Statistics
| Branch: | Revision:

root / exec-all.h @ 0a878c47

History | View | Annotate | Download (18 kB)

1
/*
2
 * internal execution defines for qemu
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20

    
21
/* allow to see translation results - the slowdown should be negligible, so we leave it */
22
#define DEBUG_DISAS
23

    
24
/* is_jmp field values */
25
#define DISAS_NEXT    0 /* next instruction can be analyzed */
26
#define DISAS_JUMP    1 /* only pc was modified dynamically */
27
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
28
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
29

    
30
struct TranslationBlock;
31

    
32
/* XXX: make safe guess about sizes */
33
#define MAX_OP_PER_INSTR 64
34
/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
35
#define MAX_OPC_PARAM 10
36
#define OPC_BUF_SIZE 512
37
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38

    
39
/* Maximum size a TCG op can expand to.  This is complicated because a
40
   single op may require several host instructions and regirster reloads.
41
   For now take a wild guess at 128 bytes, which should allow at least
42
   a couple of fixup instructions per argument.  */
43
#define TCG_MAX_OP_SIZE 128
44

    
45
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
46

    
47
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
48
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
49
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
50
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
51
extern target_ulong gen_opc_jump_pc[2];
52
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
53

    
54
typedef void (GenOpFunc)(void);
55
typedef void (GenOpFunc1)(long);
56
typedef void (GenOpFunc2)(long, long);
57
typedef void (GenOpFunc3)(long, long, long);
58

    
59
extern FILE *logfile;
60
extern int loglevel;
61

    
62
int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
63
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
64
void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
65
                 unsigned long searched_pc, int pc_pos, void *puc);
66

    
67
unsigned long code_gen_max_block_size(void);
68
void cpu_gen_init(void);
69
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
70
                 int *gen_code_size_ptr);
71
int cpu_restore_state(struct TranslationBlock *tb,
72
                      CPUState *env, unsigned long searched_pc,
73
                      void *puc);
74
int cpu_restore_state_copy(struct TranslationBlock *tb,
75
                           CPUState *env, unsigned long searched_pc,
76
                           void *puc);
77
void cpu_resume_from_signal(CPUState *env1, void *puc);
78
void cpu_exec_init(CPUState *env);
79
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
80
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
81
                                   int is_cpu_write_access);
82
void tb_invalidate_page_range(target_ulong start, target_ulong end);
83
void tlb_flush_page(CPUState *env, target_ulong addr);
84
void tlb_flush(CPUState *env, int flush_global);
85
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
86
                      target_phys_addr_t paddr, int prot,
87
                      int mmu_idx, int is_softmmu);
88
static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
89
                               target_phys_addr_t paddr, int prot,
90
                               int mmu_idx, int is_softmmu)
91
{
92
    if (prot & PAGE_READ)
93
        prot |= PAGE_EXEC;
94
    return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
95
}
96

    
97
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
98

    
99
#define CODE_GEN_PHYS_HASH_BITS     15
100
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
101

    
102
#define MIN_CODE_GEN_BUFFER_SIZE     (1024 * 1024)
103

    
104
/* estimated block size for TB allocation */
105
/* XXX: use a per code average code fragment size and modulate it
106
   according to the host CPU */
107
#if defined(CONFIG_SOFTMMU)
108
#define CODE_GEN_AVG_BLOCK_SIZE 128
109
#else
110
#define CODE_GEN_AVG_BLOCK_SIZE 64
111
#endif
112

    
113
#if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__)
114
#define USE_DIRECT_JUMP
115
#endif
116
#if defined(__i386__) && !defined(_WIN32)
117
#define USE_DIRECT_JUMP
118
#endif
119

    
120
typedef struct TranslationBlock {
121
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
122
    target_ulong cs_base; /* CS base for this block */
123
    uint64_t flags; /* flags defining in which context the code was generated */
124
    uint16_t size;      /* size of target code for this block (1 <=
125
                           size <= TARGET_PAGE_SIZE) */
126
    uint16_t cflags;    /* compile flags */
127
#define CF_TB_FP_USED  0x0002 /* fp ops are used in the TB */
128
#define CF_FP_USED     0x0004 /* fp ops are used in the TB or in a chained TB */
129
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
130

    
131
    uint8_t *tc_ptr;    /* pointer to the translated code */
132
    /* next matching tb for physical address. */
133
    struct TranslationBlock *phys_hash_next;
134
    /* first and second physical page containing code. The lower bit
135
       of the pointer tells the index in page_next[] */
136
    struct TranslationBlock *page_next[2];
137
    target_ulong page_addr[2];
138

    
139
    /* the following data are used to directly call another TB from
140
       the code of this one. */
141
    uint16_t tb_next_offset[2]; /* offset of original jump target */
142
#ifdef USE_DIRECT_JUMP
143
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
144
#else
145
    unsigned long tb_next[2]; /* address of jump generated code */
146
#endif
147
    /* list of TBs jumping to this one. This is a circular list using
148
       the two least significant bits of the pointers to tell what is
149
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
150
       jmp_first */
151
    struct TranslationBlock *jmp_next[2];
152
    struct TranslationBlock *jmp_first;
153
} TranslationBlock;
154

    
155
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
156
{
157
    target_ulong tmp;
158
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
159
    return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
160
}
161

    
162
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
163
{
164
    target_ulong tmp;
165
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
166
    return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
167
            | (tmp & TB_JMP_ADDR_MASK));
168
}
169

    
170
static inline unsigned int tb_phys_hash_func(unsigned long pc)
171
{
172
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
173
}
174

    
175
TranslationBlock *tb_alloc(target_ulong pc);
176
void tb_flush(CPUState *env);
177
void tb_link_phys(TranslationBlock *tb,
178
                  target_ulong phys_pc, target_ulong phys_page2);
179

    
180
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
181
extern uint8_t *code_gen_ptr;
182
extern int code_gen_max_blocks;
183

    
184
#if defined(USE_DIRECT_JUMP)
185

    
186
#if defined(__powerpc__)
187
static inline void flush_icache_range(unsigned long start, unsigned long stop);
188
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
189
{
190
    /* This must be in concord with INDEX_op_goto_tb inside tcg_out_op */
191
    uint32_t *ptr;
192
    long disp = addr - jmp_addr;
193
    unsigned long patch_size;
194

    
195
    ptr = (uint32_t *)jmp_addr;
196

    
197
    if ((disp << 6) >> 6 != disp) {
198
        ptr[0] = 0x3c000000 | (addr >> 16);    /* lis 0,addr@ha */
199
        ptr[1] = 0x60000000 | (addr & 0xffff); /* la  0,addr@l(0) */
200
        ptr[2] = 0x7c0903a6;                   /* mtctr 0 */
201
        ptr[3] = 0x4e800420;                   /* brctr */
202
        patch_size = 16;
203
    } else {
204
        /* patch the branch destination */
205
        if (disp != 16) {
206
            *ptr = 0x48000000 | (disp & 0x03fffffc); /* b disp */
207
            patch_size = 4;
208
        } else {
209
            ptr[0] = 0x60000000; /* nop */
210
            ptr[1] = 0x60000000;
211
            ptr[2] = 0x60000000;
212
            ptr[3] = 0x60000000;
213
            patch_size = 16;
214
        }
215
    }
216
    /* flush icache */
217
    flush_icache_range(jmp_addr, jmp_addr + patch_size);
218
}
219
#elif defined(__i386__) || defined(__x86_64__)
220
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
221
{
222
    /* patch the branch destination */
223
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
224
    /* no need to flush icache explicitly */
225
}
226
#elif defined(__arm__)
227
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
228
{
229
    register unsigned long _beg __asm ("a1");
230
    register unsigned long _end __asm ("a2");
231
    register unsigned long _flg __asm ("a3");
232

    
233
    /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
234
    *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff;
235

    
236
    /* flush icache */
237
    _beg = jmp_addr;
238
    _end = jmp_addr + 4;
239
    _flg = 0;
240
    __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
241
}
242
#endif
243

    
244
static inline void tb_set_jmp_target(TranslationBlock *tb,
245
                                     int n, unsigned long addr)
246
{
247
    unsigned long offset;
248

    
249
    offset = tb->tb_jmp_offset[n];
250
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
251
    offset = tb->tb_jmp_offset[n + 2];
252
    if (offset != 0xffff)
253
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
254
}
255

    
256
#else
257

    
258
/* set the jump target */
259
static inline void tb_set_jmp_target(TranslationBlock *tb,
260
                                     int n, unsigned long addr)
261
{
262
    tb->tb_next[n] = addr;
263
}
264

    
265
#endif
266

    
267
static inline void tb_add_jump(TranslationBlock *tb, int n,
268
                               TranslationBlock *tb_next)
269
{
270
    /* NOTE: this test is only needed for thread safety */
271
    if (!tb->jmp_next[n]) {
272
        /* patch the native jump address */
273
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
274

    
275
        /* add in TB jmp circular list */
276
        tb->jmp_next[n] = tb_next->jmp_first;
277
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
278
    }
279
}
280

    
281
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
282

    
283
#ifndef offsetof
284
#define offsetof(type, field) ((size_t) &((type *)0)->field)
285
#endif
286

    
287
#if defined(_WIN32)
288
#define ASM_DATA_SECTION ".section \".data\"\n"
289
#define ASM_PREVIOUS_SECTION ".section .text\n"
290
#elif defined(__APPLE__)
291
#define ASM_DATA_SECTION ".data\n"
292
#define ASM_PREVIOUS_SECTION ".text\n"
293
#else
294
#define ASM_DATA_SECTION ".section \".data\"\n"
295
#define ASM_PREVIOUS_SECTION ".previous\n"
296
#endif
297

    
298
#define ASM_OP_LABEL_NAME(n, opname) \
299
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)
300

    
301
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
302
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
303
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
304

    
305
#if defined(__hppa__)
306

    
307
typedef int spinlock_t[4];
308

    
309
#define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
310

    
311
static inline void resetlock (spinlock_t *p)
312
{
313
    (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
314
}
315

    
316
#else
317

    
318
typedef int spinlock_t;
319

    
320
#define SPIN_LOCK_UNLOCKED 0
321

    
322
static inline void resetlock (spinlock_t *p)
323
{
324
    *p = SPIN_LOCK_UNLOCKED;
325
}
326

    
327
#endif
328

    
329
#if defined(__powerpc__)
330
static inline int testandset (int *p)
331
{
332
    int ret;
333
    __asm__ __volatile__ (
334
                          "0:    lwarx %0,0,%1\n"
335
                          "      xor. %0,%3,%0\n"
336
                          "      bne 1f\n"
337
                          "      stwcx. %2,0,%1\n"
338
                          "      bne- 0b\n"
339
                          "1:    "
340
                          : "=&r" (ret)
341
                          : "r" (p), "r" (1), "r" (0)
342
                          : "cr0", "memory");
343
    return ret;
344
}
345
#elif defined(__i386__)
346
static inline int testandset (int *p)
347
{
348
    long int readval = 0;
349

    
350
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
351
                          : "+m" (*p), "+a" (readval)
352
                          : "r" (1)
353
                          : "cc");
354
    return readval;
355
}
356
#elif defined(__x86_64__)
357
static inline int testandset (int *p)
358
{
359
    long int readval = 0;
360

    
361
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
362
                          : "+m" (*p), "+a" (readval)
363
                          : "r" (1)
364
                          : "cc");
365
    return readval;
366
}
367
#elif defined(__s390__)
368
static inline int testandset (int *p)
369
{
370
    int ret;
371

    
372
    __asm__ __volatile__ ("0: cs    %0,%1,0(%2)\n"
373
                          "   jl    0b"
374
                          : "=&d" (ret)
375
                          : "r" (1), "a" (p), "0" (*p)
376
                          : "cc", "memory" );
377
    return ret;
378
}
379
#elif defined(__alpha__)
380
static inline int testandset (int *p)
381
{
382
    int ret;
383
    unsigned long one;
384

    
385
    __asm__ __volatile__ ("0:        mov 1,%2\n"
386
                          "        ldl_l %0,%1\n"
387
                          "        stl_c %2,%1\n"
388
                          "        beq %2,1f\n"
389
                          ".subsection 2\n"
390
                          "1:        br 0b\n"
391
                          ".previous"
392
                          : "=r" (ret), "=m" (*p), "=r" (one)
393
                          : "m" (*p));
394
    return ret;
395
}
396
#elif defined(__sparc__)
397
static inline int testandset (int *p)
398
{
399
        int ret;
400

    
401
        __asm__ __volatile__("ldstub        [%1], %0"
402
                             : "=r" (ret)
403
                             : "r" (p)
404
                             : "memory");
405

    
406
        return (ret ? 1 : 0);
407
}
408
#elif defined(__arm__)
409
static inline int testandset (int *spinlock)
410
{
411
    register unsigned int ret;
412
    __asm__ __volatile__("swp %0, %1, [%2]"
413
                         : "=r"(ret)
414
                         : "0"(1), "r"(spinlock));
415

    
416
    return ret;
417
}
418
#elif defined(__mc68000)
419
static inline int testandset (int *p)
420
{
421
    char ret;
422
    __asm__ __volatile__("tas %1; sne %0"
423
                         : "=r" (ret)
424
                         : "m" (p)
425
                         : "cc","memory");
426
    return ret;
427
}
428
#elif defined(__hppa__)
429

    
430
/* Because malloc only guarantees 8-byte alignment for malloc'd data,
431
   and GCC only guarantees 8-byte alignment for stack locals, we can't
432
   be assured of 16-byte alignment for atomic lock data even if we
433
   specify "__attribute ((aligned(16)))" in the type declaration.  So,
434
   we use a struct containing an array of four ints for the atomic lock
435
   type and dynamically select the 16-byte aligned int from the array
436
   for the semaphore.  */
437
#define __PA_LDCW_ALIGNMENT 16
438
static inline void *ldcw_align (void *p) {
439
    unsigned long a = (unsigned long)p;
440
    a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
441
    return (void *)a;
442
}
443

    
444
static inline int testandset (spinlock_t *p)
445
{
446
    unsigned int ret;
447
    p = ldcw_align(p);
448
    __asm__ __volatile__("ldcw 0(%1),%0"
449
                         : "=r" (ret)
450
                         : "r" (p)
451
                         : "memory" );
452
    return !ret;
453
}
454

    
455
#elif defined(__ia64)
456

    
457
#include <ia64intrin.h>
458

    
459
static inline int testandset (int *p)
460
{
461
    return __sync_lock_test_and_set (p, 1);
462
}
463
#elif defined(__mips__)
464
static inline int testandset (int *p)
465
{
466
    int ret;
467

    
468
    __asm__ __volatile__ (
469
        "        .set push                \n"
470
        "        .set noat                \n"
471
        "        .set mips2                \n"
472
        "1:        li        $1, 1                \n"
473
        "        ll        %0, %1                \n"
474
        "        sc        $1, %1                \n"
475
        "        beqz        $1, 1b                \n"
476
        "        .set pop                "
477
        : "=r" (ret), "+R" (*p)
478
        :
479
        : "memory");
480

    
481
    return ret;
482
}
483
#else
484
#error unimplemented CPU support
485
#endif
486

    
487
#if defined(CONFIG_USER_ONLY)
488
static inline void spin_lock(spinlock_t *lock)
489
{
490
    while (testandset(lock));
491
}
492

    
493
static inline void spin_unlock(spinlock_t *lock)
494
{
495
    resetlock(lock);
496
}
497

    
498
static inline int spin_trylock(spinlock_t *lock)
499
{
500
    return !testandset(lock);
501
}
502
#else
503
static inline void spin_lock(spinlock_t *lock)
504
{
505
}
506

    
507
static inline void spin_unlock(spinlock_t *lock)
508
{
509
}
510

    
511
static inline int spin_trylock(spinlock_t *lock)
512
{
513
    return 1;
514
}
515
#endif
516

    
517
extern spinlock_t tb_lock;
518

    
519
extern int tb_invalidated_flag;
520

    
521
#if !defined(CONFIG_USER_ONLY)
522

    
523
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
524
              void *retaddr);
525

    
526
#define ACCESS_TYPE (NB_MMU_MODES + 1)
527
#define MEMSUFFIX _code
528
#define env cpu_single_env
529

    
530
#define DATA_SIZE 1
531
#include "softmmu_header.h"
532

    
533
#define DATA_SIZE 2
534
#include "softmmu_header.h"
535

    
536
#define DATA_SIZE 4
537
#include "softmmu_header.h"
538

    
539
#define DATA_SIZE 8
540
#include "softmmu_header.h"
541

    
542
#undef ACCESS_TYPE
543
#undef MEMSUFFIX
544
#undef env
545

    
546
#endif
547

    
548
#if defined(CONFIG_USER_ONLY)
549
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
550
{
551
    return addr;
552
}
553
#else
554
/* NOTE: this function can trigger an exception */
555
/* NOTE2: the returned address is not exactly the physical address: it
556
   is the offset relative to phys_ram_base */
557
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
558
{
559
    int mmu_idx, page_index, pd;
560

    
561
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
562
    mmu_idx = cpu_mmu_index(env1);
563
    if (__builtin_expect(env1->tlb_table[mmu_idx][page_index].addr_code !=
564
                         (addr & TARGET_PAGE_MASK), 0)) {
565
        ldub_code(addr);
566
    }
567
    pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
568
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
569
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
570
        do_unassigned_access(addr, 0, 1, 0);
571
#else
572
        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
573
#endif
574
    }
575
    return addr + env1->tlb_table[mmu_idx][page_index].addend - (unsigned long)phys_ram_base;
576
}
577
#endif
578

    
579
#ifdef USE_KQEMU
580
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
581

    
582
#define MSR_QPI_COMMBASE 0xfabe0010
583

    
584
int kqemu_init(CPUState *env);
585
int kqemu_cpu_exec(CPUState *env);
586
void kqemu_flush_page(CPUState *env, target_ulong addr);
587
void kqemu_flush(CPUState *env, int global);
588
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
589
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
590
void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 
591
                        ram_addr_t phys_offset);
592
void kqemu_cpu_interrupt(CPUState *env);
593
void kqemu_record_dump(void);
594

    
595
extern uint32_t kqemu_comm_base;
596

    
597
static inline int kqemu_is_ok(CPUState *env)
598
{
599
    return(env->kqemu_enabled &&
600
           (env->cr[0] & CR0_PE_MASK) &&
601
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
602
           (env->eflags & IF_MASK) &&
603
           !(env->eflags & VM_MASK) &&
604
           (env->kqemu_enabled == 2 ||
605
            ((env->hflags & HF_CPL_MASK) == 3 &&
606
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
607
}
608

    
609
#endif