Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ 0d09e41a

History | View | Annotate | Download (27.8 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "qemu/timer.h"
26
#include "sysemu/sysemu.h"
27
#include "hw/timer/mc146818rtc.h"
28
#include "qapi/visitor.h"
29

    
30
#ifdef TARGET_I386
31
#include "hw/i386/apic.h"
32
#endif
33

    
34
//#define DEBUG_CMOS
35
//#define DEBUG_COALESCED
36

    
37
#ifdef DEBUG_CMOS
38
# define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
39
#else
40
# define CMOS_DPRINTF(format, ...)      do { } while (0)
41
#endif
42

    
43
#ifdef DEBUG_COALESCED
44
# define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
45
#else
46
# define DPRINTF_C(format, ...)      do { } while (0)
47
#endif
48

    
49
#define NSEC_PER_SEC    1000000000LL
50
#define SEC_PER_MIN     60
51
#define MIN_PER_HOUR    60
52
#define SEC_PER_HOUR    3600
53
#define HOUR_PER_DAY    24
54
#define SEC_PER_DAY     86400
55

    
56
#define RTC_REINJECT_ON_ACK_COUNT 20
57
#define RTC_CLOCK_RATE            32768
58
#define UIP_HOLD_LENGTH           (8 * NSEC_PER_SEC / 32768)
59

    
60
typedef struct RTCState {
61
    ISADevice dev;
62
    MemoryRegion io;
63
    uint8_t cmos_data[128];
64
    uint8_t cmos_index;
65
    int32_t base_year;
66
    uint64_t base_rtc;
67
    uint64_t last_update;
68
    int64_t offset;
69
    qemu_irq irq;
70
    qemu_irq sqw_irq;
71
    int it_shift;
72
    /* periodic timer */
73
    QEMUTimer *periodic_timer;
74
    int64_t next_periodic_time;
75
    /* update-ended timer */
76
    QEMUTimer *update_timer;
77
    uint64_t next_alarm_time;
78
    uint16_t irq_reinject_on_ack_count;
79
    uint32_t irq_coalesced;
80
    uint32_t period;
81
    QEMUTimer *coalesced_timer;
82
    Notifier clock_reset_notifier;
83
    LostTickPolicy lost_tick_policy;
84
    Notifier suspend_notifier;
85
} RTCState;
86

    
87
static void rtc_set_time(RTCState *s);
88
static void rtc_update_time(RTCState *s);
89
static void rtc_set_cmos(RTCState *s, const struct tm *tm);
90
static inline int rtc_from_bcd(RTCState *s, int a);
91
static uint64_t get_next_alarm(RTCState *s);
92

    
93
static inline bool rtc_running(RTCState *s)
94
{
95
    return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
96
            (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
97
}
98

    
99
static uint64_t get_guest_rtc_ns(RTCState *s)
100
{
101
    uint64_t guest_rtc;
102
    uint64_t guest_clock = qemu_get_clock_ns(rtc_clock);
103

    
104
    guest_rtc = s->base_rtc * NSEC_PER_SEC
105
                 + guest_clock - s->last_update + s->offset;
106
    return guest_rtc;
107
}
108

    
109
#ifdef TARGET_I386
110
static void rtc_coalesced_timer_update(RTCState *s)
111
{
112
    if (s->irq_coalesced == 0) {
113
        qemu_del_timer(s->coalesced_timer);
114
    } else {
115
        /* divide each RTC interval to 2 - 8 smaller intervals */
116
        int c = MIN(s->irq_coalesced, 7) + 1; 
117
        int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
118
            muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
119
        qemu_mod_timer(s->coalesced_timer, next_clock);
120
    }
121
}
122

    
123
static void rtc_coalesced_timer(void *opaque)
124
{
125
    RTCState *s = opaque;
126

    
127
    if (s->irq_coalesced != 0) {
128
        apic_reset_irq_delivered();
129
        s->cmos_data[RTC_REG_C] |= 0xc0;
130
        DPRINTF_C("cmos: injecting from timer\n");
131
        qemu_irq_raise(s->irq);
132
        if (apic_get_irq_delivered()) {
133
            s->irq_coalesced--;
134
            DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
135
                      s->irq_coalesced);
136
        }
137
    }
138

    
139
    rtc_coalesced_timer_update(s);
140
}
141
#endif
142

    
143
/* handle periodic timer */
144
static void periodic_timer_update(RTCState *s, int64_t current_time)
145
{
146
    int period_code, period;
147
    int64_t cur_clock, next_irq_clock;
148

    
149
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
150
    if (period_code != 0
151
        && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
152
            || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
153
        if (period_code <= 2)
154
            period_code += 7;
155
        /* period in 32 Khz cycles */
156
        period = 1 << (period_code - 1);
157
#ifdef TARGET_I386
158
        if (period != s->period) {
159
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
160
            DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
161
        }
162
        s->period = period;
163
#endif
164
        /* compute 32 khz clock */
165
        cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
166
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
167
        s->next_periodic_time =
168
            muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
169
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
170
    } else {
171
#ifdef TARGET_I386
172
        s->irq_coalesced = 0;
173
#endif
174
        qemu_del_timer(s->periodic_timer);
175
    }
176
}
177

    
178
static void rtc_periodic_timer(void *opaque)
179
{
180
    RTCState *s = opaque;
181

    
182
    periodic_timer_update(s, s->next_periodic_time);
183
    s->cmos_data[RTC_REG_C] |= REG_C_PF;
184
    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
185
        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
186
#ifdef TARGET_I386
187
        if (s->lost_tick_policy == LOST_TICK_SLEW) {
188
            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
189
                s->irq_reinject_on_ack_count = 0;                
190
            apic_reset_irq_delivered();
191
            qemu_irq_raise(s->irq);
192
            if (!apic_get_irq_delivered()) {
193
                s->irq_coalesced++;
194
                rtc_coalesced_timer_update(s);
195
                DPRINTF_C("cmos: coalesced irqs increased to %d\n",
196
                          s->irq_coalesced);
197
            }
198
        } else
199
#endif
200
        qemu_irq_raise(s->irq);
201
    }
202
    if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
203
        /* Not square wave at all but we don't want 2048Hz interrupts!
204
           Must be seen as a pulse.  */
205
        qemu_irq_raise(s->sqw_irq);
206
    }
207
}
208

    
209
/* handle update-ended timer */
210
static void check_update_timer(RTCState *s)
211
{
212
    uint64_t next_update_time;
213
    uint64_t guest_nsec;
214
    int next_alarm_sec;
215

    
216
    /* From the data sheet: "Holding the dividers in reset prevents
217
     * interrupts from operating, while setting the SET bit allows"
218
     * them to occur.  However, it will prevent an alarm interrupt
219
     * from occurring, because the time of day is not updated.
220
     */
221
    if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
222
        qemu_del_timer(s->update_timer);
223
        return;
224
    }
225
    if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
226
        (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
227
        qemu_del_timer(s->update_timer);
228
        return;
229
    }
230
    if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
231
        (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
232
        qemu_del_timer(s->update_timer);
233
        return;
234
    }
235

    
236
    guest_nsec = get_guest_rtc_ns(s) % NSEC_PER_SEC;
237
    /* if UF is clear, reprogram to next second */
238
    next_update_time = qemu_get_clock_ns(rtc_clock)
239
        + NSEC_PER_SEC - guest_nsec;
240

    
241
    /* Compute time of next alarm.  One second is already accounted
242
     * for in next_update_time.
243
     */
244
    next_alarm_sec = get_next_alarm(s);
245
    s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NSEC_PER_SEC;
246

    
247
    if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
248
        /* UF is set, but AF is clear.  Program the timer to target
249
         * the alarm time.  */
250
        next_update_time = s->next_alarm_time;
251
    }
252
    if (next_update_time != qemu_timer_expire_time_ns(s->update_timer)) {
253
        qemu_mod_timer(s->update_timer, next_update_time);
254
    }
255
}
256

    
257
static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
258
{
259
    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
260
        hour %= 12;
261
        if (s->cmos_data[RTC_HOURS] & 0x80) {
262
            hour += 12;
263
        }
264
    }
265
    return hour;
266
}
267

    
268
static uint64_t get_next_alarm(RTCState *s)
269
{
270
    int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
271
    int32_t hour, min, sec;
272

    
273
    rtc_update_time(s);
274

    
275
    alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
276
    alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
277
    alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
278
    alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
279

    
280
    cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
281
    cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
282
    cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
283
    cur_hour = convert_hour(s, cur_hour);
284

    
285
    if (alarm_hour == -1) {
286
        alarm_hour = cur_hour;
287
        if (alarm_min == -1) {
288
            alarm_min = cur_min;
289
            if (alarm_sec == -1) {
290
                alarm_sec = cur_sec + 1;
291
            } else if (cur_sec > alarm_sec) {
292
                alarm_min++;
293
            }
294
        } else if (cur_min == alarm_min) {
295
            if (alarm_sec == -1) {
296
                alarm_sec = cur_sec + 1;
297
            } else {
298
                if (cur_sec > alarm_sec) {
299
                    alarm_hour++;
300
                }
301
            }
302
            if (alarm_sec == SEC_PER_MIN) {
303
                /* wrap to next hour, minutes is not in don't care mode */
304
                alarm_sec = 0;
305
                alarm_hour++;
306
            }
307
        } else if (cur_min > alarm_min) {
308
            alarm_hour++;
309
        }
310
    } else if (cur_hour == alarm_hour) {
311
        if (alarm_min == -1) {
312
            alarm_min = cur_min;
313
            if (alarm_sec == -1) {
314
                alarm_sec = cur_sec + 1;
315
            } else if (cur_sec > alarm_sec) {
316
                alarm_min++;
317
            }
318

    
319
            if (alarm_sec == SEC_PER_MIN) {
320
                alarm_sec = 0;
321
                alarm_min++;
322
            }
323
            /* wrap to next day, hour is not in don't care mode */
324
            alarm_min %= MIN_PER_HOUR;
325
        } else if (cur_min == alarm_min) {
326
            if (alarm_sec == -1) {
327
                alarm_sec = cur_sec + 1;
328
            }
329
            /* wrap to next day, hours+minutes not in don't care mode */
330
            alarm_sec %= SEC_PER_MIN;
331
        }
332
    }
333

    
334
    /* values that are still don't care fire at the next min/sec */
335
    if (alarm_min == -1) {
336
        alarm_min = 0;
337
    }
338
    if (alarm_sec == -1) {
339
        alarm_sec = 0;
340
    }
341

    
342
    /* keep values in range */
343
    if (alarm_sec == SEC_PER_MIN) {
344
        alarm_sec = 0;
345
        alarm_min++;
346
    }
347
    if (alarm_min == MIN_PER_HOUR) {
348
        alarm_min = 0;
349
        alarm_hour++;
350
    }
351
    alarm_hour %= HOUR_PER_DAY;
352

    
353
    hour = alarm_hour - cur_hour;
354
    min = hour * MIN_PER_HOUR + alarm_min - cur_min;
355
    sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
356
    return sec <= 0 ? sec + SEC_PER_DAY : sec;
357
}
358

    
359
static void rtc_update_timer(void *opaque)
360
{
361
    RTCState *s = opaque;
362
    int32_t irqs = REG_C_UF;
363
    int32_t new_irqs;
364

    
365
    assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
366

    
367
    /* UIP might have been latched, update time and clear it.  */
368
    rtc_update_time(s);
369
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
370

    
371
    if (qemu_get_clock_ns(rtc_clock) >= s->next_alarm_time) {
372
        irqs |= REG_C_AF;
373
        if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
374
            qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
375
        }
376
    }
377

    
378
    new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
379
    s->cmos_data[RTC_REG_C] |= irqs;
380
    if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
381
        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
382
        qemu_irq_raise(s->irq);
383
    }
384
    check_update_timer(s);
385
}
386

    
387
static void cmos_ioport_write(void *opaque, hwaddr addr,
388
                              uint64_t data, unsigned size)
389
{
390
    RTCState *s = opaque;
391

    
392
    if ((addr & 1) == 0) {
393
        s->cmos_index = data & 0x7f;
394
    } else {
395
        CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
396
                     s->cmos_index, data);
397
        switch(s->cmos_index) {
398
        case RTC_SECONDS_ALARM:
399
        case RTC_MINUTES_ALARM:
400
        case RTC_HOURS_ALARM:
401
            s->cmos_data[s->cmos_index] = data;
402
            check_update_timer(s);
403
            break;
404
        case RTC_IBM_PS2_CENTURY_BYTE:
405
            s->cmos_index = RTC_CENTURY;
406
            /* fall through */
407
        case RTC_CENTURY:
408
        case RTC_SECONDS:
409
        case RTC_MINUTES:
410
        case RTC_HOURS:
411
        case RTC_DAY_OF_WEEK:
412
        case RTC_DAY_OF_MONTH:
413
        case RTC_MONTH:
414
        case RTC_YEAR:
415
            s->cmos_data[s->cmos_index] = data;
416
            /* if in set mode, do not update the time */
417
            if (rtc_running(s)) {
418
                rtc_set_time(s);
419
                check_update_timer(s);
420
            }
421
            break;
422
        case RTC_REG_A:
423
            if ((data & 0x60) == 0x60) {
424
                if (rtc_running(s)) {
425
                    rtc_update_time(s);
426
                }
427
                /* What happens to UIP when divider reset is enabled is
428
                 * unclear from the datasheet.  Shouldn't matter much
429
                 * though.
430
                 */
431
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
432
            } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
433
                    (data & 0x70)  <= 0x20) {
434
                /* when the divider reset is removed, the first update cycle
435
                 * begins one-half second later*/
436
                if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
437
                    s->offset = 500000000;
438
                    rtc_set_time(s);
439
                }
440
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
441
            }
442
            /* UIP bit is read only */
443
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
444
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
445
            periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
446
            check_update_timer(s);
447
            break;
448
        case RTC_REG_B:
449
            if (data & REG_B_SET) {
450
                /* update cmos to when the rtc was stopping */
451
                if (rtc_running(s)) {
452
                    rtc_update_time(s);
453
                }
454
                /* set mode: reset UIP mode */
455
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
456
                data &= ~REG_B_UIE;
457
            } else {
458
                /* if disabling set mode, update the time */
459
                if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
460
                    (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
461
                    s->offset = get_guest_rtc_ns(s) % NSEC_PER_SEC;
462
                    rtc_set_time(s);
463
                }
464
            }
465
            /* if an interrupt flag is already set when the interrupt
466
             * becomes enabled, raise an interrupt immediately.  */
467
            if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
468
                s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
469
                qemu_irq_raise(s->irq);
470
            } else {
471
                s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
472
                qemu_irq_lower(s->irq);
473
            }
474
            s->cmos_data[RTC_REG_B] = data;
475
            periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
476
            check_update_timer(s);
477
            break;
478
        case RTC_REG_C:
479
        case RTC_REG_D:
480
            /* cannot write to them */
481
            break;
482
        default:
483
            s->cmos_data[s->cmos_index] = data;
484
            break;
485
        }
486
    }
487
}
488

    
489
static inline int rtc_to_bcd(RTCState *s, int a)
490
{
491
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
492
        return a;
493
    } else {
494
        return ((a / 10) << 4) | (a % 10);
495
    }
496
}
497

    
498
static inline int rtc_from_bcd(RTCState *s, int a)
499
{
500
    if ((a & 0xc0) == 0xc0) {
501
        return -1;
502
    }
503
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
504
        return a;
505
    } else {
506
        return ((a >> 4) * 10) + (a & 0x0f);
507
    }
508
}
509

    
510
static void rtc_get_time(RTCState *s, struct tm *tm)
511
{
512
    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
513
    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
514
    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
515
    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
516
        tm->tm_hour %= 12;
517
        if (s->cmos_data[RTC_HOURS] & 0x80) {
518
            tm->tm_hour += 12;
519
        }
520
    }
521
    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
522
    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
523
    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
524
    tm->tm_year =
525
        rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
526
        rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
527
}
528

    
529
static void rtc_set_time(RTCState *s)
530
{
531
    struct tm tm;
532

    
533
    rtc_get_time(s, &tm);
534
    s->base_rtc = mktimegm(&tm);
535
    s->last_update = qemu_get_clock_ns(rtc_clock);
536

    
537
    rtc_change_mon_event(&tm);
538
}
539

    
540
static void rtc_set_cmos(RTCState *s, const struct tm *tm)
541
{
542
    int year;
543

    
544
    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
545
    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
546
    if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
547
        /* 24 hour format */
548
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
549
    } else {
550
        /* 12 hour format */
551
        int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
552
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
553
        if (tm->tm_hour >= 12)
554
            s->cmos_data[RTC_HOURS] |= 0x80;
555
    }
556
    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
557
    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
558
    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
559
    year = tm->tm_year + 1900 - s->base_year;
560
    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
561
    s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
562
}
563

    
564
static void rtc_update_time(RTCState *s)
565
{
566
    struct tm ret;
567
    time_t guest_sec;
568
    int64_t guest_nsec;
569

    
570
    guest_nsec = get_guest_rtc_ns(s);
571
    guest_sec = guest_nsec / NSEC_PER_SEC;
572
    gmtime_r(&guest_sec, &ret);
573

    
574
    /* Is SET flag of Register B disabled? */
575
    if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
576
        rtc_set_cmos(s, &ret);
577
    }
578
}
579

    
580
static int update_in_progress(RTCState *s)
581
{
582
    int64_t guest_nsec;
583

    
584
    if (!rtc_running(s)) {
585
        return 0;
586
    }
587
    if (qemu_timer_pending(s->update_timer)) {
588
        int64_t next_update_time = qemu_timer_expire_time_ns(s->update_timer);
589
        /* Latch UIP until the timer expires.  */
590
        if (qemu_get_clock_ns(rtc_clock) >= (next_update_time - UIP_HOLD_LENGTH)) {
591
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
592
            return 1;
593
        }
594
    }
595

    
596
    guest_nsec = get_guest_rtc_ns(s);
597
    /* UIP bit will be set at last 244us of every second. */
598
    if ((guest_nsec % NSEC_PER_SEC) >= (NSEC_PER_SEC - UIP_HOLD_LENGTH)) {
599
        return 1;
600
    }
601
    return 0;
602
}
603

    
604
static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
605
                                 unsigned size)
606
{
607
    RTCState *s = opaque;
608
    int ret;
609
    if ((addr & 1) == 0) {
610
        return 0xff;
611
    } else {
612
        switch(s->cmos_index) {
613
        case RTC_IBM_PS2_CENTURY_BYTE:
614
            s->cmos_index = RTC_CENTURY;
615
            /* fall through */
616
        case RTC_CENTURY:
617
        case RTC_SECONDS:
618
        case RTC_MINUTES:
619
        case RTC_HOURS:
620
        case RTC_DAY_OF_WEEK:
621
        case RTC_DAY_OF_MONTH:
622
        case RTC_MONTH:
623
        case RTC_YEAR:
624
            /* if not in set mode, calibrate cmos before
625
             * reading*/
626
            if (rtc_running(s)) {
627
                rtc_update_time(s);
628
            }
629
            ret = s->cmos_data[s->cmos_index];
630
            break;
631
        case RTC_REG_A:
632
            if (update_in_progress(s)) {
633
                s->cmos_data[s->cmos_index] |= REG_A_UIP;
634
            } else {
635
                s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
636
            }
637
            ret = s->cmos_data[s->cmos_index];
638
            break;
639
        case RTC_REG_C:
640
            ret = s->cmos_data[s->cmos_index];
641
            qemu_irq_lower(s->irq);
642
            s->cmos_data[RTC_REG_C] = 0x00;
643
            if (ret & (REG_C_UF | REG_C_AF)) {
644
                check_update_timer(s);
645
            }
646
#ifdef TARGET_I386
647
            if(s->irq_coalesced &&
648
                    (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
649
                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
650
                s->irq_reinject_on_ack_count++;
651
                s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
652
                apic_reset_irq_delivered();
653
                DPRINTF_C("cmos: injecting on ack\n");
654
                qemu_irq_raise(s->irq);
655
                if (apic_get_irq_delivered()) {
656
                    s->irq_coalesced--;
657
                    DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
658
                              s->irq_coalesced);
659
                }
660
            }
661
#endif
662
            break;
663
        default:
664
            ret = s->cmos_data[s->cmos_index];
665
            break;
666
        }
667
        CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
668
                     s->cmos_index, ret);
669
        return ret;
670
    }
671
}
672

    
673
void rtc_set_memory(ISADevice *dev, int addr, int val)
674
{
675
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
676
    if (addr >= 0 && addr <= 127)
677
        s->cmos_data[addr] = val;
678
}
679

    
680
static void rtc_set_date_from_host(ISADevice *dev)
681
{
682
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
683
    struct tm tm;
684

    
685
    qemu_get_timedate(&tm, 0);
686

    
687
    s->base_rtc = mktimegm(&tm);
688
    s->last_update = qemu_get_clock_ns(rtc_clock);
689
    s->offset = 0;
690

    
691
    /* set the CMOS date */
692
    rtc_set_cmos(s, &tm);
693
}
694

    
695
static int rtc_post_load(void *opaque, int version_id)
696
{
697
    RTCState *s = opaque;
698

    
699
    if (version_id <= 2) {
700
        rtc_set_time(s);
701
        s->offset = 0;
702
        check_update_timer(s);
703
    }
704

    
705
#ifdef TARGET_I386
706
    if (version_id >= 2) {
707
        if (s->lost_tick_policy == LOST_TICK_SLEW) {
708
            rtc_coalesced_timer_update(s);
709
        }
710
    }
711
#endif
712
    return 0;
713
}
714

    
715
static const VMStateDescription vmstate_rtc = {
716
    .name = "mc146818rtc",
717
    .version_id = 3,
718
    .minimum_version_id = 1,
719
    .minimum_version_id_old = 1,
720
    .post_load = rtc_post_load,
721
    .fields      = (VMStateField []) {
722
        VMSTATE_BUFFER(cmos_data, RTCState),
723
        VMSTATE_UINT8(cmos_index, RTCState),
724
        VMSTATE_UNUSED(7*4),
725
        VMSTATE_TIMER(periodic_timer, RTCState),
726
        VMSTATE_INT64(next_periodic_time, RTCState),
727
        VMSTATE_UNUSED(3*8),
728
        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
729
        VMSTATE_UINT32_V(period, RTCState, 2),
730
        VMSTATE_UINT64_V(base_rtc, RTCState, 3),
731
        VMSTATE_UINT64_V(last_update, RTCState, 3),
732
        VMSTATE_INT64_V(offset, RTCState, 3),
733
        VMSTATE_TIMER_V(update_timer, RTCState, 3),
734
        VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
735
        VMSTATE_END_OF_LIST()
736
    }
737
};
738

    
739
static void rtc_notify_clock_reset(Notifier *notifier, void *data)
740
{
741
    RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
742
    int64_t now = *(int64_t *)data;
743

    
744
    rtc_set_date_from_host(&s->dev);
745
    periodic_timer_update(s, now);
746
    check_update_timer(s);
747
#ifdef TARGET_I386
748
    if (s->lost_tick_policy == LOST_TICK_SLEW) {
749
        rtc_coalesced_timer_update(s);
750
    }
751
#endif
752
}
753

    
754
/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
755
   BIOS will read it and start S3 resume at POST Entry */
756
static void rtc_notify_suspend(Notifier *notifier, void *data)
757
{
758
    RTCState *s = container_of(notifier, RTCState, suspend_notifier);
759
    rtc_set_memory(&s->dev, 0xF, 0xFE);
760
}
761

    
762
static void rtc_reset(void *opaque)
763
{
764
    RTCState *s = opaque;
765

    
766
    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
767
    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
768
    check_update_timer(s);
769

    
770
    qemu_irq_lower(s->irq);
771

    
772
#ifdef TARGET_I386
773
    if (s->lost_tick_policy == LOST_TICK_SLEW) {
774
        s->irq_coalesced = 0;
775
    }
776
#endif
777
}
778

    
779
static const MemoryRegionOps cmos_ops = {
780
    .read = cmos_ioport_read,
781
    .write = cmos_ioport_write,
782
    .impl = {
783
        .min_access_size = 1,
784
        .max_access_size = 1,
785
    },
786
    .endianness = DEVICE_LITTLE_ENDIAN,
787
};
788

    
789
static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
790
                         const char *name, Error **errp)
791
{
792
    ISADevice *isa = ISA_DEVICE(obj);
793
    RTCState *s = DO_UPCAST(RTCState, dev, isa);
794
    struct tm current_tm;
795

    
796
    rtc_update_time(s);
797
    rtc_get_time(s, &current_tm);
798
    visit_start_struct(v, NULL, "struct tm", name, 0, errp);
799
    visit_type_int32(v, &current_tm.tm_year, "tm_year", errp);
800
    visit_type_int32(v, &current_tm.tm_mon, "tm_mon", errp);
801
    visit_type_int32(v, &current_tm.tm_mday, "tm_mday", errp);
802
    visit_type_int32(v, &current_tm.tm_hour, "tm_hour", errp);
803
    visit_type_int32(v, &current_tm.tm_min, "tm_min", errp);
804
    visit_type_int32(v, &current_tm.tm_sec, "tm_sec", errp);
805
    visit_end_struct(v, errp);
806
}
807

    
808
static int rtc_initfn(ISADevice *dev)
809
{
810
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
811
    int base = 0x70;
812

    
813
    s->cmos_data[RTC_REG_A] = 0x26;
814
    s->cmos_data[RTC_REG_B] = 0x02;
815
    s->cmos_data[RTC_REG_C] = 0x00;
816
    s->cmos_data[RTC_REG_D] = 0x80;
817

    
818
    /* This is for historical reasons.  The default base year qdev property
819
     * was set to 2000 for most machine types before the century byte was
820
     * implemented.
821
     *
822
     * This if statement means that the century byte will be always 0
823
     * (at least until 2079...) for base_year = 1980, but will be set
824
     * correctly for base_year = 2000.
825
     */
826
    if (s->base_year == 2000) {
827
        s->base_year = 0;
828
    }
829

    
830
    rtc_set_date_from_host(dev);
831

    
832
#ifdef TARGET_I386
833
    switch (s->lost_tick_policy) {
834
    case LOST_TICK_SLEW:
835
        s->coalesced_timer =
836
            qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
837
        break;
838
    case LOST_TICK_DISCARD:
839
        break;
840
    default:
841
        return -EINVAL;
842
    }
843
#endif
844

    
845
    s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
846
    s->update_timer = qemu_new_timer_ns(rtc_clock, rtc_update_timer, s);
847
    check_update_timer(s);
848

    
849
    s->clock_reset_notifier.notify = rtc_notify_clock_reset;
850
    qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
851

    
852
    s->suspend_notifier.notify = rtc_notify_suspend;
853
    qemu_register_suspend_notifier(&s->suspend_notifier);
854

    
855
    memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
856
    isa_register_ioport(dev, &s->io, base);
857

    
858
    qdev_set_legacy_instance_id(&dev->qdev, base, 3);
859
    qemu_register_reset(rtc_reset, s);
860

    
861
    object_property_add(OBJECT(s), "date", "struct tm",
862
                        rtc_get_date, NULL, NULL, s, NULL);
863

    
864
    return 0;
865
}
866

    
867
ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
868
{
869
    ISADevice *dev;
870
    RTCState *s;
871

    
872
    dev = isa_create(bus, "mc146818rtc");
873
    s = DO_UPCAST(RTCState, dev, dev);
874
    qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
875
    qdev_init_nofail(&dev->qdev);
876
    if (intercept_irq) {
877
        s->irq = intercept_irq;
878
    } else {
879
        isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
880
    }
881
    return dev;
882
}
883

    
884
static Property mc146818rtc_properties[] = {
885
    DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
886
    DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
887
                               lost_tick_policy, LOST_TICK_DISCARD),
888
    DEFINE_PROP_END_OF_LIST(),
889
};
890

    
891
static void rtc_class_initfn(ObjectClass *klass, void *data)
892
{
893
    DeviceClass *dc = DEVICE_CLASS(klass);
894
    ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
895
    ic->init = rtc_initfn;
896
    dc->no_user = 1;
897
    dc->vmsd = &vmstate_rtc;
898
    dc->props = mc146818rtc_properties;
899
}
900

    
901
static const TypeInfo mc146818rtc_info = {
902
    .name          = "mc146818rtc",
903
    .parent        = TYPE_ISA_DEVICE,
904
    .instance_size = sizeof(RTCState),
905
    .class_init    = rtc_class_initfn,
906
};
907

    
908
static void mc146818rtc_register_types(void)
909
{
910
    type_register_static(&mc146818rtc_info);
911
}
912

    
913
type_init(mc146818rtc_register_types)