Statistics
| Branch: | Revision:

root / hw / ppc / ppc.c @ 0d09e41a

History | View | Annotate | Download (39.8 kB)

1
/*
2
 * QEMU generic PowerPC hardware System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/ppc/ppc.h"
26
#include "qemu/timer.h"
27
#include "sysemu/sysemu.h"
28
#include "hw/timer/m48t59.h"
29
#include "qemu/log.h"
30
#include "hw/loader.h"
31
#include "sysemu/kvm.h"
32
#include "kvm_ppc.h"
33

    
34
//#define PPC_DEBUG_IRQ
35
//#define PPC_DEBUG_TB
36

    
37
#ifdef PPC_DEBUG_IRQ
38
#  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
39
#else
40
#  define LOG_IRQ(...) do { } while (0)
41
#endif
42

    
43

    
44
#ifdef PPC_DEBUG_TB
45
#  define LOG_TB(...) qemu_log(__VA_ARGS__)
46
#else
47
#  define LOG_TB(...) do { } while (0)
48
#endif
49

    
50
static void cpu_ppc_tb_stop (CPUPPCState *env);
51
static void cpu_ppc_tb_start (CPUPPCState *env);
52

    
53
void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
54
{
55
    CPUState *cs = CPU(cpu);
56
    CPUPPCState *env = &cpu->env;
57
    unsigned int old_pending = env->pending_interrupts;
58

    
59
    if (level) {
60
        env->pending_interrupts |= 1 << n_IRQ;
61
        cpu_interrupt(cs, CPU_INTERRUPT_HARD);
62
    } else {
63
        env->pending_interrupts &= ~(1 << n_IRQ);
64
        if (env->pending_interrupts == 0) {
65
            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
66
        }
67
    }
68

    
69
    if (old_pending != env->pending_interrupts) {
70
#ifdef CONFIG_KVM
71
        kvmppc_set_interrupt(cpu, n_IRQ, level);
72
#endif
73
    }
74

    
75
    LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
76
                "req %08x\n", __func__, env, n_IRQ, level,
77
                env->pending_interrupts, CPU(cpu)->interrupt_request);
78
}
79

    
80
/* PowerPC 6xx / 7xx internal IRQ controller */
81
static void ppc6xx_set_irq(void *opaque, int pin, int level)
82
{
83
    PowerPCCPU *cpu = opaque;
84
    CPUPPCState *env = &cpu->env;
85
    int cur_level;
86

    
87
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
88
                env, pin, level);
89
    cur_level = (env->irq_input_state >> pin) & 1;
90
    /* Don't generate spurious events */
91
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
92
        CPUState *cs = CPU(cpu);
93

    
94
        switch (pin) {
95
        case PPC6xx_INPUT_TBEN:
96
            /* Level sensitive - active high */
97
            LOG_IRQ("%s: %s the time base\n",
98
                        __func__, level ? "start" : "stop");
99
            if (level) {
100
                cpu_ppc_tb_start(env);
101
            } else {
102
                cpu_ppc_tb_stop(env);
103
            }
104
        case PPC6xx_INPUT_INT:
105
            /* Level sensitive - active high */
106
            LOG_IRQ("%s: set the external IRQ state to %d\n",
107
                        __func__, level);
108
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
109
            break;
110
        case PPC6xx_INPUT_SMI:
111
            /* Level sensitive - active high */
112
            LOG_IRQ("%s: set the SMI IRQ state to %d\n",
113
                        __func__, level);
114
            ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
115
            break;
116
        case PPC6xx_INPUT_MCP:
117
            /* Negative edge sensitive */
118
            /* XXX: TODO: actual reaction may depends on HID0 status
119
             *            603/604/740/750: check HID0[EMCP]
120
             */
121
            if (cur_level == 1 && level == 0) {
122
                LOG_IRQ("%s: raise machine check state\n",
123
                            __func__);
124
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
125
            }
126
            break;
127
        case PPC6xx_INPUT_CKSTP_IN:
128
            /* Level sensitive - active low */
129
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
130
            /* XXX: Note that the only way to restart the CPU is to reset it */
131
            if (level) {
132
                LOG_IRQ("%s: stop the CPU\n", __func__);
133
                cs->halted = 1;
134
            }
135
            break;
136
        case PPC6xx_INPUT_HRESET:
137
            /* Level sensitive - active low */
138
            if (level) {
139
                LOG_IRQ("%s: reset the CPU\n", __func__);
140
                cpu_interrupt(cs, CPU_INTERRUPT_RESET);
141
            }
142
            break;
143
        case PPC6xx_INPUT_SRESET:
144
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
145
                        __func__, level);
146
            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
147
            break;
148
        default:
149
            /* Unknown pin - do nothing */
150
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
151
            return;
152
        }
153
        if (level)
154
            env->irq_input_state |= 1 << pin;
155
        else
156
            env->irq_input_state &= ~(1 << pin);
157
    }
158
}
159

    
160
void ppc6xx_irq_init(CPUPPCState *env)
161
{
162
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
163

    
164
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
165
                                                  PPC6xx_INPUT_NB);
166
}
167

    
168
#if defined(TARGET_PPC64)
169
/* PowerPC 970 internal IRQ controller */
170
static void ppc970_set_irq(void *opaque, int pin, int level)
171
{
172
    PowerPCCPU *cpu = opaque;
173
    CPUPPCState *env = &cpu->env;
174
    int cur_level;
175

    
176
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
177
                env, pin, level);
178
    cur_level = (env->irq_input_state >> pin) & 1;
179
    /* Don't generate spurious events */
180
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
181
        CPUState *cs = CPU(cpu);
182

    
183
        switch (pin) {
184
        case PPC970_INPUT_INT:
185
            /* Level sensitive - active high */
186
            LOG_IRQ("%s: set the external IRQ state to %d\n",
187
                        __func__, level);
188
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
189
            break;
190
        case PPC970_INPUT_THINT:
191
            /* Level sensitive - active high */
192
            LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
193
                        level);
194
            ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
195
            break;
196
        case PPC970_INPUT_MCP:
197
            /* Negative edge sensitive */
198
            /* XXX: TODO: actual reaction may depends on HID0 status
199
             *            603/604/740/750: check HID0[EMCP]
200
             */
201
            if (cur_level == 1 && level == 0) {
202
                LOG_IRQ("%s: raise machine check state\n",
203
                            __func__);
204
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
205
            }
206
            break;
207
        case PPC970_INPUT_CKSTP:
208
            /* Level sensitive - active low */
209
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
210
            if (level) {
211
                LOG_IRQ("%s: stop the CPU\n", __func__);
212
                cs->halted = 1;
213
            } else {
214
                LOG_IRQ("%s: restart the CPU\n", __func__);
215
                cs->halted = 0;
216
                qemu_cpu_kick(cs);
217
            }
218
            break;
219
        case PPC970_INPUT_HRESET:
220
            /* Level sensitive - active low */
221
            if (level) {
222
                cpu_interrupt(cs, CPU_INTERRUPT_RESET);
223
            }
224
            break;
225
        case PPC970_INPUT_SRESET:
226
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
227
                        __func__, level);
228
            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
229
            break;
230
        case PPC970_INPUT_TBEN:
231
            LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
232
                        level);
233
            /* XXX: TODO */
234
            break;
235
        default:
236
            /* Unknown pin - do nothing */
237
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
238
            return;
239
        }
240
        if (level)
241
            env->irq_input_state |= 1 << pin;
242
        else
243
            env->irq_input_state &= ~(1 << pin);
244
    }
245
}
246

    
247
void ppc970_irq_init(CPUPPCState *env)
248
{
249
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
250

    
251
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
252
                                                  PPC970_INPUT_NB);
253
}
254

    
255
/* POWER7 internal IRQ controller */
256
static void power7_set_irq(void *opaque, int pin, int level)
257
{
258
    PowerPCCPU *cpu = opaque;
259
    CPUPPCState *env = &cpu->env;
260

    
261
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
262
                env, pin, level);
263

    
264
    switch (pin) {
265
    case POWER7_INPUT_INT:
266
        /* Level sensitive - active high */
267
        LOG_IRQ("%s: set the external IRQ state to %d\n",
268
                __func__, level);
269
        ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
270
        break;
271
    default:
272
        /* Unknown pin - do nothing */
273
        LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
274
        return;
275
    }
276
    if (level) {
277
        env->irq_input_state |= 1 << pin;
278
    } else {
279
        env->irq_input_state &= ~(1 << pin);
280
    }
281
}
282

    
283
void ppcPOWER7_irq_init(CPUPPCState *env)
284
{
285
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
286

    
287
    env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
288
                                                  POWER7_INPUT_NB);
289
}
290
#endif /* defined(TARGET_PPC64) */
291

    
292
/* PowerPC 40x internal IRQ controller */
293
static void ppc40x_set_irq(void *opaque, int pin, int level)
294
{
295
    PowerPCCPU *cpu = opaque;
296
    CPUPPCState *env = &cpu->env;
297
    int cur_level;
298

    
299
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
300
                env, pin, level);
301
    cur_level = (env->irq_input_state >> pin) & 1;
302
    /* Don't generate spurious events */
303
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
304
        CPUState *cs = CPU(cpu);
305

    
306
        switch (pin) {
307
        case PPC40x_INPUT_RESET_SYS:
308
            if (level) {
309
                LOG_IRQ("%s: reset the PowerPC system\n",
310
                            __func__);
311
                ppc40x_system_reset(cpu);
312
            }
313
            break;
314
        case PPC40x_INPUT_RESET_CHIP:
315
            if (level) {
316
                LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
317
                ppc40x_chip_reset(cpu);
318
            }
319
            break;
320
        case PPC40x_INPUT_RESET_CORE:
321
            /* XXX: TODO: update DBSR[MRR] */
322
            if (level) {
323
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
324
                ppc40x_core_reset(cpu);
325
            }
326
            break;
327
        case PPC40x_INPUT_CINT:
328
            /* Level sensitive - active high */
329
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
330
                        __func__, level);
331
            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
332
            break;
333
        case PPC40x_INPUT_INT:
334
            /* Level sensitive - active high */
335
            LOG_IRQ("%s: set the external IRQ state to %d\n",
336
                        __func__, level);
337
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
338
            break;
339
        case PPC40x_INPUT_HALT:
340
            /* Level sensitive - active low */
341
            if (level) {
342
                LOG_IRQ("%s: stop the CPU\n", __func__);
343
                cs->halted = 1;
344
            } else {
345
                LOG_IRQ("%s: restart the CPU\n", __func__);
346
                cs->halted = 0;
347
                qemu_cpu_kick(cs);
348
            }
349
            break;
350
        case PPC40x_INPUT_DEBUG:
351
            /* Level sensitive - active high */
352
            LOG_IRQ("%s: set the debug pin state to %d\n",
353
                        __func__, level);
354
            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
355
            break;
356
        default:
357
            /* Unknown pin - do nothing */
358
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
359
            return;
360
        }
361
        if (level)
362
            env->irq_input_state |= 1 << pin;
363
        else
364
            env->irq_input_state &= ~(1 << pin);
365
    }
366
}
367

    
368
void ppc40x_irq_init(CPUPPCState *env)
369
{
370
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
371

    
372
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
373
                                                  cpu, PPC40x_INPUT_NB);
374
}
375

    
376
/* PowerPC E500 internal IRQ controller */
377
static void ppce500_set_irq(void *opaque, int pin, int level)
378
{
379
    PowerPCCPU *cpu = opaque;
380
    CPUPPCState *env = &cpu->env;
381
    int cur_level;
382

    
383
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
384
                env, pin, level);
385
    cur_level = (env->irq_input_state >> pin) & 1;
386
    /* Don't generate spurious events */
387
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
388
        switch (pin) {
389
        case PPCE500_INPUT_MCK:
390
            if (level) {
391
                LOG_IRQ("%s: reset the PowerPC system\n",
392
                            __func__);
393
                qemu_system_reset_request();
394
            }
395
            break;
396
        case PPCE500_INPUT_RESET_CORE:
397
            if (level) {
398
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
399
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
400
            }
401
            break;
402
        case PPCE500_INPUT_CINT:
403
            /* Level sensitive - active high */
404
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
405
                        __func__, level);
406
            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
407
            break;
408
        case PPCE500_INPUT_INT:
409
            /* Level sensitive - active high */
410
            LOG_IRQ("%s: set the core IRQ state to %d\n",
411
                        __func__, level);
412
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
413
            break;
414
        case PPCE500_INPUT_DEBUG:
415
            /* Level sensitive - active high */
416
            LOG_IRQ("%s: set the debug pin state to %d\n",
417
                        __func__, level);
418
            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
419
            break;
420
        default:
421
            /* Unknown pin - do nothing */
422
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
423
            return;
424
        }
425
        if (level)
426
            env->irq_input_state |= 1 << pin;
427
        else
428
            env->irq_input_state &= ~(1 << pin);
429
    }
430
}
431

    
432
void ppce500_irq_init(CPUPPCState *env)
433
{
434
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
435

    
436
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
437
                                                  cpu, PPCE500_INPUT_NB);
438
}
439

    
440
/* Enable or Disable the E500 EPR capability */
441
void ppce500_set_mpic_proxy(bool enabled)
442
{
443
    CPUPPCState *env;
444

    
445
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
446
        PowerPCCPU *cpu = ppc_env_get_cpu(env);
447
        CPUState *cs = CPU(cpu);
448

    
449
        env->mpic_proxy = enabled;
450
        if (kvm_enabled()) {
451
            kvmppc_set_mpic_proxy(POWERPC_CPU(cs), enabled);
452
        }
453
    }
454
}
455

    
456
/*****************************************************************************/
457
/* PowerPC time base and decrementer emulation */
458

    
459
uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
460
{
461
    /* TB time in tb periods */
462
    return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
463
}
464

    
465
uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
466
{
467
    ppc_tb_t *tb_env = env->tb_env;
468
    uint64_t tb;
469

    
470
    if (kvm_enabled()) {
471
        return env->spr[SPR_TBL];
472
    }
473

    
474
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
475
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
476

    
477
    return tb;
478
}
479

    
480
static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
481
{
482
    ppc_tb_t *tb_env = env->tb_env;
483
    uint64_t tb;
484

    
485
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
486
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
487

    
488
    return tb >> 32;
489
}
490

    
491
uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
492
{
493
    if (kvm_enabled()) {
494
        return env->spr[SPR_TBU];
495
    }
496

    
497
    return _cpu_ppc_load_tbu(env);
498
}
499

    
500
static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
501
                                    int64_t *tb_offsetp, uint64_t value)
502
{
503
    *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
504
    LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
505
                __func__, value, *tb_offsetp);
506
}
507

    
508
void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
509
{
510
    ppc_tb_t *tb_env = env->tb_env;
511
    uint64_t tb;
512

    
513
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
514
    tb &= 0xFFFFFFFF00000000ULL;
515
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
516
                     &tb_env->tb_offset, tb | (uint64_t)value);
517
}
518

    
519
static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
520
{
521
    ppc_tb_t *tb_env = env->tb_env;
522
    uint64_t tb;
523

    
524
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
525
    tb &= 0x00000000FFFFFFFFULL;
526
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
527
                     &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
528
}
529

    
530
void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
531
{
532
    _cpu_ppc_store_tbu(env, value);
533
}
534

    
535
uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
536
{
537
    ppc_tb_t *tb_env = env->tb_env;
538
    uint64_t tb;
539

    
540
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
541
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
542

    
543
    return tb;
544
}
545

    
546
uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
547
{
548
    ppc_tb_t *tb_env = env->tb_env;
549
    uint64_t tb;
550

    
551
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
552
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
553

    
554
    return tb >> 32;
555
}
556

    
557
void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
558
{
559
    ppc_tb_t *tb_env = env->tb_env;
560
    uint64_t tb;
561

    
562
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
563
    tb &= 0xFFFFFFFF00000000ULL;
564
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
565
                     &tb_env->atb_offset, tb | (uint64_t)value);
566
}
567

    
568
void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
569
{
570
    ppc_tb_t *tb_env = env->tb_env;
571
    uint64_t tb;
572

    
573
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
574
    tb &= 0x00000000FFFFFFFFULL;
575
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
576
                     &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
577
}
578

    
579
static void cpu_ppc_tb_stop (CPUPPCState *env)
580
{
581
    ppc_tb_t *tb_env = env->tb_env;
582
    uint64_t tb, atb, vmclk;
583

    
584
    /* If the time base is already frozen, do nothing */
585
    if (tb_env->tb_freq != 0) {
586
        vmclk = qemu_get_clock_ns(vm_clock);
587
        /* Get the time base */
588
        tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
589
        /* Get the alternate time base */
590
        atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
591
        /* Store the time base value (ie compute the current offset) */
592
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
593
        /* Store the alternate time base value (compute the current offset) */
594
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
595
        /* Set the time base frequency to zero */
596
        tb_env->tb_freq = 0;
597
        /* Now, the time bases are frozen to tb_offset / atb_offset value */
598
    }
599
}
600

    
601
static void cpu_ppc_tb_start (CPUPPCState *env)
602
{
603
    ppc_tb_t *tb_env = env->tb_env;
604
    uint64_t tb, atb, vmclk;
605

    
606
    /* If the time base is not frozen, do nothing */
607
    if (tb_env->tb_freq == 0) {
608
        vmclk = qemu_get_clock_ns(vm_clock);
609
        /* Get the time base from tb_offset */
610
        tb = tb_env->tb_offset;
611
        /* Get the alternate time base from atb_offset */
612
        atb = tb_env->atb_offset;
613
        /* Restore the tb frequency from the decrementer frequency */
614
        tb_env->tb_freq = tb_env->decr_freq;
615
        /* Store the time base value */
616
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
617
        /* Store the alternate time base value */
618
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
619
    }
620
}
621

    
622
static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
623
{
624
    ppc_tb_t *tb_env = env->tb_env;
625
    uint32_t decr;
626
    int64_t diff;
627

    
628
    diff = next - qemu_get_clock_ns(vm_clock);
629
    if (diff >= 0) {
630
        decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
631
    } else if (tb_env->flags & PPC_TIMER_BOOKE) {
632
        decr = 0;
633
    }  else {
634
        decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
635
    }
636
    LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
637

    
638
    return decr;
639
}
640

    
641
uint32_t cpu_ppc_load_decr (CPUPPCState *env)
642
{
643
    ppc_tb_t *tb_env = env->tb_env;
644

    
645
    if (kvm_enabled()) {
646
        return env->spr[SPR_DECR];
647
    }
648

    
649
    return _cpu_ppc_load_decr(env, tb_env->decr_next);
650
}
651

    
652
uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
653
{
654
    ppc_tb_t *tb_env = env->tb_env;
655

    
656
    return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
657
}
658

    
659
uint64_t cpu_ppc_load_purr (CPUPPCState *env)
660
{
661
    ppc_tb_t *tb_env = env->tb_env;
662
    uint64_t diff;
663

    
664
    diff = qemu_get_clock_ns(vm_clock) - tb_env->purr_start;
665

    
666
    return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
667
}
668

    
669
/* When decrementer expires,
670
 * all we need to do is generate or queue a CPU exception
671
 */
672
static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
673
{
674
    /* Raise it */
675
    LOG_TB("raise decrementer exception\n");
676
    ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
677
}
678

    
679
static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
680
{
681
    /* Raise it */
682
    LOG_TB("raise decrementer exception\n");
683
    ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
684
}
685

    
686
static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
687
                                 struct QEMUTimer *timer,
688
                                 void (*raise_excp)(PowerPCCPU *),
689
                                 uint32_t decr, uint32_t value,
690
                                 int is_excp)
691
{
692
    CPUPPCState *env = &cpu->env;
693
    ppc_tb_t *tb_env = env->tb_env;
694
    uint64_t now, next;
695

    
696
    LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
697
                decr, value);
698

    
699
    if (kvm_enabled()) {
700
        /* KVM handles decrementer exceptions, we don't need our own timer */
701
        return;
702
    }
703

    
704
    now = qemu_get_clock_ns(vm_clock);
705
    next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
706
    if (is_excp) {
707
        next += *nextp - now;
708
    }
709
    if (next == now) {
710
        next++;
711
    }
712
    *nextp = next;
713
    /* Adjust timer */
714
    qemu_mod_timer(timer, next);
715

    
716
    /* If we set a negative value and the decrementer was positive, raise an
717
     * exception.
718
     */
719
    if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED)
720
        && (value & 0x80000000)
721
        && !(decr & 0x80000000)) {
722
        (*raise_excp)(cpu);
723
    }
724
}
725

    
726
static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
727
                                       uint32_t value, int is_excp)
728
{
729
    ppc_tb_t *tb_env = cpu->env.tb_env;
730

    
731
    __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
732
                         &cpu_ppc_decr_excp, decr, value, is_excp);
733
}
734

    
735
void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
736
{
737
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
738

    
739
    _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, 0);
740
}
741

    
742
static void cpu_ppc_decr_cb(void *opaque)
743
{
744
    PowerPCCPU *cpu = opaque;
745

    
746
    _cpu_ppc_store_decr(cpu, 0x00000000, 0xFFFFFFFF, 1);
747
}
748

    
749
static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
750
                                        uint32_t value, int is_excp)
751
{
752
    ppc_tb_t *tb_env = cpu->env.tb_env;
753

    
754
    if (tb_env->hdecr_timer != NULL) {
755
        __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
756
                             &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
757
    }
758
}
759

    
760
void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
761
{
762
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
763

    
764
    _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 0);
765
}
766

    
767
static void cpu_ppc_hdecr_cb(void *opaque)
768
{
769
    PowerPCCPU *cpu = opaque;
770

    
771
    _cpu_ppc_store_hdecr(cpu, 0x00000000, 0xFFFFFFFF, 1);
772
}
773

    
774
static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
775
{
776
    ppc_tb_t *tb_env = cpu->env.tb_env;
777

    
778
    tb_env->purr_load = value;
779
    tb_env->purr_start = qemu_get_clock_ns(vm_clock);
780
}
781

    
782
static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
783
{
784
    CPUPPCState *env = opaque;
785
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
786
    ppc_tb_t *tb_env = env->tb_env;
787

    
788
    tb_env->tb_freq = freq;
789
    tb_env->decr_freq = freq;
790
    /* There is a bug in Linux 2.4 kernels:
791
     * if a decrementer exception is pending when it enables msr_ee at startup,
792
     * it's not ready to handle it...
793
     */
794
    _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
795
    _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
796
    cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
797
}
798

    
799
/* Set up (once) timebase frequency (in Hz) */
800
clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
801
{
802
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
803
    ppc_tb_t *tb_env;
804

    
805
    tb_env = g_malloc0(sizeof(ppc_tb_t));
806
    env->tb_env = tb_env;
807
    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
808
    /* Create new timer */
809
    tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_decr_cb, cpu);
810
    if (0) {
811
        /* XXX: find a suitable condition to enable the hypervisor decrementer
812
         */
813
        tb_env->hdecr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_hdecr_cb,
814
                                                cpu);
815
    } else {
816
        tb_env->hdecr_timer = NULL;
817
    }
818
    cpu_ppc_set_tb_clk(env, freq);
819

    
820
    return &cpu_ppc_set_tb_clk;
821
}
822

    
823
/* Specific helpers for POWER & PowerPC 601 RTC */
824
#if 0
825
static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
826
{
827
    return cpu_ppc_tb_init(env, 7812500);
828
}
829
#endif
830

    
831
void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
832
{
833
    _cpu_ppc_store_tbu(env, value);
834
}
835

    
836
uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
837
{
838
    return _cpu_ppc_load_tbu(env);
839
}
840

    
841
void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
842
{
843
    cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
844
}
845

    
846
uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
847
{
848
    return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
849
}
850

    
851
/*****************************************************************************/
852
/* PowerPC 40x timers */
853

    
854
/* PIT, FIT & WDT */
855
typedef struct ppc40x_timer_t ppc40x_timer_t;
856
struct ppc40x_timer_t {
857
    uint64_t pit_reload;  /* PIT auto-reload value        */
858
    uint64_t fit_next;    /* Tick for next FIT interrupt  */
859
    struct QEMUTimer *fit_timer;
860
    uint64_t wdt_next;    /* Tick for next WDT interrupt  */
861
    struct QEMUTimer *wdt_timer;
862

    
863
    /* 405 have the PIT, 440 have a DECR.  */
864
    unsigned int decr_excp;
865
};
866

    
867
/* Fixed interval timer */
868
static void cpu_4xx_fit_cb (void *opaque)
869
{
870
    PowerPCCPU *cpu;
871
    CPUPPCState *env;
872
    ppc_tb_t *tb_env;
873
    ppc40x_timer_t *ppc40x_timer;
874
    uint64_t now, next;
875

    
876
    env = opaque;
877
    cpu = ppc_env_get_cpu(env);
878
    tb_env = env->tb_env;
879
    ppc40x_timer = tb_env->opaque;
880
    now = qemu_get_clock_ns(vm_clock);
881
    switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
882
    case 0:
883
        next = 1 << 9;
884
        break;
885
    case 1:
886
        next = 1 << 13;
887
        break;
888
    case 2:
889
        next = 1 << 17;
890
        break;
891
    case 3:
892
        next = 1 << 21;
893
        break;
894
    default:
895
        /* Cannot occur, but makes gcc happy */
896
        return;
897
    }
898
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
899
    if (next == now)
900
        next++;
901
    qemu_mod_timer(ppc40x_timer->fit_timer, next);
902
    env->spr[SPR_40x_TSR] |= 1 << 26;
903
    if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
904
        ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
905
    }
906
    LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
907
           (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
908
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
909
}
910

    
911
/* Programmable interval timer */
912
static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
913
{
914
    ppc40x_timer_t *ppc40x_timer;
915
    uint64_t now, next;
916

    
917
    ppc40x_timer = tb_env->opaque;
918
    if (ppc40x_timer->pit_reload <= 1 ||
919
        !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
920
        (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
921
        /* Stop PIT */
922
        LOG_TB("%s: stop PIT\n", __func__);
923
        qemu_del_timer(tb_env->decr_timer);
924
    } else {
925
        LOG_TB("%s: start PIT %016" PRIx64 "\n",
926
                    __func__, ppc40x_timer->pit_reload);
927
        now = qemu_get_clock_ns(vm_clock);
928
        next = now + muldiv64(ppc40x_timer->pit_reload,
929
                              get_ticks_per_sec(), tb_env->decr_freq);
930
        if (is_excp)
931
            next += tb_env->decr_next - now;
932
        if (next == now)
933
            next++;
934
        qemu_mod_timer(tb_env->decr_timer, next);
935
        tb_env->decr_next = next;
936
    }
937
}
938

    
939
static void cpu_4xx_pit_cb (void *opaque)
940
{
941
    PowerPCCPU *cpu;
942
    CPUPPCState *env;
943
    ppc_tb_t *tb_env;
944
    ppc40x_timer_t *ppc40x_timer;
945

    
946
    env = opaque;
947
    cpu = ppc_env_get_cpu(env);
948
    tb_env = env->tb_env;
949
    ppc40x_timer = tb_env->opaque;
950
    env->spr[SPR_40x_TSR] |= 1 << 27;
951
    if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
952
        ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
953
    }
954
    start_stop_pit(env, tb_env, 1);
955
    LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
956
           "%016" PRIx64 "\n", __func__,
957
           (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
958
           (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
959
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
960
           ppc40x_timer->pit_reload);
961
}
962

    
963
/* Watchdog timer */
964
static void cpu_4xx_wdt_cb (void *opaque)
965
{
966
    PowerPCCPU *cpu;
967
    CPUPPCState *env;
968
    ppc_tb_t *tb_env;
969
    ppc40x_timer_t *ppc40x_timer;
970
    uint64_t now, next;
971

    
972
    env = opaque;
973
    cpu = ppc_env_get_cpu(env);
974
    tb_env = env->tb_env;
975
    ppc40x_timer = tb_env->opaque;
976
    now = qemu_get_clock_ns(vm_clock);
977
    switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
978
    case 0:
979
        next = 1 << 17;
980
        break;
981
    case 1:
982
        next = 1 << 21;
983
        break;
984
    case 2:
985
        next = 1 << 25;
986
        break;
987
    case 3:
988
        next = 1 << 29;
989
        break;
990
    default:
991
        /* Cannot occur, but makes gcc happy */
992
        return;
993
    }
994
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
995
    if (next == now)
996
        next++;
997
    LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
998
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
999
    switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1000
    case 0x0:
1001
    case 0x1:
1002
        qemu_mod_timer(ppc40x_timer->wdt_timer, next);
1003
        ppc40x_timer->wdt_next = next;
1004
        env->spr[SPR_40x_TSR] |= 1 << 31;
1005
        break;
1006
    case 0x2:
1007
        qemu_mod_timer(ppc40x_timer->wdt_timer, next);
1008
        ppc40x_timer->wdt_next = next;
1009
        env->spr[SPR_40x_TSR] |= 1 << 30;
1010
        if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1011
            ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1012
        }
1013
        break;
1014
    case 0x3:
1015
        env->spr[SPR_40x_TSR] &= ~0x30000000;
1016
        env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1017
        switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1018
        case 0x0:
1019
            /* No reset */
1020
            break;
1021
        case 0x1: /* Core reset */
1022
            ppc40x_core_reset(cpu);
1023
            break;
1024
        case 0x2: /* Chip reset */
1025
            ppc40x_chip_reset(cpu);
1026
            break;
1027
        case 0x3: /* System reset */
1028
            ppc40x_system_reset(cpu);
1029
            break;
1030
        }
1031
    }
1032
}
1033

    
1034
void store_40x_pit (CPUPPCState *env, target_ulong val)
1035
{
1036
    ppc_tb_t *tb_env;
1037
    ppc40x_timer_t *ppc40x_timer;
1038

    
1039
    tb_env = env->tb_env;
1040
    ppc40x_timer = tb_env->opaque;
1041
    LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1042
    ppc40x_timer->pit_reload = val;
1043
    start_stop_pit(env, tb_env, 0);
1044
}
1045

    
1046
target_ulong load_40x_pit (CPUPPCState *env)
1047
{
1048
    return cpu_ppc_load_decr(env);
1049
}
1050

    
1051
static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1052
{
1053
    CPUPPCState *env = opaque;
1054
    ppc_tb_t *tb_env = env->tb_env;
1055

    
1056
    LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1057
                freq);
1058
    tb_env->tb_freq = freq;
1059
    tb_env->decr_freq = freq;
1060
    /* XXX: we should also update all timers */
1061
}
1062

    
1063
clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1064
                                  unsigned int decr_excp)
1065
{
1066
    ppc_tb_t *tb_env;
1067
    ppc40x_timer_t *ppc40x_timer;
1068

    
1069
    tb_env = g_malloc0(sizeof(ppc_tb_t));
1070
    env->tb_env = tb_env;
1071
    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1072
    ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1073
    tb_env->tb_freq = freq;
1074
    tb_env->decr_freq = freq;
1075
    tb_env->opaque = ppc40x_timer;
1076
    LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1077
    if (ppc40x_timer != NULL) {
1078
        /* We use decr timer for PIT */
1079
        tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_4xx_pit_cb, env);
1080
        ppc40x_timer->fit_timer =
1081
            qemu_new_timer_ns(vm_clock, &cpu_4xx_fit_cb, env);
1082
        ppc40x_timer->wdt_timer =
1083
            qemu_new_timer_ns(vm_clock, &cpu_4xx_wdt_cb, env);
1084
        ppc40x_timer->decr_excp = decr_excp;
1085
    }
1086

    
1087
    return &ppc_40x_set_tb_clk;
1088
}
1089

    
1090
/*****************************************************************************/
1091
/* Embedded PowerPC Device Control Registers */
1092
typedef struct ppc_dcrn_t ppc_dcrn_t;
1093
struct ppc_dcrn_t {
1094
    dcr_read_cb dcr_read;
1095
    dcr_write_cb dcr_write;
1096
    void *opaque;
1097
};
1098

    
1099
/* XXX: on 460, DCR addresses are 32 bits wide,
1100
 *      using DCRIPR to get the 22 upper bits of the DCR address
1101
 */
1102
#define DCRN_NB 1024
1103
struct ppc_dcr_t {
1104
    ppc_dcrn_t dcrn[DCRN_NB];
1105
    int (*read_error)(int dcrn);
1106
    int (*write_error)(int dcrn);
1107
};
1108

    
1109
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1110
{
1111
    ppc_dcrn_t *dcr;
1112

    
1113
    if (dcrn < 0 || dcrn >= DCRN_NB)
1114
        goto error;
1115
    dcr = &dcr_env->dcrn[dcrn];
1116
    if (dcr->dcr_read == NULL)
1117
        goto error;
1118
    *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1119

    
1120
    return 0;
1121

    
1122
 error:
1123
    if (dcr_env->read_error != NULL)
1124
        return (*dcr_env->read_error)(dcrn);
1125

    
1126
    return -1;
1127
}
1128

    
1129
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1130
{
1131
    ppc_dcrn_t *dcr;
1132

    
1133
    if (dcrn < 0 || dcrn >= DCRN_NB)
1134
        goto error;
1135
    dcr = &dcr_env->dcrn[dcrn];
1136
    if (dcr->dcr_write == NULL)
1137
        goto error;
1138
    (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1139

    
1140
    return 0;
1141

    
1142
 error:
1143
    if (dcr_env->write_error != NULL)
1144
        return (*dcr_env->write_error)(dcrn);
1145

    
1146
    return -1;
1147
}
1148

    
1149
int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1150
                      dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1151
{
1152
    ppc_dcr_t *dcr_env;
1153
    ppc_dcrn_t *dcr;
1154

    
1155
    dcr_env = env->dcr_env;
1156
    if (dcr_env == NULL)
1157
        return -1;
1158
    if (dcrn < 0 || dcrn >= DCRN_NB)
1159
        return -1;
1160
    dcr = &dcr_env->dcrn[dcrn];
1161
    if (dcr->opaque != NULL ||
1162
        dcr->dcr_read != NULL ||
1163
        dcr->dcr_write != NULL)
1164
        return -1;
1165
    dcr->opaque = opaque;
1166
    dcr->dcr_read = dcr_read;
1167
    dcr->dcr_write = dcr_write;
1168

    
1169
    return 0;
1170
}
1171

    
1172
int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1173
                  int (*write_error)(int dcrn))
1174
{
1175
    ppc_dcr_t *dcr_env;
1176

    
1177
    dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1178
    dcr_env->read_error = read_error;
1179
    dcr_env->write_error = write_error;
1180
    env->dcr_env = dcr_env;
1181

    
1182
    return 0;
1183
}
1184

    
1185
/*****************************************************************************/
1186
/* Debug port */
1187
void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1188
{
1189
    addr &= 0xF;
1190
    switch (addr) {
1191
    case 0:
1192
        printf("%c", val);
1193
        break;
1194
    case 1:
1195
        printf("\n");
1196
        fflush(stdout);
1197
        break;
1198
    case 2:
1199
        printf("Set loglevel to %04" PRIx32 "\n", val);
1200
        qemu_set_log(val | 0x100);
1201
        break;
1202
    }
1203
}
1204

    
1205
/*****************************************************************************/
1206
/* NVRAM helpers */
1207
static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1208
{
1209
    return (*nvram->read_fn)(nvram->opaque, addr);
1210
}
1211

    
1212
static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1213
{
1214
    (*nvram->write_fn)(nvram->opaque, addr, val);
1215
}
1216

    
1217
static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1218
{
1219
    nvram_write(nvram, addr, value);
1220
}
1221

    
1222
static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1223
{
1224
    return nvram_read(nvram, addr);
1225
}
1226

    
1227
static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1228
{
1229
    nvram_write(nvram, addr, value >> 8);
1230
    nvram_write(nvram, addr + 1, value & 0xFF);
1231
}
1232

    
1233
static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1234
{
1235
    uint16_t tmp;
1236

    
1237
    tmp = nvram_read(nvram, addr) << 8;
1238
    tmp |= nvram_read(nvram, addr + 1);
1239

    
1240
    return tmp;
1241
}
1242

    
1243
static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1244
{
1245
    nvram_write(nvram, addr, value >> 24);
1246
    nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1247
    nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1248
    nvram_write(nvram, addr + 3, value & 0xFF);
1249
}
1250

    
1251
uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1252
{
1253
    uint32_t tmp;
1254

    
1255
    tmp = nvram_read(nvram, addr) << 24;
1256
    tmp |= nvram_read(nvram, addr + 1) << 16;
1257
    tmp |= nvram_read(nvram, addr + 2) << 8;
1258
    tmp |= nvram_read(nvram, addr + 3);
1259

    
1260
    return tmp;
1261
}
1262

    
1263
static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1264
                             uint32_t max)
1265
{
1266
    int i;
1267

    
1268
    for (i = 0; i < max && str[i] != '\0'; i++) {
1269
        nvram_write(nvram, addr + i, str[i]);
1270
    }
1271
    nvram_write(nvram, addr + i, str[i]);
1272
    nvram_write(nvram, addr + max - 1, '\0');
1273
}
1274

    
1275
int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1276
{
1277
    int i;
1278

    
1279
    memset(dst, 0, max);
1280
    for (i = 0; i < max; i++) {
1281
        dst[i] = NVRAM_get_byte(nvram, addr + i);
1282
        if (dst[i] == '\0')
1283
            break;
1284
    }
1285

    
1286
    return i;
1287
}
1288

    
1289
static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1290
{
1291
    uint16_t tmp;
1292
    uint16_t pd, pd1, pd2;
1293

    
1294
    tmp = prev >> 8;
1295
    pd = prev ^ value;
1296
    pd1 = pd & 0x000F;
1297
    pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1298
    tmp ^= (pd1 << 3) | (pd1 << 8);
1299
    tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1300

    
1301
    return tmp;
1302
}
1303

    
1304
static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1305
{
1306
    uint32_t i;
1307
    uint16_t crc = 0xFFFF;
1308
    int odd;
1309

    
1310
    odd = count & 1;
1311
    count &= ~1;
1312
    for (i = 0; i != count; i++) {
1313
        crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1314
    }
1315
    if (odd) {
1316
        crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1317
    }
1318

    
1319
    return crc;
1320
}
1321

    
1322
#define CMDLINE_ADDR 0x017ff000
1323

    
1324
int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1325
                          const char *arch,
1326
                          uint32_t RAM_size, int boot_device,
1327
                          uint32_t kernel_image, uint32_t kernel_size,
1328
                          const char *cmdline,
1329
                          uint32_t initrd_image, uint32_t initrd_size,
1330
                          uint32_t NVRAM_image,
1331
                          int width, int height, int depth)
1332
{
1333
    uint16_t crc;
1334

    
1335
    /* Set parameters for Open Hack'Ware BIOS */
1336
    NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1337
    NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1338
    NVRAM_set_word(nvram,   0x14, NVRAM_size);
1339
    NVRAM_set_string(nvram, 0x20, arch, 16);
1340
    NVRAM_set_lword(nvram,  0x30, RAM_size);
1341
    NVRAM_set_byte(nvram,   0x34, boot_device);
1342
    NVRAM_set_lword(nvram,  0x38, kernel_image);
1343
    NVRAM_set_lword(nvram,  0x3C, kernel_size);
1344
    if (cmdline) {
1345
        /* XXX: put the cmdline in NVRAM too ? */
1346
        pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1347
        NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1348
        NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1349
    } else {
1350
        NVRAM_set_lword(nvram,  0x40, 0);
1351
        NVRAM_set_lword(nvram,  0x44, 0);
1352
    }
1353
    NVRAM_set_lword(nvram,  0x48, initrd_image);
1354
    NVRAM_set_lword(nvram,  0x4C, initrd_size);
1355
    NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1356

    
1357
    NVRAM_set_word(nvram,   0x54, width);
1358
    NVRAM_set_word(nvram,   0x56, height);
1359
    NVRAM_set_word(nvram,   0x58, depth);
1360
    crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1361
    NVRAM_set_word(nvram,   0xFC, crc);
1362

    
1363
    return 0;
1364
}