Statistics
| Branch: | Revision:

root / hw / arm / stellaris.c @ 0d09e41a

History | View | Annotate | Download (38.6 kB)

1
/*
2
 * Luminary Micro Stellaris peripherals
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licensed under the GPL.
8
 */
9

    
10
#include "hw/sysbus.h"
11
#include "hw/ssi.h"
12
#include "hw/arm.h"
13
#include "hw/arm/devices.h"
14
#include "qemu/timer.h"
15
#include "hw/i2c/i2c.h"
16
#include "net/net.h"
17
#include "hw/boards.h"
18
#include "exec/address-spaces.h"
19

    
20
#define GPIO_A 0
21
#define GPIO_B 1
22
#define GPIO_C 2
23
#define GPIO_D 3
24
#define GPIO_E 4
25
#define GPIO_F 5
26
#define GPIO_G 6
27

    
28
#define BP_OLED_I2C  0x01
29
#define BP_OLED_SSI  0x02
30
#define BP_GAMEPAD   0x04
31

    
32
typedef const struct {
33
    const char *name;
34
    uint32_t did0;
35
    uint32_t did1;
36
    uint32_t dc0;
37
    uint32_t dc1;
38
    uint32_t dc2;
39
    uint32_t dc3;
40
    uint32_t dc4;
41
    uint32_t peripherals;
42
} stellaris_board_info;
43

    
44
/* General purpose timer module.  */
45

    
46
typedef struct gptm_state {
47
    SysBusDevice busdev;
48
    MemoryRegion iomem;
49
    uint32_t config;
50
    uint32_t mode[2];
51
    uint32_t control;
52
    uint32_t state;
53
    uint32_t mask;
54
    uint32_t load[2];
55
    uint32_t match[2];
56
    uint32_t prescale[2];
57
    uint32_t match_prescale[2];
58
    uint32_t rtc;
59
    int64_t tick[2];
60
    struct gptm_state *opaque[2];
61
    QEMUTimer *timer[2];
62
    /* The timers have an alternate output used to trigger the ADC.  */
63
    qemu_irq trigger;
64
    qemu_irq irq;
65
} gptm_state;
66

    
67
static void gptm_update_irq(gptm_state *s)
68
{
69
    int level;
70
    level = (s->state & s->mask) != 0;
71
    qemu_set_irq(s->irq, level);
72
}
73

    
74
static void gptm_stop(gptm_state *s, int n)
75
{
76
    qemu_del_timer(s->timer[n]);
77
}
78

    
79
static void gptm_reload(gptm_state *s, int n, int reset)
80
{
81
    int64_t tick;
82
    if (reset)
83
        tick = qemu_get_clock_ns(vm_clock);
84
    else
85
        tick = s->tick[n];
86

    
87
    if (s->config == 0) {
88
        /* 32-bit CountDown.  */
89
        uint32_t count;
90
        count = s->load[0] | (s->load[1] << 16);
91
        tick += (int64_t)count * system_clock_scale;
92
    } else if (s->config == 1) {
93
        /* 32-bit RTC.  1Hz tick.  */
94
        tick += get_ticks_per_sec();
95
    } else if (s->mode[n] == 0xa) {
96
        /* PWM mode.  Not implemented.  */
97
    } else {
98
        hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
99
    }
100
    s->tick[n] = tick;
101
    qemu_mod_timer(s->timer[n], tick);
102
}
103

    
104
static void gptm_tick(void *opaque)
105
{
106
    gptm_state **p = (gptm_state **)opaque;
107
    gptm_state *s;
108
    int n;
109

    
110
    s = *p;
111
    n = p - s->opaque;
112
    if (s->config == 0) {
113
        s->state |= 1;
114
        if ((s->control & 0x20)) {
115
            /* Output trigger.  */
116
            qemu_irq_pulse(s->trigger);
117
        }
118
        if (s->mode[0] & 1) {
119
            /* One-shot.  */
120
            s->control &= ~1;
121
        } else {
122
            /* Periodic.  */
123
            gptm_reload(s, 0, 0);
124
        }
125
    } else if (s->config == 1) {
126
        /* RTC.  */
127
        uint32_t match;
128
        s->rtc++;
129
        match = s->match[0] | (s->match[1] << 16);
130
        if (s->rtc > match)
131
            s->rtc = 0;
132
        if (s->rtc == 0) {
133
            s->state |= 8;
134
        }
135
        gptm_reload(s, 0, 0);
136
    } else if (s->mode[n] == 0xa) {
137
        /* PWM mode.  Not implemented.  */
138
    } else {
139
        hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
140
    }
141
    gptm_update_irq(s);
142
}
143

    
144
static uint64_t gptm_read(void *opaque, hwaddr offset,
145
                          unsigned size)
146
{
147
    gptm_state *s = (gptm_state *)opaque;
148

    
149
    switch (offset) {
150
    case 0x00: /* CFG */
151
        return s->config;
152
    case 0x04: /* TAMR */
153
        return s->mode[0];
154
    case 0x08: /* TBMR */
155
        return s->mode[1];
156
    case 0x0c: /* CTL */
157
        return s->control;
158
    case 0x18: /* IMR */
159
        return s->mask;
160
    case 0x1c: /* RIS */
161
        return s->state;
162
    case 0x20: /* MIS */
163
        return s->state & s->mask;
164
    case 0x24: /* CR */
165
        return 0;
166
    case 0x28: /* TAILR */
167
        return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
168
    case 0x2c: /* TBILR */
169
        return s->load[1];
170
    case 0x30: /* TAMARCHR */
171
        return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
172
    case 0x34: /* TBMATCHR */
173
        return s->match[1];
174
    case 0x38: /* TAPR */
175
        return s->prescale[0];
176
    case 0x3c: /* TBPR */
177
        return s->prescale[1];
178
    case 0x40: /* TAPMR */
179
        return s->match_prescale[0];
180
    case 0x44: /* TBPMR */
181
        return s->match_prescale[1];
182
    case 0x48: /* TAR */
183
        if (s->control == 1)
184
            return s->rtc;
185
    case 0x4c: /* TBR */
186
        hw_error("TODO: Timer value read\n");
187
    default:
188
        hw_error("gptm_read: Bad offset 0x%x\n", (int)offset);
189
        return 0;
190
    }
191
}
192

    
193
static void gptm_write(void *opaque, hwaddr offset,
194
                       uint64_t value, unsigned size)
195
{
196
    gptm_state *s = (gptm_state *)opaque;
197
    uint32_t oldval;
198

    
199
    /* The timers should be disabled before changing the configuration.
200
       We take advantage of this and defer everything until the timer
201
       is enabled.  */
202
    switch (offset) {
203
    case 0x00: /* CFG */
204
        s->config = value;
205
        break;
206
    case 0x04: /* TAMR */
207
        s->mode[0] = value;
208
        break;
209
    case 0x08: /* TBMR */
210
        s->mode[1] = value;
211
        break;
212
    case 0x0c: /* CTL */
213
        oldval = s->control;
214
        s->control = value;
215
        /* TODO: Implement pause.  */
216
        if ((oldval ^ value) & 1) {
217
            if (value & 1) {
218
                gptm_reload(s, 0, 1);
219
            } else {
220
                gptm_stop(s, 0);
221
            }
222
        }
223
        if (((oldval ^ value) & 0x100) && s->config >= 4) {
224
            if (value & 0x100) {
225
                gptm_reload(s, 1, 1);
226
            } else {
227
                gptm_stop(s, 1);
228
            }
229
        }
230
        break;
231
    case 0x18: /* IMR */
232
        s->mask = value & 0x77;
233
        gptm_update_irq(s);
234
        break;
235
    case 0x24: /* CR */
236
        s->state &= ~value;
237
        break;
238
    case 0x28: /* TAILR */
239
        s->load[0] = value & 0xffff;
240
        if (s->config < 4) {
241
            s->load[1] = value >> 16;
242
        }
243
        break;
244
    case 0x2c: /* TBILR */
245
        s->load[1] = value & 0xffff;
246
        break;
247
    case 0x30: /* TAMARCHR */
248
        s->match[0] = value & 0xffff;
249
        if (s->config < 4) {
250
            s->match[1] = value >> 16;
251
        }
252
        break;
253
    case 0x34: /* TBMATCHR */
254
        s->match[1] = value >> 16;
255
        break;
256
    case 0x38: /* TAPR */
257
        s->prescale[0] = value;
258
        break;
259
    case 0x3c: /* TBPR */
260
        s->prescale[1] = value;
261
        break;
262
    case 0x40: /* TAPMR */
263
        s->match_prescale[0] = value;
264
        break;
265
    case 0x44: /* TBPMR */
266
        s->match_prescale[0] = value;
267
        break;
268
    default:
269
        hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
270
    }
271
    gptm_update_irq(s);
272
}
273

    
274
static const MemoryRegionOps gptm_ops = {
275
    .read = gptm_read,
276
    .write = gptm_write,
277
    .endianness = DEVICE_NATIVE_ENDIAN,
278
};
279

    
280
static const VMStateDescription vmstate_stellaris_gptm = {
281
    .name = "stellaris_gptm",
282
    .version_id = 1,
283
    .minimum_version_id = 1,
284
    .minimum_version_id_old = 1,
285
    .fields      = (VMStateField[]) {
286
        VMSTATE_UINT32(config, gptm_state),
287
        VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
288
        VMSTATE_UINT32(control, gptm_state),
289
        VMSTATE_UINT32(state, gptm_state),
290
        VMSTATE_UINT32(mask, gptm_state),
291
        VMSTATE_UNUSED(8),
292
        VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
293
        VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
294
        VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
295
        VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
296
        VMSTATE_UINT32(rtc, gptm_state),
297
        VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
298
        VMSTATE_TIMER_ARRAY(timer, gptm_state, 2),
299
        VMSTATE_END_OF_LIST()
300
    }
301
};
302

    
303
static int stellaris_gptm_init(SysBusDevice *dev)
304
{
305
    gptm_state *s = FROM_SYSBUS(gptm_state, dev);
306

    
307
    sysbus_init_irq(dev, &s->irq);
308
    qdev_init_gpio_out(&dev->qdev, &s->trigger, 1);
309

    
310
    memory_region_init_io(&s->iomem, &gptm_ops, s,
311
                          "gptm", 0x1000);
312
    sysbus_init_mmio(dev, &s->iomem);
313

    
314
    s->opaque[0] = s->opaque[1] = s;
315
    s->timer[0] = qemu_new_timer_ns(vm_clock, gptm_tick, &s->opaque[0]);
316
    s->timer[1] = qemu_new_timer_ns(vm_clock, gptm_tick, &s->opaque[1]);
317
    vmstate_register(&dev->qdev, -1, &vmstate_stellaris_gptm, s);
318
    return 0;
319
}
320

    
321

    
322
/* System controller.  */
323

    
324
typedef struct {
325
    MemoryRegion iomem;
326
    uint32_t pborctl;
327
    uint32_t ldopctl;
328
    uint32_t int_status;
329
    uint32_t int_mask;
330
    uint32_t resc;
331
    uint32_t rcc;
332
    uint32_t rcc2;
333
    uint32_t rcgc[3];
334
    uint32_t scgc[3];
335
    uint32_t dcgc[3];
336
    uint32_t clkvclr;
337
    uint32_t ldoarst;
338
    uint32_t user0;
339
    uint32_t user1;
340
    qemu_irq irq;
341
    stellaris_board_info *board;
342
} ssys_state;
343

    
344
static void ssys_update(ssys_state *s)
345
{
346
  qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
347
}
348

    
349
static uint32_t pllcfg_sandstorm[16] = {
350
    0x31c0, /* 1 Mhz */
351
    0x1ae0, /* 1.8432 Mhz */
352
    0x18c0, /* 2 Mhz */
353
    0xd573, /* 2.4576 Mhz */
354
    0x37a6, /* 3.57954 Mhz */
355
    0x1ae2, /* 3.6864 Mhz */
356
    0x0c40, /* 4 Mhz */
357
    0x98bc, /* 4.906 Mhz */
358
    0x935b, /* 4.9152 Mhz */
359
    0x09c0, /* 5 Mhz */
360
    0x4dee, /* 5.12 Mhz */
361
    0x0c41, /* 6 Mhz */
362
    0x75db, /* 6.144 Mhz */
363
    0x1ae6, /* 7.3728 Mhz */
364
    0x0600, /* 8 Mhz */
365
    0x585b /* 8.192 Mhz */
366
};
367

    
368
static uint32_t pllcfg_fury[16] = {
369
    0x3200, /* 1 Mhz */
370
    0x1b20, /* 1.8432 Mhz */
371
    0x1900, /* 2 Mhz */
372
    0xf42b, /* 2.4576 Mhz */
373
    0x37e3, /* 3.57954 Mhz */
374
    0x1b21, /* 3.6864 Mhz */
375
    0x0c80, /* 4 Mhz */
376
    0x98ee, /* 4.906 Mhz */
377
    0xd5b4, /* 4.9152 Mhz */
378
    0x0a00, /* 5 Mhz */
379
    0x4e27, /* 5.12 Mhz */
380
    0x1902, /* 6 Mhz */
381
    0xec1c, /* 6.144 Mhz */
382
    0x1b23, /* 7.3728 Mhz */
383
    0x0640, /* 8 Mhz */
384
    0xb11c /* 8.192 Mhz */
385
};
386

    
387
#define DID0_VER_MASK        0x70000000
388
#define DID0_VER_0           0x00000000
389
#define DID0_VER_1           0x10000000
390

    
391
#define DID0_CLASS_MASK      0x00FF0000
392
#define DID0_CLASS_SANDSTORM 0x00000000
393
#define DID0_CLASS_FURY      0x00010000
394

    
395
static int ssys_board_class(const ssys_state *s)
396
{
397
    uint32_t did0 = s->board->did0;
398
    switch (did0 & DID0_VER_MASK) {
399
    case DID0_VER_0:
400
        return DID0_CLASS_SANDSTORM;
401
    case DID0_VER_1:
402
        switch (did0 & DID0_CLASS_MASK) {
403
        case DID0_CLASS_SANDSTORM:
404
        case DID0_CLASS_FURY:
405
            return did0 & DID0_CLASS_MASK;
406
        }
407
        /* for unknown classes, fall through */
408
    default:
409
        hw_error("ssys_board_class: Unknown class 0x%08x\n", did0);
410
    }
411
}
412

    
413
static uint64_t ssys_read(void *opaque, hwaddr offset,
414
                          unsigned size)
415
{
416
    ssys_state *s = (ssys_state *)opaque;
417

    
418
    switch (offset) {
419
    case 0x000: /* DID0 */
420
        return s->board->did0;
421
    case 0x004: /* DID1 */
422
        return s->board->did1;
423
    case 0x008: /* DC0 */
424
        return s->board->dc0;
425
    case 0x010: /* DC1 */
426
        return s->board->dc1;
427
    case 0x014: /* DC2 */
428
        return s->board->dc2;
429
    case 0x018: /* DC3 */
430
        return s->board->dc3;
431
    case 0x01c: /* DC4 */
432
        return s->board->dc4;
433
    case 0x030: /* PBORCTL */
434
        return s->pborctl;
435
    case 0x034: /* LDOPCTL */
436
        return s->ldopctl;
437
    case 0x040: /* SRCR0 */
438
        return 0;
439
    case 0x044: /* SRCR1 */
440
        return 0;
441
    case 0x048: /* SRCR2 */
442
        return 0;
443
    case 0x050: /* RIS */
444
        return s->int_status;
445
    case 0x054: /* IMC */
446
        return s->int_mask;
447
    case 0x058: /* MISC */
448
        return s->int_status & s->int_mask;
449
    case 0x05c: /* RESC */
450
        return s->resc;
451
    case 0x060: /* RCC */
452
        return s->rcc;
453
    case 0x064: /* PLLCFG */
454
        {
455
            int xtal;
456
            xtal = (s->rcc >> 6) & 0xf;
457
            switch (ssys_board_class(s)) {
458
            case DID0_CLASS_FURY:
459
                return pllcfg_fury[xtal];
460
            case DID0_CLASS_SANDSTORM:
461
                return pllcfg_sandstorm[xtal];
462
            default:
463
                hw_error("ssys_read: Unhandled class for PLLCFG read.\n");
464
                return 0;
465
            }
466
        }
467
    case 0x070: /* RCC2 */
468
        return s->rcc2;
469
    case 0x100: /* RCGC0 */
470
        return s->rcgc[0];
471
    case 0x104: /* RCGC1 */
472
        return s->rcgc[1];
473
    case 0x108: /* RCGC2 */
474
        return s->rcgc[2];
475
    case 0x110: /* SCGC0 */
476
        return s->scgc[0];
477
    case 0x114: /* SCGC1 */
478
        return s->scgc[1];
479
    case 0x118: /* SCGC2 */
480
        return s->scgc[2];
481
    case 0x120: /* DCGC0 */
482
        return s->dcgc[0];
483
    case 0x124: /* DCGC1 */
484
        return s->dcgc[1];
485
    case 0x128: /* DCGC2 */
486
        return s->dcgc[2];
487
    case 0x150: /* CLKVCLR */
488
        return s->clkvclr;
489
    case 0x160: /* LDOARST */
490
        return s->ldoarst;
491
    case 0x1e0: /* USER0 */
492
        return s->user0;
493
    case 0x1e4: /* USER1 */
494
        return s->user1;
495
    default:
496
        hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
497
        return 0;
498
    }
499
}
500

    
501
static bool ssys_use_rcc2(ssys_state *s)
502
{
503
    return (s->rcc2 >> 31) & 0x1;
504
}
505

    
506
/*
507
 * Caculate the sys. clock period in ms.
508
 */
509
static void ssys_calculate_system_clock(ssys_state *s)
510
{
511
    if (ssys_use_rcc2(s)) {
512
        system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
513
    } else {
514
        system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
515
    }
516
}
517

    
518
static void ssys_write(void *opaque, hwaddr offset,
519
                       uint64_t value, unsigned size)
520
{
521
    ssys_state *s = (ssys_state *)opaque;
522

    
523
    switch (offset) {
524
    case 0x030: /* PBORCTL */
525
        s->pborctl = value & 0xffff;
526
        break;
527
    case 0x034: /* LDOPCTL */
528
        s->ldopctl = value & 0x1f;
529
        break;
530
    case 0x040: /* SRCR0 */
531
    case 0x044: /* SRCR1 */
532
    case 0x048: /* SRCR2 */
533
        fprintf(stderr, "Peripheral reset not implemented\n");
534
        break;
535
    case 0x054: /* IMC */
536
        s->int_mask = value & 0x7f;
537
        break;
538
    case 0x058: /* MISC */
539
        s->int_status &= ~value;
540
        break;
541
    case 0x05c: /* RESC */
542
        s->resc = value & 0x3f;
543
        break;
544
    case 0x060: /* RCC */
545
        if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
546
            /* PLL enable.  */
547
            s->int_status |= (1 << 6);
548
        }
549
        s->rcc = value;
550
        ssys_calculate_system_clock(s);
551
        break;
552
    case 0x070: /* RCC2 */
553
        if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
554
            break;
555
        }
556

    
557
        if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
558
            /* PLL enable.  */
559
            s->int_status |= (1 << 6);
560
        }
561
        s->rcc2 = value;
562
        ssys_calculate_system_clock(s);
563
        break;
564
    case 0x100: /* RCGC0 */
565
        s->rcgc[0] = value;
566
        break;
567
    case 0x104: /* RCGC1 */
568
        s->rcgc[1] = value;
569
        break;
570
    case 0x108: /* RCGC2 */
571
        s->rcgc[2] = value;
572
        break;
573
    case 0x110: /* SCGC0 */
574
        s->scgc[0] = value;
575
        break;
576
    case 0x114: /* SCGC1 */
577
        s->scgc[1] = value;
578
        break;
579
    case 0x118: /* SCGC2 */
580
        s->scgc[2] = value;
581
        break;
582
    case 0x120: /* DCGC0 */
583
        s->dcgc[0] = value;
584
        break;
585
    case 0x124: /* DCGC1 */
586
        s->dcgc[1] = value;
587
        break;
588
    case 0x128: /* DCGC2 */
589
        s->dcgc[2] = value;
590
        break;
591
    case 0x150: /* CLKVCLR */
592
        s->clkvclr = value;
593
        break;
594
    case 0x160: /* LDOARST */
595
        s->ldoarst = value;
596
        break;
597
    default:
598
        hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
599
    }
600
    ssys_update(s);
601
}
602

    
603
static const MemoryRegionOps ssys_ops = {
604
    .read = ssys_read,
605
    .write = ssys_write,
606
    .endianness = DEVICE_NATIVE_ENDIAN,
607
};
608

    
609
static void ssys_reset(void *opaque)
610
{
611
    ssys_state *s = (ssys_state *)opaque;
612

    
613
    s->pborctl = 0x7ffd;
614
    s->rcc = 0x078e3ac0;
615

    
616
    if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
617
        s->rcc2 = 0;
618
    } else {
619
        s->rcc2 = 0x07802810;
620
    }
621
    s->rcgc[0] = 1;
622
    s->scgc[0] = 1;
623
    s->dcgc[0] = 1;
624
    ssys_calculate_system_clock(s);
625
}
626

    
627
static int stellaris_sys_post_load(void *opaque, int version_id)
628
{
629
    ssys_state *s = opaque;
630

    
631
    ssys_calculate_system_clock(s);
632

    
633
    return 0;
634
}
635

    
636
static const VMStateDescription vmstate_stellaris_sys = {
637
    .name = "stellaris_sys",
638
    .version_id = 2,
639
    .minimum_version_id = 1,
640
    .minimum_version_id_old = 1,
641
    .post_load = stellaris_sys_post_load,
642
    .fields      = (VMStateField[]) {
643
        VMSTATE_UINT32(pborctl, ssys_state),
644
        VMSTATE_UINT32(ldopctl, ssys_state),
645
        VMSTATE_UINT32(int_mask, ssys_state),
646
        VMSTATE_UINT32(int_status, ssys_state),
647
        VMSTATE_UINT32(resc, ssys_state),
648
        VMSTATE_UINT32(rcc, ssys_state),
649
        VMSTATE_UINT32_V(rcc2, ssys_state, 2),
650
        VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
651
        VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
652
        VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
653
        VMSTATE_UINT32(clkvclr, ssys_state),
654
        VMSTATE_UINT32(ldoarst, ssys_state),
655
        VMSTATE_END_OF_LIST()
656
    }
657
};
658

    
659
static int stellaris_sys_init(uint32_t base, qemu_irq irq,
660
                              stellaris_board_info * board,
661
                              uint8_t *macaddr)
662
{
663
    ssys_state *s;
664

    
665
    s = (ssys_state *)g_malloc0(sizeof(ssys_state));
666
    s->irq = irq;
667
    s->board = board;
668
    /* Most devices come preprogrammed with a MAC address in the user data. */
669
    s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
670
    s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
671

    
672
    memory_region_init_io(&s->iomem, &ssys_ops, s, "ssys", 0x00001000);
673
    memory_region_add_subregion(get_system_memory(), base, &s->iomem);
674
    ssys_reset(s);
675
    vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
676
    return 0;
677
}
678

    
679

    
680
/* I2C controller.  */
681

    
682
typedef struct {
683
    SysBusDevice busdev;
684
    i2c_bus *bus;
685
    qemu_irq irq;
686
    MemoryRegion iomem;
687
    uint32_t msa;
688
    uint32_t mcs;
689
    uint32_t mdr;
690
    uint32_t mtpr;
691
    uint32_t mimr;
692
    uint32_t mris;
693
    uint32_t mcr;
694
} stellaris_i2c_state;
695

    
696
#define STELLARIS_I2C_MCS_BUSY    0x01
697
#define STELLARIS_I2C_MCS_ERROR   0x02
698
#define STELLARIS_I2C_MCS_ADRACK  0x04
699
#define STELLARIS_I2C_MCS_DATACK  0x08
700
#define STELLARIS_I2C_MCS_ARBLST  0x10
701
#define STELLARIS_I2C_MCS_IDLE    0x20
702
#define STELLARIS_I2C_MCS_BUSBSY  0x40
703

    
704
static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
705
                                   unsigned size)
706
{
707
    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
708

    
709
    switch (offset) {
710
    case 0x00: /* MSA */
711
        return s->msa;
712
    case 0x04: /* MCS */
713
        /* We don't emulate timing, so the controller is never busy.  */
714
        return s->mcs | STELLARIS_I2C_MCS_IDLE;
715
    case 0x08: /* MDR */
716
        return s->mdr;
717
    case 0x0c: /* MTPR */
718
        return s->mtpr;
719
    case 0x10: /* MIMR */
720
        return s->mimr;
721
    case 0x14: /* MRIS */
722
        return s->mris;
723
    case 0x18: /* MMIS */
724
        return s->mris & s->mimr;
725
    case 0x20: /* MCR */
726
        return s->mcr;
727
    default:
728
        hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
729
        return 0;
730
    }
731
}
732

    
733
static void stellaris_i2c_update(stellaris_i2c_state *s)
734
{
735
    int level;
736

    
737
    level = (s->mris & s->mimr) != 0;
738
    qemu_set_irq(s->irq, level);
739
}
740

    
741
static void stellaris_i2c_write(void *opaque, hwaddr offset,
742
                                uint64_t value, unsigned size)
743
{
744
    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
745

    
746
    switch (offset) {
747
    case 0x00: /* MSA */
748
        s->msa = value & 0xff;
749
        break;
750
    case 0x04: /* MCS */
751
        if ((s->mcr & 0x10) == 0) {
752
            /* Disabled.  Do nothing.  */
753
            break;
754
        }
755
        /* Grab the bus if this is starting a transfer.  */
756
        if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
757
            if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
758
                s->mcs |= STELLARIS_I2C_MCS_ARBLST;
759
            } else {
760
                s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
761
                s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
762
            }
763
        }
764
        /* If we don't have the bus then indicate an error.  */
765
        if (!i2c_bus_busy(s->bus)
766
                || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
767
            s->mcs |= STELLARIS_I2C_MCS_ERROR;
768
            break;
769
        }
770
        s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
771
        if (value & 1) {
772
            /* Transfer a byte.  */
773
            /* TODO: Handle errors.  */
774
            if (s->msa & 1) {
775
                /* Recv */
776
                s->mdr = i2c_recv(s->bus) & 0xff;
777
            } else {
778
                /* Send */
779
                i2c_send(s->bus, s->mdr);
780
            }
781
            /* Raise an interrupt.  */
782
            s->mris |= 1;
783
        }
784
        if (value & 4) {
785
            /* Finish transfer.  */
786
            i2c_end_transfer(s->bus);
787
            s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
788
        }
789
        break;
790
    case 0x08: /* MDR */
791
        s->mdr = value & 0xff;
792
        break;
793
    case 0x0c: /* MTPR */
794
        s->mtpr = value & 0xff;
795
        break;
796
    case 0x10: /* MIMR */
797
        s->mimr = 1;
798
        break;
799
    case 0x1c: /* MICR */
800
        s->mris &= ~value;
801
        break;
802
    case 0x20: /* MCR */
803
        if (value & 1)
804
            hw_error(
805
                      "stellaris_i2c_write: Loopback not implemented\n");
806
        if (value & 0x20)
807
            hw_error(
808
                      "stellaris_i2c_write: Slave mode not implemented\n");
809
        s->mcr = value & 0x31;
810
        break;
811
    default:
812
        hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
813
                  (int)offset);
814
    }
815
    stellaris_i2c_update(s);
816
}
817

    
818
static void stellaris_i2c_reset(stellaris_i2c_state *s)
819
{
820
    if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
821
        i2c_end_transfer(s->bus);
822

    
823
    s->msa = 0;
824
    s->mcs = 0;
825
    s->mdr = 0;
826
    s->mtpr = 1;
827
    s->mimr = 0;
828
    s->mris = 0;
829
    s->mcr = 0;
830
    stellaris_i2c_update(s);
831
}
832

    
833
static const MemoryRegionOps stellaris_i2c_ops = {
834
    .read = stellaris_i2c_read,
835
    .write = stellaris_i2c_write,
836
    .endianness = DEVICE_NATIVE_ENDIAN,
837
};
838

    
839
static const VMStateDescription vmstate_stellaris_i2c = {
840
    .name = "stellaris_i2c",
841
    .version_id = 1,
842
    .minimum_version_id = 1,
843
    .minimum_version_id_old = 1,
844
    .fields      = (VMStateField[]) {
845
        VMSTATE_UINT32(msa, stellaris_i2c_state),
846
        VMSTATE_UINT32(mcs, stellaris_i2c_state),
847
        VMSTATE_UINT32(mdr, stellaris_i2c_state),
848
        VMSTATE_UINT32(mtpr, stellaris_i2c_state),
849
        VMSTATE_UINT32(mimr, stellaris_i2c_state),
850
        VMSTATE_UINT32(mris, stellaris_i2c_state),
851
        VMSTATE_UINT32(mcr, stellaris_i2c_state),
852
        VMSTATE_END_OF_LIST()
853
    }
854
};
855

    
856
static int stellaris_i2c_init(SysBusDevice * dev)
857
{
858
    stellaris_i2c_state *s = FROM_SYSBUS(stellaris_i2c_state, dev);
859
    i2c_bus *bus;
860

    
861
    sysbus_init_irq(dev, &s->irq);
862
    bus = i2c_init_bus(&dev->qdev, "i2c");
863
    s->bus = bus;
864

    
865
    memory_region_init_io(&s->iomem, &stellaris_i2c_ops, s,
866
                          "i2c", 0x1000);
867
    sysbus_init_mmio(dev, &s->iomem);
868
    /* ??? For now we only implement the master interface.  */
869
    stellaris_i2c_reset(s);
870
    vmstate_register(&dev->qdev, -1, &vmstate_stellaris_i2c, s);
871
    return 0;
872
}
873

    
874
/* Analogue to Digital Converter.  This is only partially implemented,
875
   enough for applications that use a combined ADC and timer tick.  */
876

    
877
#define STELLARIS_ADC_EM_CONTROLLER 0
878
#define STELLARIS_ADC_EM_COMP       1
879
#define STELLARIS_ADC_EM_EXTERNAL   4
880
#define STELLARIS_ADC_EM_TIMER      5
881
#define STELLARIS_ADC_EM_PWM0       6
882
#define STELLARIS_ADC_EM_PWM1       7
883
#define STELLARIS_ADC_EM_PWM2       8
884

    
885
#define STELLARIS_ADC_FIFO_EMPTY    0x0100
886
#define STELLARIS_ADC_FIFO_FULL     0x1000
887

    
888
typedef struct
889
{
890
    SysBusDevice busdev;
891
    MemoryRegion iomem;
892
    uint32_t actss;
893
    uint32_t ris;
894
    uint32_t im;
895
    uint32_t emux;
896
    uint32_t ostat;
897
    uint32_t ustat;
898
    uint32_t sspri;
899
    uint32_t sac;
900
    struct {
901
        uint32_t state;
902
        uint32_t data[16];
903
    } fifo[4];
904
    uint32_t ssmux[4];
905
    uint32_t ssctl[4];
906
    uint32_t noise;
907
    qemu_irq irq[4];
908
} stellaris_adc_state;
909

    
910
static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
911
{
912
    int tail;
913

    
914
    tail = s->fifo[n].state & 0xf;
915
    if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
916
        s->ustat |= 1 << n;
917
    } else {
918
        s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
919
        s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
920
        if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
921
            s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
922
    }
923
    return s->fifo[n].data[tail];
924
}
925

    
926
static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
927
                                     uint32_t value)
928
{
929
    int head;
930

    
931
    /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry 
932
       FIFO fir each sequencer.  */
933
    head = (s->fifo[n].state >> 4) & 0xf;
934
    if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
935
        s->ostat |= 1 << n;
936
        return;
937
    }
938
    s->fifo[n].data[head] = value;
939
    head = (head + 1) & 0xf;
940
    s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
941
    s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
942
    if ((s->fifo[n].state & 0xf) == head)
943
        s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
944
}
945

    
946
static void stellaris_adc_update(stellaris_adc_state *s)
947
{
948
    int level;
949
    int n;
950

    
951
    for (n = 0; n < 4; n++) {
952
        level = (s->ris & s->im & (1 << n)) != 0;
953
        qemu_set_irq(s->irq[n], level);
954
    }
955
}
956

    
957
static void stellaris_adc_trigger(void *opaque, int irq, int level)
958
{
959
    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
960
    int n;
961

    
962
    for (n = 0; n < 4; n++) {
963
        if ((s->actss & (1 << n)) == 0) {
964
            continue;
965
        }
966

    
967
        if (((s->emux >> (n * 4)) & 0xff) != 5) {
968
            continue;
969
        }
970

    
971
        /* Some applications use the ADC as a random number source, so introduce
972
           some variation into the signal.  */
973
        s->noise = s->noise * 314159 + 1;
974
        /* ??? actual inputs not implemented.  Return an arbitrary value.  */
975
        stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
976
        s->ris |= (1 << n);
977
        stellaris_adc_update(s);
978
    }
979
}
980

    
981
static void stellaris_adc_reset(stellaris_adc_state *s)
982
{
983
    int n;
984

    
985
    for (n = 0; n < 4; n++) {
986
        s->ssmux[n] = 0;
987
        s->ssctl[n] = 0;
988
        s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
989
    }
990
}
991

    
992
static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
993
                                   unsigned size)
994
{
995
    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
996

    
997
    /* TODO: Implement this.  */
998
    if (offset >= 0x40 && offset < 0xc0) {
999
        int n;
1000
        n = (offset - 0x40) >> 5;
1001
        switch (offset & 0x1f) {
1002
        case 0x00: /* SSMUX */
1003
            return s->ssmux[n];
1004
        case 0x04: /* SSCTL */
1005
            return s->ssctl[n];
1006
        case 0x08: /* SSFIFO */
1007
            return stellaris_adc_fifo_read(s, n);
1008
        case 0x0c: /* SSFSTAT */
1009
            return s->fifo[n].state;
1010
        default:
1011
            break;
1012
        }
1013
    }
1014
    switch (offset) {
1015
    case 0x00: /* ACTSS */
1016
        return s->actss;
1017
    case 0x04: /* RIS */
1018
        return s->ris;
1019
    case 0x08: /* IM */
1020
        return s->im;
1021
    case 0x0c: /* ISC */
1022
        return s->ris & s->im;
1023
    case 0x10: /* OSTAT */
1024
        return s->ostat;
1025
    case 0x14: /* EMUX */
1026
        return s->emux;
1027
    case 0x18: /* USTAT */
1028
        return s->ustat;
1029
    case 0x20: /* SSPRI */
1030
        return s->sspri;
1031
    case 0x30: /* SAC */
1032
        return s->sac;
1033
    default:
1034
        hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1035
                  (int)offset);
1036
        return 0;
1037
    }
1038
}
1039

    
1040
static void stellaris_adc_write(void *opaque, hwaddr offset,
1041
                                uint64_t value, unsigned size)
1042
{
1043
    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1044

    
1045
    /* TODO: Implement this.  */
1046
    if (offset >= 0x40 && offset < 0xc0) {
1047
        int n;
1048
        n = (offset - 0x40) >> 5;
1049
        switch (offset & 0x1f) {
1050
        case 0x00: /* SSMUX */
1051
            s->ssmux[n] = value & 0x33333333;
1052
            return;
1053
        case 0x04: /* SSCTL */
1054
            if (value != 6) {
1055
                hw_error("ADC: Unimplemented sequence %" PRIx64 "\n",
1056
                          value);
1057
            }
1058
            s->ssctl[n] = value;
1059
            return;
1060
        default:
1061
            break;
1062
        }
1063
    }
1064
    switch (offset) {
1065
    case 0x00: /* ACTSS */
1066
        s->actss = value & 0xf;
1067
        break;
1068
    case 0x08: /* IM */
1069
        s->im = value;
1070
        break;
1071
    case 0x0c: /* ISC */
1072
        s->ris &= ~value;
1073
        break;
1074
    case 0x10: /* OSTAT */
1075
        s->ostat &= ~value;
1076
        break;
1077
    case 0x14: /* EMUX */
1078
        s->emux = value;
1079
        break;
1080
    case 0x18: /* USTAT */
1081
        s->ustat &= ~value;
1082
        break;
1083
    case 0x20: /* SSPRI */
1084
        s->sspri = value;
1085
        break;
1086
    case 0x28: /* PSSI */
1087
        hw_error("Not implemented:  ADC sample initiate\n");
1088
        break;
1089
    case 0x30: /* SAC */
1090
        s->sac = value;
1091
        break;
1092
    default:
1093
        hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1094
    }
1095
    stellaris_adc_update(s);
1096
}
1097

    
1098
static const MemoryRegionOps stellaris_adc_ops = {
1099
    .read = stellaris_adc_read,
1100
    .write = stellaris_adc_write,
1101
    .endianness = DEVICE_NATIVE_ENDIAN,
1102
};
1103

    
1104
static const VMStateDescription vmstate_stellaris_adc = {
1105
    .name = "stellaris_adc",
1106
    .version_id = 1,
1107
    .minimum_version_id = 1,
1108
    .minimum_version_id_old = 1,
1109
    .fields      = (VMStateField[]) {
1110
        VMSTATE_UINT32(actss, stellaris_adc_state),
1111
        VMSTATE_UINT32(ris, stellaris_adc_state),
1112
        VMSTATE_UINT32(im, stellaris_adc_state),
1113
        VMSTATE_UINT32(emux, stellaris_adc_state),
1114
        VMSTATE_UINT32(ostat, stellaris_adc_state),
1115
        VMSTATE_UINT32(ustat, stellaris_adc_state),
1116
        VMSTATE_UINT32(sspri, stellaris_adc_state),
1117
        VMSTATE_UINT32(sac, stellaris_adc_state),
1118
        VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1119
        VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1120
        VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1121
        VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1122
        VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1123
        VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1124
        VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1125
        VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1126
        VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1127
        VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1128
        VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1129
        VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1130
        VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1131
        VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1132
        VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1133
        VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1134
        VMSTATE_UINT32(noise, stellaris_adc_state),
1135
        VMSTATE_END_OF_LIST()
1136
    }
1137
};
1138

    
1139
static int stellaris_adc_init(SysBusDevice *dev)
1140
{
1141
    stellaris_adc_state *s = FROM_SYSBUS(stellaris_adc_state, dev);
1142
    int n;
1143

    
1144
    for (n = 0; n < 4; n++) {
1145
        sysbus_init_irq(dev, &s->irq[n]);
1146
    }
1147

    
1148
    memory_region_init_io(&s->iomem, &stellaris_adc_ops, s,
1149
                          "adc", 0x1000);
1150
    sysbus_init_mmio(dev, &s->iomem);
1151
    stellaris_adc_reset(s);
1152
    qdev_init_gpio_in(&dev->qdev, stellaris_adc_trigger, 1);
1153
    vmstate_register(&dev->qdev, -1, &vmstate_stellaris_adc, s);
1154
    return 0;
1155
}
1156

    
1157
/* Board init.  */
1158
static stellaris_board_info stellaris_boards[] = {
1159
  { "LM3S811EVB",
1160
    0,
1161
    0x0032000e,
1162
    0x001f001f, /* dc0 */
1163
    0x001132bf,
1164
    0x01071013,
1165
    0x3f0f01ff,
1166
    0x0000001f,
1167
    BP_OLED_I2C
1168
  },
1169
  { "LM3S6965EVB",
1170
    0x10010002,
1171
    0x1073402e,
1172
    0x00ff007f, /* dc0 */
1173
    0x001133ff,
1174
    0x030f5317,
1175
    0x0f0f87ff,
1176
    0x5000007f,
1177
    BP_OLED_SSI | BP_GAMEPAD
1178
  }
1179
};
1180

    
1181
static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1182
                           stellaris_board_info *board)
1183
{
1184
    static const int uart_irq[] = {5, 6, 33, 34};
1185
    static const int timer_irq[] = {19, 21, 23, 35};
1186
    static const uint32_t gpio_addr[7] =
1187
      { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1188
        0x40024000, 0x40025000, 0x40026000};
1189
    static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1190

    
1191
    MemoryRegion *address_space_mem = get_system_memory();
1192
    qemu_irq *pic;
1193
    DeviceState *gpio_dev[7];
1194
    qemu_irq gpio_in[7][8];
1195
    qemu_irq gpio_out[7][8];
1196
    qemu_irq adc;
1197
    int sram_size;
1198
    int flash_size;
1199
    i2c_bus *i2c;
1200
    DeviceState *dev;
1201
    int i;
1202
    int j;
1203

    
1204
    flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1205
    sram_size = (board->dc0 >> 18) + 1;
1206
    pic = armv7m_init(address_space_mem,
1207
                      flash_size, sram_size, kernel_filename, cpu_model);
1208

    
1209
    if (board->dc1 & (1 << 16)) {
1210
        dev = sysbus_create_varargs("stellaris-adc", 0x40038000,
1211
                                    pic[14], pic[15], pic[16], pic[17], NULL);
1212
        adc = qdev_get_gpio_in(dev, 0);
1213
    } else {
1214
        adc = NULL;
1215
    }
1216
    for (i = 0; i < 4; i++) {
1217
        if (board->dc2 & (0x10000 << i)) {
1218
            dev = sysbus_create_simple("stellaris-gptm",
1219
                                       0x40030000 + i * 0x1000,
1220
                                       pic[timer_irq[i]]);
1221
            /* TODO: This is incorrect, but we get away with it because
1222
               the ADC output is only ever pulsed.  */
1223
            qdev_connect_gpio_out(dev, 0, adc);
1224
        }
1225
    }
1226

    
1227
    stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr.a);
1228

    
1229
    for (i = 0; i < 7; i++) {
1230
        if (board->dc4 & (1 << i)) {
1231
            gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1232
                                               pic[gpio_irq[i]]);
1233
            for (j = 0; j < 8; j++) {
1234
                gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1235
                gpio_out[i][j] = NULL;
1236
            }
1237
        }
1238
    }
1239

    
1240
    if (board->dc2 & (1 << 12)) {
1241
        dev = sysbus_create_simple("stellaris-i2c", 0x40020000, pic[8]);
1242
        i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
1243
        if (board->peripherals & BP_OLED_I2C) {
1244
            i2c_create_slave(i2c, "ssd0303", 0x3d);
1245
        }
1246
    }
1247

    
1248
    for (i = 0; i < 4; i++) {
1249
        if (board->dc2 & (1 << i)) {
1250
            sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1251
                                 pic[uart_irq[i]]);
1252
        }
1253
    }
1254
    if (board->dc2 & (1 << 4)) {
1255
        dev = sysbus_create_simple("pl022", 0x40008000, pic[7]);
1256
        if (board->peripherals & BP_OLED_SSI) {
1257
            void *bus;
1258
            DeviceState *sddev;
1259
            DeviceState *ssddev;
1260

    
1261
            /* Some boards have both an OLED controller and SD card connected to
1262
             * the same SSI port, with the SD card chip select connected to a
1263
             * GPIO pin.  Technically the OLED chip select is connected to the
1264
             * SSI Fss pin.  We do not bother emulating that as both devices
1265
             * should never be selected simultaneously, and our OLED controller
1266
             * ignores stray 0xff commands that occur when deselecting the SD
1267
             * card.
1268
             */
1269
            bus = qdev_get_child_bus(dev, "ssi");
1270

    
1271
            sddev = ssi_create_slave(bus, "ssi-sd");
1272
            ssddev = ssi_create_slave(bus, "ssd0323");
1273
            gpio_out[GPIO_D][0] = qemu_irq_split(qdev_get_gpio_in(sddev, 0),
1274
                                                 qdev_get_gpio_in(ssddev, 0));
1275
            gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 1);
1276

    
1277
            /* Make sure the select pin is high.  */
1278
            qemu_irq_raise(gpio_out[GPIO_D][0]);
1279
        }
1280
    }
1281
    if (board->dc4 & (1 << 28)) {
1282
        DeviceState *enet;
1283

    
1284
        qemu_check_nic_model(&nd_table[0], "stellaris");
1285

    
1286
        enet = qdev_create(NULL, "stellaris_enet");
1287
        qdev_set_nic_properties(enet, &nd_table[0]);
1288
        qdev_init_nofail(enet);
1289
        sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1290
        sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, pic[42]);
1291
    }
1292
    if (board->peripherals & BP_GAMEPAD) {
1293
        qemu_irq gpad_irq[5];
1294
        static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1295

    
1296
        gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1297
        gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1298
        gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1299
        gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1300
        gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1301

    
1302
        stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1303
    }
1304
    for (i = 0; i < 7; i++) {
1305
        if (board->dc4 & (1 << i)) {
1306
            for (j = 0; j < 8; j++) {
1307
                if (gpio_out[i][j]) {
1308
                    qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1309
                }
1310
            }
1311
        }
1312
    }
1313
}
1314

    
1315
/* FIXME: Figure out how to generate these from stellaris_boards.  */
1316
static void lm3s811evb_init(QEMUMachineInitArgs *args)
1317
{
1318
    const char *cpu_model = args->cpu_model;
1319
    const char *kernel_filename = args->kernel_filename;
1320
    stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1321
}
1322

    
1323
static void lm3s6965evb_init(QEMUMachineInitArgs *args)
1324
{
1325
    const char *cpu_model = args->cpu_model;
1326
    const char *kernel_filename = args->kernel_filename;
1327
    stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1328
}
1329

    
1330
static QEMUMachine lm3s811evb_machine = {
1331
    .name = "lm3s811evb",
1332
    .desc = "Stellaris LM3S811EVB",
1333
    .init = lm3s811evb_init,
1334
    DEFAULT_MACHINE_OPTIONS,
1335
};
1336

    
1337
static QEMUMachine lm3s6965evb_machine = {
1338
    .name = "lm3s6965evb",
1339
    .desc = "Stellaris LM3S6965EVB",
1340
    .init = lm3s6965evb_init,
1341
    DEFAULT_MACHINE_OPTIONS,
1342
};
1343

    
1344
static void stellaris_machine_init(void)
1345
{
1346
    qemu_register_machine(&lm3s811evb_machine);
1347
    qemu_register_machine(&lm3s6965evb_machine);
1348
}
1349

    
1350
machine_init(stellaris_machine_init);
1351

    
1352
static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1353
{
1354
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1355

    
1356
    sdc->init = stellaris_i2c_init;
1357
}
1358

    
1359
static const TypeInfo stellaris_i2c_info = {
1360
    .name          = "stellaris-i2c",
1361
    .parent        = TYPE_SYS_BUS_DEVICE,
1362
    .instance_size = sizeof(stellaris_i2c_state),
1363
    .class_init    = stellaris_i2c_class_init,
1364
};
1365

    
1366
static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1367
{
1368
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1369

    
1370
    sdc->init = stellaris_gptm_init;
1371
}
1372

    
1373
static const TypeInfo stellaris_gptm_info = {
1374
    .name          = "stellaris-gptm",
1375
    .parent        = TYPE_SYS_BUS_DEVICE,
1376
    .instance_size = sizeof(gptm_state),
1377
    .class_init    = stellaris_gptm_class_init,
1378
};
1379

    
1380
static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1381
{
1382
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1383

    
1384
    sdc->init = stellaris_adc_init;
1385
}
1386

    
1387
static const TypeInfo stellaris_adc_info = {
1388
    .name          = "stellaris-adc",
1389
    .parent        = TYPE_SYS_BUS_DEVICE,
1390
    .instance_size = sizeof(stellaris_adc_state),
1391
    .class_init    = stellaris_adc_class_init,
1392
};
1393

    
1394
static void stellaris_register_types(void)
1395
{
1396
    type_register_static(&stellaris_i2c_info);
1397
    type_register_static(&stellaris_gptm_info);
1398
    type_register_static(&stellaris_adc_info);
1399
}
1400

    
1401
type_init(stellaris_register_types)