Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 09b26c5e

History | View | Annotate | Download (24 kB)

1 80cabfad bellard
/*
2 80cabfad bellard
 * QEMU NE2000 emulation
3 80cabfad bellard
 * 
4 80cabfad bellard
 * Copyright (c) 2003-2004 Fabrice Bellard
5 80cabfad bellard
 * 
6 80cabfad bellard
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 80cabfad bellard
 * of this software and associated documentation files (the "Software"), to deal
8 80cabfad bellard
 * in the Software without restriction, including without limitation the rights
9 80cabfad bellard
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 80cabfad bellard
 * copies of the Software, and to permit persons to whom the Software is
11 80cabfad bellard
 * furnished to do so, subject to the following conditions:
12 80cabfad bellard
 *
13 80cabfad bellard
 * The above copyright notice and this permission notice shall be included in
14 80cabfad bellard
 * all copies or substantial portions of the Software.
15 80cabfad bellard
 *
16 80cabfad bellard
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 80cabfad bellard
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 80cabfad bellard
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 80cabfad bellard
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 80cabfad bellard
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 80cabfad bellard
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 80cabfad bellard
 * THE SOFTWARE.
23 80cabfad bellard
 */
24 80cabfad bellard
#include "vl.h"
25 80cabfad bellard
26 80cabfad bellard
/* debug NE2000 card */
27 80cabfad bellard
//#define DEBUG_NE2000
28 80cabfad bellard
29 b41a2cd1 bellard
#define MAX_ETH_FRAME_SIZE 1514
30 80cabfad bellard
31 80cabfad bellard
#define E8390_CMD        0x00  /* The command register (for all pages) */
32 80cabfad bellard
/* Page 0 register offsets. */
33 80cabfad bellard
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
34 80cabfad bellard
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
35 80cabfad bellard
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
36 80cabfad bellard
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
37 80cabfad bellard
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
38 80cabfad bellard
#define EN0_TSR                0x04        /* Transmit status reg RD */
39 80cabfad bellard
#define EN0_TPSR        0x04        /* Transmit starting page WR */
40 80cabfad bellard
#define EN0_NCR                0x05        /* Number of collision reg RD */
41 80cabfad bellard
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
42 80cabfad bellard
#define EN0_FIFO        0x06        /* FIFO RD */
43 80cabfad bellard
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
44 80cabfad bellard
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
45 80cabfad bellard
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
46 80cabfad bellard
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
47 80cabfad bellard
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
48 80cabfad bellard
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
49 80cabfad bellard
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
50 089af991 bellard
#define EN0_RTL8029ID0        0x0a        /* Realtek ID byte #1 RD */
51 80cabfad bellard
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
52 089af991 bellard
#define EN0_RTL8029ID1        0x0b        /* Realtek ID byte #2 RD */
53 80cabfad bellard
#define EN0_RSR                0x0c        /* rx status reg RD */
54 80cabfad bellard
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
55 80cabfad bellard
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
56 80cabfad bellard
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
57 80cabfad bellard
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
58 80cabfad bellard
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
59 80cabfad bellard
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
60 80cabfad bellard
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
61 80cabfad bellard
62 80cabfad bellard
#define EN1_PHYS        0x11
63 80cabfad bellard
#define EN1_CURPAG      0x17
64 80cabfad bellard
#define EN1_MULT        0x18
65 80cabfad bellard
66 a343df16 bellard
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
67 a343df16 bellard
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
68 a343df16 bellard
69 089af991 bellard
#define EN3_CONFIG0        0x33
70 089af991 bellard
#define EN3_CONFIG1        0x34
71 089af991 bellard
#define EN3_CONFIG2        0x35
72 089af991 bellard
#define EN3_CONFIG3        0x36
73 089af991 bellard
74 80cabfad bellard
/*  Register accessed at EN_CMD, the 8390 base addr.  */
75 80cabfad bellard
#define E8390_STOP        0x01        /* Stop and reset the chip */
76 80cabfad bellard
#define E8390_START        0x02        /* Start the chip, clear reset */
77 80cabfad bellard
#define E8390_TRANS        0x04        /* Transmit a frame */
78 80cabfad bellard
#define E8390_RREAD        0x08        /* Remote read */
79 80cabfad bellard
#define E8390_RWRITE        0x10        /* Remote write  */
80 80cabfad bellard
#define E8390_NODMA        0x20        /* Remote DMA */
81 80cabfad bellard
#define E8390_PAGE0        0x00        /* Select page chip registers */
82 80cabfad bellard
#define E8390_PAGE1        0x40        /* using the two high-order bits */
83 80cabfad bellard
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
84 80cabfad bellard
85 80cabfad bellard
/* Bits in EN0_ISR - Interrupt status register */
86 80cabfad bellard
#define ENISR_RX        0x01        /* Receiver, no error */
87 80cabfad bellard
#define ENISR_TX        0x02        /* Transmitter, no error */
88 80cabfad bellard
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
89 80cabfad bellard
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
90 80cabfad bellard
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
91 80cabfad bellard
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
92 80cabfad bellard
#define ENISR_RDC        0x40        /* remote dma complete */
93 80cabfad bellard
#define ENISR_RESET        0x80        /* Reset completed */
94 80cabfad bellard
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
95 80cabfad bellard
96 80cabfad bellard
/* Bits in received packet status byte and EN0_RSR*/
97 80cabfad bellard
#define ENRSR_RXOK        0x01        /* Received a good packet */
98 80cabfad bellard
#define ENRSR_CRC        0x02        /* CRC error */
99 80cabfad bellard
#define ENRSR_FAE        0x04        /* frame alignment error */
100 80cabfad bellard
#define ENRSR_FO        0x08        /* FIFO overrun */
101 80cabfad bellard
#define ENRSR_MPA        0x10        /* missed pkt */
102 80cabfad bellard
#define ENRSR_PHY        0x20        /* physical/multicast address */
103 80cabfad bellard
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
104 80cabfad bellard
#define ENRSR_DEF        0x80        /* deferring */
105 80cabfad bellard
106 80cabfad bellard
/* Transmitted packet status, EN0_TSR. */
107 80cabfad bellard
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
108 80cabfad bellard
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
109 80cabfad bellard
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
110 80cabfad bellard
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
111 80cabfad bellard
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
112 80cabfad bellard
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
113 80cabfad bellard
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
114 80cabfad bellard
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
115 80cabfad bellard
116 ee9dbb29 bellard
#define NE2000_PMEM_SIZE    (32*1024)
117 ee9dbb29 bellard
#define NE2000_PMEM_START   (16*1024)
118 ee9dbb29 bellard
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
119 ee9dbb29 bellard
#define NE2000_MEM_SIZE     NE2000_PMEM_END
120 80cabfad bellard
121 80cabfad bellard
typedef struct NE2000State {
122 80cabfad bellard
    uint8_t cmd;
123 80cabfad bellard
    uint32_t start;
124 80cabfad bellard
    uint32_t stop;
125 80cabfad bellard
    uint8_t boundary;
126 80cabfad bellard
    uint8_t tsr;
127 80cabfad bellard
    uint8_t tpsr;
128 80cabfad bellard
    uint16_t tcnt;
129 80cabfad bellard
    uint16_t rcnt;
130 80cabfad bellard
    uint32_t rsar;
131 8d6c7eb8 bellard
    uint8_t rsr;
132 7c9d8e07 bellard
    uint8_t rxcr;
133 80cabfad bellard
    uint8_t isr;
134 80cabfad bellard
    uint8_t dcfg;
135 80cabfad bellard
    uint8_t imr;
136 80cabfad bellard
    uint8_t phys[6]; /* mac address */
137 80cabfad bellard
    uint8_t curpag;
138 80cabfad bellard
    uint8_t mult[8]; /* multicast mask array */
139 80cabfad bellard
    int irq;
140 4a9c9687 bellard
    PCIDevice *pci_dev;
141 7c9d8e07 bellard
    VLANClientState *vc;
142 7c9d8e07 bellard
    uint8_t macaddr[6];
143 80cabfad bellard
    uint8_t mem[NE2000_MEM_SIZE];
144 80cabfad bellard
} NE2000State;
145 80cabfad bellard
146 80cabfad bellard
static void ne2000_reset(NE2000State *s)
147 80cabfad bellard
{
148 80cabfad bellard
    int i;
149 80cabfad bellard
150 80cabfad bellard
    s->isr = ENISR_RESET;
151 7c9d8e07 bellard
    memcpy(s->mem, s->macaddr, 6);
152 80cabfad bellard
    s->mem[14] = 0x57;
153 80cabfad bellard
    s->mem[15] = 0x57;
154 80cabfad bellard
155 80cabfad bellard
    /* duplicate prom data */
156 80cabfad bellard
    for(i = 15;i >= 0; i--) {
157 80cabfad bellard
        s->mem[2 * i] = s->mem[i];
158 80cabfad bellard
        s->mem[2 * i + 1] = s->mem[i];
159 80cabfad bellard
    }
160 80cabfad bellard
}
161 80cabfad bellard
162 80cabfad bellard
static void ne2000_update_irq(NE2000State *s)
163 80cabfad bellard
{
164 80cabfad bellard
    int isr;
165 a343df16 bellard
    isr = (s->isr & s->imr) & 0x7f;
166 a541f297 bellard
#if defined(DEBUG_NE2000)
167 a541f297 bellard
    printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
168 a541f297 bellard
           s->irq, isr ? 1 : 0, s->isr, s->imr);
169 a541f297 bellard
#endif
170 4a9c9687 bellard
    if (s->irq == 16) {
171 4a9c9687 bellard
        /* PCI irq */
172 4a9c9687 bellard
        pci_set_irq(s->pci_dev, 0, (isr != 0));
173 4a9c9687 bellard
    } else {
174 4a9c9687 bellard
        /* ISA irq */
175 4a9c9687 bellard
        pic_set_irq(s->irq, (isr != 0));
176 4a9c9687 bellard
    }
177 80cabfad bellard
}
178 80cabfad bellard
179 7c9d8e07 bellard
#define POLYNOMIAL 0x04c11db6
180 7c9d8e07 bellard
181 7c9d8e07 bellard
/* From FreeBSD */
182 7c9d8e07 bellard
/* XXX: optimize */
183 7c9d8e07 bellard
static int compute_mcast_idx(const uint8_t *ep)
184 7c9d8e07 bellard
{
185 7c9d8e07 bellard
    uint32_t crc;
186 7c9d8e07 bellard
    int carry, i, j;
187 7c9d8e07 bellard
    uint8_t b;
188 7c9d8e07 bellard
189 7c9d8e07 bellard
    crc = 0xffffffff;
190 7c9d8e07 bellard
    for (i = 0; i < 6; i++) {
191 7c9d8e07 bellard
        b = *ep++;
192 7c9d8e07 bellard
        for (j = 0; j < 8; j++) {
193 7c9d8e07 bellard
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
194 7c9d8e07 bellard
            crc <<= 1;
195 7c9d8e07 bellard
            b >>= 1;
196 7c9d8e07 bellard
            if (carry)
197 7c9d8e07 bellard
                crc = ((crc ^ POLYNOMIAL) | carry);
198 7c9d8e07 bellard
        }
199 7c9d8e07 bellard
    }
200 7c9d8e07 bellard
    return (crc >> 26);
201 7c9d8e07 bellard
}
202 7c9d8e07 bellard
203 d861b05e pbrook
static int ne2000_buffer_full(NE2000State *s)
204 80cabfad bellard
{
205 80cabfad bellard
    int avail, index, boundary;
206 d861b05e pbrook
207 80cabfad bellard
    index = s->curpag << 8;
208 80cabfad bellard
    boundary = s->boundary << 8;
209 80cabfad bellard
    if (index < boundary)
210 80cabfad bellard
        avail = boundary - index;
211 80cabfad bellard
    else
212 80cabfad bellard
        avail = (s->stop - s->start) - (index - boundary);
213 80cabfad bellard
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
214 d861b05e pbrook
        return 1;
215 d861b05e pbrook
    return 0;
216 d861b05e pbrook
}
217 d861b05e pbrook
218 d861b05e pbrook
static int ne2000_can_receive(void *opaque)
219 d861b05e pbrook
{
220 d861b05e pbrook
    NE2000State *s = opaque;
221 d861b05e pbrook
    
222 d861b05e pbrook
    if (s->cmd & E8390_STOP)
223 d861b05e pbrook
        return 1;
224 d861b05e pbrook
    return !ne2000_buffer_full(s);
225 80cabfad bellard
}
226 80cabfad bellard
227 b41a2cd1 bellard
#define MIN_BUF_SIZE 60
228 b41a2cd1 bellard
229 b41a2cd1 bellard
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
230 80cabfad bellard
{
231 b41a2cd1 bellard
    NE2000State *s = opaque;
232 80cabfad bellard
    uint8_t *p;
233 7c9d8e07 bellard
    int total_len, next, avail, len, index, mcast_idx;
234 b41a2cd1 bellard
    uint8_t buf1[60];
235 7c9d8e07 bellard
    static const uint8_t broadcast_macaddr[6] = 
236 7c9d8e07 bellard
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
237 b41a2cd1 bellard
    
238 80cabfad bellard
#if defined(DEBUG_NE2000)
239 80cabfad bellard
    printf("NE2000: received len=%d\n", size);
240 80cabfad bellard
#endif
241 80cabfad bellard
242 d861b05e pbrook
    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
243 7c9d8e07 bellard
        return;
244 7c9d8e07 bellard
    
245 7c9d8e07 bellard
    /* XXX: check this */
246 7c9d8e07 bellard
    if (s->rxcr & 0x10) {
247 7c9d8e07 bellard
        /* promiscuous: receive all */
248 7c9d8e07 bellard
    } else {
249 7c9d8e07 bellard
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
250 7c9d8e07 bellard
            /* broadcast address */
251 7c9d8e07 bellard
            if (!(s->rxcr & 0x04))
252 7c9d8e07 bellard
                return;
253 7c9d8e07 bellard
        } else if (buf[0] & 0x01) {
254 7c9d8e07 bellard
            /* multicast */
255 7c9d8e07 bellard
            if (!(s->rxcr & 0x08))
256 7c9d8e07 bellard
                return;
257 7c9d8e07 bellard
            mcast_idx = compute_mcast_idx(buf);
258 7c9d8e07 bellard
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
259 7c9d8e07 bellard
                return;
260 7c9d8e07 bellard
        } else if (s->mem[0] == buf[0] &&
261 7c9d8e07 bellard
                   s->mem[2] == buf[1] &&                   
262 7c9d8e07 bellard
                   s->mem[4] == buf[2] &&            
263 7c9d8e07 bellard
                   s->mem[6] == buf[3] &&            
264 7c9d8e07 bellard
                   s->mem[8] == buf[4] &&            
265 7c9d8e07 bellard
                   s->mem[10] == buf[5]) {
266 7c9d8e07 bellard
            /* match */
267 7c9d8e07 bellard
        } else {
268 7c9d8e07 bellard
            return;
269 7c9d8e07 bellard
        }
270 7c9d8e07 bellard
    }
271 7c9d8e07 bellard
272 7c9d8e07 bellard
273 b41a2cd1 bellard
    /* if too small buffer, then expand it */
274 b41a2cd1 bellard
    if (size < MIN_BUF_SIZE) {
275 b41a2cd1 bellard
        memcpy(buf1, buf, size);
276 b41a2cd1 bellard
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
277 b41a2cd1 bellard
        buf = buf1;
278 b41a2cd1 bellard
        size = MIN_BUF_SIZE;
279 b41a2cd1 bellard
    }
280 b41a2cd1 bellard
281 80cabfad bellard
    index = s->curpag << 8;
282 80cabfad bellard
    /* 4 bytes for header */
283 80cabfad bellard
    total_len = size + 4;
284 80cabfad bellard
    /* address for next packet (4 bytes for CRC) */
285 80cabfad bellard
    next = index + ((total_len + 4 + 255) & ~0xff);
286 80cabfad bellard
    if (next >= s->stop)
287 80cabfad bellard
        next -= (s->stop - s->start);
288 80cabfad bellard
    /* prepare packet header */
289 80cabfad bellard
    p = s->mem + index;
290 8d6c7eb8 bellard
    s->rsr = ENRSR_RXOK; /* receive status */
291 8d6c7eb8 bellard
    /* XXX: check this */
292 8d6c7eb8 bellard
    if (buf[0] & 0x01)
293 8d6c7eb8 bellard
        s->rsr |= ENRSR_PHY;
294 8d6c7eb8 bellard
    p[0] = s->rsr;
295 80cabfad bellard
    p[1] = next >> 8;
296 80cabfad bellard
    p[2] = total_len;
297 80cabfad bellard
    p[3] = total_len >> 8;
298 80cabfad bellard
    index += 4;
299 80cabfad bellard
300 80cabfad bellard
    /* write packet data */
301 80cabfad bellard
    while (size > 0) {
302 80cabfad bellard
        avail = s->stop - index;
303 80cabfad bellard
        len = size;
304 80cabfad bellard
        if (len > avail)
305 80cabfad bellard
            len = avail;
306 80cabfad bellard
        memcpy(s->mem + index, buf, len);
307 80cabfad bellard
        buf += len;
308 80cabfad bellard
        index += len;
309 80cabfad bellard
        if (index == s->stop)
310 80cabfad bellard
            index = s->start;
311 80cabfad bellard
        size -= len;
312 80cabfad bellard
    }
313 80cabfad bellard
    s->curpag = next >> 8;
314 8d6c7eb8 bellard
315 80cabfad bellard
    /* now we can signal we have receive something */
316 80cabfad bellard
    s->isr |= ENISR_RX;
317 80cabfad bellard
    ne2000_update_irq(s);
318 80cabfad bellard
}
319 80cabfad bellard
320 b41a2cd1 bellard
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
321 80cabfad bellard
{
322 b41a2cd1 bellard
    NE2000State *s = opaque;
323 40545f84 bellard
    int offset, page, index;
324 80cabfad bellard
325 80cabfad bellard
    addr &= 0xf;
326 80cabfad bellard
#ifdef DEBUG_NE2000
327 80cabfad bellard
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
328 80cabfad bellard
#endif
329 80cabfad bellard
    if (addr == E8390_CMD) {
330 80cabfad bellard
        /* control register */
331 80cabfad bellard
        s->cmd = val;
332 a343df16 bellard
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
333 ee9dbb29 bellard
            s->isr &= ~ENISR_RESET;
334 80cabfad bellard
            /* test specific case: zero length transfert */
335 80cabfad bellard
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
336 80cabfad bellard
                s->rcnt == 0) {
337 80cabfad bellard
                s->isr |= ENISR_RDC;
338 80cabfad bellard
                ne2000_update_irq(s);
339 80cabfad bellard
            }
340 80cabfad bellard
            if (val & E8390_TRANS) {
341 40545f84 bellard
                index = (s->tpsr << 8);
342 40545f84 bellard
                /* XXX: next 2 lines are a hack to make netware 3.11 work */ 
343 40545f84 bellard
                if (index >= NE2000_PMEM_END)
344 40545f84 bellard
                    index -= NE2000_PMEM_SIZE;
345 40545f84 bellard
                /* fail safe: check range on the transmitted length  */
346 40545f84 bellard
                if (index + s->tcnt <= NE2000_PMEM_END) {
347 7c9d8e07 bellard
                    qemu_send_packet(s->vc, s->mem + index, s->tcnt);
348 40545f84 bellard
                }
349 80cabfad bellard
                /* signal end of transfert */
350 80cabfad bellard
                s->tsr = ENTSR_PTX;
351 80cabfad bellard
                s->isr |= ENISR_TX;
352 40545f84 bellard
                s->cmd &= ~E8390_TRANS; 
353 80cabfad bellard
                ne2000_update_irq(s);
354 80cabfad bellard
            }
355 80cabfad bellard
        }
356 80cabfad bellard
    } else {
357 80cabfad bellard
        page = s->cmd >> 6;
358 80cabfad bellard
        offset = addr | (page << 4);
359 80cabfad bellard
        switch(offset) {
360 80cabfad bellard
        case EN0_STARTPG:
361 80cabfad bellard
            s->start = val << 8;
362 80cabfad bellard
            break;
363 80cabfad bellard
        case EN0_STOPPG:
364 80cabfad bellard
            s->stop = val << 8;
365 80cabfad bellard
            break;
366 80cabfad bellard
        case EN0_BOUNDARY:
367 80cabfad bellard
            s->boundary = val;
368 80cabfad bellard
            break;
369 80cabfad bellard
        case EN0_IMR:
370 80cabfad bellard
            s->imr = val;
371 80cabfad bellard
            ne2000_update_irq(s);
372 80cabfad bellard
            break;
373 80cabfad bellard
        case EN0_TPSR:
374 80cabfad bellard
            s->tpsr = val;
375 80cabfad bellard
            break;
376 80cabfad bellard
        case EN0_TCNTLO:
377 80cabfad bellard
            s->tcnt = (s->tcnt & 0xff00) | val;
378 80cabfad bellard
            break;
379 80cabfad bellard
        case EN0_TCNTHI:
380 80cabfad bellard
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
381 80cabfad bellard
            break;
382 80cabfad bellard
        case EN0_RSARLO:
383 80cabfad bellard
            s->rsar = (s->rsar & 0xff00) | val;
384 80cabfad bellard
            break;
385 80cabfad bellard
        case EN0_RSARHI:
386 80cabfad bellard
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
387 80cabfad bellard
            break;
388 80cabfad bellard
        case EN0_RCNTLO:
389 80cabfad bellard
            s->rcnt = (s->rcnt & 0xff00) | val;
390 80cabfad bellard
            break;
391 80cabfad bellard
        case EN0_RCNTHI:
392 80cabfad bellard
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
393 80cabfad bellard
            break;
394 7c9d8e07 bellard
        case EN0_RXCR:
395 7c9d8e07 bellard
            s->rxcr = val;
396 7c9d8e07 bellard
            break;
397 80cabfad bellard
        case EN0_DCFG:
398 80cabfad bellard
            s->dcfg = val;
399 80cabfad bellard
            break;
400 80cabfad bellard
        case EN0_ISR:
401 ee9dbb29 bellard
            s->isr &= ~(val & 0x7f);
402 80cabfad bellard
            ne2000_update_irq(s);
403 80cabfad bellard
            break;
404 80cabfad bellard
        case EN1_PHYS ... EN1_PHYS + 5:
405 80cabfad bellard
            s->phys[offset - EN1_PHYS] = val;
406 80cabfad bellard
            break;
407 80cabfad bellard
        case EN1_CURPAG:
408 80cabfad bellard
            s->curpag = val;
409 80cabfad bellard
            break;
410 80cabfad bellard
        case EN1_MULT ... EN1_MULT + 7:
411 80cabfad bellard
            s->mult[offset - EN1_MULT] = val;
412 80cabfad bellard
            break;
413 80cabfad bellard
        }
414 80cabfad bellard
    }
415 80cabfad bellard
}
416 80cabfad bellard
417 b41a2cd1 bellard
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
418 80cabfad bellard
{
419 b41a2cd1 bellard
    NE2000State *s = opaque;
420 80cabfad bellard
    int offset, page, ret;
421 80cabfad bellard
422 80cabfad bellard
    addr &= 0xf;
423 80cabfad bellard
    if (addr == E8390_CMD) {
424 80cabfad bellard
        ret = s->cmd;
425 80cabfad bellard
    } else {
426 80cabfad bellard
        page = s->cmd >> 6;
427 80cabfad bellard
        offset = addr | (page << 4);
428 80cabfad bellard
        switch(offset) {
429 80cabfad bellard
        case EN0_TSR:
430 80cabfad bellard
            ret = s->tsr;
431 80cabfad bellard
            break;
432 80cabfad bellard
        case EN0_BOUNDARY:
433 80cabfad bellard
            ret = s->boundary;
434 80cabfad bellard
            break;
435 80cabfad bellard
        case EN0_ISR:
436 80cabfad bellard
            ret = s->isr;
437 80cabfad bellard
            break;
438 ee9dbb29 bellard
        case EN0_RSARLO:
439 ee9dbb29 bellard
            ret = s->rsar & 0x00ff;
440 ee9dbb29 bellard
            break;
441 ee9dbb29 bellard
        case EN0_RSARHI:
442 ee9dbb29 bellard
            ret = s->rsar >> 8;
443 ee9dbb29 bellard
            break;
444 80cabfad bellard
        case EN1_PHYS ... EN1_PHYS + 5:
445 80cabfad bellard
            ret = s->phys[offset - EN1_PHYS];
446 80cabfad bellard
            break;
447 80cabfad bellard
        case EN1_CURPAG:
448 80cabfad bellard
            ret = s->curpag;
449 80cabfad bellard
            break;
450 80cabfad bellard
        case EN1_MULT ... EN1_MULT + 7:
451 80cabfad bellard
            ret = s->mult[offset - EN1_MULT];
452 80cabfad bellard
            break;
453 8d6c7eb8 bellard
        case EN0_RSR:
454 8d6c7eb8 bellard
            ret = s->rsr;
455 8d6c7eb8 bellard
            break;
456 a343df16 bellard
        case EN2_STARTPG:
457 a343df16 bellard
            ret = s->start >> 8;
458 a343df16 bellard
            break;
459 a343df16 bellard
        case EN2_STOPPG:
460 a343df16 bellard
            ret = s->stop >> 8;
461 a343df16 bellard
            break;
462 089af991 bellard
        case EN0_RTL8029ID0:
463 089af991 bellard
            ret = 0x50;
464 089af991 bellard
            break;
465 089af991 bellard
        case EN0_RTL8029ID1:
466 089af991 bellard
            ret = 0x43;
467 089af991 bellard
            break;
468 089af991 bellard
        case EN3_CONFIG0:
469 089af991 bellard
            ret = 0;                /* 10baseT media */
470 089af991 bellard
            break;
471 089af991 bellard
        case EN3_CONFIG2:
472 089af991 bellard
            ret = 0x40;                /* 10baseT active */
473 089af991 bellard
            break;
474 089af991 bellard
        case EN3_CONFIG3:
475 089af991 bellard
            ret = 0x40;                /* Full duplex */
476 089af991 bellard
            break;
477 80cabfad bellard
        default:
478 80cabfad bellard
            ret = 0x00;
479 80cabfad bellard
            break;
480 80cabfad bellard
        }
481 80cabfad bellard
    }
482 80cabfad bellard
#ifdef DEBUG_NE2000
483 80cabfad bellard
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
484 80cabfad bellard
#endif
485 80cabfad bellard
    return ret;
486 80cabfad bellard
}
487 80cabfad bellard
488 ee9dbb29 bellard
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 
489 69b91039 bellard
                                     uint32_t val)
490 ee9dbb29 bellard
{
491 ee9dbb29 bellard
    if (addr < 32 || 
492 ee9dbb29 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
493 ee9dbb29 bellard
        s->mem[addr] = val;
494 ee9dbb29 bellard
    }
495 ee9dbb29 bellard
}
496 ee9dbb29 bellard
497 ee9dbb29 bellard
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 
498 ee9dbb29 bellard
                                     uint32_t val)
499 ee9dbb29 bellard
{
500 ee9dbb29 bellard
    addr &= ~1; /* XXX: check exact behaviour if not even */
501 ee9dbb29 bellard
    if (addr < 32 || 
502 ee9dbb29 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
503 69b91039 bellard
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
504 69b91039 bellard
    }
505 69b91039 bellard
}
506 69b91039 bellard
507 69b91039 bellard
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 
508 69b91039 bellard
                                     uint32_t val)
509 69b91039 bellard
{
510 57ccbabe bellard
    addr &= ~1; /* XXX: check exact behaviour if not even */
511 69b91039 bellard
    if (addr < 32 || 
512 69b91039 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
513 57ccbabe bellard
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
514 ee9dbb29 bellard
    }
515 ee9dbb29 bellard
}
516 ee9dbb29 bellard
517 ee9dbb29 bellard
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
518 ee9dbb29 bellard
{
519 ee9dbb29 bellard
    if (addr < 32 || 
520 ee9dbb29 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
521 ee9dbb29 bellard
        return s->mem[addr];
522 ee9dbb29 bellard
    } else {
523 ee9dbb29 bellard
        return 0xff;
524 ee9dbb29 bellard
    }
525 ee9dbb29 bellard
}
526 ee9dbb29 bellard
527 ee9dbb29 bellard
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
528 ee9dbb29 bellard
{
529 ee9dbb29 bellard
    addr &= ~1; /* XXX: check exact behaviour if not even */
530 ee9dbb29 bellard
    if (addr < 32 || 
531 ee9dbb29 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
532 69b91039 bellard
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
533 ee9dbb29 bellard
    } else {
534 ee9dbb29 bellard
        return 0xffff;
535 ee9dbb29 bellard
    }
536 ee9dbb29 bellard
}
537 ee9dbb29 bellard
538 69b91039 bellard
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
539 69b91039 bellard
{
540 57ccbabe bellard
    addr &= ~1; /* XXX: check exact behaviour if not even */
541 69b91039 bellard
    if (addr < 32 || 
542 69b91039 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
543 57ccbabe bellard
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
544 69b91039 bellard
    } else {
545 69b91039 bellard
        return 0xffffffff;
546 69b91039 bellard
    }
547 69b91039 bellard
}
548 69b91039 bellard
549 3df3f6fd bellard
static inline void ne2000_dma_update(NE2000State *s, int len)
550 3df3f6fd bellard
{
551 3df3f6fd bellard
    s->rsar += len;
552 3df3f6fd bellard
    /* wrap */
553 3df3f6fd bellard
    /* XXX: check what to do if rsar > stop */
554 3df3f6fd bellard
    if (s->rsar == s->stop)
555 3df3f6fd bellard
        s->rsar = s->start;
556 3df3f6fd bellard
557 3df3f6fd bellard
    if (s->rcnt <= len) {
558 3df3f6fd bellard
        s->rcnt = 0;
559 3df3f6fd bellard
        /* signal end of transfert */
560 3df3f6fd bellard
        s->isr |= ENISR_RDC;
561 3df3f6fd bellard
        ne2000_update_irq(s);
562 3df3f6fd bellard
    } else {
563 3df3f6fd bellard
        s->rcnt -= len;
564 3df3f6fd bellard
    }
565 3df3f6fd bellard
}
566 3df3f6fd bellard
567 b41a2cd1 bellard
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
568 80cabfad bellard
{
569 b41a2cd1 bellard
    NE2000State *s = opaque;
570 80cabfad bellard
571 80cabfad bellard
#ifdef DEBUG_NE2000
572 80cabfad bellard
    printf("NE2000: asic write val=0x%04x\n", val);
573 80cabfad bellard
#endif
574 ee9dbb29 bellard
    if (s->rcnt == 0)
575 3df3f6fd bellard
        return;
576 80cabfad bellard
    if (s->dcfg & 0x01) {
577 80cabfad bellard
        /* 16 bit access */
578 ee9dbb29 bellard
        ne2000_mem_writew(s, s->rsar, val);
579 3df3f6fd bellard
        ne2000_dma_update(s, 2);
580 80cabfad bellard
    } else {
581 80cabfad bellard
        /* 8 bit access */
582 ee9dbb29 bellard
        ne2000_mem_writeb(s, s->rsar, val);
583 3df3f6fd bellard
        ne2000_dma_update(s, 1);
584 80cabfad bellard
    }
585 80cabfad bellard
}
586 80cabfad bellard
587 b41a2cd1 bellard
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
588 80cabfad bellard
{
589 b41a2cd1 bellard
    NE2000State *s = opaque;
590 80cabfad bellard
    int ret;
591 80cabfad bellard
592 80cabfad bellard
    if (s->dcfg & 0x01) {
593 80cabfad bellard
        /* 16 bit access */
594 ee9dbb29 bellard
        ret = ne2000_mem_readw(s, s->rsar);
595 3df3f6fd bellard
        ne2000_dma_update(s, 2);
596 80cabfad bellard
    } else {
597 80cabfad bellard
        /* 8 bit access */
598 ee9dbb29 bellard
        ret = ne2000_mem_readb(s, s->rsar);
599 3df3f6fd bellard
        ne2000_dma_update(s, 1);
600 80cabfad bellard
    }
601 80cabfad bellard
#ifdef DEBUG_NE2000
602 80cabfad bellard
    printf("NE2000: asic read val=0x%04x\n", ret);
603 80cabfad bellard
#endif
604 80cabfad bellard
    return ret;
605 80cabfad bellard
}
606 80cabfad bellard
607 69b91039 bellard
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
608 69b91039 bellard
{
609 69b91039 bellard
    NE2000State *s = opaque;
610 69b91039 bellard
611 69b91039 bellard
#ifdef DEBUG_NE2000
612 69b91039 bellard
    printf("NE2000: asic writel val=0x%04x\n", val);
613 69b91039 bellard
#endif
614 69b91039 bellard
    if (s->rcnt == 0)
615 3df3f6fd bellard
        return;
616 69b91039 bellard
    /* 32 bit access */
617 69b91039 bellard
    ne2000_mem_writel(s, s->rsar, val);
618 3df3f6fd bellard
    ne2000_dma_update(s, 4);
619 69b91039 bellard
}
620 69b91039 bellard
621 69b91039 bellard
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
622 69b91039 bellard
{
623 69b91039 bellard
    NE2000State *s = opaque;
624 69b91039 bellard
    int ret;
625 69b91039 bellard
626 69b91039 bellard
    /* 32 bit access */
627 69b91039 bellard
    ret = ne2000_mem_readl(s, s->rsar);
628 3df3f6fd bellard
    ne2000_dma_update(s, 4);
629 69b91039 bellard
#ifdef DEBUG_NE2000
630 69b91039 bellard
    printf("NE2000: asic readl val=0x%04x\n", ret);
631 69b91039 bellard
#endif
632 69b91039 bellard
    return ret;
633 69b91039 bellard
}
634 69b91039 bellard
635 b41a2cd1 bellard
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
636 80cabfad bellard
{
637 80cabfad bellard
    /* nothing to do (end of reset pulse) */
638 80cabfad bellard
}
639 80cabfad bellard
640 b41a2cd1 bellard
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
641 80cabfad bellard
{
642 b41a2cd1 bellard
    NE2000State *s = opaque;
643 80cabfad bellard
    ne2000_reset(s);
644 80cabfad bellard
    return 0;
645 80cabfad bellard
}
646 80cabfad bellard
647 30ca2aab bellard
static void ne2000_save(QEMUFile* f,void* opaque)
648 30ca2aab bellard
{
649 30ca2aab bellard
        NE2000State* s=(NE2000State*)opaque;
650 30ca2aab bellard
651 acff9df6 bellard
        qemu_put_8s(f, &s->rxcr);
652 acff9df6 bellard
653 30ca2aab bellard
        qemu_put_8s(f, &s->cmd);
654 30ca2aab bellard
        qemu_put_be32s(f, &s->start);
655 30ca2aab bellard
        qemu_put_be32s(f, &s->stop);
656 30ca2aab bellard
        qemu_put_8s(f, &s->boundary);
657 30ca2aab bellard
        qemu_put_8s(f, &s->tsr);
658 30ca2aab bellard
        qemu_put_8s(f, &s->tpsr);
659 30ca2aab bellard
        qemu_put_be16s(f, &s->tcnt);
660 30ca2aab bellard
        qemu_put_be16s(f, &s->rcnt);
661 30ca2aab bellard
        qemu_put_be32s(f, &s->rsar);
662 30ca2aab bellard
        qemu_put_8s(f, &s->rsr);
663 30ca2aab bellard
        qemu_put_8s(f, &s->isr);
664 30ca2aab bellard
        qemu_put_8s(f, &s->dcfg);
665 30ca2aab bellard
        qemu_put_8s(f, &s->imr);
666 30ca2aab bellard
        qemu_put_buffer(f, s->phys, 6);
667 30ca2aab bellard
        qemu_put_8s(f, &s->curpag);
668 30ca2aab bellard
        qemu_put_buffer(f, s->mult, 8);
669 30ca2aab bellard
        qemu_put_be32s(f, &s->irq);
670 30ca2aab bellard
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
671 30ca2aab bellard
}
672 30ca2aab bellard
673 30ca2aab bellard
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
674 30ca2aab bellard
{
675 30ca2aab bellard
        NE2000State* s=(NE2000State*)opaque;
676 30ca2aab bellard
677 acff9df6 bellard
        if (version_id == 2) {
678 acff9df6 bellard
            qemu_get_8s(f, &s->rxcr);
679 acff9df6 bellard
        } else if (version_id == 1) {
680 acff9df6 bellard
            s->rxcr = 0x0c;
681 acff9df6 bellard
        } else {
682 30ca2aab bellard
            return -EINVAL;
683 acff9df6 bellard
        }
684 30ca2aab bellard
685 30ca2aab bellard
        qemu_get_8s(f, &s->cmd);
686 30ca2aab bellard
        qemu_get_be32s(f, &s->start);
687 30ca2aab bellard
        qemu_get_be32s(f, &s->stop);
688 30ca2aab bellard
        qemu_get_8s(f, &s->boundary);
689 30ca2aab bellard
        qemu_get_8s(f, &s->tsr);
690 30ca2aab bellard
        qemu_get_8s(f, &s->tpsr);
691 30ca2aab bellard
        qemu_get_be16s(f, &s->tcnt);
692 30ca2aab bellard
        qemu_get_be16s(f, &s->rcnt);
693 30ca2aab bellard
        qemu_get_be32s(f, &s->rsar);
694 30ca2aab bellard
        qemu_get_8s(f, &s->rsr);
695 30ca2aab bellard
        qemu_get_8s(f, &s->isr);
696 30ca2aab bellard
        qemu_get_8s(f, &s->dcfg);
697 30ca2aab bellard
        qemu_get_8s(f, &s->imr);
698 30ca2aab bellard
        qemu_get_buffer(f, s->phys, 6);
699 30ca2aab bellard
        qemu_get_8s(f, &s->curpag);
700 30ca2aab bellard
        qemu_get_buffer(f, s->mult, 8);
701 30ca2aab bellard
        qemu_get_be32s(f, &s->irq);
702 30ca2aab bellard
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
703 30ca2aab bellard
704 30ca2aab bellard
        return 0;
705 30ca2aab bellard
}
706 30ca2aab bellard
707 7c9d8e07 bellard
void isa_ne2000_init(int base, int irq, NICInfo *nd)
708 80cabfad bellard
{
709 b41a2cd1 bellard
    NE2000State *s;
710 7c9d8e07 bellard
    
711 b41a2cd1 bellard
    s = qemu_mallocz(sizeof(NE2000State));
712 b41a2cd1 bellard
    if (!s)
713 b41a2cd1 bellard
        return;
714 b41a2cd1 bellard
    
715 b41a2cd1 bellard
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
716 b41a2cd1 bellard
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
717 80cabfad bellard
718 b41a2cd1 bellard
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
719 b41a2cd1 bellard
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
720 b41a2cd1 bellard
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
721 b41a2cd1 bellard
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
722 80cabfad bellard
723 b41a2cd1 bellard
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
724 b41a2cd1 bellard
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
725 80cabfad bellard
    s->irq = irq;
726 7c9d8e07 bellard
    memcpy(s->macaddr, nd->macaddr, 6);
727 80cabfad bellard
728 80cabfad bellard
    ne2000_reset(s);
729 b41a2cd1 bellard
730 d861b05e pbrook
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
731 d861b05e pbrook
                                 ne2000_can_receive, s);
732 7c9d8e07 bellard
733 7c9d8e07 bellard
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
734 7c9d8e07 bellard
             "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
735 7c9d8e07 bellard
             s->macaddr[0],
736 7c9d8e07 bellard
             s->macaddr[1],
737 7c9d8e07 bellard
             s->macaddr[2],
738 7c9d8e07 bellard
             s->macaddr[3],
739 7c9d8e07 bellard
             s->macaddr[4],
740 7c9d8e07 bellard
             s->macaddr[5]);
741 7c9d8e07 bellard
             
742 acff9df6 bellard
    register_savevm("ne2000", 0, 2, ne2000_save, ne2000_load, s);
743 80cabfad bellard
}
744 69b91039 bellard
745 69b91039 bellard
/***********************************************************/
746 69b91039 bellard
/* PCI NE2000 definitions */
747 69b91039 bellard
748 69b91039 bellard
typedef struct PCINE2000State {
749 69b91039 bellard
    PCIDevice dev;
750 69b91039 bellard
    NE2000State ne2000;
751 69b91039 bellard
} PCINE2000State;
752 69b91039 bellard
753 69b91039 bellard
static void ne2000_map(PCIDevice *pci_dev, int region_num, 
754 69b91039 bellard
                       uint32_t addr, uint32_t size, int type)
755 69b91039 bellard
{
756 69b91039 bellard
    PCINE2000State *d = (PCINE2000State *)pci_dev;
757 69b91039 bellard
    NE2000State *s = &d->ne2000;
758 69b91039 bellard
759 69b91039 bellard
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
760 69b91039 bellard
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
761 69b91039 bellard
762 69b91039 bellard
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
763 69b91039 bellard
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
764 69b91039 bellard
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
765 69b91039 bellard
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
766 69b91039 bellard
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
767 69b91039 bellard
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
768 69b91039 bellard
769 69b91039 bellard
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
770 69b91039 bellard
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
771 69b91039 bellard
}
772 69b91039 bellard
773 7c9d8e07 bellard
void pci_ne2000_init(PCIBus *bus, NICInfo *nd)
774 69b91039 bellard
{
775 69b91039 bellard
    PCINE2000State *d;
776 69b91039 bellard
    NE2000State *s;
777 69b91039 bellard
    uint8_t *pci_conf;
778 69b91039 bellard
    
779 46e50e9d bellard
    d = (PCINE2000State *)pci_register_device(bus,
780 46e50e9d bellard
                                              "NE2000", sizeof(PCINE2000State),
781 46e50e9d bellard
                                              -1, 
782 4a9c9687 bellard
                                              NULL, NULL);
783 69b91039 bellard
    pci_conf = d->dev.config;
784 69b91039 bellard
    pci_conf[0x00] = 0xec; // Realtek 8029
785 69b91039 bellard
    pci_conf[0x01] = 0x10;
786 69b91039 bellard
    pci_conf[0x02] = 0x29;
787 69b91039 bellard
    pci_conf[0x03] = 0x80;
788 69b91039 bellard
    pci_conf[0x0a] = 0x00; // ethernet network controller 
789 69b91039 bellard
    pci_conf[0x0b] = 0x02;
790 69b91039 bellard
    pci_conf[0x0e] = 0x00; // header_type
791 4a9c9687 bellard
    pci_conf[0x3d] = 1; // interrupt pin 0
792 69b91039 bellard
    
793 30ca2aab bellard
    pci_register_io_region(&d->dev, 0, 0x100, 
794 69b91039 bellard
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
795 69b91039 bellard
    s = &d->ne2000;
796 4a9c9687 bellard
    s->irq = 16; // PCI interrupt
797 4a9c9687 bellard
    s->pci_dev = (PCIDevice *)d;
798 7c9d8e07 bellard
    memcpy(s->macaddr, nd->macaddr, 6);
799 69b91039 bellard
    ne2000_reset(s);
800 d861b05e pbrook
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
801 d861b05e pbrook
                                 ne2000_can_receive, s);
802 7c9d8e07 bellard
803 7c9d8e07 bellard
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
804 7c9d8e07 bellard
             "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
805 7c9d8e07 bellard
             s->macaddr[0],
806 7c9d8e07 bellard
             s->macaddr[1],
807 7c9d8e07 bellard
             s->macaddr[2],
808 7c9d8e07 bellard
             s->macaddr[3],
809 7c9d8e07 bellard
             s->macaddr[4],
810 7c9d8e07 bellard
             s->macaddr[5]);
811 7c9d8e07 bellard
             
812 30ca2aab bellard
    /* XXX: instance number ? */
813 acff9df6 bellard
    register_savevm("ne2000", 0, 2, ne2000_save, ne2000_load, s);
814 30ca2aab bellard
    register_savevm("ne2000_pci", 0, 1, generic_pci_save, generic_pci_load, 
815 30ca2aab bellard
                    &d->dev);
816 69b91039 bellard
}