Statistics
| Branch: | Revision:

root / hw / arm_timer.c @ 09b26c5e

History | View | Annotate | Download (10.2 kB)

1
/* 
2
 * ARM PrimeCell Timer modules.
3
 *
4
 * Copyright (c) 2005-2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the GPL.
8
 */
9

    
10
#include "vl.h"
11
#include "arm_pic.h"
12

    
13
/* Common timer implementation.  */
14

    
15
#define TIMER_CTRL_ONESHOT      (1 << 0)
16
#define TIMER_CTRL_32BIT        (1 << 1)
17
#define TIMER_CTRL_DIV1         (0 << 2)
18
#define TIMER_CTRL_DIV16        (1 << 2)
19
#define TIMER_CTRL_DIV256       (2 << 2)
20
#define TIMER_CTRL_IE           (1 << 5)
21
#define TIMER_CTRL_PERIODIC     (1 << 6)
22
#define TIMER_CTRL_ENABLE       (1 << 7)
23

    
24
typedef struct {
25
    int64_t next_time;
26
    int64_t expires;
27
    int64_t loaded;
28
    QEMUTimer *timer;
29
    uint32_t control;
30
    uint32_t count;
31
    uint32_t limit;
32
    int raw_freq;
33
    int freq;
34
    int int_level;
35
    void *pic;
36
    int irq;
37
} arm_timer_state;
38

    
39
/* Calculate the new expiry time of the given timer.  */
40

    
41
static void arm_timer_reload(arm_timer_state *s)
42
{
43
    int64_t delay;
44

    
45
    s->loaded = s->expires;
46
    delay = muldiv64(s->count, ticks_per_sec, s->freq);
47
    if (delay == 0)
48
        delay = 1;
49
    s->expires += delay;
50
}
51

    
52
/* Check all active timers, and schedule the next timer interrupt.  */
53

    
54
static void arm_timer_update(arm_timer_state *s, int64_t now)
55
{
56
    int64_t next;
57

    
58
    /* Ignore disabled timers.  */
59
    if ((s->control & TIMER_CTRL_ENABLE) == 0)
60
        return;
61
    /* Ignore expired one-shot timers.  */
62
    if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT))
63
        return;
64
    if (s->expires - now <= 0) {
65
        /* Timer has expired.  */
66
        s->int_level = 1;
67
        if (s->control & TIMER_CTRL_ONESHOT) {
68
            /* One-shot.  */
69
            s->count = 0;
70
        } else {
71
            if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
72
                /* Free running.  */
73
                if (s->control & TIMER_CTRL_32BIT)
74
                    s->count = 0xffffffff;
75
                else
76
                    s->count = 0xffff;
77
            } else {
78
                  /* Periodic.  */
79
                  s->count = s->limit;
80
            }
81
        }
82
    }
83
    while (s->expires - now <= 0) {
84
        arm_timer_reload(s);
85
    }
86
    /* Update interrupts.  */
87
    if (s->int_level && (s->control & TIMER_CTRL_IE)) {
88
        pic_set_irq_new(s->pic, s->irq, 1);
89
    } else {
90
        pic_set_irq_new(s->pic, s->irq, 0);
91
    }
92

    
93
    next = now;
94
    if (next - s->expires < 0)
95
        next = s->expires;
96

    
97
    /* Schedule the next timer interrupt.  */
98
    if (next == now) {
99
        qemu_del_timer(s->timer);
100
        s->next_time = 0;
101
    } else if (next != s->next_time) {
102
        qemu_mod_timer(s->timer, next);
103
        s->next_time = next;
104
    }
105
}
106

    
107
/* Return the current value of the timer.  */
108
static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now)
109
{
110
    int64_t elapsed;
111
    int64_t period;
112

    
113
    if (s->count == 0)
114
        return 0;
115
    if ((s->control & TIMER_CTRL_ENABLE) == 0)
116
        return s->count;
117
    elapsed = now - s->loaded;
118
    period = s->expires - s->loaded;
119
    /* If the timer should have expired then return 0.  This can happen
120
       when the host timer signal doesnt occur immediately.  It's better to
121
       have a timer appear to sit at zero for a while than have it wrap
122
       around before the guest interrupt is raised.  */
123
    /* ??? Could we trigger the interrupt here?  */
124
    if (elapsed > period)
125
        return 0;
126
    /* We need to calculate count * elapsed / period without overfowing.
127
       Scale both elapsed and period so they fit in a 32-bit int.  */
128
    while (period != (int32_t)period) {
129
        period >>= 1;
130
        elapsed >>= 1;
131
    }
132
    return ((uint64_t)s->count * (uint64_t)(int32_t)elapsed)
133
            / (int32_t)period;
134
}
135

    
136
uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
137
{
138
    arm_timer_state *s = (arm_timer_state *)opaque;
139

    
140
    switch (offset >> 2) {
141
    case 0: /* TimerLoad */
142
    case 6: /* TimerBGLoad */
143
        return s->limit;
144
    case 1: /* TimerValue */
145
        return arm_timer_getcount(s, qemu_get_clock(vm_clock));
146
    case 2: /* TimerControl */
147
        return s->control;
148
    case 4: /* TimerRIS */
149
        return s->int_level;
150
    case 5: /* TimerMIS */
151
        if ((s->control & TIMER_CTRL_IE) == 0)
152
            return 0;
153
        return s->int_level;
154
    default:
155
        cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset);
156
        return 0;
157
    }
158
}
159

    
160
static void arm_timer_write(void *opaque, target_phys_addr_t offset,
161
                            uint32_t value)
162
{
163
    arm_timer_state *s = (arm_timer_state *)opaque;
164
    int64_t now;
165

    
166
    now = qemu_get_clock(vm_clock);
167
    switch (offset >> 2) {
168
    case 0: /* TimerLoad */
169
        s->limit = value;
170
        s->count = value;
171
        s->expires = now;
172
        arm_timer_reload(s);
173
        break;
174
    case 1: /* TimerValue */
175
        /* ??? Linux seems to want to write to this readonly register.
176
           Ignore it.  */
177
        break;
178
    case 2: /* TimerControl */
179
        if (s->control & TIMER_CTRL_ENABLE) {
180
            /* Pause the timer if it is running.  This may cause some
181
               inaccuracy dure to rounding, but avoids a whole lot of other
182
               messyness.  */
183
            s->count = arm_timer_getcount(s, now);
184
        }
185
        s->control = value;
186
        s->freq = s->raw_freq;
187
        /* ??? Need to recalculate expiry time after changing divisor.  */
188
        switch ((value >> 2) & 3) {
189
        case 1: s->freq >>= 4; break;
190
        case 2: s->freq >>= 8; break;
191
        }
192
        if (s->control & TIMER_CTRL_ENABLE) {
193
            /* Restart the timer if still enabled.  */
194
            s->expires = now;
195
            arm_timer_reload(s);
196
        }
197
        break;
198
    case 3: /* TimerIntClr */
199
        s->int_level = 0;
200
        break;
201
    case 6: /* TimerBGLoad */
202
        s->limit = value;
203
        break;
204
    default:
205
        cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset);
206
    }
207
    arm_timer_update(s, now);
208
}
209

    
210
static void arm_timer_tick(void *opaque)
211
{
212
    int64_t now;
213

    
214
    now = qemu_get_clock(vm_clock);
215
    arm_timer_update((arm_timer_state *)opaque, now);
216
}
217

    
218
static void *arm_timer_init(uint32_t freq, void *pic, int irq)
219
{
220
    arm_timer_state *s;
221

    
222
    s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
223
    s->pic = pic;
224
    s->irq = irq;
225
    s->raw_freq = s->freq = 1000000;
226
    s->control = TIMER_CTRL_IE;
227
    s->count = 0xffffffff;
228

    
229
    s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s);
230
    /* ??? Save/restore.  */
231
    return s;
232
}
233

    
234
/* ARM PrimeCell SP804 dual timer module.
235
   Docs for this device don't seem to be publicly available.  This
236
   implementation is based on gueswork, the linux kernel sources and the
237
   Integrator/CP timer modules.  */
238

    
239
typedef struct {
240
    /* Include a pseudo-PIC device to merge the two interrupt sources.  */
241
    arm_pic_handler handler;
242
    void *timer[2];
243
    int level[2];
244
    uint32_t base;
245
    /* The output PIC device.  */
246
    void *pic;
247
    int irq;
248
} sp804_state;
249

    
250
static void sp804_set_irq(void *opaque, int irq, int level)
251
{
252
    sp804_state *s = (sp804_state *)opaque;
253

    
254
    s->level[irq] = level;
255
    pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]);
256
}
257

    
258
static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
259
{
260
    sp804_state *s = (sp804_state *)opaque;
261

    
262
    /* ??? Don't know the PrimeCell ID for this device.  */
263
    offset -= s->base;
264
    if (offset < 0x20) {
265
        return arm_timer_read(s->timer[0], offset);
266
    } else {
267
        return arm_timer_read(s->timer[1], offset - 0x20);
268
    }
269
}
270

    
271
static void sp804_write(void *opaque, target_phys_addr_t offset,
272
                        uint32_t value)
273
{
274
    sp804_state *s = (sp804_state *)opaque;
275

    
276
    offset -= s->base;
277
    if (offset < 0x20) {
278
        arm_timer_write(s->timer[0], offset, value);
279
    } else {
280
        arm_timer_write(s->timer[1], offset - 0x20, value);
281
    }
282
}
283

    
284
static CPUReadMemoryFunc *sp804_readfn[] = {
285
   sp804_read,
286
   sp804_read,
287
   sp804_read
288
};
289

    
290
static CPUWriteMemoryFunc *sp804_writefn[] = {
291
   sp804_write,
292
   sp804_write,
293
   sp804_write
294
};
295

    
296
void sp804_init(uint32_t base, void *pic, int irq)
297
{
298
    int iomemtype;
299
    sp804_state *s;
300

    
301
    s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
302
    s->handler = sp804_set_irq;
303
    s->base = base;
304
    s->pic = pic;
305
    s->irq = irq;
306
    /* ??? The timers are actually configurable between 32kHz and 1MHz, but
307
       we don't implement that.  */
308
    s->timer[0] = arm_timer_init(1000000, s, 0);
309
    s->timer[1] = arm_timer_init(1000000, s, 1);
310
    iomemtype = cpu_register_io_memory(0, sp804_readfn,
311
                                       sp804_writefn, s);
312
    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
313
    /* ??? Save/restore.  */
314
}
315

    
316

    
317
/* Integrator/CP timer module.  */
318

    
319
typedef struct {
320
    void *timer[3];
321
    uint32_t base;
322
} icp_pit_state;
323

    
324
static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
325
{
326
    icp_pit_state *s = (icp_pit_state *)opaque;
327
    int n;
328

    
329
    /* ??? Don't know the PrimeCell ID for this device.  */
330
    offset -= s->base;
331
    n = offset >> 8;
332
    if (n > 3)
333
        cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);
334

    
335
    return arm_timer_read(s->timer[n], offset & 0xff);
336
}
337

    
338
static void icp_pit_write(void *opaque, target_phys_addr_t offset,
339
                          uint32_t value)
340
{
341
    icp_pit_state *s = (icp_pit_state *)opaque;
342
    int n;
343

    
344
    offset -= s->base;
345
    n = offset >> 8;
346
    if (n > 3)
347
        cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);
348

    
349
    arm_timer_write(s->timer[n], offset & 0xff, value);
350
}
351

    
352

    
353
static CPUReadMemoryFunc *icp_pit_readfn[] = {
354
   icp_pit_read,
355
   icp_pit_read,
356
   icp_pit_read
357
};
358

    
359
static CPUWriteMemoryFunc *icp_pit_writefn[] = {
360
   icp_pit_write,
361
   icp_pit_write,
362
   icp_pit_write
363
};
364

    
365
void icp_pit_init(uint32_t base, void *pic, int irq)
366
{
367
    int iomemtype;
368
    icp_pit_state *s;
369

    
370
    s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
371
    s->base = base;
372
    /* Timer 0 runs at the system clock speed (40MHz).  */
373
    s->timer[0] = arm_timer_init(40000000, pic, irq);
374
    /* The other two timers run at 1MHz.  */
375
    s->timer[1] = arm_timer_init(1000000, pic, irq + 1);
376
    s->timer[2] = arm_timer_init(1000000, pic, irq + 2);
377

    
378
    iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
379
                                       icp_pit_writefn, s);
380
    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
381
    /* ??? Save/restore.  */
382
}
383