Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ 0d09e41a

History | View | Annotate | Download (60.9 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licensed under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include <assert.h>
14

    
15
#include "hw/hw.h"
16
#include "hw/pci/pci.h"
17
#include "hw/scsi/scsi.h"
18
#include "sysemu/dma.h"
19

    
20
//#define DEBUG_LSI
21
//#define DEBUG_LSI_REG
22

    
23
#ifdef DEBUG_LSI
24
#define DPRINTF(fmt, ...) \
25
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26
#define BADF(fmt, ...) \
27
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28
#else
29
#define DPRINTF(fmt, ...) do {} while(0)
30
#define BADF(fmt, ...) \
31
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32
#endif
33

    
34
#define LSI_MAX_DEVS 7
35

    
36
#define LSI_SCNTL0_TRG    0x01
37
#define LSI_SCNTL0_AAP    0x02
38
#define LSI_SCNTL0_EPC    0x08
39
#define LSI_SCNTL0_WATN   0x10
40
#define LSI_SCNTL0_START  0x20
41

    
42
#define LSI_SCNTL1_SST    0x01
43
#define LSI_SCNTL1_IARB   0x02
44
#define LSI_SCNTL1_AESP   0x04
45
#define LSI_SCNTL1_RST    0x08
46
#define LSI_SCNTL1_CON    0x10
47
#define LSI_SCNTL1_DHP    0x20
48
#define LSI_SCNTL1_ADB    0x40
49
#define LSI_SCNTL1_EXC    0x80
50

    
51
#define LSI_SCNTL2_WSR    0x01
52
#define LSI_SCNTL2_VUE0   0x02
53
#define LSI_SCNTL2_VUE1   0x04
54
#define LSI_SCNTL2_WSS    0x08
55
#define LSI_SCNTL2_SLPHBEN 0x10
56
#define LSI_SCNTL2_SLPMD  0x20
57
#define LSI_SCNTL2_CHM    0x40
58
#define LSI_SCNTL2_SDU    0x80
59

    
60
#define LSI_ISTAT0_DIP    0x01
61
#define LSI_ISTAT0_SIP    0x02
62
#define LSI_ISTAT0_INTF   0x04
63
#define LSI_ISTAT0_CON    0x08
64
#define LSI_ISTAT0_SEM    0x10
65
#define LSI_ISTAT0_SIGP   0x20
66
#define LSI_ISTAT0_SRST   0x40
67
#define LSI_ISTAT0_ABRT   0x80
68

    
69
#define LSI_ISTAT1_SI     0x01
70
#define LSI_ISTAT1_SRUN   0x02
71
#define LSI_ISTAT1_FLSH   0x04
72

    
73
#define LSI_SSTAT0_SDP0   0x01
74
#define LSI_SSTAT0_RST    0x02
75
#define LSI_SSTAT0_WOA    0x04
76
#define LSI_SSTAT0_LOA    0x08
77
#define LSI_SSTAT0_AIP    0x10
78
#define LSI_SSTAT0_OLF    0x20
79
#define LSI_SSTAT0_ORF    0x40
80
#define LSI_SSTAT0_ILF    0x80
81

    
82
#define LSI_SIST0_PAR     0x01
83
#define LSI_SIST0_RST     0x02
84
#define LSI_SIST0_UDC     0x04
85
#define LSI_SIST0_SGE     0x08
86
#define LSI_SIST0_RSL     0x10
87
#define LSI_SIST0_SEL     0x20
88
#define LSI_SIST0_CMP     0x40
89
#define LSI_SIST0_MA      0x80
90

    
91
#define LSI_SIST1_HTH     0x01
92
#define LSI_SIST1_GEN     0x02
93
#define LSI_SIST1_STO     0x04
94
#define LSI_SIST1_SBMC    0x10
95

    
96
#define LSI_SOCL_IO       0x01
97
#define LSI_SOCL_CD       0x02
98
#define LSI_SOCL_MSG      0x04
99
#define LSI_SOCL_ATN      0x08
100
#define LSI_SOCL_SEL      0x10
101
#define LSI_SOCL_BSY      0x20
102
#define LSI_SOCL_ACK      0x40
103
#define LSI_SOCL_REQ      0x80
104

    
105
#define LSI_DSTAT_IID     0x01
106
#define LSI_DSTAT_SIR     0x04
107
#define LSI_DSTAT_SSI     0x08
108
#define LSI_DSTAT_ABRT    0x10
109
#define LSI_DSTAT_BF      0x20
110
#define LSI_DSTAT_MDPE    0x40
111
#define LSI_DSTAT_DFE     0x80
112

    
113
#define LSI_DCNTL_COM     0x01
114
#define LSI_DCNTL_IRQD    0x02
115
#define LSI_DCNTL_STD     0x04
116
#define LSI_DCNTL_IRQM    0x08
117
#define LSI_DCNTL_SSM     0x10
118
#define LSI_DCNTL_PFEN    0x20
119
#define LSI_DCNTL_PFF     0x40
120
#define LSI_DCNTL_CLSE    0x80
121

    
122
#define LSI_DMODE_MAN     0x01
123
#define LSI_DMODE_BOF     0x02
124
#define LSI_DMODE_ERMP    0x04
125
#define LSI_DMODE_ERL     0x08
126
#define LSI_DMODE_DIOM    0x10
127
#define LSI_DMODE_SIOM    0x20
128

    
129
#define LSI_CTEST2_DACK   0x01
130
#define LSI_CTEST2_DREQ   0x02
131
#define LSI_CTEST2_TEOP   0x04
132
#define LSI_CTEST2_PCICIE 0x08
133
#define LSI_CTEST2_CM     0x10
134
#define LSI_CTEST2_CIO    0x20
135
#define LSI_CTEST2_SIGP   0x40
136
#define LSI_CTEST2_DDIR   0x80
137

    
138
#define LSI_CTEST5_BL2    0x04
139
#define LSI_CTEST5_DDIR   0x08
140
#define LSI_CTEST5_MASR   0x10
141
#define LSI_CTEST5_DFSN   0x20
142
#define LSI_CTEST5_BBCK   0x40
143
#define LSI_CTEST5_ADCK   0x80
144

    
145
#define LSI_CCNTL0_DILS   0x01
146
#define LSI_CCNTL0_DISFC  0x10
147
#define LSI_CCNTL0_ENNDJ  0x20
148
#define LSI_CCNTL0_PMJCTL 0x40
149
#define LSI_CCNTL0_ENPMJ  0x80
150

    
151
#define LSI_CCNTL1_EN64DBMV  0x01
152
#define LSI_CCNTL1_EN64TIBMV 0x02
153
#define LSI_CCNTL1_64TIMOD   0x04
154
#define LSI_CCNTL1_DDAC      0x08
155
#define LSI_CCNTL1_ZMOD      0x80
156

    
157
/* Enable Response to Reselection */
158
#define LSI_SCID_RRE      0x60
159

    
160
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161

    
162
#define PHASE_DO          0
163
#define PHASE_DI          1
164
#define PHASE_CMD         2
165
#define PHASE_ST          3
166
#define PHASE_MO          6
167
#define PHASE_MI          7
168
#define PHASE_MASK        7
169

    
170
/* Maximum length of MSG IN data.  */
171
#define LSI_MAX_MSGIN_LEN 8
172

    
173
/* Flag set if this is a tagged command.  */
174
#define LSI_TAG_VALID     (1 << 16)
175

    
176
typedef struct lsi_request {
177
    SCSIRequest *req;
178
    uint32_t tag;
179
    uint32_t dma_len;
180
    uint8_t *dma_buf;
181
    uint32_t pending;
182
    int out;
183
    QTAILQ_ENTRY(lsi_request) next;
184
} lsi_request;
185

    
186
typedef struct {
187
    PCIDevice dev;
188
    MemoryRegion mmio_io;
189
    MemoryRegion ram_io;
190
    MemoryRegion io_io;
191

    
192
    int carry; /* ??? Should this be an a visible register somewhere?  */
193
    int status;
194
    /* Action to take at the end of a MSG IN phase.
195
       0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN.  */
196
    int msg_action;
197
    int msg_len;
198
    uint8_t msg[LSI_MAX_MSGIN_LEN];
199
    /* 0 if SCRIPTS are running or stopped.
200
     * 1 if a Wait Reselect instruction has been issued.
201
     * 2 if processing DMA from lsi_execute_script.
202
     * 3 if a DMA operation is in progress.  */
203
    int waiting;
204
    SCSIBus bus;
205
    int current_lun;
206
    /* The tag is a combination of the device ID and the SCSI tag.  */
207
    uint32_t select_tag;
208
    int command_complete;
209
    QTAILQ_HEAD(, lsi_request) queue;
210
    lsi_request *current;
211

    
212
    uint32_t dsa;
213
    uint32_t temp;
214
    uint32_t dnad;
215
    uint32_t dbc;
216
    uint8_t istat0;
217
    uint8_t istat1;
218
    uint8_t dcmd;
219
    uint8_t dstat;
220
    uint8_t dien;
221
    uint8_t sist0;
222
    uint8_t sist1;
223
    uint8_t sien0;
224
    uint8_t sien1;
225
    uint8_t mbox0;
226
    uint8_t mbox1;
227
    uint8_t dfifo;
228
    uint8_t ctest2;
229
    uint8_t ctest3;
230
    uint8_t ctest4;
231
    uint8_t ctest5;
232
    uint8_t ccntl0;
233
    uint8_t ccntl1;
234
    uint32_t dsp;
235
    uint32_t dsps;
236
    uint8_t dmode;
237
    uint8_t dcntl;
238
    uint8_t scntl0;
239
    uint8_t scntl1;
240
    uint8_t scntl2;
241
    uint8_t scntl3;
242
    uint8_t sstat0;
243
    uint8_t sstat1;
244
    uint8_t scid;
245
    uint8_t sxfer;
246
    uint8_t socl;
247
    uint8_t sdid;
248
    uint8_t ssid;
249
    uint8_t sfbr;
250
    uint8_t stest1;
251
    uint8_t stest2;
252
    uint8_t stest3;
253
    uint8_t sidl;
254
    uint8_t stime0;
255
    uint8_t respid0;
256
    uint8_t respid1;
257
    uint32_t mmrs;
258
    uint32_t mmws;
259
    uint32_t sfs;
260
    uint32_t drs;
261
    uint32_t sbms;
262
    uint32_t dbms;
263
    uint32_t dnad64;
264
    uint32_t pmjad1;
265
    uint32_t pmjad2;
266
    uint32_t rbc;
267
    uint32_t ua;
268
    uint32_t ia;
269
    uint32_t sbc;
270
    uint32_t csbc;
271
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
272
    uint8_t sbr;
273

    
274
    /* Script ram is stored as 32-bit words in host byteorder.  */
275
    uint32_t script_ram[2048];
276
} LSIState;
277

    
278
static inline int lsi_irq_on_rsl(LSIState *s)
279
{
280
    return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
281
}
282

    
283
static void lsi_soft_reset(LSIState *s)
284
{
285
    DPRINTF("Reset\n");
286
    s->carry = 0;
287

    
288
    s->msg_action = 0;
289
    s->msg_len = 0;
290
    s->waiting = 0;
291
    s->dsa = 0;
292
    s->dnad = 0;
293
    s->dbc = 0;
294
    s->temp = 0;
295
    memset(s->scratch, 0, sizeof(s->scratch));
296
    s->istat0 = 0;
297
    s->istat1 = 0;
298
    s->dcmd = 0x40;
299
    s->dstat = LSI_DSTAT_DFE;
300
    s->dien = 0;
301
    s->sist0 = 0;
302
    s->sist1 = 0;
303
    s->sien0 = 0;
304
    s->sien1 = 0;
305
    s->mbox0 = 0;
306
    s->mbox1 = 0;
307
    s->dfifo = 0;
308
    s->ctest2 = LSI_CTEST2_DACK;
309
    s->ctest3 = 0;
310
    s->ctest4 = 0;
311
    s->ctest5 = 0;
312
    s->ccntl0 = 0;
313
    s->ccntl1 = 0;
314
    s->dsp = 0;
315
    s->dsps = 0;
316
    s->dmode = 0;
317
    s->dcntl = 0;
318
    s->scntl0 = 0xc0;
319
    s->scntl1 = 0;
320
    s->scntl2 = 0;
321
    s->scntl3 = 0;
322
    s->sstat0 = 0;
323
    s->sstat1 = 0;
324
    s->scid = 7;
325
    s->sxfer = 0;
326
    s->socl = 0;
327
    s->sdid = 0;
328
    s->ssid = 0;
329
    s->stest1 = 0;
330
    s->stest2 = 0;
331
    s->stest3 = 0;
332
    s->sidl = 0;
333
    s->stime0 = 0;
334
    s->respid0 = 0x80;
335
    s->respid1 = 0;
336
    s->mmrs = 0;
337
    s->mmws = 0;
338
    s->sfs = 0;
339
    s->drs = 0;
340
    s->sbms = 0;
341
    s->dbms = 0;
342
    s->dnad64 = 0;
343
    s->pmjad1 = 0;
344
    s->pmjad2 = 0;
345
    s->rbc = 0;
346
    s->ua = 0;
347
    s->ia = 0;
348
    s->sbc = 0;
349
    s->csbc = 0;
350
    s->sbr = 0;
351
    assert(QTAILQ_EMPTY(&s->queue));
352
    assert(!s->current);
353
}
354

    
355
static int lsi_dma_40bit(LSIState *s)
356
{
357
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
358
        return 1;
359
    return 0;
360
}
361

    
362
static int lsi_dma_ti64bit(LSIState *s)
363
{
364
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
365
        return 1;
366
    return 0;
367
}
368

    
369
static int lsi_dma_64bit(LSIState *s)
370
{
371
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
372
        return 1;
373
    return 0;
374
}
375

    
376
static uint8_t lsi_reg_readb(LSIState *s, int offset);
377
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
378
static void lsi_execute_script(LSIState *s);
379
static void lsi_reselect(LSIState *s, lsi_request *p);
380

    
381
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
382
{
383
    uint32_t buf;
384

    
385
    pci_dma_read(&s->dev, addr, &buf, 4);
386
    return cpu_to_le32(buf);
387
}
388

    
389
static void lsi_stop_script(LSIState *s)
390
{
391
    s->istat1 &= ~LSI_ISTAT1_SRUN;
392
}
393

    
394
static void lsi_update_irq(LSIState *s)
395
{
396
    int level;
397
    static int last_level;
398
    lsi_request *p;
399

    
400
    /* It's unclear whether the DIP/SIP bits should be cleared when the
401
       Interrupt Status Registers are cleared or when istat0 is read.
402
       We currently do the formwer, which seems to work.  */
403
    level = 0;
404
    if (s->dstat) {
405
        if (s->dstat & s->dien)
406
            level = 1;
407
        s->istat0 |= LSI_ISTAT0_DIP;
408
    } else {
409
        s->istat0 &= ~LSI_ISTAT0_DIP;
410
    }
411

    
412
    if (s->sist0 || s->sist1) {
413
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
414
            level = 1;
415
        s->istat0 |= LSI_ISTAT0_SIP;
416
    } else {
417
        s->istat0 &= ~LSI_ISTAT0_SIP;
418
    }
419
    if (s->istat0 & LSI_ISTAT0_INTF)
420
        level = 1;
421

    
422
    if (level != last_level) {
423
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
424
                level, s->dstat, s->sist1, s->sist0);
425
        last_level = level;
426
    }
427
    qemu_set_irq(s->dev.irq[0], level);
428

    
429
    if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
430
        DPRINTF("Handled IRQs & disconnected, looking for pending "
431
                "processes\n");
432
        QTAILQ_FOREACH(p, &s->queue, next) {
433
            if (p->pending) {
434
                lsi_reselect(s, p);
435
                break;
436
            }
437
        }
438
    }
439
}
440

    
441
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
442
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
443
{
444
    uint32_t mask0;
445
    uint32_t mask1;
446

    
447
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
448
            stat1, stat0, s->sist1, s->sist0);
449
    s->sist0 |= stat0;
450
    s->sist1 |= stat1;
451
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
452
       we don't stop processing when raising STO.  Instead continue
453
       execution and stop at the next insn that accesses the SCSI bus.  */
454
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
455
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
456
    mask1 &= ~LSI_SIST1_STO;
457
    if (s->sist0 & mask0 || s->sist1 & mask1) {
458
        lsi_stop_script(s);
459
    }
460
    lsi_update_irq(s);
461
}
462

    
463
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
464
static void lsi_script_dma_interrupt(LSIState *s, int stat)
465
{
466
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
467
    s->dstat |= stat;
468
    lsi_update_irq(s);
469
    lsi_stop_script(s);
470
}
471

    
472
static inline void lsi_set_phase(LSIState *s, int phase)
473
{
474
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
475
}
476

    
477
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
478
{
479
    /* Trigger a phase mismatch.  */
480
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
481
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
482
            s->dsp = out ? s->pmjad1 : s->pmjad2;
483
        } else {
484
            s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
485
        }
486
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
487
    } else {
488
        DPRINTF("Phase mismatch interrupt\n");
489
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
490
        lsi_stop_script(s);
491
    }
492
    lsi_set_phase(s, new_phase);
493
}
494

    
495

    
496
/* Resume SCRIPTS execution after a DMA operation.  */
497
static void lsi_resume_script(LSIState *s)
498
{
499
    if (s->waiting != 2) {
500
        s->waiting = 0;
501
        lsi_execute_script(s);
502
    } else {
503
        s->waiting = 0;
504
    }
505
}
506

    
507
static void lsi_disconnect(LSIState *s)
508
{
509
    s->scntl1 &= ~LSI_SCNTL1_CON;
510
    s->sstat1 &= ~PHASE_MASK;
511
}
512

    
513
static void lsi_bad_selection(LSIState *s, uint32_t id)
514
{
515
    DPRINTF("Selected absent target %d\n", id);
516
    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
517
    lsi_disconnect(s);
518
}
519

    
520
/* Initiate a SCSI layer data transfer.  */
521
static void lsi_do_dma(LSIState *s, int out)
522
{
523
    uint32_t count;
524
    dma_addr_t addr;
525
    SCSIDevice *dev;
526

    
527
    assert(s->current);
528
    if (!s->current->dma_len) {
529
        /* Wait until data is available.  */
530
        DPRINTF("DMA no data available\n");
531
        return;
532
    }
533

    
534
    dev = s->current->req->dev;
535
    assert(dev);
536

    
537
    count = s->dbc;
538
    if (count > s->current->dma_len)
539
        count = s->current->dma_len;
540

    
541
    addr = s->dnad;
542
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
543
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
544
        addr |= ((uint64_t)s->dnad64 << 32);
545
    else if (s->dbms)
546
        addr |= ((uint64_t)s->dbms << 32);
547
    else if (s->sbms)
548
        addr |= ((uint64_t)s->sbms << 32);
549

    
550
    DPRINTF("DMA addr=0x" DMA_ADDR_FMT " len=%d\n", addr, count);
551
    s->csbc += count;
552
    s->dnad += count;
553
    s->dbc -= count;
554
     if (s->current->dma_buf == NULL) {
555
        s->current->dma_buf = scsi_req_get_buf(s->current->req);
556
    }
557
    /* ??? Set SFBR to first data byte.  */
558
    if (out) {
559
        pci_dma_read(&s->dev, addr, s->current->dma_buf, count);
560
    } else {
561
        pci_dma_write(&s->dev, addr, s->current->dma_buf, count);
562
    }
563
    s->current->dma_len -= count;
564
    if (s->current->dma_len == 0) {
565
        s->current->dma_buf = NULL;
566
        scsi_req_continue(s->current->req);
567
    } else {
568
        s->current->dma_buf += count;
569
        lsi_resume_script(s);
570
    }
571
}
572

    
573

    
574
/* Add a command to the queue.  */
575
static void lsi_queue_command(LSIState *s)
576
{
577
    lsi_request *p = s->current;
578

    
579
    DPRINTF("Queueing tag=0x%x\n", p->tag);
580
    assert(s->current != NULL);
581
    assert(s->current->dma_len == 0);
582
    QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
583
    s->current = NULL;
584

    
585
    p->pending = 0;
586
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
587
}
588

    
589
/* Queue a byte for a MSG IN phase.  */
590
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
591
{
592
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
593
        BADF("MSG IN data too long\n");
594
    } else {
595
        DPRINTF("MSG IN 0x%02x\n", data);
596
        s->msg[s->msg_len++] = data;
597
    }
598
}
599

    
600
/* Perform reselection to continue a command.  */
601
static void lsi_reselect(LSIState *s, lsi_request *p)
602
{
603
    int id;
604

    
605
    assert(s->current == NULL);
606
    QTAILQ_REMOVE(&s->queue, p, next);
607
    s->current = p;
608

    
609
    id = (p->tag >> 8) & 0xf;
610
    s->ssid = id | 0x80;
611
    /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
612
    if (!(s->dcntl & LSI_DCNTL_COM)) {
613
        s->sfbr = 1 << (id & 0x7);
614
    }
615
    DPRINTF("Reselected target %d\n", id);
616
    s->scntl1 |= LSI_SCNTL1_CON;
617
    lsi_set_phase(s, PHASE_MI);
618
    s->msg_action = p->out ? 2 : 3;
619
    s->current->dma_len = p->pending;
620
    lsi_add_msg_byte(s, 0x80);
621
    if (s->current->tag & LSI_TAG_VALID) {
622
        lsi_add_msg_byte(s, 0x20);
623
        lsi_add_msg_byte(s, p->tag & 0xff);
624
    }
625

    
626
    if (lsi_irq_on_rsl(s)) {
627
        lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
628
    }
629
}
630

    
631
static lsi_request *lsi_find_by_tag(LSIState *s, uint32_t tag)
632
{
633
    lsi_request *p;
634

    
635
    QTAILQ_FOREACH(p, &s->queue, next) {
636
        if (p->tag == tag) {
637
            return p;
638
        }
639
    }
640

    
641
    return NULL;
642
}
643

    
644
static void lsi_request_free(LSIState *s, lsi_request *p)
645
{
646
    if (p == s->current) {
647
        s->current = NULL;
648
    } else {
649
        QTAILQ_REMOVE(&s->queue, p, next);
650
    }
651
    g_free(p);
652
}
653

    
654
static void lsi_request_cancelled(SCSIRequest *req)
655
{
656
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
657
    lsi_request *p = req->hba_private;
658

    
659
    req->hba_private = NULL;
660
    lsi_request_free(s, p);
661
    scsi_req_unref(req);
662
}
663

    
664
/* Record that data is available for a queued command.  Returns zero if
665
   the device was reselected, nonzero if the IO is deferred.  */
666
static int lsi_queue_req(LSIState *s, SCSIRequest *req, uint32_t len)
667
{
668
    lsi_request *p = req->hba_private;
669

    
670
    if (p->pending) {
671
        BADF("Multiple IO pending for request %p\n", p);
672
    }
673
    p->pending = len;
674
    /* Reselect if waiting for it, or if reselection triggers an IRQ
675
       and the bus is free.
676
       Since no interrupt stacking is implemented in the emulation, it
677
       is also required that there are no pending interrupts waiting
678
       for service from the device driver. */
679
    if (s->waiting == 1 ||
680
        (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
681
         !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
682
        /* Reselect device.  */
683
        lsi_reselect(s, p);
684
        return 0;
685
    } else {
686
        DPRINTF("Queueing IO tag=0x%x\n", p->tag);
687
        p->pending = len;
688
        return 1;
689
    }
690
}
691

    
692
 /* Callback to indicate that the SCSI layer has completed a command.  */
693
static void lsi_command_complete(SCSIRequest *req, uint32_t status, size_t resid)
694
{
695
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
696
    int out;
697

    
698
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
699
    DPRINTF("Command complete status=%d\n", (int)status);
700
    s->status = status;
701
    s->command_complete = 2;
702
    if (s->waiting && s->dbc != 0) {
703
        /* Raise phase mismatch for short transfers.  */
704
        lsi_bad_phase(s, out, PHASE_ST);
705
    } else {
706
        lsi_set_phase(s, PHASE_ST);
707
    }
708

    
709
    if (req->hba_private == s->current) {
710
        req->hba_private = NULL;
711
        lsi_request_free(s, s->current);
712
        scsi_req_unref(req);
713
    }
714
    lsi_resume_script(s);
715
}
716

    
717
 /* Callback to indicate that the SCSI layer has completed a transfer.  */
718
static void lsi_transfer_data(SCSIRequest *req, uint32_t len)
719
{
720
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
721
    int out;
722

    
723
    assert(req->hba_private);
724
    if (s->waiting == 1 || req->hba_private != s->current ||
725
        (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
726
        if (lsi_queue_req(s, req, len)) {
727
            return;
728
        }
729
    }
730

    
731
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
732

    
733
    /* host adapter (re)connected */
734
    DPRINTF("Data ready tag=0x%x len=%d\n", req->tag, len);
735
    s->current->dma_len = len;
736
    s->command_complete = 1;
737
    if (s->waiting) {
738
        if (s->waiting == 1 || s->dbc == 0) {
739
            lsi_resume_script(s);
740
        } else {
741
            lsi_do_dma(s, out);
742
        }
743
    }
744
}
745

    
746
static void lsi_do_command(LSIState *s)
747
{
748
    SCSIDevice *dev;
749
    uint8_t buf[16];
750
    uint32_t id;
751
    int n;
752

    
753
    DPRINTF("Send command len=%d\n", s->dbc);
754
    if (s->dbc > 16)
755
        s->dbc = 16;
756
    pci_dma_read(&s->dev, s->dnad, buf, s->dbc);
757
    s->sfbr = buf[0];
758
    s->command_complete = 0;
759

    
760
    id = (s->select_tag >> 8) & 0xf;
761
    dev = scsi_device_find(&s->bus, 0, id, s->current_lun);
762
    if (!dev) {
763
        lsi_bad_selection(s, id);
764
        return;
765
    }
766

    
767
    assert(s->current == NULL);
768
    s->current = g_malloc0(sizeof(lsi_request));
769
    s->current->tag = s->select_tag;
770
    s->current->req = scsi_req_new(dev, s->current->tag, s->current_lun, buf,
771
                                   s->current);
772

    
773
    n = scsi_req_enqueue(s->current->req);
774
    if (n) {
775
        if (n > 0) {
776
            lsi_set_phase(s, PHASE_DI);
777
        } else if (n < 0) {
778
            lsi_set_phase(s, PHASE_DO);
779
        }
780
        scsi_req_continue(s->current->req);
781
    }
782
    if (!s->command_complete) {
783
        if (n) {
784
            /* Command did not complete immediately so disconnect.  */
785
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
786
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
787
            /* wait data */
788
            lsi_set_phase(s, PHASE_MI);
789
            s->msg_action = 1;
790
            lsi_queue_command(s);
791
        } else {
792
            /* wait command complete */
793
            lsi_set_phase(s, PHASE_DI);
794
        }
795
    }
796
}
797

    
798
static void lsi_do_status(LSIState *s)
799
{
800
    uint8_t status;
801
    DPRINTF("Get status len=%d status=%d\n", s->dbc, s->status);
802
    if (s->dbc != 1)
803
        BADF("Bad Status move\n");
804
    s->dbc = 1;
805
    status = s->status;
806
    s->sfbr = status;
807
    pci_dma_write(&s->dev, s->dnad, &status, 1);
808
    lsi_set_phase(s, PHASE_MI);
809
    s->msg_action = 1;
810
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
811
}
812

    
813
static void lsi_do_msgin(LSIState *s)
814
{
815
    int len;
816
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
817
    s->sfbr = s->msg[0];
818
    len = s->msg_len;
819
    if (len > s->dbc)
820
        len = s->dbc;
821
    pci_dma_write(&s->dev, s->dnad, s->msg, len);
822
    /* Linux drivers rely on the last byte being in the SIDL.  */
823
    s->sidl = s->msg[len - 1];
824
    s->msg_len -= len;
825
    if (s->msg_len) {
826
        memmove(s->msg, s->msg + len, s->msg_len);
827
    } else {
828
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
829
           switch to PHASE_MO.  */
830
        switch (s->msg_action) {
831
        case 0:
832
            lsi_set_phase(s, PHASE_CMD);
833
            break;
834
        case 1:
835
            lsi_disconnect(s);
836
            break;
837
        case 2:
838
            lsi_set_phase(s, PHASE_DO);
839
            break;
840
        case 3:
841
            lsi_set_phase(s, PHASE_DI);
842
            break;
843
        default:
844
            abort();
845
        }
846
    }
847
}
848

    
849
/* Read the next byte during a MSGOUT phase.  */
850
static uint8_t lsi_get_msgbyte(LSIState *s)
851
{
852
    uint8_t data;
853
    pci_dma_read(&s->dev, s->dnad, &data, 1);
854
    s->dnad++;
855
    s->dbc--;
856
    return data;
857
}
858

    
859
/* Skip the next n bytes during a MSGOUT phase. */
860
static void lsi_skip_msgbytes(LSIState *s, unsigned int n)
861
{
862
    s->dnad += n;
863
    s->dbc  -= n;
864
}
865

    
866
static void lsi_do_msgout(LSIState *s)
867
{
868
    uint8_t msg;
869
    int len;
870
    uint32_t current_tag;
871
    lsi_request *current_req, *p, *p_next;
872

    
873
    if (s->current) {
874
        current_tag = s->current->tag;
875
        current_req = s->current;
876
    } else {
877
        current_tag = s->select_tag;
878
        current_req = lsi_find_by_tag(s, current_tag);
879
    }
880

    
881
    DPRINTF("MSG out len=%d\n", s->dbc);
882
    while (s->dbc) {
883
        msg = lsi_get_msgbyte(s);
884
        s->sfbr = msg;
885

    
886
        switch (msg) {
887
        case 0x04:
888
            DPRINTF("MSG: Disconnect\n");
889
            lsi_disconnect(s);
890
            break;
891
        case 0x08:
892
            DPRINTF("MSG: No Operation\n");
893
            lsi_set_phase(s, PHASE_CMD);
894
            break;
895
        case 0x01:
896
            len = lsi_get_msgbyte(s);
897
            msg = lsi_get_msgbyte(s);
898
            (void)len; /* avoid a warning about unused variable*/
899
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
900
            switch (msg) {
901
            case 1:
902
                DPRINTF("SDTR (ignored)\n");
903
                lsi_skip_msgbytes(s, 2);
904
                break;
905
            case 3:
906
                DPRINTF("WDTR (ignored)\n");
907
                lsi_skip_msgbytes(s, 1);
908
                break;
909
            default:
910
                goto bad;
911
            }
912
            break;
913
        case 0x20: /* SIMPLE queue */
914
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
915
            DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff);
916
            break;
917
        case 0x21: /* HEAD of queue */
918
            BADF("HEAD queue not implemented\n");
919
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
920
            break;
921
        case 0x22: /* ORDERED queue */
922
            BADF("ORDERED queue not implemented\n");
923
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
924
            break;
925
        case 0x0d:
926
            /* The ABORT TAG message clears the current I/O process only. */
927
            DPRINTF("MSG: ABORT TAG tag=0x%x\n", current_tag);
928
            if (current_req) {
929
                scsi_req_cancel(current_req->req);
930
            }
931
            lsi_disconnect(s);
932
            break;
933
        case 0x06:
934
        case 0x0e:
935
        case 0x0c:
936
            /* The ABORT message clears all I/O processes for the selecting
937
               initiator on the specified logical unit of the target. */
938
            if (msg == 0x06) {
939
                DPRINTF("MSG: ABORT tag=0x%x\n", current_tag);
940
            }
941
            /* The CLEAR QUEUE message clears all I/O processes for all
942
               initiators on the specified logical unit of the target. */
943
            if (msg == 0x0e) {
944
                DPRINTF("MSG: CLEAR QUEUE tag=0x%x\n", current_tag);
945
            }
946
            /* The BUS DEVICE RESET message clears all I/O processes for all
947
               initiators on all logical units of the target. */
948
            if (msg == 0x0c) {
949
                DPRINTF("MSG: BUS DEVICE RESET tag=0x%x\n", current_tag);
950
            }
951

    
952
            /* clear the current I/O process */
953
            if (s->current) {
954
                scsi_req_cancel(s->current->req);
955
            }
956

    
957
            /* As the current implemented devices scsi_disk and scsi_generic
958
               only support one LUN, we don't need to keep track of LUNs.
959
               Clearing I/O processes for other initiators could be possible
960
               for scsi_generic by sending a SG_SCSI_RESET to the /dev/sgX
961
               device, but this is currently not implemented (and seems not
962
               to be really necessary). So let's simply clear all queued
963
               commands for the current device: */
964
            QTAILQ_FOREACH_SAFE(p, &s->queue, next, p_next) {
965
                if ((p->tag & 0x0000ff00) == (current_tag & 0x0000ff00)) {
966
                    scsi_req_cancel(p->req);
967
                }
968
            }
969

    
970
            lsi_disconnect(s);
971
            break;
972
        default:
973
            if ((msg & 0x80) == 0) {
974
                goto bad;
975
            }
976
            s->current_lun = msg & 7;
977
            DPRINTF("Select LUN %d\n", s->current_lun);
978
            lsi_set_phase(s, PHASE_CMD);
979
            break;
980
        }
981
    }
982
    return;
983
bad:
984
    BADF("Unimplemented message 0x%02x\n", msg);
985
    lsi_set_phase(s, PHASE_MI);
986
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
987
    s->msg_action = 0;
988
}
989

    
990
/* Sign extend a 24-bit value.  */
991
static inline int32_t sxt24(int32_t n)
992
{
993
    return (n << 8) >> 8;
994
}
995

    
996
#define LSI_BUF_SIZE 4096
997
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
998
{
999
    int n;
1000
    uint8_t buf[LSI_BUF_SIZE];
1001

    
1002
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
1003
    while (count) {
1004
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
1005
        pci_dma_read(&s->dev, src, buf, n);
1006
        pci_dma_write(&s->dev, dest, buf, n);
1007
        src += n;
1008
        dest += n;
1009
        count -= n;
1010
    }
1011
}
1012

    
1013
static void lsi_wait_reselect(LSIState *s)
1014
{
1015
    lsi_request *p;
1016

    
1017
    DPRINTF("Wait Reselect\n");
1018

    
1019
    QTAILQ_FOREACH(p, &s->queue, next) {
1020
        if (p->pending) {
1021
            lsi_reselect(s, p);
1022
            break;
1023
        }
1024
    }
1025
    if (s->current == NULL) {
1026
        s->waiting = 1;
1027
    }
1028
}
1029

    
1030
static void lsi_execute_script(LSIState *s)
1031
{
1032
    uint32_t insn;
1033
    uint32_t addr, addr_high;
1034
    int opcode;
1035
    int insn_processed = 0;
1036

    
1037
    s->istat1 |= LSI_ISTAT1_SRUN;
1038
again:
1039
    insn_processed++;
1040
    insn = read_dword(s, s->dsp);
1041
    if (!insn) {
1042
        /* If we receive an empty opcode increment the DSP by 4 bytes
1043
           instead of 8 and execute the next opcode at that location */
1044
        s->dsp += 4;
1045
        goto again;
1046
    }
1047
    addr = read_dword(s, s->dsp + 4);
1048
    addr_high = 0;
1049
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
1050
    s->dsps = addr;
1051
    s->dcmd = insn >> 24;
1052
    s->dsp += 8;
1053
    switch (insn >> 30) {
1054
    case 0: /* Block move.  */
1055
        if (s->sist1 & LSI_SIST1_STO) {
1056
            DPRINTF("Delayed select timeout\n");
1057
            lsi_stop_script(s);
1058
            break;
1059
        }
1060
        s->dbc = insn & 0xffffff;
1061
        s->rbc = s->dbc;
1062
        /* ??? Set ESA.  */
1063
        s->ia = s->dsp - 8;
1064
        if (insn & (1 << 29)) {
1065
            /* Indirect addressing.  */
1066
            addr = read_dword(s, addr);
1067
        } else if (insn & (1 << 28)) {
1068
            uint32_t buf[2];
1069
            int32_t offset;
1070
            /* Table indirect addressing.  */
1071

    
1072
            /* 32-bit Table indirect */
1073
            offset = sxt24(addr);
1074
            pci_dma_read(&s->dev, s->dsa + offset, buf, 8);
1075
            /* byte count is stored in bits 0:23 only */
1076
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
1077
            s->rbc = s->dbc;
1078
            addr = cpu_to_le32(buf[1]);
1079

    
1080
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
1081
             * table, bits [31:24] */
1082
            if (lsi_dma_40bit(s))
1083
                addr_high = cpu_to_le32(buf[0]) >> 24;
1084
            else if (lsi_dma_ti64bit(s)) {
1085
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
1086
                switch (selector) {
1087
                case 0 ... 0x0f:
1088
                    /* offset index into scratch registers since
1089
                     * TI64 mode can use registers C to R */
1090
                    addr_high = s->scratch[2 + selector];
1091
                    break;
1092
                case 0x10:
1093
                    addr_high = s->mmrs;
1094
                    break;
1095
                case 0x11:
1096
                    addr_high = s->mmws;
1097
                    break;
1098
                case 0x12:
1099
                    addr_high = s->sfs;
1100
                    break;
1101
                case 0x13:
1102
                    addr_high = s->drs;
1103
                    break;
1104
                case 0x14:
1105
                    addr_high = s->sbms;
1106
                    break;
1107
                case 0x15:
1108
                    addr_high = s->dbms;
1109
                    break;
1110
                default:
1111
                    BADF("Illegal selector specified (0x%x > 0x15)"
1112
                         " for 64-bit DMA block move", selector);
1113
                    break;
1114
                }
1115
            }
1116
        } else if (lsi_dma_64bit(s)) {
1117
            /* fetch a 3rd dword if 64-bit direct move is enabled and
1118
               only if we're not doing table indirect or indirect addressing */
1119
            s->dbms = read_dword(s, s->dsp);
1120
            s->dsp += 4;
1121
            s->ia = s->dsp - 12;
1122
        }
1123
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1124
            DPRINTF("Wrong phase got %d expected %d\n",
1125
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1126
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1127
            break;
1128
        }
1129
        s->dnad = addr;
1130
        s->dnad64 = addr_high;
1131
        switch (s->sstat1 & 0x7) {
1132
        case PHASE_DO:
1133
            s->waiting = 2;
1134
            lsi_do_dma(s, 1);
1135
            if (s->waiting)
1136
                s->waiting = 3;
1137
            break;
1138
        case PHASE_DI:
1139
            s->waiting = 2;
1140
            lsi_do_dma(s, 0);
1141
            if (s->waiting)
1142
                s->waiting = 3;
1143
            break;
1144
        case PHASE_CMD:
1145
            lsi_do_command(s);
1146
            break;
1147
        case PHASE_ST:
1148
            lsi_do_status(s);
1149
            break;
1150
        case PHASE_MO:
1151
            lsi_do_msgout(s);
1152
            break;
1153
        case PHASE_MI:
1154
            lsi_do_msgin(s);
1155
            break;
1156
        default:
1157
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1158
            exit(1);
1159
        }
1160
        s->dfifo = s->dbc & 0xff;
1161
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1162
        s->sbc = s->dbc;
1163
        s->rbc -= s->dbc;
1164
        s->ua = addr + s->dbc;
1165
        break;
1166

    
1167
    case 1: /* IO or Read/Write instruction.  */
1168
        opcode = (insn >> 27) & 7;
1169
        if (opcode < 5) {
1170
            uint32_t id;
1171

    
1172
            if (insn & (1 << 25)) {
1173
                id = read_dword(s, s->dsa + sxt24(insn));
1174
            } else {
1175
                id = insn;
1176
            }
1177
            id = (id >> 16) & 0xf;
1178
            if (insn & (1 << 26)) {
1179
                addr = s->dsp + sxt24(addr);
1180
            }
1181
            s->dnad = addr;
1182
            switch (opcode) {
1183
            case 0: /* Select */
1184
                s->sdid = id;
1185
                if (s->scntl1 & LSI_SCNTL1_CON) {
1186
                    DPRINTF("Already reselected, jumping to alternative address\n");
1187
                    s->dsp = s->dnad;
1188
                    break;
1189
                }
1190
                s->sstat0 |= LSI_SSTAT0_WOA;
1191
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1192
                if (!scsi_device_find(&s->bus, 0, id, 0)) {
1193
                    lsi_bad_selection(s, id);
1194
                    break;
1195
                }
1196
                DPRINTF("Selected target %d%s\n",
1197
                        id, insn & (1 << 3) ? " ATN" : "");
1198
                /* ??? Linux drivers compain when this is set.  Maybe
1199
                   it only applies in low-level mode (unimplemented).
1200
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1201
                s->select_tag = id << 8;
1202
                s->scntl1 |= LSI_SCNTL1_CON;
1203
                if (insn & (1 << 3)) {
1204
                    s->socl |= LSI_SOCL_ATN;
1205
                }
1206
                lsi_set_phase(s, PHASE_MO);
1207
                break;
1208
            case 1: /* Disconnect */
1209
                DPRINTF("Wait Disconnect\n");
1210
                s->scntl1 &= ~LSI_SCNTL1_CON;
1211
                break;
1212
            case 2: /* Wait Reselect */
1213
                if (!lsi_irq_on_rsl(s)) {
1214
                    lsi_wait_reselect(s);
1215
                }
1216
                break;
1217
            case 3: /* Set */
1218
                DPRINTF("Set%s%s%s%s\n",
1219
                        insn & (1 << 3) ? " ATN" : "",
1220
                        insn & (1 << 6) ? " ACK" : "",
1221
                        insn & (1 << 9) ? " TM" : "",
1222
                        insn & (1 << 10) ? " CC" : "");
1223
                if (insn & (1 << 3)) {
1224
                    s->socl |= LSI_SOCL_ATN;
1225
                    lsi_set_phase(s, PHASE_MO);
1226
                }
1227
                if (insn & (1 << 9)) {
1228
                    BADF("Target mode not implemented\n");
1229
                    exit(1);
1230
                }
1231
                if (insn & (1 << 10))
1232
                    s->carry = 1;
1233
                break;
1234
            case 4: /* Clear */
1235
                DPRINTF("Clear%s%s%s%s\n",
1236
                        insn & (1 << 3) ? " ATN" : "",
1237
                        insn & (1 << 6) ? " ACK" : "",
1238
                        insn & (1 << 9) ? " TM" : "",
1239
                        insn & (1 << 10) ? " CC" : "");
1240
                if (insn & (1 << 3)) {
1241
                    s->socl &= ~LSI_SOCL_ATN;
1242
                }
1243
                if (insn & (1 << 10))
1244
                    s->carry = 0;
1245
                break;
1246
            }
1247
        } else {
1248
            uint8_t op0;
1249
            uint8_t op1;
1250
            uint8_t data8;
1251
            int reg;
1252
            int operator;
1253
#ifdef DEBUG_LSI
1254
            static const char *opcode_names[3] =
1255
                {"Write", "Read", "Read-Modify-Write"};
1256
            static const char *operator_names[8] =
1257
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1258
#endif
1259

    
1260
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1261
            data8 = (insn >> 8) & 0xff;
1262
            opcode = (insn >> 27) & 7;
1263
            operator = (insn >> 24) & 7;
1264
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1265
                    opcode_names[opcode - 5], reg,
1266
                    operator_names[operator], data8, s->sfbr,
1267
                    (insn & (1 << 23)) ? " SFBR" : "");
1268
            op0 = op1 = 0;
1269
            switch (opcode) {
1270
            case 5: /* From SFBR */
1271
                op0 = s->sfbr;
1272
                op1 = data8;
1273
                break;
1274
            case 6: /* To SFBR */
1275
                if (operator)
1276
                    op0 = lsi_reg_readb(s, reg);
1277
                op1 = data8;
1278
                break;
1279
            case 7: /* Read-modify-write */
1280
                if (operator)
1281
                    op0 = lsi_reg_readb(s, reg);
1282
                if (insn & (1 << 23)) {
1283
                    op1 = s->sfbr;
1284
                } else {
1285
                    op1 = data8;
1286
                }
1287
                break;
1288
            }
1289

    
1290
            switch (operator) {
1291
            case 0: /* move */
1292
                op0 = op1;
1293
                break;
1294
            case 1: /* Shift left */
1295
                op1 = op0 >> 7;
1296
                op0 = (op0 << 1) | s->carry;
1297
                s->carry = op1;
1298
                break;
1299
            case 2: /* OR */
1300
                op0 |= op1;
1301
                break;
1302
            case 3: /* XOR */
1303
                op0 ^= op1;
1304
                break;
1305
            case 4: /* AND */
1306
                op0 &= op1;
1307
                break;
1308
            case 5: /* SHR */
1309
                op1 = op0 & 1;
1310
                op0 = (op0 >> 1) | (s->carry << 7);
1311
                s->carry = op1;
1312
                break;
1313
            case 6: /* ADD */
1314
                op0 += op1;
1315
                s->carry = op0 < op1;
1316
                break;
1317
            case 7: /* ADC */
1318
                op0 += op1 + s->carry;
1319
                if (s->carry)
1320
                    s->carry = op0 <= op1;
1321
                else
1322
                    s->carry = op0 < op1;
1323
                break;
1324
            }
1325

    
1326
            switch (opcode) {
1327
            case 5: /* From SFBR */
1328
            case 7: /* Read-modify-write */
1329
                lsi_reg_writeb(s, reg, op0);
1330
                break;
1331
            case 6: /* To SFBR */
1332
                s->sfbr = op0;
1333
                break;
1334
            }
1335
        }
1336
        break;
1337

    
1338
    case 2: /* Transfer Control.  */
1339
        {
1340
            int cond;
1341
            int jmp;
1342

    
1343
            if ((insn & 0x002e0000) == 0) {
1344
                DPRINTF("NOP\n");
1345
                break;
1346
            }
1347
            if (s->sist1 & LSI_SIST1_STO) {
1348
                DPRINTF("Delayed select timeout\n");
1349
                lsi_stop_script(s);
1350
                break;
1351
            }
1352
            cond = jmp = (insn & (1 << 19)) != 0;
1353
            if (cond == jmp && (insn & (1 << 21))) {
1354
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1355
                cond = s->carry != 0;
1356
            }
1357
            if (cond == jmp && (insn & (1 << 17))) {
1358
                DPRINTF("Compare phase %d %c= %d\n",
1359
                        (s->sstat1 & PHASE_MASK),
1360
                        jmp ? '=' : '!',
1361
                        ((insn >> 24) & 7));
1362
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1363
            }
1364
            if (cond == jmp && (insn & (1 << 18))) {
1365
                uint8_t mask;
1366

    
1367
                mask = (~insn >> 8) & 0xff;
1368
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1369
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1370
                cond = (s->sfbr & mask) == (insn & mask);
1371
            }
1372
            if (cond == jmp) {
1373
                if (insn & (1 << 23)) {
1374
                    /* Relative address.  */
1375
                    addr = s->dsp + sxt24(addr);
1376
                }
1377
                switch ((insn >> 27) & 7) {
1378
                case 0: /* Jump */
1379
                    DPRINTF("Jump to 0x%08x\n", addr);
1380
                    s->dsp = addr;
1381
                    break;
1382
                case 1: /* Call */
1383
                    DPRINTF("Call 0x%08x\n", addr);
1384
                    s->temp = s->dsp;
1385
                    s->dsp = addr;
1386
                    break;
1387
                case 2: /* Return */
1388
                    DPRINTF("Return to 0x%08x\n", s->temp);
1389
                    s->dsp = s->temp;
1390
                    break;
1391
                case 3: /* Interrupt */
1392
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1393
                    if ((insn & (1 << 20)) != 0) {
1394
                        s->istat0 |= LSI_ISTAT0_INTF;
1395
                        lsi_update_irq(s);
1396
                    } else {
1397
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1398
                    }
1399
                    break;
1400
                default:
1401
                    DPRINTF("Illegal transfer control\n");
1402
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1403
                    break;
1404
                }
1405
            } else {
1406
                DPRINTF("Control condition failed\n");
1407
            }
1408
        }
1409
        break;
1410

    
1411
    case 3:
1412
        if ((insn & (1 << 29)) == 0) {
1413
            /* Memory move.  */
1414
            uint32_t dest;
1415
            /* ??? The docs imply the destination address is loaded into
1416
               the TEMP register.  However the Linux drivers rely on
1417
               the value being presrved.  */
1418
            dest = read_dword(s, s->dsp);
1419
            s->dsp += 4;
1420
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1421
        } else {
1422
            uint8_t data[7];
1423
            int reg;
1424
            int n;
1425
            int i;
1426

    
1427
            if (insn & (1 << 28)) {
1428
                addr = s->dsa + sxt24(addr);
1429
            }
1430
            n = (insn & 7);
1431
            reg = (insn >> 16) & 0xff;
1432
            if (insn & (1 << 24)) {
1433
                pci_dma_read(&s->dev, addr, data, n);
1434
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1435
                        addr, *(int *)data);
1436
                for (i = 0; i < n; i++) {
1437
                    lsi_reg_writeb(s, reg + i, data[i]);
1438
                }
1439
            } else {
1440
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1441
                for (i = 0; i < n; i++) {
1442
                    data[i] = lsi_reg_readb(s, reg + i);
1443
                }
1444
                pci_dma_write(&s->dev, addr, data, n);
1445
            }
1446
        }
1447
    }
1448
    if (insn_processed > 10000 && !s->waiting) {
1449
        /* Some windows drivers make the device spin waiting for a memory
1450
           location to change.  If we have been executed a lot of code then
1451
           assume this is the case and force an unexpected device disconnect.
1452
           This is apparently sufficient to beat the drivers into submission.
1453
         */
1454
        if (!(s->sien0 & LSI_SIST0_UDC))
1455
            fprintf(stderr, "inf. loop with UDC masked\n");
1456
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1457
        lsi_disconnect(s);
1458
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1459
        if (s->dcntl & LSI_DCNTL_SSM) {
1460
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1461
        } else {
1462
            goto again;
1463
        }
1464
    }
1465
    DPRINTF("SCRIPTS execution stopped\n");
1466
}
1467

    
1468
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1469
{
1470
    uint8_t tmp;
1471
#define CASE_GET_REG24(name, addr) \
1472
    case addr: return s->name & 0xff; \
1473
    case addr + 1: return (s->name >> 8) & 0xff; \
1474
    case addr + 2: return (s->name >> 16) & 0xff;
1475

    
1476
#define CASE_GET_REG32(name, addr) \
1477
    case addr: return s->name & 0xff; \
1478
    case addr + 1: return (s->name >> 8) & 0xff; \
1479
    case addr + 2: return (s->name >> 16) & 0xff; \
1480
    case addr + 3: return (s->name >> 24) & 0xff;
1481

    
1482
#ifdef DEBUG_LSI_REG
1483
    DPRINTF("Read reg %x\n", offset);
1484
#endif
1485
    switch (offset) {
1486
    case 0x00: /* SCNTL0 */
1487
        return s->scntl0;
1488
    case 0x01: /* SCNTL1 */
1489
        return s->scntl1;
1490
    case 0x02: /* SCNTL2 */
1491
        return s->scntl2;
1492
    case 0x03: /* SCNTL3 */
1493
        return s->scntl3;
1494
    case 0x04: /* SCID */
1495
        return s->scid;
1496
    case 0x05: /* SXFER */
1497
        return s->sxfer;
1498
    case 0x06: /* SDID */
1499
        return s->sdid;
1500
    case 0x07: /* GPREG0 */
1501
        return 0x7f;
1502
    case 0x08: /* Revision ID */
1503
        return 0x00;
1504
    case 0xa: /* SSID */
1505
        return s->ssid;
1506
    case 0xb: /* SBCL */
1507
        /* ??? This is not correct. However it's (hopefully) only
1508
           used for diagnostics, so should be ok.  */
1509
        return 0;
1510
    case 0xc: /* DSTAT */
1511
        tmp = s->dstat | 0x80;
1512
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1513
            s->dstat = 0;
1514
        lsi_update_irq(s);
1515
        return tmp;
1516
    case 0x0d: /* SSTAT0 */
1517
        return s->sstat0;
1518
    case 0x0e: /* SSTAT1 */
1519
        return s->sstat1;
1520
    case 0x0f: /* SSTAT2 */
1521
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1522
    CASE_GET_REG32(dsa, 0x10)
1523
    case 0x14: /* ISTAT0 */
1524
        return s->istat0;
1525
    case 0x15: /* ISTAT1 */
1526
        return s->istat1;
1527
    case 0x16: /* MBOX0 */
1528
        return s->mbox0;
1529
    case 0x17: /* MBOX1 */
1530
        return s->mbox1;
1531
    case 0x18: /* CTEST0 */
1532
        return 0xff;
1533
    case 0x19: /* CTEST1 */
1534
        return 0;
1535
    case 0x1a: /* CTEST2 */
1536
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1537
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1538
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1539
            tmp |= LSI_CTEST2_SIGP;
1540
        }
1541
        return tmp;
1542
    case 0x1b: /* CTEST3 */
1543
        return s->ctest3;
1544
    CASE_GET_REG32(temp, 0x1c)
1545
    case 0x20: /* DFIFO */
1546
        return 0;
1547
    case 0x21: /* CTEST4 */
1548
        return s->ctest4;
1549
    case 0x22: /* CTEST5 */
1550
        return s->ctest5;
1551
    case 0x23: /* CTEST6 */
1552
         return 0;
1553
    CASE_GET_REG24(dbc, 0x24)
1554
    case 0x27: /* DCMD */
1555
        return s->dcmd;
1556
    CASE_GET_REG32(dnad, 0x28)
1557
    CASE_GET_REG32(dsp, 0x2c)
1558
    CASE_GET_REG32(dsps, 0x30)
1559
    CASE_GET_REG32(scratch[0], 0x34)
1560
    case 0x38: /* DMODE */
1561
        return s->dmode;
1562
    case 0x39: /* DIEN */
1563
        return s->dien;
1564
    case 0x3a: /* SBR */
1565
        return s->sbr;
1566
    case 0x3b: /* DCNTL */
1567
        return s->dcntl;
1568
    case 0x40: /* SIEN0 */
1569
        return s->sien0;
1570
    case 0x41: /* SIEN1 */
1571
        return s->sien1;
1572
    case 0x42: /* SIST0 */
1573
        tmp = s->sist0;
1574
        s->sist0 = 0;
1575
        lsi_update_irq(s);
1576
        return tmp;
1577
    case 0x43: /* SIST1 */
1578
        tmp = s->sist1;
1579
        s->sist1 = 0;
1580
        lsi_update_irq(s);
1581
        return tmp;
1582
    case 0x46: /* MACNTL */
1583
        return 0x0f;
1584
    case 0x47: /* GPCNTL0 */
1585
        return 0x0f;
1586
    case 0x48: /* STIME0 */
1587
        return s->stime0;
1588
    case 0x4a: /* RESPID0 */
1589
        return s->respid0;
1590
    case 0x4b: /* RESPID1 */
1591
        return s->respid1;
1592
    case 0x4d: /* STEST1 */
1593
        return s->stest1;
1594
    case 0x4e: /* STEST2 */
1595
        return s->stest2;
1596
    case 0x4f: /* STEST3 */
1597
        return s->stest3;
1598
    case 0x50: /* SIDL */
1599
        /* This is needed by the linux drivers.  We currently only update it
1600
           during the MSG IN phase.  */
1601
        return s->sidl;
1602
    case 0x52: /* STEST4 */
1603
        return 0xe0;
1604
    case 0x56: /* CCNTL0 */
1605
        return s->ccntl0;
1606
    case 0x57: /* CCNTL1 */
1607
        return s->ccntl1;
1608
    case 0x58: /* SBDL */
1609
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1610
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1611
            return s->msg[0];
1612
        return 0;
1613
    case 0x59: /* SBDL high */
1614
        return 0;
1615
    CASE_GET_REG32(mmrs, 0xa0)
1616
    CASE_GET_REG32(mmws, 0xa4)
1617
    CASE_GET_REG32(sfs, 0xa8)
1618
    CASE_GET_REG32(drs, 0xac)
1619
    CASE_GET_REG32(sbms, 0xb0)
1620
    CASE_GET_REG32(dbms, 0xb4)
1621
    CASE_GET_REG32(dnad64, 0xb8)
1622
    CASE_GET_REG32(pmjad1, 0xc0)
1623
    CASE_GET_REG32(pmjad2, 0xc4)
1624
    CASE_GET_REG32(rbc, 0xc8)
1625
    CASE_GET_REG32(ua, 0xcc)
1626
    CASE_GET_REG32(ia, 0xd4)
1627
    CASE_GET_REG32(sbc, 0xd8)
1628
    CASE_GET_REG32(csbc, 0xdc)
1629
    }
1630
    if (offset >= 0x5c && offset < 0xa0) {
1631
        int n;
1632
        int shift;
1633
        n = (offset - 0x58) >> 2;
1634
        shift = (offset & 3) * 8;
1635
        return (s->scratch[n] >> shift) & 0xff;
1636
    }
1637
    BADF("readb 0x%x\n", offset);
1638
    exit(1);
1639
#undef CASE_GET_REG24
1640
#undef CASE_GET_REG32
1641
}
1642

    
1643
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1644
{
1645
#define CASE_SET_REG24(name, addr) \
1646
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1647
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1648
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1649

    
1650
#define CASE_SET_REG32(name, addr) \
1651
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1652
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1653
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1654
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1655

    
1656
#ifdef DEBUG_LSI_REG
1657
    DPRINTF("Write reg %x = %02x\n", offset, val);
1658
#endif
1659
    switch (offset) {
1660
    case 0x00: /* SCNTL0 */
1661
        s->scntl0 = val;
1662
        if (val & LSI_SCNTL0_START) {
1663
            BADF("Start sequence not implemented\n");
1664
        }
1665
        break;
1666
    case 0x01: /* SCNTL1 */
1667
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1668
        if (val & LSI_SCNTL1_IARB) {
1669
            BADF("Immediate Arbritration not implemented\n");
1670
        }
1671
        if (val & LSI_SCNTL1_RST) {
1672
            if (!(s->sstat0 & LSI_SSTAT0_RST)) {
1673
                qbus_reset_all(&s->bus.qbus);
1674
                s->sstat0 |= LSI_SSTAT0_RST;
1675
                lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1676
            }
1677
        } else {
1678
            s->sstat0 &= ~LSI_SSTAT0_RST;
1679
        }
1680
        break;
1681
    case 0x02: /* SCNTL2 */
1682
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1683
        s->scntl2 = val;
1684
        break;
1685
    case 0x03: /* SCNTL3 */
1686
        s->scntl3 = val;
1687
        break;
1688
    case 0x04: /* SCID */
1689
        s->scid = val;
1690
        break;
1691
    case 0x05: /* SXFER */
1692
        s->sxfer = val;
1693
        break;
1694
    case 0x06: /* SDID */
1695
        if ((val & 0xf) != (s->ssid & 0xf))
1696
            BADF("Destination ID does not match SSID\n");
1697
        s->sdid = val & 0xf;
1698
        break;
1699
    case 0x07: /* GPREG0 */
1700
        break;
1701
    case 0x08: /* SFBR */
1702
        /* The CPU is not allowed to write to this register.  However the
1703
           SCRIPTS register move instructions are.  */
1704
        s->sfbr = val;
1705
        break;
1706
    case 0x0a: case 0x0b:
1707
        /* Openserver writes to these readonly registers on startup */
1708
        return;
1709
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1710
        /* Linux writes to these readonly registers on startup.  */
1711
        return;
1712
    CASE_SET_REG32(dsa, 0x10)
1713
    case 0x14: /* ISTAT0 */
1714
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1715
        if (val & LSI_ISTAT0_ABRT) {
1716
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1717
        }
1718
        if (val & LSI_ISTAT0_INTF) {
1719
            s->istat0 &= ~LSI_ISTAT0_INTF;
1720
            lsi_update_irq(s);
1721
        }
1722
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1723
            DPRINTF("Woken by SIGP\n");
1724
            s->waiting = 0;
1725
            s->dsp = s->dnad;
1726
            lsi_execute_script(s);
1727
        }
1728
        if (val & LSI_ISTAT0_SRST) {
1729
            qdev_reset_all(&s->dev.qdev);
1730
        }
1731
        break;
1732
    case 0x16: /* MBOX0 */
1733
        s->mbox0 = val;
1734
        break;
1735
    case 0x17: /* MBOX1 */
1736
        s->mbox1 = val;
1737
        break;
1738
    case 0x1a: /* CTEST2 */
1739
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1740
        break;
1741
    case 0x1b: /* CTEST3 */
1742
        s->ctest3 = val & 0x0f;
1743
        break;
1744
    CASE_SET_REG32(temp, 0x1c)
1745
    case 0x21: /* CTEST4 */
1746
        if (val & 7) {
1747
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1748
        }
1749
        s->ctest4 = val;
1750
        break;
1751
    case 0x22: /* CTEST5 */
1752
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1753
            BADF("CTEST5 DMA increment not implemented\n");
1754
        }
1755
        s->ctest5 = val;
1756
        break;
1757
    CASE_SET_REG24(dbc, 0x24)
1758
    CASE_SET_REG32(dnad, 0x28)
1759
    case 0x2c: /* DSP[0:7] */
1760
        s->dsp &= 0xffffff00;
1761
        s->dsp |= val;
1762
        break;
1763
    case 0x2d: /* DSP[8:15] */
1764
        s->dsp &= 0xffff00ff;
1765
        s->dsp |= val << 8;
1766
        break;
1767
    case 0x2e: /* DSP[16:23] */
1768
        s->dsp &= 0xff00ffff;
1769
        s->dsp |= val << 16;
1770
        break;
1771
    case 0x2f: /* DSP[24:31] */
1772
        s->dsp &= 0x00ffffff;
1773
        s->dsp |= val << 24;
1774
        if ((s->dmode & LSI_DMODE_MAN) == 0
1775
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1776
            lsi_execute_script(s);
1777
        break;
1778
    CASE_SET_REG32(dsps, 0x30)
1779
    CASE_SET_REG32(scratch[0], 0x34)
1780
    case 0x38: /* DMODE */
1781
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1782
            BADF("IO mappings not implemented\n");
1783
        }
1784
        s->dmode = val;
1785
        break;
1786
    case 0x39: /* DIEN */
1787
        s->dien = val;
1788
        lsi_update_irq(s);
1789
        break;
1790
    case 0x3a: /* SBR */
1791
        s->sbr = val;
1792
        break;
1793
    case 0x3b: /* DCNTL */
1794
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1795
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1796
            lsi_execute_script(s);
1797
        break;
1798
    case 0x40: /* SIEN0 */
1799
        s->sien0 = val;
1800
        lsi_update_irq(s);
1801
        break;
1802
    case 0x41: /* SIEN1 */
1803
        s->sien1 = val;
1804
        lsi_update_irq(s);
1805
        break;
1806
    case 0x47: /* GPCNTL0 */
1807
        break;
1808
    case 0x48: /* STIME0 */
1809
        s->stime0 = val;
1810
        break;
1811
    case 0x49: /* STIME1 */
1812
        if (val & 0xf) {
1813
            DPRINTF("General purpose timer not implemented\n");
1814
            /* ??? Raising the interrupt immediately seems to be sufficient
1815
               to keep the FreeBSD driver happy.  */
1816
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1817
        }
1818
        break;
1819
    case 0x4a: /* RESPID0 */
1820
        s->respid0 = val;
1821
        break;
1822
    case 0x4b: /* RESPID1 */
1823
        s->respid1 = val;
1824
        break;
1825
    case 0x4d: /* STEST1 */
1826
        s->stest1 = val;
1827
        break;
1828
    case 0x4e: /* STEST2 */
1829
        if (val & 1) {
1830
            BADF("Low level mode not implemented\n");
1831
        }
1832
        s->stest2 = val;
1833
        break;
1834
    case 0x4f: /* STEST3 */
1835
        if (val & 0x41) {
1836
            BADF("SCSI FIFO test mode not implemented\n");
1837
        }
1838
        s->stest3 = val;
1839
        break;
1840
    case 0x56: /* CCNTL0 */
1841
        s->ccntl0 = val;
1842
        break;
1843
    case 0x57: /* CCNTL1 */
1844
        s->ccntl1 = val;
1845
        break;
1846
    CASE_SET_REG32(mmrs, 0xa0)
1847
    CASE_SET_REG32(mmws, 0xa4)
1848
    CASE_SET_REG32(sfs, 0xa8)
1849
    CASE_SET_REG32(drs, 0xac)
1850
    CASE_SET_REG32(sbms, 0xb0)
1851
    CASE_SET_REG32(dbms, 0xb4)
1852
    CASE_SET_REG32(dnad64, 0xb8)
1853
    CASE_SET_REG32(pmjad1, 0xc0)
1854
    CASE_SET_REG32(pmjad2, 0xc4)
1855
    CASE_SET_REG32(rbc, 0xc8)
1856
    CASE_SET_REG32(ua, 0xcc)
1857
    CASE_SET_REG32(ia, 0xd4)
1858
    CASE_SET_REG32(sbc, 0xd8)
1859
    CASE_SET_REG32(csbc, 0xdc)
1860
    default:
1861
        if (offset >= 0x5c && offset < 0xa0) {
1862
            int n;
1863
            int shift;
1864
            n = (offset - 0x58) >> 2;
1865
            shift = (offset & 3) * 8;
1866
            s->scratch[n] &= ~(0xff << shift);
1867
            s->scratch[n] |= (val & 0xff) << shift;
1868
        } else {
1869
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1870
        }
1871
    }
1872
#undef CASE_SET_REG24
1873
#undef CASE_SET_REG32
1874
}
1875

    
1876
static void lsi_mmio_write(void *opaque, hwaddr addr,
1877
                           uint64_t val, unsigned size)
1878
{
1879
    LSIState *s = opaque;
1880

    
1881
    lsi_reg_writeb(s, addr & 0xff, val);
1882
}
1883

    
1884
static uint64_t lsi_mmio_read(void *opaque, hwaddr addr,
1885
                              unsigned size)
1886
{
1887
    LSIState *s = opaque;
1888

    
1889
    return lsi_reg_readb(s, addr & 0xff);
1890
}
1891

    
1892
static const MemoryRegionOps lsi_mmio_ops = {
1893
    .read = lsi_mmio_read,
1894
    .write = lsi_mmio_write,
1895
    .endianness = DEVICE_NATIVE_ENDIAN,
1896
    .impl = {
1897
        .min_access_size = 1,
1898
        .max_access_size = 1,
1899
    },
1900
};
1901

    
1902
static void lsi_ram_write(void *opaque, hwaddr addr,
1903
                          uint64_t val, unsigned size)
1904
{
1905
    LSIState *s = opaque;
1906
    uint32_t newval;
1907
    uint32_t mask;
1908
    int shift;
1909

    
1910
    newval = s->script_ram[addr >> 2];
1911
    shift = (addr & 3) * 8;
1912
    mask = ((uint64_t)1 << (size * 8)) - 1;
1913
    newval &= ~(mask << shift);
1914
    newval |= val << shift;
1915
    s->script_ram[addr >> 2] = newval;
1916
}
1917

    
1918
static uint64_t lsi_ram_read(void *opaque, hwaddr addr,
1919
                             unsigned size)
1920
{
1921
    LSIState *s = opaque;
1922
    uint32_t val;
1923
    uint32_t mask;
1924

    
1925
    val = s->script_ram[addr >> 2];
1926
    mask = ((uint64_t)1 << (size * 8)) - 1;
1927
    val >>= (addr & 3) * 8;
1928
    return val & mask;
1929
}
1930

    
1931
static const MemoryRegionOps lsi_ram_ops = {
1932
    .read = lsi_ram_read,
1933
    .write = lsi_ram_write,
1934
    .endianness = DEVICE_NATIVE_ENDIAN,
1935
};
1936

    
1937
static uint64_t lsi_io_read(void *opaque, hwaddr addr,
1938
                            unsigned size)
1939
{
1940
    LSIState *s = opaque;
1941
    return lsi_reg_readb(s, addr & 0xff);
1942
}
1943

    
1944
static void lsi_io_write(void *opaque, hwaddr addr,
1945
                         uint64_t val, unsigned size)
1946
{
1947
    LSIState *s = opaque;
1948
    lsi_reg_writeb(s, addr & 0xff, val);
1949
}
1950

    
1951
static const MemoryRegionOps lsi_io_ops = {
1952
    .read = lsi_io_read,
1953
    .write = lsi_io_write,
1954
    .endianness = DEVICE_NATIVE_ENDIAN,
1955
    .impl = {
1956
        .min_access_size = 1,
1957
        .max_access_size = 1,
1958
    },
1959
};
1960

    
1961
static void lsi_scsi_reset(DeviceState *dev)
1962
{
1963
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
1964

    
1965
    lsi_soft_reset(s);
1966
}
1967

    
1968
static void lsi_pre_save(void *opaque)
1969
{
1970
    LSIState *s = opaque;
1971

    
1972
    if (s->current) {
1973
        assert(s->current->dma_buf == NULL);
1974
        assert(s->current->dma_len == 0);
1975
    }
1976
    assert(QTAILQ_EMPTY(&s->queue));
1977
}
1978

    
1979
static const VMStateDescription vmstate_lsi_scsi = {
1980
    .name = "lsiscsi",
1981
    .version_id = 0,
1982
    .minimum_version_id = 0,
1983
    .minimum_version_id_old = 0,
1984
    .pre_save = lsi_pre_save,
1985
    .fields      = (VMStateField []) {
1986
        VMSTATE_PCI_DEVICE(dev, LSIState),
1987

    
1988
        VMSTATE_INT32(carry, LSIState),
1989
        VMSTATE_INT32(status, LSIState),
1990
        VMSTATE_INT32(msg_action, LSIState),
1991
        VMSTATE_INT32(msg_len, LSIState),
1992
        VMSTATE_BUFFER(msg, LSIState),
1993
        VMSTATE_INT32(waiting, LSIState),
1994

    
1995
        VMSTATE_UINT32(dsa, LSIState),
1996
        VMSTATE_UINT32(temp, LSIState),
1997
        VMSTATE_UINT32(dnad, LSIState),
1998
        VMSTATE_UINT32(dbc, LSIState),
1999
        VMSTATE_UINT8(istat0, LSIState),
2000
        VMSTATE_UINT8(istat1, LSIState),
2001
        VMSTATE_UINT8(dcmd, LSIState),
2002
        VMSTATE_UINT8(dstat, LSIState),
2003
        VMSTATE_UINT8(dien, LSIState),
2004
        VMSTATE_UINT8(sist0, LSIState),
2005
        VMSTATE_UINT8(sist1, LSIState),
2006
        VMSTATE_UINT8(sien0, LSIState),
2007
        VMSTATE_UINT8(sien1, LSIState),
2008
        VMSTATE_UINT8(mbox0, LSIState),
2009
        VMSTATE_UINT8(mbox1, LSIState),
2010
        VMSTATE_UINT8(dfifo, LSIState),
2011
        VMSTATE_UINT8(ctest2, LSIState),
2012
        VMSTATE_UINT8(ctest3, LSIState),
2013
        VMSTATE_UINT8(ctest4, LSIState),
2014
        VMSTATE_UINT8(ctest5, LSIState),
2015
        VMSTATE_UINT8(ccntl0, LSIState),
2016
        VMSTATE_UINT8(ccntl1, LSIState),
2017
        VMSTATE_UINT32(dsp, LSIState),
2018
        VMSTATE_UINT32(dsps, LSIState),
2019
        VMSTATE_UINT8(dmode, LSIState),
2020
        VMSTATE_UINT8(dcntl, LSIState),
2021
        VMSTATE_UINT8(scntl0, LSIState),
2022
        VMSTATE_UINT8(scntl1, LSIState),
2023
        VMSTATE_UINT8(scntl2, LSIState),
2024
        VMSTATE_UINT8(scntl3, LSIState),
2025
        VMSTATE_UINT8(sstat0, LSIState),
2026
        VMSTATE_UINT8(sstat1, LSIState),
2027
        VMSTATE_UINT8(scid, LSIState),
2028
        VMSTATE_UINT8(sxfer, LSIState),
2029
        VMSTATE_UINT8(socl, LSIState),
2030
        VMSTATE_UINT8(sdid, LSIState),
2031
        VMSTATE_UINT8(ssid, LSIState),
2032
        VMSTATE_UINT8(sfbr, LSIState),
2033
        VMSTATE_UINT8(stest1, LSIState),
2034
        VMSTATE_UINT8(stest2, LSIState),
2035
        VMSTATE_UINT8(stest3, LSIState),
2036
        VMSTATE_UINT8(sidl, LSIState),
2037
        VMSTATE_UINT8(stime0, LSIState),
2038
        VMSTATE_UINT8(respid0, LSIState),
2039
        VMSTATE_UINT8(respid1, LSIState),
2040
        VMSTATE_UINT32(mmrs, LSIState),
2041
        VMSTATE_UINT32(mmws, LSIState),
2042
        VMSTATE_UINT32(sfs, LSIState),
2043
        VMSTATE_UINT32(drs, LSIState),
2044
        VMSTATE_UINT32(sbms, LSIState),
2045
        VMSTATE_UINT32(dbms, LSIState),
2046
        VMSTATE_UINT32(dnad64, LSIState),
2047
        VMSTATE_UINT32(pmjad1, LSIState),
2048
        VMSTATE_UINT32(pmjad2, LSIState),
2049
        VMSTATE_UINT32(rbc, LSIState),
2050
        VMSTATE_UINT32(ua, LSIState),
2051
        VMSTATE_UINT32(ia, LSIState),
2052
        VMSTATE_UINT32(sbc, LSIState),
2053
        VMSTATE_UINT32(csbc, LSIState),
2054
        VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2055
        VMSTATE_UINT8(sbr, LSIState),
2056

    
2057
        VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2058
        VMSTATE_END_OF_LIST()
2059
    }
2060
};
2061

    
2062
static void lsi_scsi_uninit(PCIDevice *d)
2063
{
2064
    LSIState *s = DO_UPCAST(LSIState, dev, d);
2065

    
2066
    memory_region_destroy(&s->mmio_io);
2067
    memory_region_destroy(&s->ram_io);
2068
    memory_region_destroy(&s->io_io);
2069
}
2070

    
2071
static const struct SCSIBusInfo lsi_scsi_info = {
2072
    .tcq = true,
2073
    .max_target = LSI_MAX_DEVS,
2074
    .max_lun = 0,  /* LUN support is buggy */
2075

    
2076
    .transfer_data = lsi_transfer_data,
2077
    .complete = lsi_command_complete,
2078
    .cancel = lsi_request_cancelled
2079
};
2080

    
2081
static int lsi_scsi_init(PCIDevice *dev)
2082
{
2083
    LSIState *s = DO_UPCAST(LSIState, dev, dev);
2084
    uint8_t *pci_conf;
2085

    
2086
    pci_conf = s->dev.config;
2087

    
2088
    /* PCI latency timer = 255 */
2089
    pci_conf[PCI_LATENCY_TIMER] = 0xff;
2090
    /* Interrupt pin A */
2091
    pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2092

    
2093
    memory_region_init_io(&s->mmio_io, &lsi_mmio_ops, s, "lsi-mmio", 0x400);
2094
    memory_region_init_io(&s->ram_io, &lsi_ram_ops, s, "lsi-ram", 0x2000);
2095
    memory_region_init_io(&s->io_io, &lsi_io_ops, s, "lsi-io", 256);
2096

    
2097
    pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io_io);
2098
    pci_register_bar(&s->dev, 1, 0, &s->mmio_io);
2099
    pci_register_bar(&s->dev, 2, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->ram_io);
2100
    QTAILQ_INIT(&s->queue);
2101

    
2102
    scsi_bus_new(&s->bus, &dev->qdev, &lsi_scsi_info);
2103
    if (!dev->qdev.hotplugged) {
2104
        return scsi_bus_legacy_handle_cmdline(&s->bus);
2105
    }
2106
    return 0;
2107
}
2108

    
2109
static void lsi_class_init(ObjectClass *klass, void *data)
2110
{
2111
    DeviceClass *dc = DEVICE_CLASS(klass);
2112
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2113

    
2114
    k->init = lsi_scsi_init;
2115
    k->exit = lsi_scsi_uninit;
2116
    k->vendor_id = PCI_VENDOR_ID_LSI_LOGIC;
2117
    k->device_id = PCI_DEVICE_ID_LSI_53C895A;
2118
    k->class_id = PCI_CLASS_STORAGE_SCSI;
2119
    k->subsystem_id = 0x1000;
2120
    dc->reset = lsi_scsi_reset;
2121
    dc->vmsd = &vmstate_lsi_scsi;
2122
}
2123

    
2124
static const TypeInfo lsi_info = {
2125
    .name          = "lsi53c895a",
2126
    .parent        = TYPE_PCI_DEVICE,
2127
    .instance_size = sizeof(LSIState),
2128
    .class_init    = lsi_class_init,
2129
};
2130

    
2131
static void lsi53c895a_register_types(void)
2132
{
2133
    type_register_static(&lsi_info);
2134
}
2135

    
2136
type_init(lsi53c895a_register_types)