Statistics
| Branch: | Revision:

root / hw / etraxfs_eth.c @ 0d09e41a

History | View | Annotate | Download (16.5 kB)

1
/*
2
 * QEMU ETRAX Ethernet Controller.
3
 *
4
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <stdio.h>
26
#include "hw/sysbus.h"
27
#include "net/net.h"
28
#include "hw/cris/etraxfs.h"
29

    
30
#define D(x)
31

    
32
/* Advertisement control register. */
33
#define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
34
#define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
35
#define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
36
#define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
37

    
38
/*
39
 * The MDIO extensions in the TDK PHY model were reversed engineered from the
40
 * linux driver (PHYID and Diagnostics reg).
41
 * TODO: Add friendly names for the register nums.
42
 */
43
struct qemu_phy
44
{
45
    uint32_t regs[32];
46

    
47
    int link;
48

    
49
    unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
50
    void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data);
51
};
52

    
53
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
54
{
55
    int regnum;
56
    unsigned r = 0;
57

    
58
    regnum = req & 0x1f;
59

    
60
    switch (regnum) {
61
    case 1:
62
        if (!phy->link) {
63
            break;
64
        }
65
        /* MR1.     */
66
        /* Speeds and modes.  */
67
        r |= (1 << 13) | (1 << 14);
68
        r |= (1 << 11) | (1 << 12);
69
        r |= (1 << 5); /* Autoneg complete.  */
70
        r |= (1 << 3); /* Autoneg able.     */
71
        r |= (1 << 2); /* link.     */
72
        break;
73
    case 5:
74
        /* Link partner ability.
75
           We are kind; always agree with whatever best mode
76
           the guest advertises.  */
77
        r = 1 << 14; /* Success.  */
78
        /* Copy advertised modes.  */
79
        r |= phy->regs[4] & (15 << 5);
80
        /* Autoneg support.  */
81
        r |= 1;
82
        break;
83
    case 18:
84
    {
85
        /* Diagnostics reg.  */
86
        int duplex = 0;
87
        int speed_100 = 0;
88

    
89
        if (!phy->link) {
90
            break;
91
        }
92

    
93
        /* Are we advertising 100 half or 100 duplex ? */
94
        speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
95
        speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
96

    
97
        /* Are we advertising 10 duplex or 100 duplex ? */
98
        duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
99
        duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
100
        r = (speed_100 << 10) | (duplex << 11);
101
    }
102
    break;
103

    
104
    default:
105
        r = phy->regs[regnum];
106
        break;
107
    }
108
    D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
109
    return r;
110
}
111

    
112
static void
113
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
114
{
115
    int regnum;
116

    
117
    regnum = req & 0x1f;
118
    D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
119
    switch (regnum) {
120
    default:
121
        phy->regs[regnum] = data;
122
        break;
123
    }
124
}
125

    
126
static void
127
tdk_init(struct qemu_phy *phy)
128
{
129
    phy->regs[0] = 0x3100;
130
    /* PHY Id.  */
131
    phy->regs[2] = 0x0300;
132
    phy->regs[3] = 0xe400;
133
    /* Autonegotiation advertisement reg.  */
134
    phy->regs[4] = 0x01E1;
135
    phy->link = 1;
136

    
137
    phy->read = tdk_read;
138
    phy->write = tdk_write;
139
}
140

    
141
struct qemu_mdio
142
{
143
    /* bus.     */
144
    int mdc;
145
    int mdio;
146

    
147
    /* decoder.  */
148
    enum {
149
        PREAMBLE,
150
        SOF,
151
        OPC,
152
        ADDR,
153
        REQ,
154
        TURNAROUND,
155
        DATA
156
    } state;
157
    unsigned int drive;
158

    
159
    unsigned int cnt;
160
    unsigned int addr;
161
    unsigned int opc;
162
    unsigned int req;
163
    unsigned int data;
164

    
165
    struct qemu_phy *devs[32];
166
};
167

    
168
static void
169
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
170
{
171
    bus->devs[addr & 0x1f] = phy;
172
}
173

    
174
#ifdef USE_THIS_DEAD_CODE
175
static void
176
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
177
{
178
    bus->devs[addr & 0x1f] = NULL;
179
}
180
#endif
181

    
182
static void mdio_read_req(struct qemu_mdio *bus)
183
{
184
    struct qemu_phy *phy;
185

    
186
    phy = bus->devs[bus->addr];
187
    if (phy && phy->read) {
188
        bus->data = phy->read(phy, bus->req);
189
    } else {
190
        bus->data = 0xffff;
191
    }
192
}
193

    
194
static void mdio_write_req(struct qemu_mdio *bus)
195
{
196
    struct qemu_phy *phy;
197

    
198
    phy = bus->devs[bus->addr];
199
    if (phy && phy->write) {
200
        phy->write(phy, bus->req, bus->data);
201
    }
202
}
203

    
204
static void mdio_cycle(struct qemu_mdio *bus)
205
{
206
    bus->cnt++;
207

    
208
    D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
209
        bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
210
#if 0
211
    if (bus->mdc) {
212
        printf("%d", bus->mdio);
213
    }
214
#endif
215
    switch (bus->state) {
216
    case PREAMBLE:
217
        if (bus->mdc) {
218
            if (bus->cnt >= (32 * 2) && !bus->mdio) {
219
                bus->cnt = 0;
220
                bus->state = SOF;
221
                bus->data = 0;
222
            }
223
        }
224
        break;
225
    case SOF:
226
        if (bus->mdc) {
227
            if (bus->mdio != 1) {
228
                printf("WARNING: no SOF\n");
229
            }
230
            if (bus->cnt == 1*2) {
231
                bus->cnt = 0;
232
                bus->opc = 0;
233
                bus->state = OPC;
234
            }
235
        }
236
        break;
237
    case OPC:
238
        if (bus->mdc) {
239
            bus->opc <<= 1;
240
            bus->opc |= bus->mdio & 1;
241
            if (bus->cnt == 2*2) {
242
                bus->cnt = 0;
243
                bus->addr = 0;
244
                bus->state = ADDR;
245
            }
246
        }
247
        break;
248
    case ADDR:
249
        if (bus->mdc) {
250
            bus->addr <<= 1;
251
            bus->addr |= bus->mdio & 1;
252

    
253
            if (bus->cnt == 5*2) {
254
                bus->cnt = 0;
255
                bus->req = 0;
256
                bus->state = REQ;
257
            }
258
        }
259
        break;
260
    case REQ:
261
        if (bus->mdc) {
262
            bus->req <<= 1;
263
            bus->req |= bus->mdio & 1;
264
            if (bus->cnt == 5*2) {
265
                bus->cnt = 0;
266
                bus->state = TURNAROUND;
267
            }
268
        }
269
        break;
270
    case TURNAROUND:
271
        if (bus->mdc && bus->cnt == 2*2) {
272
            bus->mdio = 0;
273
            bus->cnt = 0;
274

    
275
            if (bus->opc == 2) {
276
                bus->drive = 1;
277
                mdio_read_req(bus);
278
                bus->mdio = bus->data & 1;
279
            }
280
            bus->state = DATA;
281
        }
282
        break;
283
    case DATA:
284
        if (!bus->mdc) {
285
            if (bus->drive) {
286
                bus->mdio = !!(bus->data & (1 << 15));
287
                bus->data <<= 1;
288
            }
289
        } else {
290
            if (!bus->drive) {
291
                bus->data <<= 1;
292
                bus->data |= bus->mdio;
293
            }
294
            if (bus->cnt == 16 * 2) {
295
                bus->cnt = 0;
296
                bus->state = PREAMBLE;
297
                if (!bus->drive) {
298
                    mdio_write_req(bus);
299
                }
300
                bus->drive = 0;
301
            }
302
        }
303
        break;
304
    default:
305
        break;
306
    }
307
}
308

    
309
/* ETRAX-FS Ethernet MAC block starts here.  */
310

    
311
#define RW_MA0_LO      0x00
312
#define RW_MA0_HI      0x01
313
#define RW_MA1_LO      0x02
314
#define RW_MA1_HI      0x03
315
#define RW_GA_LO      0x04
316
#define RW_GA_HI      0x05
317
#define RW_GEN_CTRL      0x06
318
#define RW_REC_CTRL      0x07
319
#define RW_TR_CTRL      0x08
320
#define RW_CLR_ERR      0x09
321
#define RW_MGM_CTRL      0x0a
322
#define R_STAT          0x0b
323
#define FS_ETH_MAX_REGS      0x17
324

    
325
struct fs_eth
326
{
327
    SysBusDevice busdev;
328
    MemoryRegion mmio;
329
    NICState *nic;
330
    NICConf conf;
331

    
332
    /* Two addrs in the filter.  */
333
    uint8_t macaddr[2][6];
334
    uint32_t regs[FS_ETH_MAX_REGS];
335

    
336
    union {
337
        void *vdma_out;
338
        struct etraxfs_dma_client *dma_out;
339
    };
340
    union {
341
        void *vdma_in;
342
        struct etraxfs_dma_client *dma_in;
343
    };
344

    
345
    /* MDIO bus.  */
346
    struct qemu_mdio mdio_bus;
347
    unsigned int phyaddr;
348
    int duplex_mismatch;
349

    
350
    /* PHY.     */
351
    struct qemu_phy phy;
352
};
353

    
354
static void eth_validate_duplex(struct fs_eth *eth)
355
{
356
    struct qemu_phy *phy;
357
    unsigned int phy_duplex;
358
    unsigned int mac_duplex;
359
    int new_mm = 0;
360

    
361
    phy = eth->mdio_bus.devs[eth->phyaddr];
362
    phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
363
    mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
364

    
365
    if (mac_duplex != phy_duplex) {
366
        new_mm = 1;
367
    }
368

    
369
    if (eth->regs[RW_GEN_CTRL] & 1) {
370
        if (new_mm != eth->duplex_mismatch) {
371
            if (new_mm) {
372
                printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n",
373
                       mac_duplex, phy_duplex);
374
            } else {
375
                printf("HW: ETH duplex ok.\n");
376
            }
377
        }
378
        eth->duplex_mismatch = new_mm;
379
    }
380
}
381

    
382
static uint64_t
383
eth_read(void *opaque, hwaddr addr, unsigned int size)
384
{
385
    struct fs_eth *eth = opaque;
386
    uint32_t r = 0;
387

    
388
    addr >>= 2;
389

    
390
    switch (addr) {
391
    case R_STAT:
392
        r = eth->mdio_bus.mdio & 1;
393
        break;
394
    default:
395
        r = eth->regs[addr];
396
        D(printf("%s %x\n", __func__, addr * 4));
397
        break;
398
    }
399
    return r;
400
}
401

    
402
static void eth_update_ma(struct fs_eth *eth, int ma)
403
{
404
    int reg;
405
    int i = 0;
406

    
407
    ma &= 1;
408

    
409
    reg = RW_MA0_LO;
410
    if (ma) {
411
        reg = RW_MA1_LO;
412
    }
413

    
414
    eth->macaddr[ma][i++] = eth->regs[reg];
415
    eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
416
    eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
417
    eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
418
    eth->macaddr[ma][i++] = eth->regs[reg + 1];
419
    eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
420

    
421
    D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
422
             eth->macaddr[ma][0], eth->macaddr[ma][1],
423
             eth->macaddr[ma][2], eth->macaddr[ma][3],
424
             eth->macaddr[ma][4], eth->macaddr[ma][5]));
425
}
426

    
427
static void
428
eth_write(void *opaque, hwaddr addr,
429
          uint64_t val64, unsigned int size)
430
{
431
    struct fs_eth *eth = opaque;
432
    uint32_t value = val64;
433

    
434
    addr >>= 2;
435
    switch (addr) {
436
    case RW_MA0_LO:
437
    case RW_MA0_HI:
438
        eth->regs[addr] = value;
439
        eth_update_ma(eth, 0);
440
        break;
441
    case RW_MA1_LO:
442
    case RW_MA1_HI:
443
        eth->regs[addr] = value;
444
        eth_update_ma(eth, 1);
445
        break;
446

    
447
    case RW_MGM_CTRL:
448
        /* Attach an MDIO/PHY abstraction.  */
449
        if (value & 2) {
450
            eth->mdio_bus.mdio = value & 1;
451
        }
452
        if (eth->mdio_bus.mdc != (value & 4)) {
453
            mdio_cycle(&eth->mdio_bus);
454
            eth_validate_duplex(eth);
455
        }
456
        eth->mdio_bus.mdc = !!(value & 4);
457
        eth->regs[addr] = value;
458
        break;
459

    
460
    case RW_REC_CTRL:
461
        eth->regs[addr] = value;
462
        eth_validate_duplex(eth);
463
        break;
464

    
465
    default:
466
        eth->regs[addr] = value;
467
        D(printf("%s %x %x\n", __func__, addr, value));
468
        break;
469
    }
470
}
471

    
472
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
473
   filter dropping group addresses we have not joined.    The filter has 64
474
   bits (m). The has function is a simple nible xor of the group addr.    */
475
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
476
{
477
    unsigned int hsh;
478
    int m_individual = eth->regs[RW_REC_CTRL] & 4;
479
    int match;
480

    
481
    /* First bit on the wire of a MAC address signals multicast or
482
       physical address.  */
483
    if (!m_individual && !(sa[0] & 1)) {
484
        return 0;
485
    }
486

    
487
    /* Calculate the hash index for the GA registers. */
488
    hsh = 0;
489
    hsh ^= (*sa) & 0x3f;
490
    hsh ^= ((*sa) >> 6) & 0x03;
491
    ++sa;
492
    hsh ^= ((*sa) << 2) & 0x03c;
493
    hsh ^= ((*sa) >> 4) & 0xf;
494
    ++sa;
495
    hsh ^= ((*sa) << 4) & 0x30;
496
    hsh ^= ((*sa) >> 2) & 0x3f;
497
    ++sa;
498
    hsh ^= (*sa) & 0x3f;
499
    hsh ^= ((*sa) >> 6) & 0x03;
500
    ++sa;
501
    hsh ^= ((*sa) << 2) & 0x03c;
502
    hsh ^= ((*sa) >> 4) & 0xf;
503
    ++sa;
504
    hsh ^= ((*sa) << 4) & 0x30;
505
    hsh ^= ((*sa) >> 2) & 0x3f;
506

    
507
    hsh &= 63;
508
    if (hsh > 31) {
509
        match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
510
    } else {
511
        match = eth->regs[RW_GA_LO] & (1 << hsh);
512
    }
513
    D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
514
             eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
515
    return match;
516
}
517

    
518
static int eth_can_receive(NetClientState *nc)
519
{
520
    return 1;
521
}
522

    
523
static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size)
524
{
525
    unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
526
    struct fs_eth *eth = qemu_get_nic_opaque(nc);
527
    int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
528
    int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
529
    int r_bcast = eth->regs[RW_REC_CTRL] & 8;
530

    
531
    if (size < 12) {
532
        return -1;
533
    }
534

    
535
    D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
536
         buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
537
         use_ma0, use_ma1, r_bcast));
538

    
539
    /* Does the frame get through the address filters?  */
540
    if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
541
        && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
542
        && (!r_bcast || memcmp(buf, sa_bcast, 6))
543
        && !eth_match_groupaddr(eth, buf)) {
544
        return size;
545
    }
546

    
547
    /* FIXME: Find another way to pass on the fake csum.  */
548
    etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
549

    
550
        return size;
551
}
552

    
553
static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop)
554
{
555
    struct fs_eth *eth = opaque;
556

    
557
    D(printf("%s buf=%p len=%d\n", __func__, buf, len));
558
    qemu_send_packet(qemu_get_queue(eth->nic), buf, len);
559
    return len;
560
}
561

    
562
static void eth_set_link(NetClientState *nc)
563
{
564
    struct fs_eth *eth = qemu_get_nic_opaque(nc);
565
    D(printf("%s %d\n", __func__, nc->link_down));
566
    eth->phy.link = !nc->link_down;
567
}
568

    
569
static const MemoryRegionOps eth_ops = {
570
    .read = eth_read,
571
    .write = eth_write,
572
    .endianness = DEVICE_LITTLE_ENDIAN,
573
    .valid = {
574
        .min_access_size = 4,
575
        .max_access_size = 4
576
    }
577
};
578

    
579
static void eth_cleanup(NetClientState *nc)
580
{
581
    struct fs_eth *eth = qemu_get_nic_opaque(nc);
582

    
583
    /* Disconnect the client.  */
584
    eth->dma_out->client.push = NULL;
585
    eth->dma_out->client.opaque = NULL;
586
    eth->dma_in->client.opaque = NULL;
587
    eth->dma_in->client.pull = NULL;
588
        g_free(eth);
589
}
590

    
591
static NetClientInfo net_etraxfs_info = {
592
    .type = NET_CLIENT_OPTIONS_KIND_NIC,
593
    .size = sizeof(NICState),
594
    .can_receive = eth_can_receive,
595
    .receive = eth_receive,
596
    .cleanup = eth_cleanup,
597
    .link_status_changed = eth_set_link,
598
};
599

    
600
static int fs_eth_init(SysBusDevice *dev)
601
{
602
    struct fs_eth *s = FROM_SYSBUS(typeof(*s), dev);
603

    
604
    if (!s->dma_out || !s->dma_in) {
605
        hw_error("Unconnected ETRAX-FS Ethernet MAC.\n");
606
    }
607

    
608
    s->dma_out->client.push = eth_tx_push;
609
    s->dma_out->client.opaque = s;
610
    s->dma_in->client.opaque = s;
611
    s->dma_in->client.pull = NULL;
612

    
613
    memory_region_init_io(&s->mmio, &eth_ops, s, "etraxfs-eth", 0x5c);
614
    sysbus_init_mmio(dev, &s->mmio);
615

    
616
    qemu_macaddr_default_if_unset(&s->conf.macaddr);
617
    s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf,
618
                          object_get_typename(OBJECT(s)), dev->qdev.id, s);
619
    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
620

    
621

    
622
    tdk_init(&s->phy);
623
    mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr);
624
    return 0;
625
}
626

    
627
static Property etraxfs_eth_properties[] = {
628
    DEFINE_PROP_UINT32("phyaddr", struct fs_eth, phyaddr, 1),
629
    DEFINE_PROP_PTR("dma_out", struct fs_eth, vdma_out),
630
    DEFINE_PROP_PTR("dma_in", struct fs_eth, vdma_in),
631
    DEFINE_NIC_PROPERTIES(struct fs_eth, conf),
632
    DEFINE_PROP_END_OF_LIST(),
633
};
634

    
635
static void etraxfs_eth_class_init(ObjectClass *klass, void *data)
636
{
637
    DeviceClass *dc = DEVICE_CLASS(klass);
638
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
639

    
640
    k->init = fs_eth_init;
641
    dc->props = etraxfs_eth_properties;
642
}
643

    
644
static const TypeInfo etraxfs_eth_info = {
645
    .name          = "etraxfs-eth",
646
    .parent        = TYPE_SYS_BUS_DEVICE,
647
    .instance_size = sizeof(struct fs_eth),
648
    .class_init    = etraxfs_eth_class_init,
649
};
650

    
651
static void etraxfs_eth_register_types(void)
652
{
653
    type_register_static(&etraxfs_eth_info);
654
}
655

    
656
type_init(etraxfs_eth_register_types)