Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 0af691d7

History | View | Annotate | Download (34.2 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "ioport.h"
29

    
30
#ifdef CONFIG_KVM_PARA
31
#include <linux/kvm_para.h>
32
#endif
33
//
34
//#define DEBUG_KVM
35

    
36
#ifdef DEBUG_KVM
37
#define DPRINTF(fmt, ...) \
38
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39
#else
40
#define DPRINTF(fmt, ...) \
41
    do { } while (0)
42
#endif
43

    
44
#define MSR_KVM_WALL_CLOCK  0x11
45
#define MSR_KVM_SYSTEM_TIME 0x12
46

    
47
#ifdef KVM_CAP_EXT_CPUID
48

    
49
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
50
{
51
    struct kvm_cpuid2 *cpuid;
52
    int r, size;
53

    
54
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56
    cpuid->nent = max;
57
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58
    if (r == 0 && cpuid->nent >= max) {
59
        r = -E2BIG;
60
    }
61
    if (r < 0) {
62
        if (r == -E2BIG) {
63
            qemu_free(cpuid);
64
            return NULL;
65
        } else {
66
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67
                    strerror(-r));
68
            exit(1);
69
        }
70
    }
71
    return cpuid;
72
}
73

    
74
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
75
{
76
    struct kvm_cpuid2 *cpuid;
77
    int i, max;
78
    uint32_t ret = 0;
79
    uint32_t cpuid_1_edx;
80

    
81
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
82
        return -1U;
83
    }
84

    
85
    max = 1;
86
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
87
        max *= 2;
88
    }
89

    
90
    for (i = 0; i < cpuid->nent; ++i) {
91
        if (cpuid->entries[i].function == function) {
92
            switch (reg) {
93
            case R_EAX:
94
                ret = cpuid->entries[i].eax;
95
                break;
96
            case R_EBX:
97
                ret = cpuid->entries[i].ebx;
98
                break;
99
            case R_ECX:
100
                ret = cpuid->entries[i].ecx;
101
                break;
102
            case R_EDX:
103
                ret = cpuid->entries[i].edx;
104
                switch (function) {
105
                case 1:
106
                    /* KVM before 2.6.30 misreports the following features */
107
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
108
                    break;
109
                case 0x80000001:
110
                    /* On Intel, kvm returns cpuid according to the Intel spec,
111
                     * so add missing bits according to the AMD spec:
112
                     */
113
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
114
                    ret |= cpuid_1_edx & 0xdfeff7ff;
115
                    break;
116
                }
117
                break;
118
            }
119
        }
120
    }
121

    
122
    qemu_free(cpuid);
123

    
124
    return ret;
125
}
126

    
127
#else
128

    
129
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
130
{
131
    return -1U;
132
}
133

    
134
#endif
135

    
136
#ifdef CONFIG_KVM_PARA
137
struct kvm_para_features {
138
        int cap;
139
        int feature;
140
} para_features[] = {
141
#ifdef KVM_CAP_CLOCKSOURCE
142
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
143
#endif
144
#ifdef KVM_CAP_NOP_IO_DELAY
145
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
146
#endif
147
#ifdef KVM_CAP_PV_MMU
148
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
149
#endif
150
        { -1, -1 }
151
};
152

    
153
static int get_para_features(CPUState *env)
154
{
155
        int i, features = 0;
156

    
157
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
158
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
159
                        features |= (1 << para_features[i].feature);
160
        }
161

    
162
        return features;
163
}
164
#endif
165

    
166
int kvm_arch_init_vcpu(CPUState *env)
167
{
168
    struct {
169
        struct kvm_cpuid2 cpuid;
170
        struct kvm_cpuid_entry2 entries[100];
171
    } __attribute__((packed)) cpuid_data;
172
    uint32_t limit, i, j, cpuid_i;
173
    uint32_t unused;
174
    struct kvm_cpuid_entry2 *c;
175
#ifdef KVM_CPUID_SIGNATURE
176
    uint32_t signature[3];
177
#endif
178

    
179
    env->mp_state = KVM_MP_STATE_RUNNABLE;
180

    
181
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, R_EDX);
182

    
183
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
184
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, R_ECX);
185
    env->cpuid_ext_features |= i;
186

    
187
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
188
                                                             R_EDX);
189
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
190
                                                             R_ECX);
191

    
192
    cpuid_i = 0;
193

    
194
#ifdef CONFIG_KVM_PARA
195
    /* Paravirtualization CPUIDs */
196
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
197
    c = &cpuid_data.entries[cpuid_i++];
198
    memset(c, 0, sizeof(*c));
199
    c->function = KVM_CPUID_SIGNATURE;
200
    c->eax = 0;
201
    c->ebx = signature[0];
202
    c->ecx = signature[1];
203
    c->edx = signature[2];
204

    
205
    c = &cpuid_data.entries[cpuid_i++];
206
    memset(c, 0, sizeof(*c));
207
    c->function = KVM_CPUID_FEATURES;
208
    c->eax = env->cpuid_kvm_features & get_para_features(env);
209
#endif
210

    
211
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
212

    
213
    for (i = 0; i <= limit; i++) {
214
        c = &cpuid_data.entries[cpuid_i++];
215

    
216
        switch (i) {
217
        case 2: {
218
            /* Keep reading function 2 till all the input is received */
219
            int times;
220

    
221
            c->function = i;
222
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
223
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
224
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
225
            times = c->eax & 0xff;
226

    
227
            for (j = 1; j < times; ++j) {
228
                c = &cpuid_data.entries[cpuid_i++];
229
                c->function = i;
230
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
231
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
232
            }
233
            break;
234
        }
235
        case 4:
236
        case 0xb:
237
        case 0xd:
238
            for (j = 0; ; j++) {
239
                c->function = i;
240
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
241
                c->index = j;
242
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
243

    
244
                if (i == 4 && c->eax == 0)
245
                    break;
246
                if (i == 0xb && !(c->ecx & 0xff00))
247
                    break;
248
                if (i == 0xd && c->eax == 0)
249
                    break;
250

    
251
                c = &cpuid_data.entries[cpuid_i++];
252
            }
253
            break;
254
        default:
255
            c->function = i;
256
            c->flags = 0;
257
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
258
            break;
259
        }
260
    }
261
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
262

    
263
    for (i = 0x80000000; i <= limit; i++) {
264
        c = &cpuid_data.entries[cpuid_i++];
265

    
266
        c->function = i;
267
        c->flags = 0;
268
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
269
    }
270

    
271
    cpuid_data.cpuid.nent = cpuid_i;
272

    
273
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
274
}
275

    
276
void kvm_arch_reset_vcpu(CPUState *env)
277
{
278
    env->exception_injected = -1;
279
    env->interrupt_injected = -1;
280
    env->nmi_injected = 0;
281
    env->nmi_pending = 0;
282
}
283

    
284
static int kvm_has_msr_star(CPUState *env)
285
{
286
    static int has_msr_star;
287
    int ret;
288

    
289
    /* first time */
290
    if (has_msr_star == 0) {        
291
        struct kvm_msr_list msr_list, *kvm_msr_list;
292

    
293
        has_msr_star = -1;
294

    
295
        /* Obtain MSR list from KVM.  These are the MSRs that we must
296
         * save/restore */
297
        msr_list.nmsrs = 0;
298
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
299
        if (ret < 0 && ret != -E2BIG) {
300
            return 0;
301
        }
302
        /* Old kernel modules had a bug and could write beyond the provided
303
           memory. Allocate at least a safe amount of 1K. */
304
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
305
                                              msr_list.nmsrs *
306
                                              sizeof(msr_list.indices[0])));
307

    
308
        kvm_msr_list->nmsrs = msr_list.nmsrs;
309
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
310
        if (ret >= 0) {
311
            int i;
312

    
313
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
314
                if (kvm_msr_list->indices[i] == MSR_STAR) {
315
                    has_msr_star = 1;
316
                    break;
317
                }
318
            }
319
        }
320

    
321
        free(kvm_msr_list);
322
    }
323

    
324
    if (has_msr_star == 1)
325
        return 1;
326
    return 0;
327
}
328

    
329
static int kvm_init_identity_map_page(KVMState *s)
330
{
331
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
332
    int ret;
333
    uint64_t addr = 0xfffbc000;
334

    
335
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
336
        return 0;
337
    }
338

    
339
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
340
    if (ret < 0) {
341
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
342
        return ret;
343
    }
344
#endif
345
    return 0;
346
}
347

    
348
int kvm_arch_init(KVMState *s, int smp_cpus)
349
{
350
    int ret;
351

    
352
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
353
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
354
     * must be part of guest physical memory, we need to allocate it.  Older
355
     * versions of KVM just assumed that it would be at the end of physical
356
     * memory but that doesn't work with more than 4GB of memory.  We simply
357
     * refuse to work with those older versions of KVM. */
358
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
359
    if (ret <= 0) {
360
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
361
        return ret;
362
    }
363

    
364
    /* this address is 3 pages before the bios, and the bios should present
365
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
366
     * this?
367
     */
368
    /*
369
     * Tell fw_cfg to notify the BIOS to reserve the range.
370
     */
371
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
372
        perror("e820_add_entry() table is full");
373
        exit(1);
374
    }
375
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
376
    if (ret < 0) {
377
        return ret;
378
    }
379

    
380
    return kvm_init_identity_map_page(s);
381
}
382
                    
383
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
384
{
385
    lhs->selector = rhs->selector;
386
    lhs->base = rhs->base;
387
    lhs->limit = rhs->limit;
388
    lhs->type = 3;
389
    lhs->present = 1;
390
    lhs->dpl = 3;
391
    lhs->db = 0;
392
    lhs->s = 1;
393
    lhs->l = 0;
394
    lhs->g = 0;
395
    lhs->avl = 0;
396
    lhs->unusable = 0;
397
}
398

    
399
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
400
{
401
    unsigned flags = rhs->flags;
402
    lhs->selector = rhs->selector;
403
    lhs->base = rhs->base;
404
    lhs->limit = rhs->limit;
405
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
406
    lhs->present = (flags & DESC_P_MASK) != 0;
407
    lhs->dpl = rhs->selector & 3;
408
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
409
    lhs->s = (flags & DESC_S_MASK) != 0;
410
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
411
    lhs->g = (flags & DESC_G_MASK) != 0;
412
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
413
    lhs->unusable = 0;
414
}
415

    
416
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
417
{
418
    lhs->selector = rhs->selector;
419
    lhs->base = rhs->base;
420
    lhs->limit = rhs->limit;
421
    lhs->flags =
422
        (rhs->type << DESC_TYPE_SHIFT)
423
        | (rhs->present * DESC_P_MASK)
424
        | (rhs->dpl << DESC_DPL_SHIFT)
425
        | (rhs->db << DESC_B_SHIFT)
426
        | (rhs->s * DESC_S_MASK)
427
        | (rhs->l << DESC_L_SHIFT)
428
        | (rhs->g * DESC_G_MASK)
429
        | (rhs->avl * DESC_AVL_MASK);
430
}
431

    
432
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
433
{
434
    if (set)
435
        *kvm_reg = *qemu_reg;
436
    else
437
        *qemu_reg = *kvm_reg;
438
}
439

    
440
static int kvm_getput_regs(CPUState *env, int set)
441
{
442
    struct kvm_regs regs;
443
    int ret = 0;
444

    
445
    if (!set) {
446
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
447
        if (ret < 0)
448
            return ret;
449
    }
450

    
451
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
452
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
453
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
454
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
455
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
456
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
457
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
458
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
459
#ifdef TARGET_X86_64
460
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
461
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
462
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
463
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
464
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
465
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
466
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
467
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
468
#endif
469

    
470
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
471
    kvm_getput_reg(&regs.rip, &env->eip, set);
472

    
473
    if (set)
474
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
475

    
476
    return ret;
477
}
478

    
479
static int kvm_put_fpu(CPUState *env)
480
{
481
    struct kvm_fpu fpu;
482
    int i;
483

    
484
    memset(&fpu, 0, sizeof fpu);
485
    fpu.fsw = env->fpus & ~(7 << 11);
486
    fpu.fsw |= (env->fpstt & 7) << 11;
487
    fpu.fcw = env->fpuc;
488
    for (i = 0; i < 8; ++i)
489
        fpu.ftwx |= (!env->fptags[i]) << i;
490
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
491
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
492
    fpu.mxcsr = env->mxcsr;
493

    
494
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
495
}
496

    
497
static int kvm_put_sregs(CPUState *env)
498
{
499
    struct kvm_sregs sregs;
500

    
501
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
502
    if (env->interrupt_injected >= 0) {
503
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
504
                (uint64_t)1 << (env->interrupt_injected % 64);
505
    }
506

    
507
    if ((env->eflags & VM_MASK)) {
508
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
509
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
510
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
511
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
512
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
513
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
514
    } else {
515
            set_seg(&sregs.cs, &env->segs[R_CS]);
516
            set_seg(&sregs.ds, &env->segs[R_DS]);
517
            set_seg(&sregs.es, &env->segs[R_ES]);
518
            set_seg(&sregs.fs, &env->segs[R_FS]);
519
            set_seg(&sregs.gs, &env->segs[R_GS]);
520
            set_seg(&sregs.ss, &env->segs[R_SS]);
521

    
522
            if (env->cr[0] & CR0_PE_MASK) {
523
                /* force ss cpl to cs cpl */
524
                sregs.ss.selector = (sregs.ss.selector & ~3) |
525
                        (sregs.cs.selector & 3);
526
                sregs.ss.dpl = sregs.ss.selector & 3;
527
            }
528
    }
529

    
530
    set_seg(&sregs.tr, &env->tr);
531
    set_seg(&sregs.ldt, &env->ldt);
532

    
533
    sregs.idt.limit = env->idt.limit;
534
    sregs.idt.base = env->idt.base;
535
    sregs.gdt.limit = env->gdt.limit;
536
    sregs.gdt.base = env->gdt.base;
537

    
538
    sregs.cr0 = env->cr[0];
539
    sregs.cr2 = env->cr[2];
540
    sregs.cr3 = env->cr[3];
541
    sregs.cr4 = env->cr[4];
542

    
543
    sregs.cr8 = cpu_get_apic_tpr(env);
544
    sregs.apic_base = cpu_get_apic_base(env);
545

    
546
    sregs.efer = env->efer;
547

    
548
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
549
}
550

    
551
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
552
                              uint32_t index, uint64_t value)
553
{
554
    entry->index = index;
555
    entry->data = value;
556
}
557

    
558
static int kvm_put_msrs(CPUState *env, int level)
559
{
560
    struct {
561
        struct kvm_msrs info;
562
        struct kvm_msr_entry entries[100];
563
    } msr_data;
564
    struct kvm_msr_entry *msrs = msr_data.entries;
565
    int n = 0;
566

    
567
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
568
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
569
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
570
    if (kvm_has_msr_star(env))
571
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
572
#ifdef TARGET_X86_64
573
    /* FIXME if lm capable */
574
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
575
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
576
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
577
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
578
#endif
579
    if (level == KVM_PUT_FULL_STATE) {
580
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
581
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
582
                          env->system_time_msr);
583
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
584
    }
585

    
586
    msr_data.info.nmsrs = n;
587

    
588
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
589

    
590
}
591

    
592

    
593
static int kvm_get_fpu(CPUState *env)
594
{
595
    struct kvm_fpu fpu;
596
    int i, ret;
597

    
598
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
599
    if (ret < 0)
600
        return ret;
601

    
602
    env->fpstt = (fpu.fsw >> 11) & 7;
603
    env->fpus = fpu.fsw;
604
    env->fpuc = fpu.fcw;
605
    for (i = 0; i < 8; ++i)
606
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
607
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
608
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
609
    env->mxcsr = fpu.mxcsr;
610

    
611
    return 0;
612
}
613

    
614
static int kvm_get_sregs(CPUState *env)
615
{
616
    struct kvm_sregs sregs;
617
    uint32_t hflags;
618
    int bit, i, ret;
619

    
620
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
621
    if (ret < 0)
622
        return ret;
623

    
624
    /* There can only be one pending IRQ set in the bitmap at a time, so try
625
       to find it and save its number instead (-1 for none). */
626
    env->interrupt_injected = -1;
627
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
628
        if (sregs.interrupt_bitmap[i]) {
629
            bit = ctz64(sregs.interrupt_bitmap[i]);
630
            env->interrupt_injected = i * 64 + bit;
631
            break;
632
        }
633
    }
634

    
635
    get_seg(&env->segs[R_CS], &sregs.cs);
636
    get_seg(&env->segs[R_DS], &sregs.ds);
637
    get_seg(&env->segs[R_ES], &sregs.es);
638
    get_seg(&env->segs[R_FS], &sregs.fs);
639
    get_seg(&env->segs[R_GS], &sregs.gs);
640
    get_seg(&env->segs[R_SS], &sregs.ss);
641

    
642
    get_seg(&env->tr, &sregs.tr);
643
    get_seg(&env->ldt, &sregs.ldt);
644

    
645
    env->idt.limit = sregs.idt.limit;
646
    env->idt.base = sregs.idt.base;
647
    env->gdt.limit = sregs.gdt.limit;
648
    env->gdt.base = sregs.gdt.base;
649

    
650
    env->cr[0] = sregs.cr0;
651
    env->cr[2] = sregs.cr2;
652
    env->cr[3] = sregs.cr3;
653
    env->cr[4] = sregs.cr4;
654

    
655
    cpu_set_apic_base(env, sregs.apic_base);
656

    
657
    env->efer = sregs.efer;
658
    //cpu_set_apic_tpr(env, sregs.cr8);
659

    
660
#define HFLAG_COPY_MASK ~( \
661
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
662
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
663
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
664
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
665

    
666

    
667

    
668
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
669
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
670
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
671
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
672
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
673
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
674
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
675

    
676
    if (env->efer & MSR_EFER_LMA) {
677
        hflags |= HF_LMA_MASK;
678
    }
679

    
680
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
681
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
682
    } else {
683
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
684
                (DESC_B_SHIFT - HF_CS32_SHIFT);
685
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
686
                (DESC_B_SHIFT - HF_SS32_SHIFT);
687
        if (!(env->cr[0] & CR0_PE_MASK) ||
688
                   (env->eflags & VM_MASK) ||
689
                   !(hflags & HF_CS32_MASK)) {
690
                hflags |= HF_ADDSEG_MASK;
691
            } else {
692
                hflags |= ((env->segs[R_DS].base |
693
                                env->segs[R_ES].base |
694
                                env->segs[R_SS].base) != 0) <<
695
                    HF_ADDSEG_SHIFT;
696
            }
697
    }
698
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
699

    
700
    return 0;
701
}
702

    
703
static int kvm_get_msrs(CPUState *env)
704
{
705
    struct {
706
        struct kvm_msrs info;
707
        struct kvm_msr_entry entries[100];
708
    } msr_data;
709
    struct kvm_msr_entry *msrs = msr_data.entries;
710
    int ret, i, n;
711

    
712
    n = 0;
713
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
714
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
715
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
716
    if (kvm_has_msr_star(env))
717
        msrs[n++].index = MSR_STAR;
718
    msrs[n++].index = MSR_IA32_TSC;
719
#ifdef TARGET_X86_64
720
    /* FIXME lm_capable_kernel */
721
    msrs[n++].index = MSR_CSTAR;
722
    msrs[n++].index = MSR_KERNELGSBASE;
723
    msrs[n++].index = MSR_FMASK;
724
    msrs[n++].index = MSR_LSTAR;
725
#endif
726
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
727
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
728

    
729
    msr_data.info.nmsrs = n;
730
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
731
    if (ret < 0)
732
        return ret;
733

    
734
    for (i = 0; i < ret; i++) {
735
        switch (msrs[i].index) {
736
        case MSR_IA32_SYSENTER_CS:
737
            env->sysenter_cs = msrs[i].data;
738
            break;
739
        case MSR_IA32_SYSENTER_ESP:
740
            env->sysenter_esp = msrs[i].data;
741
            break;
742
        case MSR_IA32_SYSENTER_EIP:
743
            env->sysenter_eip = msrs[i].data;
744
            break;
745
        case MSR_STAR:
746
            env->star = msrs[i].data;
747
            break;
748
#ifdef TARGET_X86_64
749
        case MSR_CSTAR:
750
            env->cstar = msrs[i].data;
751
            break;
752
        case MSR_KERNELGSBASE:
753
            env->kernelgsbase = msrs[i].data;
754
            break;
755
        case MSR_FMASK:
756
            env->fmask = msrs[i].data;
757
            break;
758
        case MSR_LSTAR:
759
            env->lstar = msrs[i].data;
760
            break;
761
#endif
762
        case MSR_IA32_TSC:
763
            env->tsc = msrs[i].data;
764
            break;
765
        case MSR_KVM_SYSTEM_TIME:
766
            env->system_time_msr = msrs[i].data;
767
            break;
768
        case MSR_KVM_WALL_CLOCK:
769
            env->wall_clock_msr = msrs[i].data;
770
            break;
771
        }
772
    }
773

    
774
    return 0;
775
}
776

    
777
static int kvm_put_mp_state(CPUState *env)
778
{
779
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
780

    
781
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
782
}
783

    
784
static int kvm_get_mp_state(CPUState *env)
785
{
786
    struct kvm_mp_state mp_state;
787
    int ret;
788

    
789
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
790
    if (ret < 0) {
791
        return ret;
792
    }
793
    env->mp_state = mp_state.mp_state;
794
    return 0;
795
}
796

    
797
static int kvm_put_vcpu_events(CPUState *env, int level)
798
{
799
#ifdef KVM_CAP_VCPU_EVENTS
800
    struct kvm_vcpu_events events;
801

    
802
    if (!kvm_has_vcpu_events()) {
803
        return 0;
804
    }
805

    
806
    events.exception.injected = (env->exception_injected >= 0);
807
    events.exception.nr = env->exception_injected;
808
    events.exception.has_error_code = env->has_error_code;
809
    events.exception.error_code = env->error_code;
810

    
811
    events.interrupt.injected = (env->interrupt_injected >= 0);
812
    events.interrupt.nr = env->interrupt_injected;
813
    events.interrupt.soft = env->soft_interrupt;
814

    
815
    events.nmi.injected = env->nmi_injected;
816
    events.nmi.pending = env->nmi_pending;
817
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
818

    
819
    events.sipi_vector = env->sipi_vector;
820

    
821
    events.flags = 0;
822
    if (level >= KVM_PUT_RESET_STATE) {
823
        events.flags |=
824
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
825
    }
826

    
827
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
828
#else
829
    return 0;
830
#endif
831
}
832

    
833
static int kvm_get_vcpu_events(CPUState *env)
834
{
835
#ifdef KVM_CAP_VCPU_EVENTS
836
    struct kvm_vcpu_events events;
837
    int ret;
838

    
839
    if (!kvm_has_vcpu_events()) {
840
        return 0;
841
    }
842

    
843
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
844
    if (ret < 0) {
845
       return ret;
846
    }
847
    env->exception_injected =
848
       events.exception.injected ? events.exception.nr : -1;
849
    env->has_error_code = events.exception.has_error_code;
850
    env->error_code = events.exception.error_code;
851

    
852
    env->interrupt_injected =
853
        events.interrupt.injected ? events.interrupt.nr : -1;
854
    env->soft_interrupt = events.interrupt.soft;
855

    
856
    env->nmi_injected = events.nmi.injected;
857
    env->nmi_pending = events.nmi.pending;
858
    if (events.nmi.masked) {
859
        env->hflags2 |= HF2_NMI_MASK;
860
    } else {
861
        env->hflags2 &= ~HF2_NMI_MASK;
862
    }
863

    
864
    env->sipi_vector = events.sipi_vector;
865
#endif
866

    
867
    return 0;
868
}
869

    
870
static int kvm_guest_debug_workarounds(CPUState *env)
871
{
872
    int ret = 0;
873
#ifdef KVM_CAP_SET_GUEST_DEBUG
874
    unsigned long reinject_trap = 0;
875

    
876
    if (!kvm_has_vcpu_events()) {
877
        if (env->exception_injected == 1) {
878
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
879
        } else if (env->exception_injected == 3) {
880
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
881
        }
882
        env->exception_injected = -1;
883
    }
884

    
885
    /*
886
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
887
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
888
     * by updating the debug state once again if single-stepping is on.
889
     * Another reason to call kvm_update_guest_debug here is a pending debug
890
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
891
     * reinject them via SET_GUEST_DEBUG.
892
     */
893
    if (reinject_trap ||
894
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
895
        ret = kvm_update_guest_debug(env, reinject_trap);
896
    }
897
#endif /* KVM_CAP_SET_GUEST_DEBUG */
898
    return ret;
899
}
900

    
901
static int kvm_put_debugregs(CPUState *env)
902
{
903
#ifdef KVM_CAP_DEBUGREGS
904
    struct kvm_debugregs dbgregs;
905
    int i;
906

    
907
    if (!kvm_has_debugregs()) {
908
        return 0;
909
    }
910

    
911
    for (i = 0; i < 4; i++) {
912
        dbgregs.db[i] = env->dr[i];
913
    }
914
    dbgregs.dr6 = env->dr[6];
915
    dbgregs.dr7 = env->dr[7];
916
    dbgregs.flags = 0;
917

    
918
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
919
#else
920
    return 0;
921
#endif
922
}
923

    
924
static int kvm_get_debugregs(CPUState *env)
925
{
926
#ifdef KVM_CAP_DEBUGREGS
927
    struct kvm_debugregs dbgregs;
928
    int i, ret;
929

    
930
    if (!kvm_has_debugregs()) {
931
        return 0;
932
    }
933

    
934
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
935
    if (ret < 0) {
936
       return ret;
937
    }
938
    for (i = 0; i < 4; i++) {
939
        env->dr[i] = dbgregs.db[i];
940
    }
941
    env->dr[4] = env->dr[6] = dbgregs.dr6;
942
    env->dr[5] = env->dr[7] = dbgregs.dr7;
943
#endif
944

    
945
    return 0;
946
}
947

    
948
int kvm_arch_put_registers(CPUState *env, int level)
949
{
950
    int ret;
951

    
952
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
953

    
954
    ret = kvm_getput_regs(env, 1);
955
    if (ret < 0)
956
        return ret;
957

    
958
    ret = kvm_put_fpu(env);
959
    if (ret < 0)
960
        return ret;
961

    
962
    ret = kvm_put_sregs(env);
963
    if (ret < 0)
964
        return ret;
965

    
966
    ret = kvm_put_msrs(env, level);
967
    if (ret < 0)
968
        return ret;
969

    
970
    if (level >= KVM_PUT_RESET_STATE) {
971
        ret = kvm_put_mp_state(env);
972
        if (ret < 0)
973
            return ret;
974
    }
975

    
976
    ret = kvm_put_vcpu_events(env, level);
977
    if (ret < 0)
978
        return ret;
979

    
980
    /* must be last */
981
    ret = kvm_guest_debug_workarounds(env);
982
    if (ret < 0)
983
        return ret;
984

    
985
    ret = kvm_put_debugregs(env);
986
    if (ret < 0)
987
        return ret;
988

    
989
    return 0;
990
}
991

    
992
int kvm_arch_get_registers(CPUState *env)
993
{
994
    int ret;
995

    
996
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
997

    
998
    ret = kvm_getput_regs(env, 0);
999
    if (ret < 0)
1000
        return ret;
1001

    
1002
    ret = kvm_get_fpu(env);
1003
    if (ret < 0)
1004
        return ret;
1005

    
1006
    ret = kvm_get_sregs(env);
1007
    if (ret < 0)
1008
        return ret;
1009

    
1010
    ret = kvm_get_msrs(env);
1011
    if (ret < 0)
1012
        return ret;
1013

    
1014
    ret = kvm_get_mp_state(env);
1015
    if (ret < 0)
1016
        return ret;
1017

    
1018
    ret = kvm_get_vcpu_events(env);
1019
    if (ret < 0)
1020
        return ret;
1021

    
1022
    ret = kvm_get_debugregs(env);
1023
    if (ret < 0)
1024
        return ret;
1025

    
1026
    return 0;
1027
}
1028

    
1029
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1030
{
1031
    /* Try to inject an interrupt if the guest can accept it */
1032
    if (run->ready_for_interrupt_injection &&
1033
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1034
        (env->eflags & IF_MASK)) {
1035
        int irq;
1036

    
1037
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1038
        irq = cpu_get_pic_interrupt(env);
1039
        if (irq >= 0) {
1040
            struct kvm_interrupt intr;
1041
            intr.irq = irq;
1042
            /* FIXME: errors */
1043
            DPRINTF("injected interrupt %d\n", irq);
1044
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1045
        }
1046
    }
1047

    
1048
    /* If we have an interrupt but the guest is not ready to receive an
1049
     * interrupt, request an interrupt window exit.  This will
1050
     * cause a return to userspace as soon as the guest is ready to
1051
     * receive interrupts. */
1052
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1053
        run->request_interrupt_window = 1;
1054
    else
1055
        run->request_interrupt_window = 0;
1056

    
1057
    DPRINTF("setting tpr\n");
1058
    run->cr8 = cpu_get_apic_tpr(env);
1059

    
1060
    return 0;
1061
}
1062

    
1063
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1064
{
1065
    if (run->if_flag)
1066
        env->eflags |= IF_MASK;
1067
    else
1068
        env->eflags &= ~IF_MASK;
1069
    
1070
    cpu_set_apic_tpr(env, run->cr8);
1071
    cpu_set_apic_base(env, run->apic_base);
1072

    
1073
    return 0;
1074
}
1075

    
1076
int kvm_arch_process_irqchip_events(CPUState *env)
1077
{
1078
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1079
        kvm_cpu_synchronize_state(env);
1080
        do_cpu_init(env);
1081
        env->exception_index = EXCP_HALTED;
1082
    }
1083

    
1084
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1085
        kvm_cpu_synchronize_state(env);
1086
        do_cpu_sipi(env);
1087
    }
1088

    
1089
    return env->halted;
1090
}
1091

    
1092
static int kvm_handle_halt(CPUState *env)
1093
{
1094
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1095
          (env->eflags & IF_MASK)) &&
1096
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1097
        env->halted = 1;
1098
        env->exception_index = EXCP_HLT;
1099
        return 0;
1100
    }
1101

    
1102
    return 1;
1103
}
1104

    
1105
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1106
{
1107
    int ret = 0;
1108

    
1109
    switch (run->exit_reason) {
1110
    case KVM_EXIT_HLT:
1111
        DPRINTF("handle_hlt\n");
1112
        ret = kvm_handle_halt(env);
1113
        break;
1114
    }
1115

    
1116
    return ret;
1117
}
1118

    
1119
#ifdef KVM_CAP_SET_GUEST_DEBUG
1120
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1121
{
1122
    static const uint8_t int3 = 0xcc;
1123

    
1124
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1125
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1126
        return -EINVAL;
1127
    return 0;
1128
}
1129

    
1130
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1131
{
1132
    uint8_t int3;
1133

    
1134
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1135
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1136
        return -EINVAL;
1137
    return 0;
1138
}
1139

    
1140
static struct {
1141
    target_ulong addr;
1142
    int len;
1143
    int type;
1144
} hw_breakpoint[4];
1145

    
1146
static int nb_hw_breakpoint;
1147

    
1148
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1149
{
1150
    int n;
1151

    
1152
    for (n = 0; n < nb_hw_breakpoint; n++)
1153
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1154
            (hw_breakpoint[n].len == len || len == -1))
1155
            return n;
1156
    return -1;
1157
}
1158

    
1159
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1160
                                  target_ulong len, int type)
1161
{
1162
    switch (type) {
1163
    case GDB_BREAKPOINT_HW:
1164
        len = 1;
1165
        break;
1166
    case GDB_WATCHPOINT_WRITE:
1167
    case GDB_WATCHPOINT_ACCESS:
1168
        switch (len) {
1169
        case 1:
1170
            break;
1171
        case 2:
1172
        case 4:
1173
        case 8:
1174
            if (addr & (len - 1))
1175
                return -EINVAL;
1176
            break;
1177
        default:
1178
            return -EINVAL;
1179
        }
1180
        break;
1181
    default:
1182
        return -ENOSYS;
1183
    }
1184

    
1185
    if (nb_hw_breakpoint == 4)
1186
        return -ENOBUFS;
1187

    
1188
    if (find_hw_breakpoint(addr, len, type) >= 0)
1189
        return -EEXIST;
1190

    
1191
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1192
    hw_breakpoint[nb_hw_breakpoint].len = len;
1193
    hw_breakpoint[nb_hw_breakpoint].type = type;
1194
    nb_hw_breakpoint++;
1195

    
1196
    return 0;
1197
}
1198

    
1199
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1200
                                  target_ulong len, int type)
1201
{
1202
    int n;
1203

    
1204
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1205
    if (n < 0)
1206
        return -ENOENT;
1207

    
1208
    nb_hw_breakpoint--;
1209
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1210

    
1211
    return 0;
1212
}
1213

    
1214
void kvm_arch_remove_all_hw_breakpoints(void)
1215
{
1216
    nb_hw_breakpoint = 0;
1217
}
1218

    
1219
static CPUWatchpoint hw_watchpoint;
1220

    
1221
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1222
{
1223
    int handle = 0;
1224
    int n;
1225

    
1226
    if (arch_info->exception == 1) {
1227
        if (arch_info->dr6 & (1 << 14)) {
1228
            if (cpu_single_env->singlestep_enabled)
1229
                handle = 1;
1230
        } else {
1231
            for (n = 0; n < 4; n++)
1232
                if (arch_info->dr6 & (1 << n))
1233
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1234
                    case 0x0:
1235
                        handle = 1;
1236
                        break;
1237
                    case 0x1:
1238
                        handle = 1;
1239
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1240
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1241
                        hw_watchpoint.flags = BP_MEM_WRITE;
1242
                        break;
1243
                    case 0x3:
1244
                        handle = 1;
1245
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1246
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1247
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1248
                        break;
1249
                    }
1250
        }
1251
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1252
        handle = 1;
1253

    
1254
    if (!handle) {
1255
        cpu_synchronize_state(cpu_single_env);
1256
        assert(cpu_single_env->exception_injected == -1);
1257

    
1258
        cpu_single_env->exception_injected = arch_info->exception;
1259
        cpu_single_env->has_error_code = 0;
1260
    }
1261

    
1262
    return handle;
1263
}
1264

    
1265
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1266
{
1267
    const uint8_t type_code[] = {
1268
        [GDB_BREAKPOINT_HW] = 0x0,
1269
        [GDB_WATCHPOINT_WRITE] = 0x1,
1270
        [GDB_WATCHPOINT_ACCESS] = 0x3
1271
    };
1272
    const uint8_t len_code[] = {
1273
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1274
    };
1275
    int n;
1276

    
1277
    if (kvm_sw_breakpoints_active(env))
1278
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1279

    
1280
    if (nb_hw_breakpoint > 0) {
1281
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1282
        dbg->arch.debugreg[7] = 0x0600;
1283
        for (n = 0; n < nb_hw_breakpoint; n++) {
1284
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1285
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1286
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1287
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1288
        }
1289
    }
1290
}
1291
#endif /* KVM_CAP_SET_GUEST_DEBUG */