Statistics
| Branch: | Revision:

root / hw / etraxfs_eth.c @ 0d84be5b

History | View | Annotate | Download (13.5 kB)

1
/*
2
 * QEMU ETRAX Ethernet Controller.
3
 *
4
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <stdio.h>
26
#include "hw.h"
27
#include "net.h"
28
#include "etraxfs.h"
29

    
30
#define D(x)
31

    
32
/* Advertisement control register. */
33
#define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
34
#define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
35
#define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
36
#define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
37

    
38
/* 
39
 * The MDIO extensions in the TDK PHY model were reversed engineered from the 
40
 * linux driver (PHYID and Diagnostics reg).
41
 * TODO: Add friendly names for the register nums.
42
 */
43
struct qemu_phy
44
{
45
        uint32_t regs[32];
46

    
47
        int link;
48

    
49
        unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
50
        void (*write)(struct qemu_phy *phy, unsigned int req, 
51
                      unsigned int data);
52
};
53

    
54
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
55
{
56
        int regnum;
57
        unsigned r = 0;
58

    
59
        regnum = req & 0x1f;
60

    
61
        switch (regnum) {
62
                case 1:
63
                        if (!phy->link)
64
                                break;
65
                        /* MR1.         */
66
                        /* Speeds and modes.  */
67
                        r |= (1 << 13) | (1 << 14);
68
                        r |= (1 << 11) | (1 << 12);
69
                        r |= (1 << 5); /* Autoneg complete.  */
70
                        r |= (1 << 3); /* Autoneg able.         */
71
                        r |= (1 << 2); /* link.         */
72
                        break;
73
                case 5:
74
                        /* Link partner ability.
75
                           We are kind; always agree with whatever best mode
76
                           the guest advertises.  */
77
                        r = 1 << 14; /* Success.  */
78
                        /* Copy advertised modes.  */
79
                        r |= phy->regs[4] & (15 << 5);
80
                        /* Autoneg support.  */
81
                        r |= 1;
82
                        break;
83
                case 18:
84
                {
85
                        /* Diagnostics reg.  */
86
                        int duplex = 0;
87
                        int speed_100 = 0;
88

    
89
                        if (!phy->link)
90
                                break;
91

    
92
                        /* Are we advertising 100 half or 100 duplex ? */
93
                        speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
94
                        speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
95

    
96
                        /* Are we advertising 10 duplex or 100 duplex ? */
97
                        duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
98
                        duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
99
                        r = (speed_100 << 10) | (duplex << 11);
100
                }
101
                break;
102

    
103
                default:
104
                        r = phy->regs[regnum];
105
                        break;
106
        }
107
        D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
108
        return r;
109
}
110

    
111
static void 
112
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
113
{
114
        int regnum;
115

    
116
        regnum = req & 0x1f;
117
        D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
118
        switch (regnum) {
119
                default:
120
                        phy->regs[regnum] = data;
121
                        break;
122
        }
123
}
124

    
125
static void 
126
tdk_init(struct qemu_phy *phy)
127
{
128
        phy->regs[0] = 0x3100;
129
        /* PHY Id.  */
130
        phy->regs[2] = 0x0300;
131
        phy->regs[3] = 0xe400;
132
        /* Autonegotiation advertisement reg.  */
133
        phy->regs[4] = 0x01E1;
134
        phy->link = 1;
135

    
136
        phy->read = tdk_read;
137
        phy->write = tdk_write;
138
}
139

    
140
struct qemu_mdio
141
{
142
        /* bus.         */
143
        int mdc;
144
        int mdio;
145

    
146
        /* decoder.  */
147
        enum {
148
                PREAMBLE,
149
                SOF,
150
                OPC,
151
                ADDR,
152
                REQ,
153
                TURNAROUND,
154
                DATA
155
        } state;
156
        unsigned int drive;
157

    
158
        unsigned int cnt;
159
        unsigned int addr;
160
        unsigned int opc;
161
        unsigned int req;
162
        unsigned int data;
163

    
164
        struct qemu_phy *devs[32];
165
};
166

    
167
static void 
168
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
169
{
170
        bus->devs[addr & 0x1f] = phy;
171
}
172

    
173
#ifdef USE_THIS_DEAD_CODE
174
static void 
175
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
176
{
177
        bus->devs[addr & 0x1f] = NULL;        
178
}
179
#endif
180

    
181
static void mdio_read_req(struct qemu_mdio *bus)
182
{
183
        struct qemu_phy *phy;
184

    
185
        phy = bus->devs[bus->addr];
186
        if (phy && phy->read)
187
                bus->data = phy->read(phy, bus->req);
188
        else 
189
                bus->data = 0xffff;
190
}
191

    
192
static void mdio_write_req(struct qemu_mdio *bus)
193
{
194
        struct qemu_phy *phy;
195

    
196
        phy = bus->devs[bus->addr];
197
        if (phy && phy->write)
198
                phy->write(phy, bus->req, bus->data);
199
}
200

    
201
static void mdio_cycle(struct qemu_mdio *bus)
202
{
203
        bus->cnt++;
204

    
205
        D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
206
                bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
207
#if 0
208
        if (bus->mdc)
209
                printf("%d", bus->mdio);
210
#endif
211
        switch (bus->state)
212
        {
213
                case PREAMBLE:
214
                        if (bus->mdc) {
215
                                if (bus->cnt >= (32 * 2) && !bus->mdio) {
216
                                        bus->cnt = 0;
217
                                        bus->state = SOF;
218
                                        bus->data = 0;
219
                                }
220
                        }
221
                        break;
222
                case SOF:
223
                        if (bus->mdc) {
224
                                if (bus->mdio != 1)
225
                                        printf("WARNING: no SOF\n");
226
                                if (bus->cnt == 1*2) {
227
                                        bus->cnt = 0;
228
                                        bus->opc = 0;
229
                                        bus->state = OPC;
230
                                }
231
                        }
232
                        break;
233
                case OPC:
234
                        if (bus->mdc) {
235
                                bus->opc <<= 1;
236
                                bus->opc |= bus->mdio & 1;
237
                                if (bus->cnt == 2*2) {
238
                                        bus->cnt = 0;
239
                                        bus->addr = 0;
240
                                        bus->state = ADDR;
241
                                }
242
                        }
243
                        break;
244
                case ADDR:
245
                        if (bus->mdc) {
246
                                bus->addr <<= 1;
247
                                bus->addr |= bus->mdio & 1;
248

    
249
                                if (bus->cnt == 5*2) {
250
                                        bus->cnt = 0;
251
                                        bus->req = 0;
252
                                        bus->state = REQ;
253
                                }
254
                        }
255
                        break;
256
                case REQ:
257
                        if (bus->mdc) {
258
                                bus->req <<= 1;
259
                                bus->req |= bus->mdio & 1;
260
                                if (bus->cnt == 5*2) {
261
                                        bus->cnt = 0;
262
                                        bus->state = TURNAROUND;
263
                                }
264
                        }
265
                        break;
266
                case TURNAROUND:
267
                        if (bus->mdc && bus->cnt == 2*2) {
268
                                bus->mdio = 0;
269
                                bus->cnt = 0;
270

    
271
                                if (bus->opc == 2) {
272
                                        bus->drive = 1;
273
                                        mdio_read_req(bus);
274
                                        bus->mdio = bus->data & 1;
275
                                }
276
                                bus->state = DATA;
277
                        }
278
                        break;
279
                case DATA:                        
280
                        if (!bus->mdc) {
281
                                if (bus->drive) {
282
                                        bus->mdio = !!(bus->data & (1 << 15));
283
                                        bus->data <<= 1;
284
                                }
285
                        } else {
286
                                if (!bus->drive) {
287
                                        bus->data <<= 1;
288
                                        bus->data |= bus->mdio;
289
                                }
290
                                if (bus->cnt == 16 * 2) {
291
                                        bus->cnt = 0;
292
                                        bus->state = PREAMBLE;
293
                                        if (!bus->drive)
294
                                                mdio_write_req(bus);
295
                                        bus->drive = 0;
296
                                }
297
                        }
298
                        break;
299
                default:
300
                        break;
301
        }
302
}
303

    
304
/* ETRAX-FS Ethernet MAC block starts here.  */
305

    
306
#define RW_MA0_LO          0x00
307
#define RW_MA0_HI          0x01
308
#define RW_MA1_LO          0x02
309
#define RW_MA1_HI          0x03
310
#define RW_GA_LO          0x04
311
#define RW_GA_HI          0x05
312
#define RW_GEN_CTRL          0x06
313
#define RW_REC_CTRL          0x07
314
#define RW_TR_CTRL          0x08
315
#define RW_CLR_ERR          0x09
316
#define RW_MGM_CTRL          0x0a
317
#define R_STAT                  0x0b
318
#define FS_ETH_MAX_REGS          0x17
319

    
320
struct fs_eth
321
{
322
        NICState *nic;
323
        NICConf conf;
324
        int ethregs;
325

    
326
        /* Two addrs in the filter.  */
327
        uint8_t macaddr[2][6];
328
        uint32_t regs[FS_ETH_MAX_REGS];
329

    
330
        struct etraxfs_dma_client *dma_out;
331
        struct etraxfs_dma_client *dma_in;
332

    
333
        /* MDIO bus.  */
334
        struct qemu_mdio mdio_bus;
335
        unsigned int phyaddr;
336
        int duplex_mismatch;
337

    
338
        /* PHY.         */
339
        struct qemu_phy phy;
340
};
341

    
342
static void eth_validate_duplex(struct fs_eth *eth)
343
{
344
        struct qemu_phy *phy;
345
        unsigned int phy_duplex;
346
        unsigned int mac_duplex;
347
        int new_mm = 0;
348

    
349
        phy = eth->mdio_bus.devs[eth->phyaddr];
350
        phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
351
        mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
352

    
353
        if (mac_duplex != phy_duplex)
354
                new_mm = 1;
355

    
356
        if (eth->regs[RW_GEN_CTRL] & 1) {
357
                if (new_mm != eth->duplex_mismatch) {
358
                        if (new_mm)
359
                                printf("HW: WARNING "
360
                                       "ETH duplex mismatch MAC=%d PHY=%d\n",
361
                                       mac_duplex, phy_duplex);
362
                        else
363
                                printf("HW: ETH duplex ok.\n");
364
                }
365
                eth->duplex_mismatch = new_mm;
366
        }
367
}
368

    
369
static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
370
{
371
        struct fs_eth *eth = opaque;
372
        uint32_t r = 0;
373

    
374
        addr >>= 2;
375

    
376
        switch (addr) {
377
                case R_STAT:
378
                        r = eth->mdio_bus.mdio & 1;
379
                        break;
380
        default:
381
                r = eth->regs[addr];
382
                D(printf ("%s %x\n", __func__, addr * 4));
383
                break;
384
        }
385
        return r;
386
}
387

    
388
static void eth_update_ma(struct fs_eth *eth, int ma)
389
{
390
        int reg;
391
        int i = 0;
392

    
393
        ma &= 1;
394

    
395
        reg = RW_MA0_LO;
396
        if (ma)
397
                reg = RW_MA1_LO;
398

    
399
        eth->macaddr[ma][i++] = eth->regs[reg];
400
        eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
401
        eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
402
        eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
403
        eth->macaddr[ma][i++] = eth->regs[reg + 1];
404
        eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
405

    
406
        D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
407
                 eth->macaddr[ma][0], eth->macaddr[ma][1],
408
                 eth->macaddr[ma][2], eth->macaddr[ma][3],
409
                 eth->macaddr[ma][4], eth->macaddr[ma][5]));
410
}
411

    
412
static void
413
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
414
{
415
        struct fs_eth *eth = opaque;
416

    
417
        addr >>= 2;
418
        switch (addr)
419
        {
420
                case RW_MA0_LO:
421
                case RW_MA0_HI:
422
                        eth->regs[addr] = value;
423
                        eth_update_ma(eth, 0);
424
                        break;
425
                case RW_MA1_LO:
426
                case RW_MA1_HI:
427
                        eth->regs[addr] = value;
428
                        eth_update_ma(eth, 1);
429
                        break;
430

    
431
                case RW_MGM_CTRL:
432
                        /* Attach an MDIO/PHY abstraction.  */
433
                        if (value & 2)
434
                                eth->mdio_bus.mdio = value & 1;
435
                        if (eth->mdio_bus.mdc != (value & 4)) {
436
                                mdio_cycle(&eth->mdio_bus);
437
                                eth_validate_duplex(eth);
438
                        }
439
                        eth->mdio_bus.mdc = !!(value & 4);
440
                        break;
441

    
442
                case RW_REC_CTRL:
443
                        eth->regs[addr] = value;
444
                        eth_validate_duplex(eth);
445
                        break;
446

    
447
                default:
448
                        eth->regs[addr] = value;
449
                        D(printf ("%s %x %x\n",
450
                                  __func__, addr, value));
451
                        break;
452
        }
453
}
454

    
455
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
456
   filter dropping group addresses we have not joined.        The filter has 64
457
   bits (m). The has function is a simple nible xor of the group addr.        */
458
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
459
{
460
        unsigned int hsh;
461
        int m_individual = eth->regs[RW_REC_CTRL] & 4;
462
        int match;
463

    
464
        /* First bit on the wire of a MAC address signals multicast or
465
           physical address.  */
466
        if (!m_individual && !sa[0] & 1)
467
                return 0;
468

    
469
        /* Calculate the hash index for the GA registers. */
470
        hsh = 0;
471
        hsh ^= (*sa) & 0x3f;
472
        hsh ^= ((*sa) >> 6) & 0x03;
473
        ++sa;
474
        hsh ^= ((*sa) << 2) & 0x03c;
475
        hsh ^= ((*sa) >> 4) & 0xf;
476
        ++sa;
477
        hsh ^= ((*sa) << 4) & 0x30;
478
        hsh ^= ((*sa) >> 2) & 0x3f;
479
        ++sa;
480
        hsh ^= (*sa) & 0x3f;
481
        hsh ^= ((*sa) >> 6) & 0x03;
482
        ++sa;
483
        hsh ^= ((*sa) << 2) & 0x03c;
484
        hsh ^= ((*sa) >> 4) & 0xf;
485
        ++sa;
486
        hsh ^= ((*sa) << 4) & 0x30;
487
        hsh ^= ((*sa) >> 2) & 0x3f;
488

    
489
        hsh &= 63;
490
        if (hsh > 31)
491
                match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
492
        else
493
                match = eth->regs[RW_GA_LO] & (1 << hsh);
494
        D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
495
                 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
496
        return match;
497
}
498

    
499
static int eth_can_receive(VLANClientState *nc)
500
{
501
        return 1;
502
}
503

    
504
static ssize_t eth_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
505
{
506
        unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
507
        struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
508
        int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
509
        int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
510
        int r_bcast = eth->regs[RW_REC_CTRL] & 8;
511

    
512
        if (size < 12)
513
                return -1;
514

    
515
        D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
516
                 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
517
                 use_ma0, use_ma1, r_bcast));
518
               
519
        /* Does the frame get through the address filters?  */
520
        if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
521
            && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
522
            && (!r_bcast || memcmp(buf, sa_bcast, 6))
523
            && !eth_match_groupaddr(eth, buf))
524
                return size;
525

    
526
        /* FIXME: Find another way to pass on the fake csum.  */
527
        etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
528

    
529
        return size;
530
}
531

    
532
static int eth_tx_push(void *opaque, unsigned char *buf, int len)
533
{
534
        struct fs_eth *eth = opaque;
535

    
536
        D(printf("%s buf=%p len=%d\n", __func__, buf, len));
537
        qemu_send_packet(&eth->nic->nc, buf, len);
538
        return len;
539
}
540

    
541
static void eth_set_link(VLANClientState *nc)
542
{
543
        struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
544
        D(printf("%s %d\n", __func__, nc->link_down));
545
        eth->phy.link = !nc->link_down;
546
}
547

    
548
static CPUReadMemoryFunc * const eth_read[] = {
549
        NULL, NULL,
550
        &eth_readl,
551
};
552

    
553
static CPUWriteMemoryFunc * const eth_write[] = {
554
        NULL, NULL,
555
        &eth_writel,
556
};
557

    
558
static void eth_cleanup(VLANClientState *nc)
559
{
560
        struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
561

    
562
        cpu_unregister_io_memory(eth->ethregs);
563

    
564
        qemu_free(eth->dma_out);
565
        qemu_free(eth);
566
}
567

    
568
static NetClientInfo net_etraxfs_info = {
569
        .type = NET_CLIENT_TYPE_NIC,
570
        .size = sizeof(NICState),
571
        .can_receive = eth_can_receive,
572
        .receive = eth_receive,
573
        .cleanup = eth_cleanup,
574
        .link_status_changed = eth_set_link,
575
};
576

    
577
void *etraxfs_eth_init(NICInfo *nd, target_phys_addr_t base, int phyaddr)
578
{
579
        struct etraxfs_dma_client *dma = NULL;        
580
        struct fs_eth *eth = NULL;
581

    
582
        qemu_check_nic_model(nd, "fseth");
583

    
584
        dma = qemu_mallocz(sizeof *dma * 2);
585
        eth = qemu_mallocz(sizeof *eth);
586

    
587
        dma[0].client.push = eth_tx_push;
588
        dma[0].client.opaque = eth;
589
        dma[1].client.opaque = eth;
590
        dma[1].client.pull = NULL;
591

    
592
        eth->dma_out = dma;
593
        eth->dma_in = dma + 1;
594

    
595
        /* Connect the phy.  */
596
        eth->phyaddr = phyaddr & 0x1f;
597
        tdk_init(&eth->phy);
598
        mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
599

    
600
        eth->ethregs = cpu_register_io_memory(eth_read, eth_write, eth);
601
        cpu_register_physical_memory (base, 0x5c, eth->ethregs);
602

    
603
        memcpy(eth->conf.macaddr.a, nd->macaddr, sizeof(nd->macaddr));
604
        eth->conf.vlan = nd->vlan;
605
        eth->conf.peer = nd->netdev;
606

    
607
        eth->nic = qemu_new_nic(&net_etraxfs_info, &eth->conf,
608
                                nd->model, nd->name, eth);
609

    
610
        return dma;
611
}