Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ 0aab0d3a

History | View | Annotate | Download (57.5 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include "hw.h"
14
#include "pci.h"
15
#include "scsi-disk.h"
16
#include "block_int.h"
17

    
18
//#define DEBUG_LSI
19
//#define DEBUG_LSI_REG
20

    
21
#ifdef DEBUG_LSI
22
#define DPRINTF(fmt, ...) \
23
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
24
#define BADF(fmt, ...) \
25
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
26
#else
27
#define DPRINTF(fmt, ...) do {} while(0)
28
#define BADF(fmt, ...) \
29
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
30
#endif
31

    
32
#define LSI_SCNTL0_TRG    0x01
33
#define LSI_SCNTL0_AAP    0x02
34
#define LSI_SCNTL0_EPC    0x08
35
#define LSI_SCNTL0_WATN   0x10
36
#define LSI_SCNTL0_START  0x20
37

    
38
#define LSI_SCNTL1_SST    0x01
39
#define LSI_SCNTL1_IARB   0x02
40
#define LSI_SCNTL1_AESP   0x04
41
#define LSI_SCNTL1_RST    0x08
42
#define LSI_SCNTL1_CON    0x10
43
#define LSI_SCNTL1_DHP    0x20
44
#define LSI_SCNTL1_ADB    0x40
45
#define LSI_SCNTL1_EXC    0x80
46

    
47
#define LSI_SCNTL2_WSR    0x01
48
#define LSI_SCNTL2_VUE0   0x02
49
#define LSI_SCNTL2_VUE1   0x04
50
#define LSI_SCNTL2_WSS    0x08
51
#define LSI_SCNTL2_SLPHBEN 0x10
52
#define LSI_SCNTL2_SLPMD  0x20
53
#define LSI_SCNTL2_CHM    0x40
54
#define LSI_SCNTL2_SDU    0x80
55

    
56
#define LSI_ISTAT0_DIP    0x01
57
#define LSI_ISTAT0_SIP    0x02
58
#define LSI_ISTAT0_INTF   0x04
59
#define LSI_ISTAT0_CON    0x08
60
#define LSI_ISTAT0_SEM    0x10
61
#define LSI_ISTAT0_SIGP   0x20
62
#define LSI_ISTAT0_SRST   0x40
63
#define LSI_ISTAT0_ABRT   0x80
64

    
65
#define LSI_ISTAT1_SI     0x01
66
#define LSI_ISTAT1_SRUN   0x02
67
#define LSI_ISTAT1_FLSH   0x04
68

    
69
#define LSI_SSTAT0_SDP0   0x01
70
#define LSI_SSTAT0_RST    0x02
71
#define LSI_SSTAT0_WOA    0x04
72
#define LSI_SSTAT0_LOA    0x08
73
#define LSI_SSTAT0_AIP    0x10
74
#define LSI_SSTAT0_OLF    0x20
75
#define LSI_SSTAT0_ORF    0x40
76
#define LSI_SSTAT0_ILF    0x80
77

    
78
#define LSI_SIST0_PAR     0x01
79
#define LSI_SIST0_RST     0x02
80
#define LSI_SIST0_UDC     0x04
81
#define LSI_SIST0_SGE     0x08
82
#define LSI_SIST0_RSL     0x10
83
#define LSI_SIST0_SEL     0x20
84
#define LSI_SIST0_CMP     0x40
85
#define LSI_SIST0_MA      0x80
86

    
87
#define LSI_SIST1_HTH     0x01
88
#define LSI_SIST1_GEN     0x02
89
#define LSI_SIST1_STO     0x04
90
#define LSI_SIST1_SBMC    0x10
91

    
92
#define LSI_SOCL_IO       0x01
93
#define LSI_SOCL_CD       0x02
94
#define LSI_SOCL_MSG      0x04
95
#define LSI_SOCL_ATN      0x08
96
#define LSI_SOCL_SEL      0x10
97
#define LSI_SOCL_BSY      0x20
98
#define LSI_SOCL_ACK      0x40
99
#define LSI_SOCL_REQ      0x80
100

    
101
#define LSI_DSTAT_IID     0x01
102
#define LSI_DSTAT_SIR     0x04
103
#define LSI_DSTAT_SSI     0x08
104
#define LSI_DSTAT_ABRT    0x10
105
#define LSI_DSTAT_BF      0x20
106
#define LSI_DSTAT_MDPE    0x40
107
#define LSI_DSTAT_DFE     0x80
108

    
109
#define LSI_DCNTL_COM     0x01
110
#define LSI_DCNTL_IRQD    0x02
111
#define LSI_DCNTL_STD     0x04
112
#define LSI_DCNTL_IRQM    0x08
113
#define LSI_DCNTL_SSM     0x10
114
#define LSI_DCNTL_PFEN    0x20
115
#define LSI_DCNTL_PFF     0x40
116
#define LSI_DCNTL_CLSE    0x80
117

    
118
#define LSI_DMODE_MAN     0x01
119
#define LSI_DMODE_BOF     0x02
120
#define LSI_DMODE_ERMP    0x04
121
#define LSI_DMODE_ERL     0x08
122
#define LSI_DMODE_DIOM    0x10
123
#define LSI_DMODE_SIOM    0x20
124

    
125
#define LSI_CTEST2_DACK   0x01
126
#define LSI_CTEST2_DREQ   0x02
127
#define LSI_CTEST2_TEOP   0x04
128
#define LSI_CTEST2_PCICIE 0x08
129
#define LSI_CTEST2_CM     0x10
130
#define LSI_CTEST2_CIO    0x20
131
#define LSI_CTEST2_SIGP   0x40
132
#define LSI_CTEST2_DDIR   0x80
133

    
134
#define LSI_CTEST5_BL2    0x04
135
#define LSI_CTEST5_DDIR   0x08
136
#define LSI_CTEST5_MASR   0x10
137
#define LSI_CTEST5_DFSN   0x20
138
#define LSI_CTEST5_BBCK   0x40
139
#define LSI_CTEST5_ADCK   0x80
140

    
141
#define LSI_CCNTL0_DILS   0x01
142
#define LSI_CCNTL0_DISFC  0x10
143
#define LSI_CCNTL0_ENNDJ  0x20
144
#define LSI_CCNTL0_PMJCTL 0x40
145
#define LSI_CCNTL0_ENPMJ  0x80
146

    
147
#define LSI_CCNTL1_EN64DBMV  0x01
148
#define LSI_CCNTL1_EN64TIBMV 0x02
149
#define LSI_CCNTL1_64TIMOD   0x04
150
#define LSI_CCNTL1_DDAC      0x08
151
#define LSI_CCNTL1_ZMOD      0x80
152

    
153
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
154

    
155
#define PHASE_DO          0
156
#define PHASE_DI          1
157
#define PHASE_CMD         2
158
#define PHASE_ST          3
159
#define PHASE_MO          6
160
#define PHASE_MI          7
161
#define PHASE_MASK        7
162

    
163
/* Maximum length of MSG IN data.  */
164
#define LSI_MAX_MSGIN_LEN 8
165

    
166
/* Flag set if this is a tagged command.  */
167
#define LSI_TAG_VALID     (1 << 16)
168

    
169
typedef struct {
170
    uint32_t tag;
171
    uint32_t pending;
172
    int out;
173
} lsi_queue;
174

    
175
typedef struct {
176
    PCIDevice pci_dev;
177
    int mmio_io_addr;
178
    int ram_io_addr;
179
    uint32_t script_ram_base;
180

    
181
    int carry; /* ??? Should this be an a visible register somewhere?  */
182
    int sense;
183
    /* Action to take at the end of a MSG IN phase.
184
       0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN.  */
185
    int msg_action;
186
    int msg_len;
187
    uint8_t msg[LSI_MAX_MSGIN_LEN];
188
    /* 0 if SCRIPTS are running or stopped.
189
     * 1 if a Wait Reselect instruction has been issued.
190
     * 2 if processing DMA from lsi_execute_script.
191
     * 3 if a DMA operation is in progress.  */
192
    int waiting;
193
    SCSIDevice *scsi_dev[LSI_MAX_DEVS];
194
    SCSIDevice *current_dev;
195
    int current_lun;
196
    /* The tag is a combination of the device ID and the SCSI tag.  */
197
    uint32_t current_tag;
198
    uint32_t current_dma_len;
199
    int command_complete;
200
    uint8_t *dma_buf;
201
    lsi_queue *queue;
202
    int queue_len;
203
    int active_commands;
204

    
205
    uint32_t dsa;
206
    uint32_t temp;
207
    uint32_t dnad;
208
    uint32_t dbc;
209
    uint8_t istat0;
210
    uint8_t istat1;
211
    uint8_t dcmd;
212
    uint8_t dstat;
213
    uint8_t dien;
214
    uint8_t sist0;
215
    uint8_t sist1;
216
    uint8_t sien0;
217
    uint8_t sien1;
218
    uint8_t mbox0;
219
    uint8_t mbox1;
220
    uint8_t dfifo;
221
    uint8_t ctest2;
222
    uint8_t ctest3;
223
    uint8_t ctest4;
224
    uint8_t ctest5;
225
    uint8_t ccntl0;
226
    uint8_t ccntl1;
227
    uint32_t dsp;
228
    uint32_t dsps;
229
    uint8_t dmode;
230
    uint8_t dcntl;
231
    uint8_t scntl0;
232
    uint8_t scntl1;
233
    uint8_t scntl2;
234
    uint8_t scntl3;
235
    uint8_t sstat0;
236
    uint8_t sstat1;
237
    uint8_t scid;
238
    uint8_t sxfer;
239
    uint8_t socl;
240
    uint8_t sdid;
241
    uint8_t ssid;
242
    uint8_t sfbr;
243
    uint8_t stest1;
244
    uint8_t stest2;
245
    uint8_t stest3;
246
    uint8_t sidl;
247
    uint8_t stime0;
248
    uint8_t respid0;
249
    uint8_t respid1;
250
    uint32_t mmrs;
251
    uint32_t mmws;
252
    uint32_t sfs;
253
    uint32_t drs;
254
    uint32_t sbms;
255
    uint32_t dbms;
256
    uint32_t dnad64;
257
    uint32_t pmjad1;
258
    uint32_t pmjad2;
259
    uint32_t rbc;
260
    uint32_t ua;
261
    uint32_t ia;
262
    uint32_t sbc;
263
    uint32_t csbc;
264
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
265
    uint8_t sbr;
266

    
267
    /* Script ram is stored as 32-bit words in host byteorder.  */
268
    uint32_t script_ram[2048];
269
} LSIState;
270

    
271
static void lsi_soft_reset(LSIState *s)
272
{
273
    DPRINTF("Reset\n");
274
    s->carry = 0;
275

    
276
    s->waiting = 0;
277
    s->dsa = 0;
278
    s->dnad = 0;
279
    s->dbc = 0;
280
    s->temp = 0;
281
    memset(s->scratch, 0, sizeof(s->scratch));
282
    s->istat0 = 0;
283
    s->istat1 = 0;
284
    s->dcmd = 0;
285
    s->dstat = 0;
286
    s->dien = 0;
287
    s->sist0 = 0;
288
    s->sist1 = 0;
289
    s->sien0 = 0;
290
    s->sien1 = 0;
291
    s->mbox0 = 0;
292
    s->mbox1 = 0;
293
    s->dfifo = 0;
294
    s->ctest2 = 0;
295
    s->ctest3 = 0;
296
    s->ctest4 = 0;
297
    s->ctest5 = 0;
298
    s->ccntl0 = 0;
299
    s->ccntl1 = 0;
300
    s->dsp = 0;
301
    s->dsps = 0;
302
    s->dmode = 0;
303
    s->dcntl = 0;
304
    s->scntl0 = 0xc0;
305
    s->scntl1 = 0;
306
    s->scntl2 = 0;
307
    s->scntl3 = 0;
308
    s->sstat0 = 0;
309
    s->sstat1 = 0;
310
    s->scid = 7;
311
    s->sxfer = 0;
312
    s->socl = 0;
313
    s->stest1 = 0;
314
    s->stest2 = 0;
315
    s->stest3 = 0;
316
    s->sidl = 0;
317
    s->stime0 = 0;
318
    s->respid0 = 0x80;
319
    s->respid1 = 0;
320
    s->mmrs = 0;
321
    s->mmws = 0;
322
    s->sfs = 0;
323
    s->drs = 0;
324
    s->sbms = 0;
325
    s->dbms = 0;
326
    s->dnad64 = 0;
327
    s->pmjad1 = 0;
328
    s->pmjad2 = 0;
329
    s->rbc = 0;
330
    s->ua = 0;
331
    s->ia = 0;
332
    s->sbc = 0;
333
    s->csbc = 0;
334
    s->sbr = 0;
335
}
336

    
337
static int lsi_dma_40bit(LSIState *s)
338
{
339
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
340
        return 1;
341
    return 0;
342
}
343

    
344
static int lsi_dma_ti64bit(LSIState *s)
345
{
346
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
347
        return 1;
348
    return 0;
349
}
350

    
351
static int lsi_dma_64bit(LSIState *s)
352
{
353
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
354
        return 1;
355
    return 0;
356
}
357

    
358
static uint8_t lsi_reg_readb(LSIState *s, int offset);
359
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
360
static void lsi_execute_script(LSIState *s);
361

    
362
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
363
{
364
    uint32_t buf;
365

    
366
    /* Optimize reading from SCRIPTS RAM.  */
367
    if ((addr & 0xffffe000) == s->script_ram_base) {
368
        return s->script_ram[(addr & 0x1fff) >> 2];
369
    }
370
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
371
    return cpu_to_le32(buf);
372
}
373

    
374
static void lsi_stop_script(LSIState *s)
375
{
376
    s->istat1 &= ~LSI_ISTAT1_SRUN;
377
}
378

    
379
static void lsi_update_irq(LSIState *s)
380
{
381
    int level;
382
    static int last_level;
383

    
384
    /* It's unclear whether the DIP/SIP bits should be cleared when the
385
       Interrupt Status Registers are cleared or when istat0 is read.
386
       We currently do the formwer, which seems to work.  */
387
    level = 0;
388
    if (s->dstat) {
389
        if (s->dstat & s->dien)
390
            level = 1;
391
        s->istat0 |= LSI_ISTAT0_DIP;
392
    } else {
393
        s->istat0 &= ~LSI_ISTAT0_DIP;
394
    }
395

    
396
    if (s->sist0 || s->sist1) {
397
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
398
            level = 1;
399
        s->istat0 |= LSI_ISTAT0_SIP;
400
    } else {
401
        s->istat0 &= ~LSI_ISTAT0_SIP;
402
    }
403
    if (s->istat0 & LSI_ISTAT0_INTF)
404
        level = 1;
405

    
406
    if (level != last_level) {
407
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
408
                level, s->dstat, s->sist1, s->sist0);
409
        last_level = level;
410
    }
411
    qemu_set_irq(s->pci_dev.irq[0], level);
412
}
413

    
414
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
415
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
416
{
417
    uint32_t mask0;
418
    uint32_t mask1;
419

    
420
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
421
            stat1, stat0, s->sist1, s->sist0);
422
    s->sist0 |= stat0;
423
    s->sist1 |= stat1;
424
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
425
       we don't stop processing when raising STO.  Instead continue
426
       execution and stop at the next insn that accesses the SCSI bus.  */
427
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
428
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
429
    mask1 &= ~LSI_SIST1_STO;
430
    if (s->sist0 & mask0 || s->sist1 & mask1) {
431
        lsi_stop_script(s);
432
    }
433
    lsi_update_irq(s);
434
}
435

    
436
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
437
static void lsi_script_dma_interrupt(LSIState *s, int stat)
438
{
439
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
440
    s->dstat |= stat;
441
    lsi_update_irq(s);
442
    lsi_stop_script(s);
443
}
444

    
445
static inline void lsi_set_phase(LSIState *s, int phase)
446
{
447
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
448
}
449

    
450
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
451
{
452
    /* Trigger a phase mismatch.  */
453
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
454
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
455
            s->dsp = s->pmjad1;
456
        } else {
457
            s->dsp = s->pmjad2;
458
        }
459
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
460
    } else {
461
        DPRINTF("Phase mismatch interrupt\n");
462
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
463
        lsi_stop_script(s);
464
    }
465
    lsi_set_phase(s, new_phase);
466
}
467

    
468

    
469
/* Resume SCRIPTS execution after a DMA operation.  */
470
static void lsi_resume_script(LSIState *s)
471
{
472
    if (s->waiting != 2) {
473
        s->waiting = 0;
474
        lsi_execute_script(s);
475
    } else {
476
        s->waiting = 0;
477
    }
478
}
479

    
480
/* Initiate a SCSI layer data transfer.  */
481
static void lsi_do_dma(LSIState *s, int out)
482
{
483
    uint32_t count;
484
    target_phys_addr_t addr;
485

    
486
    if (!s->current_dma_len) {
487
        /* Wait until data is available.  */
488
        DPRINTF("DMA no data available\n");
489
        return;
490
    }
491

    
492
    count = s->dbc;
493
    if (count > s->current_dma_len)
494
        count = s->current_dma_len;
495

    
496
    addr = s->dnad;
497
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
498
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
499
        addr |= ((uint64_t)s->dnad64 << 32);
500
    else if (s->dbms)
501
        addr |= ((uint64_t)s->dbms << 32);
502
    else if (s->sbms)
503
        addr |= ((uint64_t)s->sbms << 32);
504

    
505
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
506
    s->csbc += count;
507
    s->dnad += count;
508
    s->dbc -= count;
509

    
510
    if (s->dma_buf == NULL) {
511
        s->dma_buf = s->current_dev->get_buf(s->current_dev,
512
                                             s->current_tag);
513
    }
514

    
515
    /* ??? Set SFBR to first data byte.  */
516
    if (out) {
517
        cpu_physical_memory_read(addr, s->dma_buf, count);
518
    } else {
519
        cpu_physical_memory_write(addr, s->dma_buf, count);
520
    }
521
    s->current_dma_len -= count;
522
    if (s->current_dma_len == 0) {
523
        s->dma_buf = NULL;
524
        if (out) {
525
            /* Write the data.  */
526
            s->current_dev->write_data(s->current_dev, s->current_tag);
527
        } else {
528
            /* Request any remaining data.  */
529
            s->current_dev->read_data(s->current_dev, s->current_tag);
530
        }
531
    } else {
532
        s->dma_buf += count;
533
        lsi_resume_script(s);
534
    }
535
}
536

    
537

    
538
/* Add a command to the queue.  */
539
static void lsi_queue_command(LSIState *s)
540
{
541
    lsi_queue *p;
542

    
543
    DPRINTF("Queueing tag=0x%x\n", s->current_tag);
544
    if (s->queue_len == s->active_commands) {
545
        s->queue_len++;
546
        s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
547
    }
548
    p = &s->queue[s->active_commands++];
549
    p->tag = s->current_tag;
550
    p->pending = 0;
551
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
552
}
553

    
554
/* Queue a byte for a MSG IN phase.  */
555
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
556
{
557
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
558
        BADF("MSG IN data too long\n");
559
    } else {
560
        DPRINTF("MSG IN 0x%02x\n", data);
561
        s->msg[s->msg_len++] = data;
562
    }
563
}
564

    
565
/* Perform reselection to continue a command.  */
566
static void lsi_reselect(LSIState *s, uint32_t tag)
567
{
568
    lsi_queue *p;
569
    int n;
570
    int id;
571

    
572
    p = NULL;
573
    for (n = 0; n < s->active_commands; n++) {
574
        p = &s->queue[n];
575
        if (p->tag == tag)
576
            break;
577
    }
578
    if (n == s->active_commands) {
579
        BADF("Reselected non-existant command tag=0x%x\n", tag);
580
        return;
581
    }
582
    id = (tag >> 8) & 0xf;
583
    s->ssid = id | 0x80;
584
    DPRINTF("Reselected target %d\n", id);
585
    s->current_dev = s->scsi_dev[id];
586
    s->current_tag = tag;
587
    s->scntl1 |= LSI_SCNTL1_CON;
588
    lsi_set_phase(s, PHASE_MI);
589
    s->msg_action = p->out ? 2 : 3;
590
    s->current_dma_len = p->pending;
591
    s->dma_buf = NULL;
592
    lsi_add_msg_byte(s, 0x80);
593
    if (s->current_tag & LSI_TAG_VALID) {
594
        lsi_add_msg_byte(s, 0x20);
595
        lsi_add_msg_byte(s, tag & 0xff);
596
    }
597

    
598
    s->active_commands--;
599
    if (n != s->active_commands) {
600
        s->queue[n] = s->queue[s->active_commands];
601
    }
602
}
603

    
604
/* Record that data is available for a queued command.  Returns zero if
605
   the device was reselected, nonzero if the IO is deferred.  */
606
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
607
{
608
    lsi_queue *p;
609
    int i;
610
    for (i = 0; i < s->active_commands; i++) {
611
        p = &s->queue[i];
612
        if (p->tag == tag) {
613
            if (p->pending) {
614
                BADF("Multiple IO pending for tag %d\n", tag);
615
            }
616
            p->pending = arg;
617
            if (s->waiting == 1) {
618
                /* Reselect device.  */
619
                lsi_reselect(s, tag);
620
                return 0;
621
            } else {
622
               DPRINTF("Queueing IO tag=0x%x\n", tag);
623
                p->pending = arg;
624
                return 1;
625
            }
626
        }
627
    }
628
    BADF("IO with unknown tag %d\n", tag);
629
    return 1;
630
}
631

    
632
/* Callback to indicate that the SCSI layer has completed a transfer.  */
633
static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
634
                                 uint32_t arg)
635
{
636
    LSIState *s = (LSIState *)opaque;
637
    int out;
638

    
639
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
640
    if (reason == SCSI_REASON_DONE) {
641
        DPRINTF("Command complete sense=%d\n", (int)arg);
642
        s->sense = arg;
643
        s->command_complete = 2;
644
        if (s->waiting && s->dbc != 0) {
645
            /* Raise phase mismatch for short transfers.  */
646
            lsi_bad_phase(s, out, PHASE_ST);
647
        } else {
648
            lsi_set_phase(s, PHASE_ST);
649
        }
650
        lsi_resume_script(s);
651
        return;
652
    }
653

    
654
    if (s->waiting == 1 || tag != s->current_tag) {
655
        if (lsi_queue_tag(s, tag, arg))
656
            return;
657
    }
658
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
659
    s->current_dma_len = arg;
660
    s->command_complete = 1;
661
    if (!s->waiting)
662
        return;
663
    if (s->waiting == 1 || s->dbc == 0) {
664
        lsi_resume_script(s);
665
    } else {
666
        lsi_do_dma(s, out);
667
    }
668
}
669

    
670
static void lsi_do_command(LSIState *s)
671
{
672
    uint8_t buf[16];
673
    int n;
674

    
675
    DPRINTF("Send command len=%d\n", s->dbc);
676
    if (s->dbc > 16)
677
        s->dbc = 16;
678
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
679
    s->sfbr = buf[0];
680
    s->command_complete = 0;
681
    n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
682
                                     s->current_lun);
683
    if (n > 0) {
684
        lsi_set_phase(s, PHASE_DI);
685
        s->current_dev->read_data(s->current_dev, s->current_tag);
686
    } else if (n < 0) {
687
        lsi_set_phase(s, PHASE_DO);
688
        s->current_dev->write_data(s->current_dev, s->current_tag);
689
    }
690

    
691
    if (!s->command_complete) {
692
        if (n) {
693
            /* Command did not complete immediately so disconnect.  */
694
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
695
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
696
            /* wait data */
697
            lsi_set_phase(s, PHASE_MI);
698
            s->msg_action = 1;
699
            lsi_queue_command(s);
700
        } else {
701
            /* wait command complete */
702
            lsi_set_phase(s, PHASE_DI);
703
        }
704
    }
705
}
706

    
707
static void lsi_do_status(LSIState *s)
708
{
709
    uint8_t sense;
710
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
711
    if (s->dbc != 1)
712
        BADF("Bad Status move\n");
713
    s->dbc = 1;
714
    sense = s->sense;
715
    s->sfbr = sense;
716
    cpu_physical_memory_write(s->dnad, &sense, 1);
717
    lsi_set_phase(s, PHASE_MI);
718
    s->msg_action = 1;
719
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
720
}
721

    
722
static void lsi_disconnect(LSIState *s)
723
{
724
    s->scntl1 &= ~LSI_SCNTL1_CON;
725
    s->sstat1 &= ~PHASE_MASK;
726
}
727

    
728
static void lsi_do_msgin(LSIState *s)
729
{
730
    int len;
731
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
732
    s->sfbr = s->msg[0];
733
    len = s->msg_len;
734
    if (len > s->dbc)
735
        len = s->dbc;
736
    cpu_physical_memory_write(s->dnad, s->msg, len);
737
    /* Linux drivers rely on the last byte being in the SIDL.  */
738
    s->sidl = s->msg[len - 1];
739
    s->msg_len -= len;
740
    if (s->msg_len) {
741
        memmove(s->msg, s->msg + len, s->msg_len);
742
    } else {
743
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
744
           switch to PHASE_MO.  */
745
        switch (s->msg_action) {
746
        case 0:
747
            lsi_set_phase(s, PHASE_CMD);
748
            break;
749
        case 1:
750
            lsi_disconnect(s);
751
            break;
752
        case 2:
753
            lsi_set_phase(s, PHASE_DO);
754
            break;
755
        case 3:
756
            lsi_set_phase(s, PHASE_DI);
757
            break;
758
        default:
759
            abort();
760
        }
761
    }
762
}
763

    
764
/* Read the next byte during a MSGOUT phase.  */
765
static uint8_t lsi_get_msgbyte(LSIState *s)
766
{
767
    uint8_t data;
768
    cpu_physical_memory_read(s->dnad, &data, 1);
769
    s->dnad++;
770
    s->dbc--;
771
    return data;
772
}
773

    
774
static void lsi_do_msgout(LSIState *s)
775
{
776
    uint8_t msg;
777
    int len;
778

    
779
    DPRINTF("MSG out len=%d\n", s->dbc);
780
    while (s->dbc) {
781
        msg = lsi_get_msgbyte(s);
782
        s->sfbr = msg;
783

    
784
        switch (msg) {
785
        case 0x00:
786
            DPRINTF("MSG: Disconnect\n");
787
            lsi_disconnect(s);
788
            break;
789
        case 0x08:
790
            DPRINTF("MSG: No Operation\n");
791
            lsi_set_phase(s, PHASE_CMD);
792
            break;
793
        case 0x01:
794
            len = lsi_get_msgbyte(s);
795
            msg = lsi_get_msgbyte(s);
796
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
797
            switch (msg) {
798
            case 1:
799
                DPRINTF("SDTR (ignored)\n");
800
                s->dbc -= 2;
801
                break;
802
            case 3:
803
                DPRINTF("WDTR (ignored)\n");
804
                s->dbc -= 1;
805
                break;
806
            default:
807
                goto bad;
808
            }
809
            break;
810
        case 0x20: /* SIMPLE queue */
811
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
812
            DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
813
            break;
814
        case 0x21: /* HEAD of queue */
815
            BADF("HEAD queue not implemented\n");
816
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
817
            break;
818
        case 0x22: /* ORDERED queue */
819
            BADF("ORDERED queue not implemented\n");
820
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
821
            break;
822
        default:
823
            if ((msg & 0x80) == 0) {
824
                goto bad;
825
            }
826
            s->current_lun = msg & 7;
827
            DPRINTF("Select LUN %d\n", s->current_lun);
828
            lsi_set_phase(s, PHASE_CMD);
829
            break;
830
        }
831
    }
832
    return;
833
bad:
834
    BADF("Unimplemented message 0x%02x\n", msg);
835
    lsi_set_phase(s, PHASE_MI);
836
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
837
    s->msg_action = 0;
838
}
839

    
840
/* Sign extend a 24-bit value.  */
841
static inline int32_t sxt24(int32_t n)
842
{
843
    return (n << 8) >> 8;
844
}
845

    
846
#define LSI_BUF_SIZE 4096
847
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
848
{
849
    int n;
850
    uint8_t buf[LSI_BUF_SIZE];
851

    
852
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
853
    while (count) {
854
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
855
        cpu_physical_memory_read(src, buf, n);
856
        cpu_physical_memory_write(dest, buf, n);
857
        src += n;
858
        dest += n;
859
        count -= n;
860
    }
861
}
862

    
863
static void lsi_wait_reselect(LSIState *s)
864
{
865
    int i;
866
    DPRINTF("Wait Reselect\n");
867
    if (s->current_dma_len)
868
        BADF("Reselect with pending DMA\n");
869
    for (i = 0; i < s->active_commands; i++) {
870
        if (s->queue[i].pending) {
871
            lsi_reselect(s, s->queue[i].tag);
872
            break;
873
        }
874
    }
875
    if (s->current_dma_len == 0) {
876
        s->waiting = 1;
877
    }
878
}
879

    
880
static void lsi_execute_script(LSIState *s)
881
{
882
    uint32_t insn;
883
    uint32_t addr, addr_high;
884
    int opcode;
885
    int insn_processed = 0;
886

    
887
    s->istat1 |= LSI_ISTAT1_SRUN;
888
again:
889
    insn_processed++;
890
    insn = read_dword(s, s->dsp);
891
    if (!insn) {
892
        /* If we receive an empty opcode increment the DSP by 4 bytes
893
           instead of 8 and execute the next opcode at that location */
894
        s->dsp += 4;
895
        goto again;
896
    }
897
    addr = read_dword(s, s->dsp + 4);
898
    addr_high = 0;
899
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
900
    s->dsps = addr;
901
    s->dcmd = insn >> 24;
902
    s->dsp += 8;
903
    switch (insn >> 30) {
904
    case 0: /* Block move.  */
905
        if (s->sist1 & LSI_SIST1_STO) {
906
            DPRINTF("Delayed select timeout\n");
907
            lsi_stop_script(s);
908
            break;
909
        }
910
        s->dbc = insn & 0xffffff;
911
        s->rbc = s->dbc;
912
        /* ??? Set ESA.  */
913
        s->ia = s->dsp - 8;
914
        if (insn & (1 << 29)) {
915
            /* Indirect addressing.  */
916
            addr = read_dword(s, addr);
917
        } else if (insn & (1 << 28)) {
918
            uint32_t buf[2];
919
            int32_t offset;
920
            /* Table indirect addressing.  */
921

    
922
            /* 32-bit Table indirect */
923
            offset = sxt24(addr);
924
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
925
            /* byte count is stored in bits 0:23 only */
926
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
927
            s->rbc = s->dbc;
928
            addr = cpu_to_le32(buf[1]);
929

    
930
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
931
             * table, bits [31:24] */
932
            if (lsi_dma_40bit(s))
933
                addr_high = cpu_to_le32(buf[0]) >> 24;
934
            else if (lsi_dma_ti64bit(s)) {
935
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
936
                switch (selector) {
937
                case 0 ... 0x0f:
938
                    /* offset index into scratch registers since
939
                     * TI64 mode can use registers C to R */
940
                    addr_high = s->scratch[2 + selector];
941
                    break;
942
                case 0x10:
943
                    addr_high = s->mmrs;
944
                    break;
945
                case 0x11:
946
                    addr_high = s->mmws;
947
                    break;
948
                case 0x12:
949
                    addr_high = s->sfs;
950
                    break;
951
                case 0x13:
952
                    addr_high = s->drs;
953
                    break;
954
                case 0x14:
955
                    addr_high = s->sbms;
956
                    break;
957
                case 0x15:
958
                    addr_high = s->dbms;
959
                    break;
960
                default:
961
                    BADF("Illegal selector specified (0x%x > 0x15)"
962
                         " for 64-bit DMA block move", selector);
963
                    break;
964
                }
965
            }
966
        } else if (lsi_dma_64bit(s)) {
967
            /* fetch a 3rd dword if 64-bit direct move is enabled and
968
               only if we're not doing table indirect or indirect addressing */
969
            s->dbms = read_dword(s, s->dsp);
970
            s->dsp += 4;
971
            s->ia = s->dsp - 12;
972
        }
973
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
974
            DPRINTF("Wrong phase got %d expected %d\n",
975
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
976
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
977
            break;
978
        }
979
        s->dnad = addr;
980
        s->dnad64 = addr_high;
981
        switch (s->sstat1 & 0x7) {
982
        case PHASE_DO:
983
            s->waiting = 2;
984
            lsi_do_dma(s, 1);
985
            if (s->waiting)
986
                s->waiting = 3;
987
            break;
988
        case PHASE_DI:
989
            s->waiting = 2;
990
            lsi_do_dma(s, 0);
991
            if (s->waiting)
992
                s->waiting = 3;
993
            break;
994
        case PHASE_CMD:
995
            lsi_do_command(s);
996
            break;
997
        case PHASE_ST:
998
            lsi_do_status(s);
999
            break;
1000
        case PHASE_MO:
1001
            lsi_do_msgout(s);
1002
            break;
1003
        case PHASE_MI:
1004
            lsi_do_msgin(s);
1005
            break;
1006
        default:
1007
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1008
            exit(1);
1009
        }
1010
        s->dfifo = s->dbc & 0xff;
1011
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1012
        s->sbc = s->dbc;
1013
        s->rbc -= s->dbc;
1014
        s->ua = addr + s->dbc;
1015
        break;
1016

    
1017
    case 1: /* IO or Read/Write instruction.  */
1018
        opcode = (insn >> 27) & 7;
1019
        if (opcode < 5) {
1020
            uint32_t id;
1021

    
1022
            if (insn & (1 << 25)) {
1023
                id = read_dword(s, s->dsa + sxt24(insn));
1024
            } else {
1025
                id = addr;
1026
            }
1027
            id = (id >> 16) & 0xf;
1028
            if (insn & (1 << 26)) {
1029
                addr = s->dsp + sxt24(addr);
1030
            }
1031
            s->dnad = addr;
1032
            switch (opcode) {
1033
            case 0: /* Select */
1034
                s->sdid = id;
1035
                if (s->current_dma_len && (s->ssid & 0xf) == id) {
1036
                    DPRINTF("Already reselected by target %d\n", id);
1037
                    break;
1038
                }
1039
                s->sstat0 |= LSI_SSTAT0_WOA;
1040
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1041
                if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
1042
                    DPRINTF("Selected absent target %d\n", id);
1043
                    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1044
                    lsi_disconnect(s);
1045
                    break;
1046
                }
1047
                DPRINTF("Selected target %d%s\n",
1048
                        id, insn & (1 << 3) ? " ATN" : "");
1049
                /* ??? Linux drivers compain when this is set.  Maybe
1050
                   it only applies in low-level mode (unimplemented).
1051
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1052
                s->current_dev = s->scsi_dev[id];
1053
                s->current_tag = id << 8;
1054
                s->scntl1 |= LSI_SCNTL1_CON;
1055
                if (insn & (1 << 3)) {
1056
                    s->socl |= LSI_SOCL_ATN;
1057
                }
1058
                lsi_set_phase(s, PHASE_MO);
1059
                break;
1060
            case 1: /* Disconnect */
1061
                DPRINTF("Wait Disconect\n");
1062
                s->scntl1 &= ~LSI_SCNTL1_CON;
1063
                break;
1064
            case 2: /* Wait Reselect */
1065
                lsi_wait_reselect(s);
1066
                break;
1067
            case 3: /* Set */
1068
                DPRINTF("Set%s%s%s%s\n",
1069
                        insn & (1 << 3) ? " ATN" : "",
1070
                        insn & (1 << 6) ? " ACK" : "",
1071
                        insn & (1 << 9) ? " TM" : "",
1072
                        insn & (1 << 10) ? " CC" : "");
1073
                if (insn & (1 << 3)) {
1074
                    s->socl |= LSI_SOCL_ATN;
1075
                    lsi_set_phase(s, PHASE_MO);
1076
                }
1077
                if (insn & (1 << 9)) {
1078
                    BADF("Target mode not implemented\n");
1079
                    exit(1);
1080
                }
1081
                if (insn & (1 << 10))
1082
                    s->carry = 1;
1083
                break;
1084
            case 4: /* Clear */
1085
                DPRINTF("Clear%s%s%s%s\n",
1086
                        insn & (1 << 3) ? " ATN" : "",
1087
                        insn & (1 << 6) ? " ACK" : "",
1088
                        insn & (1 << 9) ? " TM" : "",
1089
                        insn & (1 << 10) ? " CC" : "");
1090
                if (insn & (1 << 3)) {
1091
                    s->socl &= ~LSI_SOCL_ATN;
1092
                }
1093
                if (insn & (1 << 10))
1094
                    s->carry = 0;
1095
                break;
1096
            }
1097
        } else {
1098
            uint8_t op0;
1099
            uint8_t op1;
1100
            uint8_t data8;
1101
            int reg;
1102
            int operator;
1103
#ifdef DEBUG_LSI
1104
            static const char *opcode_names[3] =
1105
                {"Write", "Read", "Read-Modify-Write"};
1106
            static const char *operator_names[8] =
1107
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1108
#endif
1109

    
1110
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1111
            data8 = (insn >> 8) & 0xff;
1112
            opcode = (insn >> 27) & 7;
1113
            operator = (insn >> 24) & 7;
1114
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1115
                    opcode_names[opcode - 5], reg,
1116
                    operator_names[operator], data8, s->sfbr,
1117
                    (insn & (1 << 23)) ? " SFBR" : "");
1118
            op0 = op1 = 0;
1119
            switch (opcode) {
1120
            case 5: /* From SFBR */
1121
                op0 = s->sfbr;
1122
                op1 = data8;
1123
                break;
1124
            case 6: /* To SFBR */
1125
                if (operator)
1126
                    op0 = lsi_reg_readb(s, reg);
1127
                op1 = data8;
1128
                break;
1129
            case 7: /* Read-modify-write */
1130
                if (operator)
1131
                    op0 = lsi_reg_readb(s, reg);
1132
                if (insn & (1 << 23)) {
1133
                    op1 = s->sfbr;
1134
                } else {
1135
                    op1 = data8;
1136
                }
1137
                break;
1138
            }
1139

    
1140
            switch (operator) {
1141
            case 0: /* move */
1142
                op0 = op1;
1143
                break;
1144
            case 1: /* Shift left */
1145
                op1 = op0 >> 7;
1146
                op0 = (op0 << 1) | s->carry;
1147
                s->carry = op1;
1148
                break;
1149
            case 2: /* OR */
1150
                op0 |= op1;
1151
                break;
1152
            case 3: /* XOR */
1153
                op0 ^= op1;
1154
                break;
1155
            case 4: /* AND */
1156
                op0 &= op1;
1157
                break;
1158
            case 5: /* SHR */
1159
                op1 = op0 & 1;
1160
                op0 = (op0 >> 1) | (s->carry << 7);
1161
                s->carry = op1;
1162
                break;
1163
            case 6: /* ADD */
1164
                op0 += op1;
1165
                s->carry = op0 < op1;
1166
                break;
1167
            case 7: /* ADC */
1168
                op0 += op1 + s->carry;
1169
                if (s->carry)
1170
                    s->carry = op0 <= op1;
1171
                else
1172
                    s->carry = op0 < op1;
1173
                break;
1174
            }
1175

    
1176
            switch (opcode) {
1177
            case 5: /* From SFBR */
1178
            case 7: /* Read-modify-write */
1179
                lsi_reg_writeb(s, reg, op0);
1180
                break;
1181
            case 6: /* To SFBR */
1182
                s->sfbr = op0;
1183
                break;
1184
            }
1185
        }
1186
        break;
1187

    
1188
    case 2: /* Transfer Control.  */
1189
        {
1190
            int cond;
1191
            int jmp;
1192

    
1193
            if ((insn & 0x002e0000) == 0) {
1194
                DPRINTF("NOP\n");
1195
                break;
1196
            }
1197
            if (s->sist1 & LSI_SIST1_STO) {
1198
                DPRINTF("Delayed select timeout\n");
1199
                lsi_stop_script(s);
1200
                break;
1201
            }
1202
            cond = jmp = (insn & (1 << 19)) != 0;
1203
            if (cond == jmp && (insn & (1 << 21))) {
1204
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1205
                cond = s->carry != 0;
1206
            }
1207
            if (cond == jmp && (insn & (1 << 17))) {
1208
                DPRINTF("Compare phase %d %c= %d\n",
1209
                        (s->sstat1 & PHASE_MASK),
1210
                        jmp ? '=' : '!',
1211
                        ((insn >> 24) & 7));
1212
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1213
            }
1214
            if (cond == jmp && (insn & (1 << 18))) {
1215
                uint8_t mask;
1216

    
1217
                mask = (~insn >> 8) & 0xff;
1218
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1219
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1220
                cond = (s->sfbr & mask) == (insn & mask);
1221
            }
1222
            if (cond == jmp) {
1223
                if (insn & (1 << 23)) {
1224
                    /* Relative address.  */
1225
                    addr = s->dsp + sxt24(addr);
1226
                }
1227
                switch ((insn >> 27) & 7) {
1228
                case 0: /* Jump */
1229
                    DPRINTF("Jump to 0x%08x\n", addr);
1230
                    s->dsp = addr;
1231
                    break;
1232
                case 1: /* Call */
1233
                    DPRINTF("Call 0x%08x\n", addr);
1234
                    s->temp = s->dsp;
1235
                    s->dsp = addr;
1236
                    break;
1237
                case 2: /* Return */
1238
                    DPRINTF("Return to 0x%08x\n", s->temp);
1239
                    s->dsp = s->temp;
1240
                    break;
1241
                case 3: /* Interrupt */
1242
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1243
                    if ((insn & (1 << 20)) != 0) {
1244
                        s->istat0 |= LSI_ISTAT0_INTF;
1245
                        lsi_update_irq(s);
1246
                    } else {
1247
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1248
                    }
1249
                    break;
1250
                default:
1251
                    DPRINTF("Illegal transfer control\n");
1252
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1253
                    break;
1254
                }
1255
            } else {
1256
                DPRINTF("Control condition failed\n");
1257
            }
1258
        }
1259
        break;
1260

    
1261
    case 3:
1262
        if ((insn & (1 << 29)) == 0) {
1263
            /* Memory move.  */
1264
            uint32_t dest;
1265
            /* ??? The docs imply the destination address is loaded into
1266
               the TEMP register.  However the Linux drivers rely on
1267
               the value being presrved.  */
1268
            dest = read_dword(s, s->dsp);
1269
            s->dsp += 4;
1270
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1271
        } else {
1272
            uint8_t data[7];
1273
            int reg;
1274
            int n;
1275
            int i;
1276

    
1277
            if (insn & (1 << 28)) {
1278
                addr = s->dsa + sxt24(addr);
1279
            }
1280
            n = (insn & 7);
1281
            reg = (insn >> 16) & 0xff;
1282
            if (insn & (1 << 24)) {
1283
                cpu_physical_memory_read(addr, data, n);
1284
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1285
                        addr, *(int *)data);
1286
                for (i = 0; i < n; i++) {
1287
                    lsi_reg_writeb(s, reg + i, data[i]);
1288
                }
1289
            } else {
1290
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1291
                for (i = 0; i < n; i++) {
1292
                    data[i] = lsi_reg_readb(s, reg + i);
1293
                }
1294
                cpu_physical_memory_write(addr, data, n);
1295
            }
1296
        }
1297
    }
1298
    if (insn_processed > 10000 && !s->waiting) {
1299
        /* Some windows drivers make the device spin waiting for a memory
1300
           location to change.  If we have been executed a lot of code then
1301
           assume this is the case and force an unexpected device disconnect.
1302
           This is apparently sufficient to beat the drivers into submission.
1303
         */
1304
        if (!(s->sien0 & LSI_SIST0_UDC))
1305
            fprintf(stderr, "inf. loop with UDC masked\n");
1306
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1307
        lsi_disconnect(s);
1308
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1309
        if (s->dcntl & LSI_DCNTL_SSM) {
1310
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1311
        } else {
1312
            goto again;
1313
        }
1314
    }
1315
    DPRINTF("SCRIPTS execution stopped\n");
1316
}
1317

    
1318
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1319
{
1320
    uint8_t tmp;
1321
#define CASE_GET_REG24(name, addr) \
1322
    case addr: return s->name & 0xff; \
1323
    case addr + 1: return (s->name >> 8) & 0xff; \
1324
    case addr + 2: return (s->name >> 16) & 0xff;
1325

    
1326
#define CASE_GET_REG32(name, addr) \
1327
    case addr: return s->name & 0xff; \
1328
    case addr + 1: return (s->name >> 8) & 0xff; \
1329
    case addr + 2: return (s->name >> 16) & 0xff; \
1330
    case addr + 3: return (s->name >> 24) & 0xff;
1331

    
1332
#ifdef DEBUG_LSI_REG
1333
    DPRINTF("Read reg %x\n", offset);
1334
#endif
1335
    switch (offset) {
1336
    case 0x00: /* SCNTL0 */
1337
        return s->scntl0;
1338
    case 0x01: /* SCNTL1 */
1339
        return s->scntl1;
1340
    case 0x02: /* SCNTL2 */
1341
        return s->scntl2;
1342
    case 0x03: /* SCNTL3 */
1343
        return s->scntl3;
1344
    case 0x04: /* SCID */
1345
        return s->scid;
1346
    case 0x05: /* SXFER */
1347
        return s->sxfer;
1348
    case 0x06: /* SDID */
1349
        return s->sdid;
1350
    case 0x07: /* GPREG0 */
1351
        return 0x7f;
1352
    case 0x08: /* Revision ID */
1353
        return 0x00;
1354
    case 0xa: /* SSID */
1355
        return s->ssid;
1356
    case 0xb: /* SBCL */
1357
        /* ??? This is not correct. However it's (hopefully) only
1358
           used for diagnostics, so should be ok.  */
1359
        return 0;
1360
    case 0xc: /* DSTAT */
1361
        tmp = s->dstat | 0x80;
1362
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1363
            s->dstat = 0;
1364
        lsi_update_irq(s);
1365
        return tmp;
1366
    case 0x0d: /* SSTAT0 */
1367
        return s->sstat0;
1368
    case 0x0e: /* SSTAT1 */
1369
        return s->sstat1;
1370
    case 0x0f: /* SSTAT2 */
1371
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1372
    CASE_GET_REG32(dsa, 0x10)
1373
    case 0x14: /* ISTAT0 */
1374
        return s->istat0;
1375
    case 0x15: /* ISTAT1 */
1376
        return s->istat1;
1377
    case 0x16: /* MBOX0 */
1378
        return s->mbox0;
1379
    case 0x17: /* MBOX1 */
1380
        return s->mbox1;
1381
    case 0x18: /* CTEST0 */
1382
        return 0xff;
1383
    case 0x19: /* CTEST1 */
1384
        return 0;
1385
    case 0x1a: /* CTEST2 */
1386
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1387
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1388
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1389
            tmp |= LSI_CTEST2_SIGP;
1390
        }
1391
        return tmp;
1392
    case 0x1b: /* CTEST3 */
1393
        return s->ctest3;
1394
    CASE_GET_REG32(temp, 0x1c)
1395
    case 0x20: /* DFIFO */
1396
        return 0;
1397
    case 0x21: /* CTEST4 */
1398
        return s->ctest4;
1399
    case 0x22: /* CTEST5 */
1400
        return s->ctest5;
1401
    case 0x23: /* CTEST6 */
1402
         return 0;
1403
    CASE_GET_REG24(dbc, 0x24)
1404
    case 0x27: /* DCMD */
1405
        return s->dcmd;
1406
    CASE_GET_REG32(dnad, 0x28)
1407
    CASE_GET_REG32(dsp, 0x2c)
1408
    CASE_GET_REG32(dsps, 0x30)
1409
    CASE_GET_REG32(scratch[0], 0x34)
1410
    case 0x38: /* DMODE */
1411
        return s->dmode;
1412
    case 0x39: /* DIEN */
1413
        return s->dien;
1414
    case 0x3a: /* SBR */
1415
        return s->sbr;
1416
    case 0x3b: /* DCNTL */
1417
        return s->dcntl;
1418
    case 0x40: /* SIEN0 */
1419
        return s->sien0;
1420
    case 0x41: /* SIEN1 */
1421
        return s->sien1;
1422
    case 0x42: /* SIST0 */
1423
        tmp = s->sist0;
1424
        s->sist0 = 0;
1425
        lsi_update_irq(s);
1426
        return tmp;
1427
    case 0x43: /* SIST1 */
1428
        tmp = s->sist1;
1429
        s->sist1 = 0;
1430
        lsi_update_irq(s);
1431
        return tmp;
1432
    case 0x46: /* MACNTL */
1433
        return 0x0f;
1434
    case 0x47: /* GPCNTL0 */
1435
        return 0x0f;
1436
    case 0x48: /* STIME0 */
1437
        return s->stime0;
1438
    case 0x4a: /* RESPID0 */
1439
        return s->respid0;
1440
    case 0x4b: /* RESPID1 */
1441
        return s->respid1;
1442
    case 0x4d: /* STEST1 */
1443
        return s->stest1;
1444
    case 0x4e: /* STEST2 */
1445
        return s->stest2;
1446
    case 0x4f: /* STEST3 */
1447
        return s->stest3;
1448
    case 0x50: /* SIDL */
1449
        /* This is needed by the linux drivers.  We currently only update it
1450
           during the MSG IN phase.  */
1451
        return s->sidl;
1452
    case 0x52: /* STEST4 */
1453
        return 0xe0;
1454
    case 0x56: /* CCNTL0 */
1455
        return s->ccntl0;
1456
    case 0x57: /* CCNTL1 */
1457
        return s->ccntl1;
1458
    case 0x58: /* SBDL */
1459
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1460
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1461
            return s->msg[0];
1462
        return 0;
1463
    case 0x59: /* SBDL high */
1464
        return 0;
1465
    CASE_GET_REG32(mmrs, 0xa0)
1466
    CASE_GET_REG32(mmws, 0xa4)
1467
    CASE_GET_REG32(sfs, 0xa8)
1468
    CASE_GET_REG32(drs, 0xac)
1469
    CASE_GET_REG32(sbms, 0xb0)
1470
    CASE_GET_REG32(dbms, 0xb4)
1471
    CASE_GET_REG32(dnad64, 0xb8)
1472
    CASE_GET_REG32(pmjad1, 0xc0)
1473
    CASE_GET_REG32(pmjad2, 0xc4)
1474
    CASE_GET_REG32(rbc, 0xc8)
1475
    CASE_GET_REG32(ua, 0xcc)
1476
    CASE_GET_REG32(ia, 0xd4)
1477
    CASE_GET_REG32(sbc, 0xd8)
1478
    CASE_GET_REG32(csbc, 0xdc)
1479
    }
1480
    if (offset >= 0x5c && offset < 0xa0) {
1481
        int n;
1482
        int shift;
1483
        n = (offset - 0x58) >> 2;
1484
        shift = (offset & 3) * 8;
1485
        return (s->scratch[n] >> shift) & 0xff;
1486
    }
1487
    BADF("readb 0x%x\n", offset);
1488
    exit(1);
1489
#undef CASE_GET_REG24
1490
#undef CASE_GET_REG32
1491
}
1492

    
1493
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1494
{
1495
#define CASE_SET_REG24(name, addr) \
1496
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1497
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1498
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1499

    
1500
#define CASE_SET_REG32(name, addr) \
1501
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1502
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1503
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1504
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1505

    
1506
#ifdef DEBUG_LSI_REG
1507
    DPRINTF("Write reg %x = %02x\n", offset, val);
1508
#endif
1509
    switch (offset) {
1510
    case 0x00: /* SCNTL0 */
1511
        s->scntl0 = val;
1512
        if (val & LSI_SCNTL0_START) {
1513
            BADF("Start sequence not implemented\n");
1514
        }
1515
        break;
1516
    case 0x01: /* SCNTL1 */
1517
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1518
        if (val & LSI_SCNTL1_IARB) {
1519
            BADF("Immediate Arbritration not implemented\n");
1520
        }
1521
        if (val & LSI_SCNTL1_RST) {
1522
            s->sstat0 |= LSI_SSTAT0_RST;
1523
            lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1524
        } else {
1525
            s->sstat0 &= ~LSI_SSTAT0_RST;
1526
        }
1527
        break;
1528
    case 0x02: /* SCNTL2 */
1529
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1530
        s->scntl2 = val;
1531
        break;
1532
    case 0x03: /* SCNTL3 */
1533
        s->scntl3 = val;
1534
        break;
1535
    case 0x04: /* SCID */
1536
        s->scid = val;
1537
        break;
1538
    case 0x05: /* SXFER */
1539
        s->sxfer = val;
1540
        break;
1541
    case 0x06: /* SDID */
1542
        if ((val & 0xf) != (s->ssid & 0xf))
1543
            BADF("Destination ID does not match SSID\n");
1544
        s->sdid = val & 0xf;
1545
        break;
1546
    case 0x07: /* GPREG0 */
1547
        break;
1548
    case 0x08: /* SFBR */
1549
        /* The CPU is not allowed to write to this register.  However the
1550
           SCRIPTS register move instructions are.  */
1551
        s->sfbr = val;
1552
        break;
1553
    case 0x0a: case 0x0b: 
1554
        /* Openserver writes to these readonly registers on startup */
1555
        return;    
1556
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1557
        /* Linux writes to these readonly registers on startup.  */
1558
        return;
1559
    CASE_SET_REG32(dsa, 0x10)
1560
    case 0x14: /* ISTAT0 */
1561
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1562
        if (val & LSI_ISTAT0_ABRT) {
1563
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1564
        }
1565
        if (val & LSI_ISTAT0_INTF) {
1566
            s->istat0 &= ~LSI_ISTAT0_INTF;
1567
            lsi_update_irq(s);
1568
        }
1569
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1570
            DPRINTF("Woken by SIGP\n");
1571
            s->waiting = 0;
1572
            s->dsp = s->dnad;
1573
            lsi_execute_script(s);
1574
        }
1575
        if (val & LSI_ISTAT0_SRST) {
1576
            lsi_soft_reset(s);
1577
        }
1578
        break;
1579
    case 0x16: /* MBOX0 */
1580
        s->mbox0 = val;
1581
        break;
1582
    case 0x17: /* MBOX1 */
1583
        s->mbox1 = val;
1584
        break;
1585
    case 0x1a: /* CTEST2 */
1586
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1587
        break;
1588
    case 0x1b: /* CTEST3 */
1589
        s->ctest3 = val & 0x0f;
1590
        break;
1591
    CASE_SET_REG32(temp, 0x1c)
1592
    case 0x21: /* CTEST4 */
1593
        if (val & 7) {
1594
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1595
        }
1596
        s->ctest4 = val;
1597
        break;
1598
    case 0x22: /* CTEST5 */
1599
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1600
            BADF("CTEST5 DMA increment not implemented\n");
1601
        }
1602
        s->ctest5 = val;
1603
        break;
1604
    CASE_SET_REG24(dbc, 0x24)
1605
    CASE_SET_REG32(dnad, 0x28)
1606
    case 0x2c: /* DSP[0:7] */
1607
        s->dsp &= 0xffffff00;
1608
        s->dsp |= val;
1609
        break;
1610
    case 0x2d: /* DSP[8:15] */
1611
        s->dsp &= 0xffff00ff;
1612
        s->dsp |= val << 8;
1613
        break;
1614
    case 0x2e: /* DSP[16:23] */
1615
        s->dsp &= 0xff00ffff;
1616
        s->dsp |= val << 16;
1617
        break;
1618
    case 0x2f: /* DSP[24:31] */
1619
        s->dsp &= 0x00ffffff;
1620
        s->dsp |= val << 24;
1621
        if ((s->dmode & LSI_DMODE_MAN) == 0
1622
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1623
            lsi_execute_script(s);
1624
        break;
1625
    CASE_SET_REG32(dsps, 0x30)
1626
    CASE_SET_REG32(scratch[0], 0x34)
1627
    case 0x38: /* DMODE */
1628
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1629
            BADF("IO mappings not implemented\n");
1630
        }
1631
        s->dmode = val;
1632
        break;
1633
    case 0x39: /* DIEN */
1634
        s->dien = val;
1635
        lsi_update_irq(s);
1636
        break;
1637
    case 0x3a: /* SBR */
1638
        s->sbr = val;
1639
        break;
1640
    case 0x3b: /* DCNTL */
1641
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1642
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1643
            lsi_execute_script(s);
1644
        break;
1645
    case 0x40: /* SIEN0 */
1646
        s->sien0 = val;
1647
        lsi_update_irq(s);
1648
        break;
1649
    case 0x41: /* SIEN1 */
1650
        s->sien1 = val;
1651
        lsi_update_irq(s);
1652
        break;
1653
    case 0x47: /* GPCNTL0 */
1654
        break;
1655
    case 0x48: /* STIME0 */
1656
        s->stime0 = val;
1657
        break;
1658
    case 0x49: /* STIME1 */
1659
        if (val & 0xf) {
1660
            DPRINTF("General purpose timer not implemented\n");
1661
            /* ??? Raising the interrupt immediately seems to be sufficient
1662
               to keep the FreeBSD driver happy.  */
1663
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1664
        }
1665
        break;
1666
    case 0x4a: /* RESPID0 */
1667
        s->respid0 = val;
1668
        break;
1669
    case 0x4b: /* RESPID1 */
1670
        s->respid1 = val;
1671
        break;
1672
    case 0x4d: /* STEST1 */
1673
        s->stest1 = val;
1674
        break;
1675
    case 0x4e: /* STEST2 */
1676
        if (val & 1) {
1677
            BADF("Low level mode not implemented\n");
1678
        }
1679
        s->stest2 = val;
1680
        break;
1681
    case 0x4f: /* STEST3 */
1682
        if (val & 0x41) {
1683
            BADF("SCSI FIFO test mode not implemented\n");
1684
        }
1685
        s->stest3 = val;
1686
        break;
1687
    case 0x56: /* CCNTL0 */
1688
        s->ccntl0 = val;
1689
        break;
1690
    case 0x57: /* CCNTL1 */
1691
        s->ccntl1 = val;
1692
        break;
1693
    CASE_SET_REG32(mmrs, 0xa0)
1694
    CASE_SET_REG32(mmws, 0xa4)
1695
    CASE_SET_REG32(sfs, 0xa8)
1696
    CASE_SET_REG32(drs, 0xac)
1697
    CASE_SET_REG32(sbms, 0xb0)
1698
    CASE_SET_REG32(dbms, 0xb4)
1699
    CASE_SET_REG32(dnad64, 0xb8)
1700
    CASE_SET_REG32(pmjad1, 0xc0)
1701
    CASE_SET_REG32(pmjad2, 0xc4)
1702
    CASE_SET_REG32(rbc, 0xc8)
1703
    CASE_SET_REG32(ua, 0xcc)
1704
    CASE_SET_REG32(ia, 0xd4)
1705
    CASE_SET_REG32(sbc, 0xd8)
1706
    CASE_SET_REG32(csbc, 0xdc)
1707
    default:
1708
        if (offset >= 0x5c && offset < 0xa0) {
1709
            int n;
1710
            int shift;
1711
            n = (offset - 0x58) >> 2;
1712
            shift = (offset & 3) * 8;
1713
            s->scratch[n] &= ~(0xff << shift);
1714
            s->scratch[n] |= (val & 0xff) << shift;
1715
        } else {
1716
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1717
        }
1718
    }
1719
#undef CASE_SET_REG24
1720
#undef CASE_SET_REG32
1721
}
1722

    
1723
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1724
{
1725
    LSIState *s = (LSIState *)opaque;
1726

    
1727
    lsi_reg_writeb(s, addr & 0xff, val);
1728
}
1729

    
1730
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1731
{
1732
    LSIState *s = (LSIState *)opaque;
1733

    
1734
    addr &= 0xff;
1735
    lsi_reg_writeb(s, addr, val & 0xff);
1736
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1737
}
1738

    
1739
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1740
{
1741
    LSIState *s = (LSIState *)opaque;
1742

    
1743
    addr &= 0xff;
1744
    lsi_reg_writeb(s, addr, val & 0xff);
1745
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1746
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1747
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1748
}
1749

    
1750
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1751
{
1752
    LSIState *s = (LSIState *)opaque;
1753

    
1754
    return lsi_reg_readb(s, addr & 0xff);
1755
}
1756

    
1757
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1758
{
1759
    LSIState *s = (LSIState *)opaque;
1760
    uint32_t val;
1761

    
1762
    addr &= 0xff;
1763
    val = lsi_reg_readb(s, addr);
1764
    val |= lsi_reg_readb(s, addr + 1) << 8;
1765
    return val;
1766
}
1767

    
1768
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1769
{
1770
    LSIState *s = (LSIState *)opaque;
1771
    uint32_t val;
1772
    addr &= 0xff;
1773
    val = lsi_reg_readb(s, addr);
1774
    val |= lsi_reg_readb(s, addr + 1) << 8;
1775
    val |= lsi_reg_readb(s, addr + 2) << 16;
1776
    val |= lsi_reg_readb(s, addr + 3) << 24;
1777
    return val;
1778
}
1779

    
1780
static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
1781
    lsi_mmio_readb,
1782
    lsi_mmio_readw,
1783
    lsi_mmio_readl,
1784
};
1785

    
1786
static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
1787
    lsi_mmio_writeb,
1788
    lsi_mmio_writew,
1789
    lsi_mmio_writel,
1790
};
1791

    
1792
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1793
{
1794
    LSIState *s = (LSIState *)opaque;
1795
    uint32_t newval;
1796
    int shift;
1797

    
1798
    addr &= 0x1fff;
1799
    newval = s->script_ram[addr >> 2];
1800
    shift = (addr & 3) * 8;
1801
    newval &= ~(0xff << shift);
1802
    newval |= val << shift;
1803
    s->script_ram[addr >> 2] = newval;
1804
}
1805

    
1806
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1807
{
1808
    LSIState *s = (LSIState *)opaque;
1809
    uint32_t newval;
1810

    
1811
    addr &= 0x1fff;
1812
    newval = s->script_ram[addr >> 2];
1813
    if (addr & 2) {
1814
        newval = (newval & 0xffff) | (val << 16);
1815
    } else {
1816
        newval = (newval & 0xffff0000) | val;
1817
    }
1818
    s->script_ram[addr >> 2] = newval;
1819
}
1820

    
1821

    
1822
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1823
{
1824
    LSIState *s = (LSIState *)opaque;
1825

    
1826
    addr &= 0x1fff;
1827
    s->script_ram[addr >> 2] = val;
1828
}
1829

    
1830
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1831
{
1832
    LSIState *s = (LSIState *)opaque;
1833
    uint32_t val;
1834

    
1835
    addr &= 0x1fff;
1836
    val = s->script_ram[addr >> 2];
1837
    val >>= (addr & 3) * 8;
1838
    return val & 0xff;
1839
}
1840

    
1841
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1842
{
1843
    LSIState *s = (LSIState *)opaque;
1844
    uint32_t val;
1845

    
1846
    addr &= 0x1fff;
1847
    val = s->script_ram[addr >> 2];
1848
    if (addr & 2)
1849
        val >>= 16;
1850
    return le16_to_cpu(val);
1851
}
1852

    
1853
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1854
{
1855
    LSIState *s = (LSIState *)opaque;
1856

    
1857
    addr &= 0x1fff;
1858
    return le32_to_cpu(s->script_ram[addr >> 2]);
1859
}
1860

    
1861
static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
1862
    lsi_ram_readb,
1863
    lsi_ram_readw,
1864
    lsi_ram_readl,
1865
};
1866

    
1867
static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
1868
    lsi_ram_writeb,
1869
    lsi_ram_writew,
1870
    lsi_ram_writel,
1871
};
1872

    
1873
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1874
{
1875
    LSIState *s = (LSIState *)opaque;
1876
    return lsi_reg_readb(s, addr & 0xff);
1877
}
1878

    
1879
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1880
{
1881
    LSIState *s = (LSIState *)opaque;
1882
    uint32_t val;
1883
    addr &= 0xff;
1884
    val = lsi_reg_readb(s, addr);
1885
    val |= lsi_reg_readb(s, addr + 1) << 8;
1886
    return val;
1887
}
1888

    
1889
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1890
{
1891
    LSIState *s = (LSIState *)opaque;
1892
    uint32_t val;
1893
    addr &= 0xff;
1894
    val = lsi_reg_readb(s, addr);
1895
    val |= lsi_reg_readb(s, addr + 1) << 8;
1896
    val |= lsi_reg_readb(s, addr + 2) << 16;
1897
    val |= lsi_reg_readb(s, addr + 3) << 24;
1898
    return val;
1899
}
1900

    
1901
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1902
{
1903
    LSIState *s = (LSIState *)opaque;
1904
    lsi_reg_writeb(s, addr & 0xff, val);
1905
}
1906

    
1907
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1908
{
1909
    LSIState *s = (LSIState *)opaque;
1910
    addr &= 0xff;
1911
    lsi_reg_writeb(s, addr, val & 0xff);
1912
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1913
}
1914

    
1915
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1916
{
1917
    LSIState *s = (LSIState *)opaque;
1918
    addr &= 0xff;
1919
    lsi_reg_writeb(s, addr, val & 0xff);
1920
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1921
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1922
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1923
}
1924

    
1925
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1926
                           uint32_t addr, uint32_t size, int type)
1927
{
1928
    LSIState *s = (LSIState *)pci_dev;
1929

    
1930
    DPRINTF("Mapping IO at %08x\n", addr);
1931

    
1932
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1933
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1934
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1935
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1936
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1937
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1938
}
1939

    
1940
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1941
                            uint32_t addr, uint32_t size, int type)
1942
{
1943
    LSIState *s = (LSIState *)pci_dev;
1944

    
1945
    DPRINTF("Mapping ram at %08x\n", addr);
1946
    s->script_ram_base = addr;
1947
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1948
}
1949

    
1950
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1951
                             uint32_t addr, uint32_t size, int type)
1952
{
1953
    LSIState *s = (LSIState *)pci_dev;
1954

    
1955
    DPRINTF("Mapping registers at %08x\n", addr);
1956
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1957
}
1958

    
1959
void lsi_scsi_attach(DeviceState *host, BlockDriverState *bd, int id)
1960
{
1961
    LSIState *s = (LSIState *)host;
1962

    
1963
    if (id < 0) {
1964
        for (id = 0; id < LSI_MAX_DEVS; id++) {
1965
            if (s->scsi_dev[id] == NULL)
1966
                break;
1967
        }
1968
    }
1969
    if (id >= LSI_MAX_DEVS) {
1970
        BADF("Bad Device ID %d\n", id);
1971
        return;
1972
    }
1973
    if (s->scsi_dev[id]) {
1974
        DPRINTF("Destroying device %d\n", id);
1975
        s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1976
    }
1977
    DPRINTF("Attaching block device %d\n", id);
1978
    s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1979
    if (s->scsi_dev[id] == NULL)
1980
        s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1981
    bd->private = &s->pci_dev;
1982
}
1983

    
1984
static int lsi_scsi_uninit(PCIDevice *d)
1985
{
1986
    LSIState *s = (LSIState *) d;
1987

    
1988
    cpu_unregister_io_memory(s->mmio_io_addr);
1989
    cpu_unregister_io_memory(s->ram_io_addr);
1990

    
1991
    qemu_free(s->queue);
1992

    
1993
    return 0;
1994
}
1995

    
1996
static void lsi_scsi_init(PCIDevice *dev)
1997
{
1998
    LSIState *s = (LSIState *)dev;
1999
    uint8_t *pci_conf;
2000

    
2001
    pci_conf = s->pci_dev.config;
2002

    
2003
    /* PCI Vendor ID (word) */
2004
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2005
    /* PCI device ID (word) */
2006
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2007
    /* PCI base class code */
2008
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2009
    /* PCI subsystem ID */
2010
    pci_conf[0x2e] = 0x00;
2011
    pci_conf[0x2f] = 0x10;
2012
    /* PCI latency timer = 255 */
2013
    pci_conf[0x0d] = 0xff;
2014
    /* Interrupt pin 1 */
2015
    pci_conf[0x3d] = 0x01;
2016

    
2017
    s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2018
                                             lsi_mmio_writefn, s);
2019
    s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2020
                                            lsi_ram_writefn, s);
2021

    
2022
    pci_register_bar((struct PCIDevice *)s, 0, 256,
2023
                           PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2024
    pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2025
                           PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
2026
    pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2027
                           PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
2028
    s->queue = qemu_malloc(sizeof(lsi_queue));
2029
    s->queue_len = 1;
2030
    s->active_commands = 0;
2031
    s->pci_dev.unregister = lsi_scsi_uninit;
2032

    
2033
    lsi_soft_reset(s);
2034

    
2035
    scsi_bus_new(&dev->qdev, lsi_scsi_attach);
2036
}
2037

    
2038
static PCIDeviceInfo lsi_info = {
2039
    .qdev.name = "lsi53c895a",
2040
    .qdev.size = sizeof(LSIState),
2041
    .init      = lsi_scsi_init,
2042
};
2043

    
2044
static void lsi53c895a_register_devices(void)
2045
{
2046
    pci_qdev_register(&lsi_info);
2047
}
2048

    
2049
device_init(lsi53c895a_register_devices);