint32_t pstate)
3753 83469015 bellard
{
3754 83469015 bellard
    switch (pstate) {
3755 83469015 bellard
    default:
3756 7e8695ed Igor V. Kovalenko
        DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3757 7e8695ed Igor V. Kovalenko
                pstate,
3758 7e8695ed Igor V. Kovalenko
                (pstate & PS_IG) ? " IG" : "",
3759 7e8695ed Igor V. Kovalenko
                (pstate & PS_MG) ? " MG" : "",
3760 7e8695ed Igor V. Kovalenko
                (pstate & PS_AG) ? " AG" : "");
3761 7e8695ed Igor V. Kovalenko
        /* pass through to normal set of global registers */
3762 83469015 bellard
    case 0:
3763 0f8a249a blueswir1
        return env->bgregs;
3764 83469015 bellard
    case PS_AG:
3765 0f8a249a blueswir1
        return env->agregs;
3766 83469015 bellard
    case PS_MG:
3767 0f8a249a blueswir1
        return env->mgregs;
3768 83469015 bellard
    case PS_IG:
3769 0f8a249a blueswir1
        return env->igregs;
3770 83469015 bellard
    }
3771 83469015 bellard
}
3772 83469015 bellard
3773 d780a466 Igor V. Kovalenko
static inline void change_pstate(uint32_t new_pstate)
3774 83469015 bellard
{
3775 d780a466 Igor V. Kovalenko
    uint32_t pstate_regs, new_pstate_regs;
3776 83469015 bellard
    uint64_t *src, *dst;
3777 83469015 bellard
3778 5210977a Igor Kovalenko
    if (env->def->features & CPU_FEATURE_GL) {
3779 5210977a Igor Kovalenko
        // PS_AG is not implemented in this case
3780 5210977a Igor Kovalenko
        new_pstate &= ~PS_AG;
3781 5210977a Igor Kovalenko
    }
3782 5210977a Igor Kovalenko
3783 83469015 bellard
    pstate_regs = env->pstate & 0xc01;
3784 83469015 bellard
    new_pstate_regs = new_pstate & 0xc01;
3785 5210977a Igor Kovalenko
3786 83469015 bellard
    if (new_pstate_regs != pstate_regs) {
3787 7e8695ed Igor V. Kovalenko
        DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
3788 7e8695ed Igor V. Kovalenko
                       pstate_regs, new_pstate_regs);
3789 0f8a249a blueswir1
        // Switch global register bank
3790 0f8a249a blueswir1
        src = get_gregset(new_pstate_regs);
3791 0f8a249a blueswir1
        dst = get_gregset(pstate_regs);
3792 0f8a249a blueswir1
        memcpy32(dst, env->gregs);
3793 0f8a249a blueswir1
        memcpy32(env->gregs, src);
3794 83469015 bellard
    }
3795 7e8695ed Igor V. Kovalenko
    else {
3796 7e8695ed Igor V. Kovalenko
        DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
3797 7e8695ed Igor V. Kovalenko
                       new_pstate_regs);
3798 7e8695ed Igor V. Kovalenko
    }
3799 83469015 bellard
    env->pstate = new_pstate;
3800 83469015 bellard
}
3801 83469015 bellard
3802 1a2fb1c0 blueswir1
void helper_wrpstate(target_ulong new_state)
3803 8f1f22f6 blueswir1
{
3804 5210977a Igor Kovalenko
    change_pstate(new_state & 0xf3f);
3805 4dc28134 Igor V. Kovalenko
3806 4dc28134 Igor V. Kovalenko
#if !defined(CONFIG_USER_ONLY)
3807 4dc28134 Igor V. Kovalenko
    if (cpu_interrupts_enabled(env)) {
3808 4dc28134 Igor V. Kovalenko
        cpu_check_irqs(env);
3809 4dc28134 Igor V. Kovalenko
    }
3810 4dc28134 Igor V. Kovalenko
#endif
3811 8f1f22f6 blueswir1
}
3812 8f1f22f6 blueswir1
3813 1fae7b70 Igor V. Kovalenko
void helper_wrpil(target_ulong new_pil)
3814 1fae7b70 Igor V. Kovalenko
{
3815 1fae7b70 Igor V. Kovalenko
#if !defined(CONFIG_USER_ONLY)
3816 1fae7b70 Igor V. Kovalenko
    DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
3817 1fae7b70 Igor V. Kovalenko
                   env->psrpil, (uint32_t)new_pil);
3818 1fae7b70 Igor V. Kovalenko
3819 1fae7b70 Igor V. Kovalenko
    env->psrpil = new_pil;
3820 1fae7b70 Igor V. Kovalenko
3821 1fae7b70 Igor V. Kovalenko
    if (cpu_interrupts_enabled(env)) {
3822 1fae7b70 Igor V. Kovalenko
        cpu_check_irqs(env);
3823 1fae7b70 Igor V. Kovalenko
    }
3824 1fae7b70 Igor V. Kovalenko
#endif
3825 1fae7b70 Igor V. Kovalenko
}
3826 1fae7b70 Igor V. Kovalenko
3827 1a2fb1c0 blueswir1
void helper_done(void)
3828 83469015 bellard
{
3829 8194f35a Igor Kovalenko
    trap_state* tsptr = cpu_tsptr(env);
3830 8194f35a Igor Kovalenko
3831 3723cd09 Igor V. Kovalenko
    env->pc = tsptr->tnpc;
3832 8194f35a Igor Kovalenko
    env->npc = tsptr->tnpc + 4;
3833 5a834bb4 Blue Swirl
    put_ccr(tsptr->tstate >> 32);
3834 8194f35a Igor Kovalenko
    env->asi = (tsptr->tstate >> 24) & 0xff;
3835 8194f35a Igor Kovalenko
    change_pstate((tsptr->tstate >> 8) & 0xf3f);
3836 5a834bb4 Blue Swirl
    put_cwp64(tsptr->tstate & 0xff);
3837 e6bf7d70 blueswir1
    env->tl--;
3838 4dc28134 Igor V. Kovalenko
3839 4dc28134 Igor V. Kovalenko
    DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
3840 4dc28134 Igor V. Kovalenko
3841 4dc28134 Igor V. Kovalenko
#if !defined(CONFIG_USER_ONLY)
3842 4dc28134 Igor V. Kovalenko
    if (cpu_interrupts_enabled(env)) {
3843 4dc28134 Igor V. Kovalenko
        cpu_check_irqs(env);
3844 4dc28134 Igor V. Kovalenko
    }
3845 4dc28134 Igor V. Kovalenko
#endif
3846 83469015 bellard
}
3847 83469015 bellard
3848 1a2fb1c0 blueswir1
void helper_retry(void)
3849 83469015 bellard
{
3850 8194f35a Igor Kovalenko
    trap_state* tsptr = cpu_tsptr(env);
3851 8194f35a Igor Kovalenko
3852 8194f35a Igor Kovalenko
    env->pc = tsptr->tpc;
3853 8194f35a Igor Kovalenko
    env->npc = tsptr->tnpc;
3854 5a834bb4 Blue Swirl
    put_ccr(tsptr->tstate >> 32);
3855 8194f35a Igor Kovalenko
    env->asi = (tsptr->tstate >> 24) & 0xff;
3856 8194f35a Igor Kovalenko
    change_pstate((tsptr->tstate >> 8) & 0xf3f);
3857 5a834bb4 Blue Swirl
    put_cwp64(tsptr->tstate & 0xff);
3858 e6bf7d70 blueswir1
    env->tl--;
3859 4dc28134 Igor V. Kovalenko
3860 4dc28134 Igor V. Kovalenko
    DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
3861 4dc28134 Igor V. Kovalenko
3862 4dc28134 Igor V. Kovalenko
#if !defined(CONFIG_USER_ONLY)
3863 4dc28134 Igor V. Kovalenko
    if (cpu_interrupts_enabled(env)) {
3864 4dc28134 Igor V. Kovalenko
        cpu_check_irqs(env);
3865 4dc28134 Igor V. Kovalenko
    }
3866 4dc28134 Igor V. Kovalenko
#endif
3867 4dc28134 Igor V. Kovalenko
}
3868 4dc28134 Igor V. Kovalenko
3869 4dc28134 Igor V. Kovalenko
static void do_modify_softint(const char* operation, uint32_t value)
3870 4dc28134 Igor V. Kovalenko
{
3871 4dc28134 Igor V. Kovalenko
    if (env->softint != value) {
3872 4dc28134 Igor V. Kovalenko
        env->softint = value;
3873 4dc28134 Igor V. Kovalenko
        DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
3874 4dc28134 Igor V. Kovalenko
#if !defined(CONFIG_USER_ONLY)
3875 4dc28134 Igor V. Kovalenko
        if (cpu_interrupts_enabled(env)) {
3876 4dc28134 Igor V. Kovalenko
            cpu_check_irqs(env);
3877 4dc28134 Igor V. Kovalenko
        }
3878 4dc28134 Igor V. Kovalenko
#endif
3879 4dc28134 Igor V. Kovalenko
    }
3880 83469015 bellard
}
3881 9d926598 blueswir1
3882 9d926598 blueswir1
void helper_set_softint(uint64_t value)
3883 9d926598 blueswir1
{
3884 4dc28134 Igor V. Kovalenko
    do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
3885 9d926598 blueswir1
}
3886 9d926598 blueswir1
3887 9d926598 blueswir1
void helper_clear_softint(uint64_t value)
3888 9d926598 blueswir1
{
3889 4dc28134 Igor V. Kovalenko
    do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
3890 9d926598 blueswir1
}
3891 9d926598 blueswir1
3892 9d926598 blueswir1
void helper_write_softint(uint64_t value)
3893 9d926598 blueswir1
{
3894 4dc28134 Igor V. Kovalenko
    do_modify_softint("helper_write_softint", (uint32_t)value);
3895 9d926598 blueswir1
}
3896 3475187d bellard
#endif
3897 ee5bbe38 bellard
3898 91736d37 blueswir1
void helper_flush(target_ulong addr)
3899 ee5bbe38 bellard
{
3900 91736d37 blueswir1
    addr &= ~7;
3901 91736d37 blueswir1
    tb_invalidate_page_range(addr, addr + 8);
3902 ee5bbe38 bellard
}
3903 ee5bbe38 bellard
3904 91736d37 blueswir1
#ifdef TARGET_SPARC64
3905 91736d37 blueswir1
#ifdef DEBUG_PCALL
3906 91736d37 blueswir1
static const char * const excp_names[0x80] = {
3907 91736d37 blueswir1
    [TT_TFAULT] = "Instruction Access Fault",
3908 91736d37 blueswir1
    [TT_TMISS] = "Instruction Access MMU Miss",
3909 91736d37 blueswir1
    [TT_CODE_ACCESS] = "Instruction Access Error",
3910 91736d37 blueswir1
    [TT_ILL_INSN] = "Illegal Instruction",
3911 91736d37 blueswir1
    [TT_PRIV_INSN] = "Privileged Instruction",
3912 91736d37 blueswir1
    [TT_NFPU_INSN] = "FPU Disabled",
3913 91736d37 blueswir1
    [TT_FP_EXCP] = "FPU Exception",
3914 91736d37 blueswir1
    [TT_TOVF] = "Tag Overflow",
3915 91736d37 blueswir1
    [TT_CLRWIN] = "Clean Windows",
3916 91736d37 blueswir1
    [TT_DIV_ZERO] = "Division By Zero",
3917 91736d37 blueswir1
    [TT_DFAULT] = "Data Access Fault",
3918 91736d37 blueswir1
    [TT_DMISS] = "Data Access MMU Miss",
3919 91736d37 blueswir1
    [TT_DATA_ACCESS] = "Data Access Error",
3920 91736d37 blueswir1
    [TT_DPROT] = "Data Protection Error",
3921 91736d37 blueswir1
    [TT_UNALIGNED] = "Unaligned Memory Access",
3922 91736d37 blueswir1
    [TT_PRIV_ACT] = "Privileged Action",
3923 91736d37 blueswir1
    [TT_EXTINT | 0x1] = "External Interrupt 1",
3924 91736d37 blueswir1
    [TT_EXTINT | 0x2] = "External Interrupt 2",
3925 91736d37 blueswir1
    [TT_EXTINT | 0x3] = "External Interrupt 3",
3926 91736d37 blueswir1
    [TT_EXTINT | 0x4] = "External Interrupt 4",
3927 91736d37 blueswir1
    [TT_EXTINT | 0x5] = "External Interrupt 5",
3928 91736d37 blueswir1
    [TT_EXTINT | 0x6] = "External Interrupt 6",
3929 91736d37 blueswir1
    [TT_EXTINT | 0x7] = "External Interrupt 7",
3930 91736d37 blueswir1
    [TT_EXTINT | 0x8] = "External Interrupt 8",
3931 91736d37 blueswir1
    [TT_EXTINT | 0x9] = "External Interrupt 9",
3932 91736d37 blueswir1
    [TT_EXTINT | 0xa] = "External Interrupt 10",
3933 91736d37 blueswir1
    [TT_EXTINT | 0xb] = "External Interrupt 11",
3934 91736d37 blueswir1
    [TT_EXTINT | 0xc] = "External Interrupt 12",
3935 91736d37 blueswir1
    [TT_EXTINT | 0xd] = "External Interrupt 13",
3936 91736d37 blueswir1
    [TT_EXTINT | 0xe] = "External Interrupt 14",
3937 91736d37 blueswir1
    [TT_EXTINT | 0xf] = "External Interrupt 15",
3938 91736d37 blueswir1
};
3939 91736d37 blueswir1
#endif
3940 91736d37 blueswir1
3941 8194f35a Igor Kovalenko
trap_state* cpu_tsptr(CPUState* env)
3942 8194f35a Igor Kovalenko
{
3943 8194f35a Igor Kovalenko
    return &env->ts[env->tl & MAXTL_MASK];
3944 8194f35a Igor Kovalenko
}
3945 8194f35a Igor Kovalenko
3946 91736d37 blueswir1
void do_interrupt(CPUState *env)
3947 91736d37 blueswir1
{
3948 91736d37 blueswir1
    int intno = env->exception_index;
3949 8194f35a Igor Kovalenko
    trap_state* tsptr;
3950 91736d37 blueswir1
3951 91736d37 blueswir1
#ifdef DEBUG_PCALL
3952 8fec2b8c aliguori
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
3953 91736d37 blueswir1
        static int count;
3954 91736d37 blueswir1
        const char *name;
3955 91736d37 blueswir1
3956 91736d37 blueswir1
        if (intno < 0 || intno >= 0x180)
3957 91736d37 blueswir1
            name = "Unknown";
3958 91736d37 blueswir1
        else if (intno >= 0x100)
3959 91736d37 blueswir1
            name = "Trap Instruction";
3960 91736d37 blueswir1
        else if (intno >= 0xc0)
3961 91736d37 blueswir1
            name = "Window Fill";
3962 91736d37 blueswir1
        else if (intno >= 0x80)
3963 91736d37 blueswir1
            name = "Window Spill";
3964 91736d37 blueswir1
        else {
3965 91736d37 blueswir1
            name = excp_names[intno];
3966 91736d37 blueswir1
            if (!name)
3967 91736d37 blueswir1
                name = "Unknown";
3968 91736d37 blueswir1
        }
3969 91736d37 blueswir1
3970 93fcfe39 aliguori
        qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3971 91736d37 blueswir1
                " SP=%016" PRIx64 "\n",
3972 91736d37 blueswir1
                count, name, intno,
3973 91736d37 blueswir1
                env->pc,
3974 91736d37 blueswir1
                env->npc, env->regwptr[6]);
3975 93fcfe39 aliguori
        log_cpu_state(env, 0);
3976 91736d37 blueswir1
#if 0
3977 91736d37 blueswir1
        {
3978 91736d37 blueswir1
            int i;
3979 91736d37 blueswir1
            uint8_t *ptr;
3980 91736d37 blueswir1

3981 93fcfe39 aliguori
            qemu_log("       code=");
3982 91736d37 blueswir1
            ptr = (uint8_t *)env->pc;
3983 91736d37 blueswir1
            for(i = 0; i < 16; i++) {
3984 93fcfe39 aliguori
                qemu_log(" %02x", ldub(ptr + i));
3985 91736d37 blueswir1
            }
3986 93fcfe39 aliguori
            qemu_log("\n");
3987 91736d37 blueswir1
        }
3988 91736d37 blueswir1
#endif
3989 91736d37 blueswir1
        count++;
3990 91736d37 blueswir1
    }
3991 91736d37 blueswir1
#endif
3992 91736d37 blueswir1
#if !defined(CONFIG_USER_ONLY)
3993 91736d37 blueswir1
    if (env->tl >= env->maxtl) {
3994 91736d37 blueswir1
        cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3995 91736d37 blueswir1
                  " Error state", env->exception_index, env->tl, env->maxtl);
3996 91736d37 blueswir1
        return;
3997 91736d37 blueswir1
    }
3998 91736d37 blueswir1
#endif
3999 91736d37 blueswir1
    if (env->tl < env->maxtl - 1) {
4000 91736d37 blueswir1
        env->tl++;
4001 91736d37 blueswir1
    } else {
4002 91736d37 blueswir1
        env->pstate |= PS_RED;
4003 91736d37 blueswir1
        if (env->tl < env->maxtl)
4004 91736d37 blueswir1
            env->tl++;
4005 91736d37 blueswir1
    }
4006 8194f35a Igor Kovalenko
    tsptr = cpu_tsptr(env);
4007 8194f35a Igor Kovalenko
4008 5a834bb4 Blue Swirl
    tsptr->tstate = (get_ccr() << 32) |
4009 91736d37 blueswir1
        ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
4010 5a834bb4 Blue Swirl
        get_cwp64();
4011 8194f35a Igor Kovalenko
    tsptr->tpc = env->pc;
4012 8194f35a Igor Kovalenko
    tsptr->tnpc = env->npc;
4013 8194f35a Igor Kovalenko
    tsptr->tt = intno;
4014 5210977a Igor Kovalenko
4015 5210977a Igor Kovalenko
    switch (intno) {
4016 5210977a Igor Kovalenko
    case TT_IVEC:
4017 5210977a Igor Kovalenko
        change_pstate(PS_PEF | PS_PRIV | PS_IG);
4018 5210977a Igor Kovalenko
        break;
4019 5210977a Igor Kovalenko
    case TT_TFAULT:
4020 5210977a Igor Kovalenko
    case TT_DFAULT:
4021 87f6d3f6 Igor V. Kovalenko
    case TT_TMISS ... TT_TMISS + 3:
4022 87f6d3f6 Igor V. Kovalenko
    case TT_DMISS ... TT_DMISS + 3:
4023 87f6d3f6 Igor V. Kovalenko
    case TT_DPROT ... TT_DPROT + 3:
4024 5210977a Igor Kovalenko
        change_pstate(PS_PEF | PS_PRIV | PS_MG);
4025 5210977a Igor Kovalenko
        break;
4026 5210977a Igor Kovalenko
    default:
4027 5210977a Igor Kovalenko
        change_pstate(PS_PEF | PS_PRIV | PS_AG);
4028 5210977a Igor Kovalenko
        break;
4029 91736d37 blueswir1
    }
4030 5210977a Igor Kovalenko
4031 5a834bb4 Blue Swirl
    if (intno == TT_CLRWIN) {
4032 5a834bb4 Blue Swirl
        set_cwp(cwp_dec(env->cwp - 1));
4033 5a834bb4 Blue Swirl
    } else if ((intno & 0x1c0) == TT_SPILL) {
4034 5a834bb4 Blue Swirl
        set_cwp(cwp_dec(env->cwp - env->cansave - 2));
4035 5a834bb4 Blue Swirl
    } else if ((intno & 0x1c0) == TT_FILL) {
4036 5a834bb4 Blue Swirl
        set_cwp(cwp_inc(env->cwp + 1));
4037 5a834bb4 Blue Swirl
    }
4038 91736d37 blueswir1
    env->tbr &= ~0x7fffULL;
4039 91736d37 blueswir1
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
4040 91736d37 blueswir1
    env->pc = env->tbr;
4041 91736d37 blueswir1
    env->npc = env->pc + 4;
4042 821b19fe Igor V. Kovalenko
    env->exception_index = -1;
4043 ee5bbe38 bellard
}
4044 91736d37 blueswir1
#else
4045 91736d37 blueswir1
#ifdef DEBUG_PCALL
4046 91736d37 blueswir1
static const char * const excp_names[0x80] = {
4047 91736d37 blueswir1
    [TT_TFAULT] = "Instruction Access Fault",
4048 91736d37 blueswir1
    [TT_ILL_INSN] = "Illegal Instruction",
4049 91736d37 blueswir1
    [TT_PRIV_INSN] = "Privileged Instruction",
4050 91736d37 blueswir1
    [TT_NFPU_INSN] = "FPU Disabled",
4051 91736d37 blueswir1
    [TT_WIN_OVF] = "Window Overflow",
4052 91736d37 blueswir1
    [TT_WIN_UNF] = "Window Underflow",
4053 91736d37 blueswir1
    [TT_UNALIGNED] = "Unaligned Memory Access",
4054 91736d37 blueswir1
    [TT_FP_EXCP] = "FPU Exception",
4055 91736d37 blueswir1
    [TT_DFAULT] = "Data Access Fault",
4056 91736d37 blueswir1
    [TT_TOVF] = "Tag Overflow",
4057 91736d37 blueswir1
    [TT_EXTINT | 0x1] = "External Interrupt 1",
4058 91736d37 blueswir1
    [TT_EXTINT | 0x2] = "External Interrupt 2",
4059 91736d37 blueswir1
    [TT_EXTINT | 0x3] = "External Interrupt 3",
4060 91736d37 blueswir1
    [TT_EXTINT | 0x4] = "External Interrupt 4",
4061 91736d37 blueswir1
    [TT_EXTINT | 0x5] = "External Interrupt 5",
4062 91736d37 blueswir1
    [TT_EXTINT | 0x6] = "External Interrupt 6",
4063 91736d37 blueswir1
    [TT_EXTINT | 0x7] = "External Interrupt 7",
4064 91736d37 blueswir1
    [TT_EXTINT | 0x8] = "External Interrupt 8",
4065 91736d37 blueswir1
    [TT_EXTINT | 0x9] = "External Interrupt 9",
4066 91736d37 blueswir1
    [TT_EXTINT | 0xa] = "External Interrupt 10",
4067 91736d37 blueswir1
    [TT_EXTINT | 0xb] = "External Interrupt 11",
4068 91736d37 blueswir1
    [TT_EXTINT | 0xc] = "External Interrupt 12",
4069 91736d37 blueswir1
    [TT_EXTINT | 0xd] = "External Interrupt 13",
4070 91736d37 blueswir1
    [TT_EXTINT | 0xe] = "External Interrupt 14",
4071 91736d37 blueswir1
    [TT_EXTINT | 0xf] = "External Interrupt 15",
4072 91736d37 blueswir1
    [TT_TOVF] = "Tag Overflow",
4073 91736d37 blueswir1
    [TT_CODE_ACCESS] = "Instruction Access Error",
4074 91736d37 blueswir1
    [TT_DATA_ACCESS] = "Data Access Error",
4075 91736d37 blueswir1
    [TT_DIV_ZERO] = "Division By Zero",
4076 91736d37 blueswir1
    [TT_NCP_INSN] = "Coprocessor Disabled",
4077 91736d37 blueswir1
};
4078 91736d37 blueswir1
#endif
4079 ee5bbe38 bellard
4080 91736d37 blueswir1
void do_interrupt(CPUState *env)
4081 ee5bbe38 bellard
{
4082 91736d37 blueswir1
    int cwp, intno = env->exception_index;
4083 91736d37 blueswir1
4084 91736d37 blueswir1
#ifdef DEBUG_PCALL
4085 8fec2b8c aliguori
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
4086 91736d37 blueswir1
        static int count;
4087 91736d37 blueswir1
        const char *name;
4088 91736d37 blueswir1
4089 91736d37 blueswir1
        if (intno < 0 || intno >= 0x100)
4090 91736d37 blueswir1
            name = "Unknown";
4091 91736d37 blueswir1
        else if (intno >= 0x80)
4092 91736d37 blueswir1
            name = "Trap Instruction";
4093 91736d37 blueswir1
        else {
4094 91736d37 blueswir1
            name = excp_names[intno];
4095 91736d37 blueswir1
            if (!name)
4096 91736d37 blueswir1
                name = "Unknown";
4097 91736d37 blueswir1
        }
4098 91736d37 blueswir1
4099 93fcfe39 aliguori
        qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
4100 91736d37 blueswir1
                count, name, intno,
4101 91736d37 blueswir1
                env->pc,
4102 91736d37 blueswir1
                env->npc, env->regwptr[6]);
4103 93fcfe39 aliguori
        log_cpu_state(env, 0);
4104 91736d37 blueswir1
#if 0
4105 91736d37 blueswir1
        {
4106 91736d37 blueswir1
            int i;
4107 91736d37 blueswir1
            uint8_t *ptr;
4108 91736d37 blueswir1

4109 93fcfe39 aliguori
            qemu_log("       code=");
4110 91736d37 blueswir1
            ptr = (uint8_t *)env->pc;
4111 91736d37 blueswir1
            for(i = 0; i < 16; i++) {
4112 93fcfe39 aliguori
                qemu_log(" %02x", ldub(ptr + i));
4113 91736d37 blueswir1
            }
4114 93fcfe39 aliguori
            qemu_log("\n");
4115 91736d37 blueswir1
        }
4116 91736d37 blueswir1
#endif
4117 91736d37 blueswir1
        count++;
4118 91736d37 blueswir1
    }
4119 91736d37 blueswir1
#endif
4120 91736d37 blueswir1
#if !defined(CONFIG_USER_ONLY)
4121 91736d37 blueswir1
    if (env->psret == 0) {
4122 91736d37 blueswir1
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
4123 91736d37 blueswir1
                  env->exception_index);
4124 91736d37 blueswir1
        return;
4125 91736d37 blueswir1
    }
4126 91736d37 blueswir1
#endif
4127 91736d37 blueswir1
    env->psret = 0;
4128 5a834bb4 Blue Swirl
    cwp = cwp_dec(env->cwp - 1);
4129 5a834bb4 Blue Swirl
    set_cwp(cwp);
4130 91736d37 blueswir1
    env->regwptr[9] = env->pc;
4131 91736d37 blueswir1
    env->regwptr[10] = env->npc;
4132 91736d37 blueswir1
    env->psrps = env->psrs;
4133 91736d37 blueswir1
    env->psrs = 1;
4134 91736d37 blueswir1
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
4135 91736d37 blueswir1
    env->pc = env->tbr;
4136 91736d37 blueswir1
    env->npc = env->pc + 4;
4137 95372a39 Blue Swirl
    env->exception_index = -1;
4138 ee5bbe38 bellard
}
4139 91736d37 blueswir1
#endif
4140 ee5bbe38 bellard
4141 5fafdf24 ths
#if !defined(CONFIG_USER_ONLY)
4142 ee5bbe38 bellard
4143 d2889a3e blueswir1
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4144 d2889a3e blueswir1
                                void *retaddr);
4145 d2889a3e blueswir1
4146 ee5bbe38 bellard
#define MMUSUFFIX _mmu
4147 d2889a3e blueswir1
#define ALIGNED_ONLY
4148 ee5bbe38 bellard
4149 ee5bbe38 bellard
#define SHIFT 0
4150 ee5bbe38 bellard
#include "softmmu_template.h"
4151 ee5bbe38 bellard
4152 ee5bbe38 bellard
#define SHIFT 1
4153 ee5bbe38 bellard
#include "softmmu_template.h"
4154 ee5bbe38 bellard
4155 ee5bbe38 bellard
#define SHIFT 2
4156 ee5bbe38 bellard
#include "softmmu_template.h"
4157 ee5bbe38 bellard
4158 ee5bbe38 bellard
#define SHIFT 3
4159 ee5bbe38 bellard
#include "softmmu_template.h"
4160 ee5bbe38 bellard
4161 c2bc0e38 blueswir1
/* XXX: make it generic ? */
4162 c2bc0e38 blueswir1
static void cpu_restore_state2(void *retaddr)
4163 c2bc0e38 blueswir1
{
4164 c2bc0e38 blueswir1
    TranslationBlock *tb;
4165 c2bc0e38 blueswir1
    unsigned long pc;
4166 c2bc0e38 blueswir1
4167 c2bc0e38 blueswir1
    if (retaddr) {
4168 c2bc0e38 blueswir1
        /* now we have a real cpu fault */
4169 c2bc0e38 blueswir1
        pc = (unsigned long)retaddr;
4170 c2bc0e38 blueswir1
        tb = tb_find_pc(pc);
4171 c2bc0e38 blueswir1
        if (tb) {
4172 c2bc0e38 blueswir1
            /* the PC is inside the translated code. It means that we have
4173 c2bc0e38 blueswir1
               a virtual CPU fault */
4174 c2bc0e38 blueswir1
            cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
4175 c2bc0e38 blueswir1
        }
4176 c2bc0e38 blueswir1
    }
4177 c2bc0e38 blueswir1
}
4178 c2bc0e38 blueswir1
4179 d2889a3e blueswir1
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4180 d2889a3e blueswir1
                                void *retaddr)
4181 d2889a3e blueswir1
{
4182 94554550 blueswir1
#ifdef DEBUG_UNALIGNED
4183 c2bc0e38 blueswir1
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4184 c2bc0e38 blueswir1
           "\n", addr, env->pc);
4185 94554550 blueswir1
#endif
4186 c2bc0e38 blueswir1
    cpu_restore_state2(retaddr);
4187 94554550 blueswir1
    raise_exception(TT_UNALIGNED);
4188 d2889a3e blueswir1
}
4189 ee5bbe38 bellard
4190 ee5bbe38 bellard
/* try to fill the TLB and return an exception if error. If retaddr is
4191 ee5bbe38 bellard
   NULL, it means that the function was called in C code (i.e. not
4192 ee5bbe38 bellard
   from generated code or from helper.c) */
4193 ee5bbe38 bellard
/* XXX: fix it to restore all registers */
4194 6ebbf390 j_mayer
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4195 ee5bbe38 bellard
{
4196 ee5bbe38 bellard
    int ret;
4197 ee5bbe38 bellard
    CPUState *saved_env;
4198 ee5bbe38 bellard
4199 ee5bbe38 bellard
    /* XXX: hack to restore env in all cases, even if not called from
4200 ee5bbe38 bellard
       generated code */
4201 ee5bbe38 bellard
    saved_env = env;
4202 ee5bbe38 bellard
    env = cpu_single_env;
4203 ee5bbe38 bellard
4204 6ebbf390 j_mayer
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4205 ee5bbe38 bellard
    if (ret) {
4206 c2bc0e38 blueswir1
        cpu_restore_state2(retaddr);
4207 ee5bbe38 bellard
        cpu_loop_exit();
4208 ee5bbe38 bellard
    }
4209 ee5bbe38 bellard
    env = saved_env;
4210 ee5bbe38 bellard
}
4211 ee5bbe38 bellard
4212 3c7b48b7 Paul Brook
#endif /* !CONFIG_USER_ONLY */
4213 6c36d3fa blueswir1
4214 6c36d3fa blueswir1
#ifndef TARGET_SPARC64
4215 3c7b48b7 Paul Brook
#if !defined(CONFIG_USER_ONLY)
4216 c227f099 Anthony Liguori
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4217 e18231a3 blueswir1
                          int is_asi, int size)
4218 6c36d3fa blueswir1
{
4219 6c36d3fa blueswir1
    CPUState *saved_env;
4220 576c2cdc Artyom Tarasenko
    int fault_type;
4221 6c36d3fa blueswir1
4222 6c36d3fa blueswir1
    /* XXX: hack to restore env in all cases, even if not called from
4223 6c36d3fa blueswir1
       generated code */
4224 6c36d3fa blueswir1
    saved_env = env;
4225 6c36d3fa blueswir1
    env = cpu_single_env;
4226 8543e2cf blueswir1
#ifdef DEBUG_UNASSIGNED
4227 8543e2cf blueswir1
    if (is_asi)
4228 e18231a3 blueswir1
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4229 77f193da blueswir1
               " asi 0x%02x from " TARGET_FMT_lx "\n",
4230 e18231a3 blueswir1
               is_exec ? "exec" : is_write ? "write" : "read", size,
4231 e18231a3 blueswir1
               size == 1 ? "" : "s", addr, is_asi, env->pc);
4232 8543e2cf blueswir1
    else
4233 e18231a3 blueswir1
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4234 e18231a3 blueswir1
               " from " TARGET_FMT_lx "\n",
4235 e18231a3 blueswir1
               is_exec ? "exec" : is_write ? "write" : "read", size,
4236 e18231a3 blueswir1
               size == 1 ? "" : "s", addr, env->pc);
4237 8543e2cf blueswir1
#endif
4238 576c2cdc Artyom Tarasenko
    /* Don't overwrite translation and access faults */
4239 576c2cdc Artyom Tarasenko
    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4240 576c2cdc Artyom Tarasenko
    if ((fault_type > 4) || (fault_type == 0)) {
4241 576c2cdc Artyom Tarasenko
        env->mmuregs[3] = 0; /* Fault status register */
4242 576c2cdc Artyom Tarasenko
        if (is_asi)
4243 576c2cdc Artyom Tarasenko
            env->mmuregs[3] |= 1 << 16;
4244 576c2cdc Artyom Tarasenko
        if (env->psrs)
4245 576c2cdc Artyom Tarasenko
            env->mmuregs[3] |= 1 << 5;
4246 576c2cdc Artyom Tarasenko
        if (is_exec)
4247 576c2cdc Artyom Tarasenko
            env->mmuregs[3] |= 1 << 6;
4248 576c2cdc Artyom Tarasenko
        if (is_write)
4249 576c2cdc Artyom Tarasenko
            env->mmuregs[3] |= 1 << 7;
4250 576c2cdc Artyom Tarasenko
        env->mmuregs[3] |= (5 << 2) | 2;
4251 576c2cdc Artyom Tarasenko
        /* SuperSPARC will never place instruction fault addresses in the FAR */
4252 576c2cdc Artyom Tarasenko
        if (!is_exec) {
4253 576c2cdc Artyom Tarasenko
            env->mmuregs[4] = addr; /* Fault address register */
4254 576c2cdc Artyom Tarasenko
        }
4255 576c2cdc Artyom Tarasenko
    }
4256 576c2cdc Artyom Tarasenko
    /* overflow (same type fault was not read before another fault) */
4257 576c2cdc Artyom Tarasenko
    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4258 576c2cdc Artyom Tarasenko
        env->mmuregs[3] |= 1;
4259 576c2cdc Artyom Tarasenko
    }
4260 576c2cdc Artyom Tarasenko
4261 6c36d3fa blueswir1
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
4262 1b2e93c1 blueswir1
        if (is_exec)
4263 1b2e93c1 blueswir1
            raise_exception(TT_CODE_ACCESS);
4264 1b2e93c1 blueswir1
        else
4265 1b2e93c1 blueswir1
            raise_exception(TT_DATA_ACCESS);
4266 6c36d3fa blueswir1
    }
4267 576c2cdc Artyom Tarasenko
4268 576c2cdc Artyom Tarasenko
    /* flush neverland mappings created during no-fault mode,
4269 576c2cdc Artyom Tarasenko
       so the sequential MMU faults report proper fault types */
4270 576c2cdc Artyom Tarasenko
    if (env->mmuregs[0] & MMU_NF) {
4271 576c2cdc Artyom Tarasenko
        tlb_flush(env, 1);
4272 576c2cdc Artyom Tarasenko
    }
4273 15e7c451 Artyom Tarasenko
4274 15e7c451 Artyom Tarasenko
    env = saved_env;
4275 6c36d3fa blueswir1
}
4276 3c7b48b7 Paul Brook
#endif
4277 3c7b48b7 Paul Brook
#else
4278 3c7b48b7 Paul Brook
#if defined(CONFIG_USER_ONLY)
4279 3c7b48b7 Paul Brook
static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4280 3c7b48b7 Paul Brook
                          int is_asi, int size)
4281 6c36d3fa blueswir1
#else
4282 c227f099 Anthony Liguori
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4283 e18231a3 blueswir1
                          int is_asi, int size)
4284 3c7b48b7 Paul Brook
#endif
4285 6c36d3fa blueswir1
{
4286 6c36d3fa blueswir1
    CPUState *saved_env;
4287 6c36d3fa blueswir1
4288 6c36d3fa blueswir1
    /* XXX: hack to restore env in all cases, even if not called from
4289 6c36d3fa blueswir1
       generated code */
4290 6c36d3fa blueswir1
    saved_env = env;
4291 6c36d3fa blueswir1
    env = cpu_single_env;
4292 dffbe217 Igor V. Kovalenko
4293 dffbe217 Igor V. Kovalenko
#ifdef DEBUG_UNASSIGNED
4294 77f193da blueswir1
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4295 77f193da blueswir1
           "\n", addr, env->pc);
4296 6c36d3fa blueswir1
#endif
4297 dffbe217 Igor V. Kovalenko
4298 1b2e93c1 blueswir1
    if (is_exec)
4299 1b2e93c1 blueswir1
        raise_exception(TT_CODE_ACCESS);
4300 1b2e93c1 blueswir1
    else
4301 1b2e93c1 blueswir1
        raise_exception(TT_DATA_ACCESS);
4302 dffbe217 Igor V. Kovalenko
4303 dffbe217 Igor V. Kovalenko
    env = saved_env;
4304 6c36d3fa blueswir1
}
4305 6c36d3fa blueswir1
#endif
4306 20c9f095 blueswir1
4307 3c7b48b7 Paul Brook
4308 f4b1a842 blueswir1
#ifdef TARGET_SPARC64
4309 f4b1a842 blueswir1
void helper_tick_set_count(void *opaque, uint64_t count)
4310 f4b1a842 blueswir1
{
4311 f4b1a842 blueswir1
#if !defined(CONFIG_USER_ONLY)
4312 f4b1a842 blueswir1
    cpu_tick_set_count(opaque, count);
4313 f4b1a842 blueswir1
#endif
4314 f4b1a842 blueswir1
}
4315 f4b1a842 blueswir1
4316 f4b1a842 blueswir1
uint64_t helper_tick_get_count(void *opaque)
4317 f4b1a842 blueswir1
{
4318 f4b1a842 blueswir1
#if !defined(CONFIG_USER_ONLY)
4319 f4b1a842 blueswir1
    return cpu_tick_get_count(opaque);
4320 f4b1a842 blueswir1
#else
4321 f4b1a842 blueswir1
    return 0;
4322 f4b1a842 blueswir1
#endif
4323 f4b1a842 blueswir1
}
4324 f4b1a842 blueswir1
4325 f4b1a842 blueswir1
void helper_tick_set_limit(void *opaque, uint64_t limit)
4326 f4b1a842 blueswir1
{
4327 f4b1a842 blueswir1
#if !defined(CONFIG_USER_ONLY)
4328 f4b1a842 blueswir1
    cpu_tick_set_limit(opaque, limit);
4329 f4b1a842 blueswir1
#endif
4330 f4b1a842 blueswir1
}
4331 f4b1a842 blueswir1
#endif