Statistics
| Branch: | Revision:

root / hw / cuda.c @ 0986ac3b

History | View | Annotate | Download (17.8 kB)

1
/*
2
 * QEMU CUDA support
3
 * 
4
 * Copyright (c) 2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
/* XXX: implement all timer modes */
27

    
28
//#define DEBUG_CUDA
29
//#define DEBUG_CUDA_PACKET
30

    
31
/* Bits in B data register: all active low */
32
#define TREQ                0x08                /* Transfer request (input) */
33
#define TACK                0x10                /* Transfer acknowledge (output) */
34
#define TIP                0x20                /* Transfer in progress (output) */
35

    
36
/* Bits in ACR */
37
#define SR_CTRL                0x1c                /* Shift register control bits */
38
#define SR_EXT                0x0c                /* Shift on external clock */
39
#define SR_OUT                0x10                /* Shift out if 1 */
40

    
41
/* Bits in IFR and IER */
42
#define IER_SET                0x80                /* set bits in IER */
43
#define IER_CLR                0                /* clear bits in IER */
44
#define SR_INT                0x04                /* Shift register full/empty */
45
#define T1_INT          0x40            /* Timer 1 interrupt */
46
#define T2_INT          0x20            /* Timer 2 interrupt */
47

    
48
/* Bits in ACR */
49
#define T1MODE          0xc0            /* Timer 1 mode */
50
#define T1MODE_CONT     0x40            /*  continuous interrupts */
51

    
52
/* commands (1st byte) */
53
#define ADB_PACKET        0
54
#define CUDA_PACKET        1
55
#define ERROR_PACKET        2
56
#define TIMER_PACKET        3
57
#define POWER_PACKET        4
58
#define MACIIC_PACKET        5
59
#define PMU_PACKET        6
60

    
61

    
62
/* CUDA commands (2nd byte) */
63
#define CUDA_WARM_START                        0x0
64
#define CUDA_AUTOPOLL                        0x1
65
#define CUDA_GET_6805_ADDR                0x2
66
#define CUDA_GET_TIME                        0x3
67
#define CUDA_GET_PRAM                        0x7
68
#define CUDA_SET_6805_ADDR                0x8
69
#define CUDA_SET_TIME                        0x9
70
#define CUDA_POWERDOWN                        0xa
71
#define CUDA_POWERUP_TIME                0xb
72
#define CUDA_SET_PRAM                        0xc
73
#define CUDA_MS_RESET                        0xd
74
#define CUDA_SEND_DFAC                        0xe
75
#define CUDA_BATTERY_SWAP_SENSE                0x10
76
#define CUDA_RESET_SYSTEM                0x11
77
#define CUDA_SET_IPL                        0x12
78
#define CUDA_FILE_SERVER_FLAG                0x13
79
#define CUDA_SET_AUTO_RATE                0x14
80
#define CUDA_GET_AUTO_RATE                0x16
81
#define CUDA_SET_DEVICE_LIST                0x19
82
#define CUDA_GET_DEVICE_LIST                0x1a
83
#define CUDA_SET_ONE_SECOND_MODE        0x1b
84
#define CUDA_SET_POWER_MESSAGES                0x21
85
#define CUDA_GET_SET_IIC                0x22
86
#define CUDA_WAKEUP                        0x23
87
#define CUDA_TIMER_TICKLE                0x24
88
#define CUDA_COMBINED_FORMAT_IIC        0x25
89

    
90
#define CUDA_TIMER_FREQ (4700000 / 6)
91
#define CUDA_ADB_POLL_FREQ 50
92

    
93
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
94
#define RTC_OFFSET                      2082844800
95

    
96
typedef struct CUDATimer {
97
    int index; 
98
    uint16_t latch;
99
    uint16_t counter_value; /* counter value at load time */
100
    int64_t load_time;
101
    int64_t next_irq_time;
102
    QEMUTimer *timer;
103
} CUDATimer;
104

    
105
typedef struct CUDAState {
106
    /* cuda registers */
107
    uint8_t b;      /* B-side data */
108
    uint8_t a;      /* A-side data */
109
    uint8_t dirb;   /* B-side direction (1=output) */
110
    uint8_t dira;   /* A-side direction (1=output) */
111
    uint8_t sr;     /* Shift register */
112
    uint8_t acr;    /* Auxiliary control register */
113
    uint8_t pcr;    /* Peripheral control register */
114
    uint8_t ifr;    /* Interrupt flag register */
115
    uint8_t ier;    /* Interrupt enable register */
116
    uint8_t anh;    /* A-side data, no handshake */
117

    
118
    CUDATimer timers[2];
119
    
120
    uint8_t last_b; /* last value of B register */
121
    uint8_t last_acr; /* last value of B register */
122
    
123
    int data_in_size;
124
    int data_in_index;
125
    int data_out_index;
126

    
127
    SetIRQFunc *set_irq;
128
    int irq;
129
    void *irq_opaque;
130
    uint8_t autopoll;
131
    uint8_t data_in[128];
132
    uint8_t data_out[16];
133
    QEMUTimer *adb_poll_timer;
134
} CUDAState;
135

    
136
static CUDAState cuda_state;
137
ADBBusState adb_bus;
138

    
139
static void cuda_update(CUDAState *s);
140
static void cuda_receive_packet_from_host(CUDAState *s, 
141
                                          const uint8_t *data, int len);
142
static void cuda_timer_update(CUDAState *s, CUDATimer *ti, 
143
                              int64_t current_time);
144

    
145
static void cuda_update_irq(CUDAState *s)
146
{
147
    if (s->ifr & s->ier & (SR_INT | T1_INT)) {
148
        s->set_irq(s->irq_opaque, s->irq, 1);
149
    } else {
150
        s->set_irq(s->irq_opaque, s->irq, 0);
151
    }
152
}
153

    
154
static unsigned int get_counter(CUDATimer *s)
155
{
156
    int64_t d;
157
    unsigned int counter;
158

    
159
    d = muldiv64(qemu_get_clock(vm_clock) - s->load_time, 
160
                 CUDA_TIMER_FREQ, ticks_per_sec);
161
    if (s->index == 0) {
162
        /* the timer goes down from latch to -1 (period of latch + 2) */
163
        if (d <= (s->counter_value + 1)) {
164
            counter = (s->counter_value - d) & 0xffff;
165
        } else {
166
            counter = (d - (s->counter_value + 1)) % (s->latch + 2);
167
            counter = (s->latch - counter) & 0xffff; 
168
        }
169
    } else {
170
        counter = (s->counter_value - d) & 0xffff;
171
    }
172
    return counter;
173
}
174

    
175
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
176
{
177
#ifdef DEBUG_CUDA
178
    printf("cuda: T%d.counter=%d\n",
179
           1 + (ti->timer == NULL), val);
180
#endif
181
    ti->load_time = qemu_get_clock(vm_clock);
182
    ti->counter_value = val;
183
    cuda_timer_update(s, ti, ti->load_time);
184
}
185

    
186
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
187
{
188
    int64_t d, next_time;
189
    unsigned int counter;
190

    
191
    /* current counter value */
192
    d = muldiv64(current_time - s->load_time, 
193
                 CUDA_TIMER_FREQ, ticks_per_sec);
194
    /* the timer goes down from latch to -1 (period of latch + 2) */
195
    if (d <= (s->counter_value + 1)) {
196
        counter = (s->counter_value - d) & 0xffff;
197
    } else {
198
        counter = (d - (s->counter_value + 1)) % (s->latch + 2);
199
        counter = (s->latch - counter) & 0xffff; 
200
    }
201
    
202
    /* Note: we consider the irq is raised on 0 */
203
    if (counter == 0xffff) {
204
        next_time = d + s->latch + 1;
205
    } else if (counter == 0) {
206
        next_time = d + s->latch + 2;
207
    } else {
208
        next_time = d + counter;
209
    }
210
#if 0
211
#ifdef DEBUG_CUDA
212
    printf("latch=%d counter=%lld delta_next=%lld\n", 
213
           s->latch, d, next_time - d);
214
#endif
215
#endif
216
    next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) + 
217
        s->load_time;
218
    if (next_time <= current_time)
219
        next_time = current_time + 1;
220
    return next_time;
221
}
222

    
223
static void cuda_timer_update(CUDAState *s, CUDATimer *ti, 
224
                              int64_t current_time)
225
{
226
    if (!ti->timer)
227
        return;
228
    if ((s->acr & T1MODE) != T1MODE_CONT) {
229
        qemu_del_timer(ti->timer);
230
    } else {
231
        ti->next_irq_time = get_next_irq_time(ti, current_time);
232
        qemu_mod_timer(ti->timer, ti->next_irq_time);
233
    }
234
}
235

    
236
static void cuda_timer1(void *opaque)
237
{
238
    CUDAState *s = opaque;
239
    CUDATimer *ti = &s->timers[0];
240

    
241
    cuda_timer_update(s, ti, ti->next_irq_time);
242
    s->ifr |= T1_INT;
243
    cuda_update_irq(s);
244
}
245

    
246
static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
247
{
248
    CUDAState *s = opaque;
249
    uint32_t val;
250

    
251
    addr = (addr >> 9) & 0xf;
252
    switch(addr) {
253
    case 0:
254
        val = s->b;
255
        break;
256
    case 1:
257
        val = s->a;
258
        break;
259
    case 2:
260
        val = s->dirb;
261
        break;
262
    case 3:
263
        val = s->dira;
264
        break;
265
    case 4:
266
        val = get_counter(&s->timers[0]) & 0xff;
267
        s->ifr &= ~T1_INT;
268
        cuda_update_irq(s);
269
        break;
270
    case 5:
271
        val = get_counter(&s->timers[0]) >> 8;
272
        cuda_update_irq(s);
273
        break;
274
    case 6:
275
        val = s->timers[0].latch & 0xff;
276
        break;
277
    case 7:
278
        /* XXX: check this */
279
        val = (s->timers[0].latch >> 8) & 0xff;
280
        break;
281
    case 8:
282
        val = get_counter(&s->timers[1]) & 0xff;
283
        s->ifr &= ~T2_INT;
284
        break;
285
    case 9:
286
        val = get_counter(&s->timers[1]) >> 8;
287
        break;
288
    case 10:
289
        val = s->sr;
290
        s->ifr &= ~SR_INT;
291
        cuda_update_irq(s);
292
        break;
293
    case 11:
294
        val = s->acr;
295
        break;
296
    case 12:
297
        val = s->pcr;
298
        break;
299
    case 13:
300
        val = s->ifr;
301
        if (s->ifr & s->ier) 
302
            val |= 0x80;
303
        break;
304
    case 14:
305
        val = s->ier | 0x80;
306
        break;
307
    default:
308
    case 15:
309
        val = s->anh;
310
        break;
311
    }
312
#ifdef DEBUG_CUDA
313
    if (addr != 13 || val != 0)
314
        printf("cuda: read: reg=0x%x val=%02x\n", addr, val);
315
#endif
316
    return val;
317
}
318

    
319
static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
320
{
321
    CUDAState *s = opaque;
322
    
323
    addr = (addr >> 9) & 0xf;
324
#ifdef DEBUG_CUDA
325
    printf("cuda: write: reg=0x%x val=%02x\n", addr, val);
326
#endif
327

    
328
    switch(addr) {
329
    case 0:
330
        s->b = val;
331
        cuda_update(s);
332
        break;
333
    case 1:
334
        s->a = val;
335
        break;
336
    case 2:
337
        s->dirb = val;
338
        break;
339
    case 3:
340
        s->dira = val;
341
        break;
342
    case 4:
343
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
344
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
345
        break;
346
    case 5:
347
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
348
        s->ifr &= ~T1_INT;
349
        set_counter(s, &s->timers[0], s->timers[0].latch);
350
        break;
351
    case 6:
352
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
353
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
354
        break;
355
    case 7:
356
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
357
        s->ifr &= ~T1_INT;
358
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
359
        break;
360
    case 8:
361
        s->timers[1].latch = val;
362
        set_counter(s, &s->timers[1], val);
363
        break;
364
    case 9:
365
        set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
366
        break;
367
    case 10:
368
        s->sr = val;
369
        break;
370
    case 11:
371
        s->acr = val;
372
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
373
        cuda_update(s);
374
        break;
375
    case 12:
376
        s->pcr = val;
377
        break;
378
    case 13:
379
        /* reset bits */
380
        s->ifr &= ~val;
381
        cuda_update_irq(s);
382
        break;
383
    case 14:
384
        if (val & IER_SET) {
385
            /* set bits */
386
            s->ier |= val & 0x7f;
387
        } else {
388
            /* reset bits */
389
            s->ier &= ~val;
390
        }
391
        cuda_update_irq(s);
392
        break;
393
    default:
394
    case 15:
395
        s->anh = val;
396
        break;
397
    }
398
}
399

    
400
/* NOTE: TIP and TREQ are negated */
401
static void cuda_update(CUDAState *s)
402
{
403
    int packet_received, len;
404

    
405
    packet_received = 0;
406
    if (!(s->b & TIP)) {
407
        /* transfer requested from host */
408

    
409
        if (s->acr & SR_OUT) {
410
            /* data output */
411
            if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
412
                if (s->data_out_index < sizeof(s->data_out)) {
413
#ifdef DEBUG_CUDA
414
                    printf("cuda: send: %02x\n", s->sr);
415
#endif
416
                    s->data_out[s->data_out_index++] = s->sr;
417
                    s->ifr |= SR_INT;
418
                    cuda_update_irq(s);
419
                }
420
            }
421
        } else {
422
            if (s->data_in_index < s->data_in_size) {
423
                /* data input */
424
                if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
425
                    s->sr = s->data_in[s->data_in_index++];
426
#ifdef DEBUG_CUDA
427
                    printf("cuda: recv: %02x\n", s->sr);
428
#endif
429
                    /* indicate end of transfer */
430
                    if (s->data_in_index >= s->data_in_size) {
431
                        s->b = (s->b | TREQ);
432
                    }
433
                    s->ifr |= SR_INT;
434
                    cuda_update_irq(s);
435
                }
436
            }
437
        }
438
    } else {
439
        /* no transfer requested: handle sync case */
440
        if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
441
            /* update TREQ state each time TACK change state */
442
            if (s->b & TACK)
443
                s->b = (s->b | TREQ);
444
            else
445
                s->b = (s->b & ~TREQ);
446
            s->ifr |= SR_INT;
447
            cuda_update_irq(s);
448
        } else {
449
            if (!(s->last_b & TIP)) {
450
                /* handle end of host to cuda transfert */
451
                packet_received = (s->data_out_index > 0);
452
                /* always an IRQ at the end of transfert */
453
                s->ifr |= SR_INT;
454
                cuda_update_irq(s);
455
            }
456
            /* signal if there is data to read */
457
            if (s->data_in_index < s->data_in_size) {
458
                s->b = (s->b & ~TREQ);
459
            }
460
        }
461
    }
462

    
463
    s->last_acr = s->acr;
464
    s->last_b = s->b;
465

    
466
    /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
467
       recursively */
468
    if (packet_received) {
469
        len = s->data_out_index;
470
        s->data_out_index = 0;
471
        cuda_receive_packet_from_host(s, s->data_out, len);
472
    }
473
}
474

    
475
static void cuda_send_packet_to_host(CUDAState *s, 
476
                                     const uint8_t *data, int len)
477
{
478
#ifdef DEBUG_CUDA_PACKET
479
    {
480
        int i;
481
        printf("cuda_send_packet_to_host:\n");
482
        for(i = 0; i < len; i++)
483
            printf(" %02x", data[i]);
484
        printf("\n");
485
    }
486
#endif
487
    memcpy(s->data_in, data, len);
488
    s->data_in_size = len;
489
    s->data_in_index = 0;
490
    cuda_update(s);
491
    s->ifr |= SR_INT;
492
    cuda_update_irq(s);
493
}
494

    
495
static void cuda_adb_poll(void *opaque)
496
{
497
    CUDAState *s = opaque;
498
    uint8_t obuf[ADB_MAX_OUT_LEN + 2];
499
    int olen;
500

    
501
    olen = adb_poll(&adb_bus, obuf + 2);
502
    if (olen > 0) {
503
        obuf[0] = ADB_PACKET;
504
        obuf[1] = 0x40; /* polled data */
505
        cuda_send_packet_to_host(s, obuf, olen + 2);
506
    }
507
    qemu_mod_timer(s->adb_poll_timer, 
508
                   qemu_get_clock(vm_clock) + 
509
                   (ticks_per_sec / CUDA_ADB_POLL_FREQ));
510
}
511

    
512
static void cuda_receive_packet(CUDAState *s, 
513
                                const uint8_t *data, int len)
514
{
515
    uint8_t obuf[16];
516
    int ti, autopoll;
517

    
518
    switch(data[0]) {
519
    case CUDA_AUTOPOLL:
520
        autopoll = (data[1] != 0);
521
        if (autopoll != s->autopoll) {
522
            s->autopoll = autopoll;
523
            if (autopoll) {
524
                qemu_mod_timer(s->adb_poll_timer, 
525
                               qemu_get_clock(vm_clock) + 
526
                               (ticks_per_sec / CUDA_ADB_POLL_FREQ));
527
            } else {
528
                qemu_del_timer(s->adb_poll_timer);
529
            }
530
        }
531
        obuf[0] = CUDA_PACKET;
532
        obuf[1] = data[1];
533
        cuda_send_packet_to_host(s, obuf, 2);
534
        break;
535
    case CUDA_GET_TIME:
536
    case CUDA_SET_TIME:
537
        /* XXX: add time support ? */
538
        ti = time(NULL) + RTC_OFFSET;
539
        obuf[0] = CUDA_PACKET;
540
        obuf[1] = 0;
541
        obuf[2] = 0;
542
        obuf[3] = ti >> 24;
543
        obuf[4] = ti >> 16;
544
        obuf[5] = ti >> 8;
545
        obuf[6] = ti;
546
        cuda_send_packet_to_host(s, obuf, 7);
547
        break;
548
    case CUDA_FILE_SERVER_FLAG:
549
    case CUDA_SET_DEVICE_LIST:
550
    case CUDA_SET_AUTO_RATE:
551
    case CUDA_SET_POWER_MESSAGES:
552
        obuf[0] = CUDA_PACKET;
553
        obuf[1] = 0;
554
        cuda_send_packet_to_host(s, obuf, 2);
555
        break;
556
    case CUDA_POWERDOWN:
557
        obuf[0] = CUDA_PACKET;
558
        obuf[1] = 0;
559
        cuda_send_packet_to_host(s, obuf, 2);
560
        qemu_system_shutdown_request();
561
        break;
562
    default:
563
        break;
564
    }
565
}
566

    
567
static void cuda_receive_packet_from_host(CUDAState *s, 
568
                                          const uint8_t *data, int len)
569
{
570
#ifdef DEBUG_CUDA_PACKET
571
    {
572
        int i;
573
        printf("cuda_receive_packet_from_host:\n");
574
        for(i = 0; i < len; i++)
575
            printf(" %02x", data[i]);
576
        printf("\n");
577
    }
578
#endif
579
    switch(data[0]) {
580
    case ADB_PACKET:
581
        {
582
            uint8_t obuf[ADB_MAX_OUT_LEN + 2];
583
            int olen;
584
            olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
585
            if (olen > 0) {
586
                obuf[0] = ADB_PACKET;
587
                obuf[1] = 0x00;
588
            } else {
589
                /* error */
590
                obuf[0] = ADB_PACKET;
591
                obuf[1] = -olen;
592
                olen = 0;
593
            }
594
            cuda_send_packet_to_host(s, obuf, olen + 2);
595
        }
596
        break;
597
    case CUDA_PACKET:
598
        cuda_receive_packet(s, data + 1, len - 1);
599
        break;
600
    }
601
}
602

    
603
static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
604
{
605
}
606

    
607
static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
608
{
609
}
610

    
611
static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
612
{
613
    return 0;
614
}
615

    
616
static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
617
{
618
    return 0;
619
}
620

    
621
static CPUWriteMemoryFunc *cuda_write[] = {
622
    &cuda_writeb,
623
    &cuda_writew,
624
    &cuda_writel,
625
};
626

    
627
static CPUReadMemoryFunc *cuda_read[] = {
628
    &cuda_readb,
629
    &cuda_readw,
630
    &cuda_readl,
631
};
632

    
633
int cuda_init(SetIRQFunc *set_irq, void *irq_opaque, int irq)
634
{
635
    CUDAState *s = &cuda_state;
636
    int cuda_mem_index;
637

    
638
    s->set_irq = set_irq;
639
    s->irq_opaque = irq_opaque;
640
    s->irq = irq;
641

    
642
    s->timers[0].index = 0;
643
    s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
644
    s->timers[0].latch = 0xffff;
645
    set_counter(s, &s->timers[0], 0xffff);
646

    
647
    s->timers[1].index = 1;
648
    s->timers[1].latch = 0;
649
    //    s->ier = T1_INT | SR_INT;
650
    s->ier = 0;
651
    set_counter(s, &s->timers[1], 0xffff);
652

    
653
    s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s);
654
    cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
655
    return cuda_mem_index;
656
}