Statistics
| Branch: | Revision:

root / vl.c @ 0d92ed30

History | View | Annotate | Download (146 kB)

1
/*
2
 * QEMU System Emulator
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <unistd.h>
27
#include <fcntl.h>
28
#include <signal.h>
29
#include <time.h>
30
#include <errno.h>
31
#include <sys/time.h>
32

    
33
#ifndef _WIN32
34
#include <sys/times.h>
35
#include <sys/wait.h>
36
#include <termios.h>
37
#include <sys/poll.h>
38
#include <sys/mman.h>
39
#include <sys/ioctl.h>
40
#include <sys/socket.h>
41
#include <netinet/in.h>
42
#include <dirent.h>
43
#include <netdb.h>
44
#ifdef _BSD
45
#include <sys/stat.h>
46
#ifndef __APPLE__
47
#include <libutil.h>
48
#endif
49
#else
50
#ifndef __sun__
51
#include <linux/if.h>
52
#include <linux/if_tun.h>
53
#include <pty.h>
54
#include <malloc.h>
55
#include <linux/rtc.h>
56
#include <linux/ppdev.h>
57
#endif
58
#endif
59
#endif
60

    
61
#if defined(CONFIG_SLIRP)
62
#include "libslirp.h"
63
#endif
64

    
65
#ifdef _WIN32
66
#include <malloc.h>
67
#include <sys/timeb.h>
68
#include <windows.h>
69
#define getopt_long_only getopt_long
70
#define memalign(align, size) malloc(size)
71
#endif
72

    
73
#include "qemu_socket.h"
74

    
75
#ifdef CONFIG_SDL
76
#ifdef __APPLE__
77
#include <SDL/SDL.h>
78
#endif
79
#endif /* CONFIG_SDL */
80

    
81
#ifdef CONFIG_COCOA
82
#undef main
83
#define main qemu_main
84
#endif /* CONFIG_COCOA */
85

    
86
#include "disas.h"
87

    
88
#include "exec-all.h"
89

    
90
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
91

    
92
//#define DEBUG_UNUSED_IOPORT
93
//#define DEBUG_IOPORT
94

    
95
#if !defined(CONFIG_SOFTMMU)
96
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
97
#else
98
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
99
#endif
100

    
101
#ifdef TARGET_PPC
102
#define DEFAULT_RAM_SIZE 144
103
#else
104
#define DEFAULT_RAM_SIZE 128
105
#endif
106
/* in ms */
107
#define GUI_REFRESH_INTERVAL 30
108

    
109
/* Max number of USB devices that can be specified on the commandline.  */
110
#define MAX_USB_CMDLINE 8
111

    
112
/* XXX: use a two level table to limit memory usage */
113
#define MAX_IOPORTS 65536
114

    
115
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
116
char phys_ram_file[1024];
117
void *ioport_opaque[MAX_IOPORTS];
118
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
119
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
120
BlockDriverState *bs_table[MAX_DISKS], *fd_table[MAX_FD];
121
int vga_ram_size;
122
int bios_size;
123
static DisplayState display_state;
124
int nographic;
125
const char* keyboard_layout = NULL;
126
int64_t ticks_per_sec;
127
int boot_device = 'c';
128
int ram_size;
129
int pit_min_timer_count = 0;
130
int nb_nics;
131
NICInfo nd_table[MAX_NICS];
132
QEMUTimer *gui_timer;
133
int vm_running;
134
int rtc_utc = 1;
135
int cirrus_vga_enabled = 1;
136
#ifdef TARGET_SPARC
137
int graphic_width = 1024;
138
int graphic_height = 768;
139
#else
140
int graphic_width = 800;
141
int graphic_height = 600;
142
#endif
143
int graphic_depth = 15;
144
int full_screen = 0;
145
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
146
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
147
#ifdef TARGET_I386
148
int win2k_install_hack = 0;
149
#endif
150
int usb_enabled = 0;
151
static VLANState *first_vlan;
152
int smp_cpus = 1;
153
int vnc_display = -1;
154
#if defined(TARGET_SPARC)
155
#define MAX_CPUS 16
156
#elif defined(TARGET_I386)
157
#define MAX_CPUS 255
158
#else
159
#define MAX_CPUS 1
160
#endif
161
int acpi_enabled = 1;
162

    
163
/***********************************************************/
164
/* x86 ISA bus support */
165

    
166
target_phys_addr_t isa_mem_base = 0;
167
PicState2 *isa_pic;
168

    
169
uint32_t default_ioport_readb(void *opaque, uint32_t address)
170
{
171
#ifdef DEBUG_UNUSED_IOPORT
172
    fprintf(stderr, "inb: port=0x%04x\n", address);
173
#endif
174
    return 0xff;
175
}
176

    
177
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
178
{
179
#ifdef DEBUG_UNUSED_IOPORT
180
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
181
#endif
182
}
183

    
184
/* default is to make two byte accesses */
185
uint32_t default_ioport_readw(void *opaque, uint32_t address)
186
{
187
    uint32_t data;
188
    data = ioport_read_table[0][address](ioport_opaque[address], address);
189
    address = (address + 1) & (MAX_IOPORTS - 1);
190
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
191
    return data;
192
}
193

    
194
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
195
{
196
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
197
    address = (address + 1) & (MAX_IOPORTS - 1);
198
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
199
}
200

    
201
uint32_t default_ioport_readl(void *opaque, uint32_t address)
202
{
203
#ifdef DEBUG_UNUSED_IOPORT
204
    fprintf(stderr, "inl: port=0x%04x\n", address);
205
#endif
206
    return 0xffffffff;
207
}
208

    
209
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
210
{
211
#ifdef DEBUG_UNUSED_IOPORT
212
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
213
#endif
214
}
215

    
216
void init_ioports(void)
217
{
218
    int i;
219

    
220
    for(i = 0; i < MAX_IOPORTS; i++) {
221
        ioport_read_table[0][i] = default_ioport_readb;
222
        ioport_write_table[0][i] = default_ioport_writeb;
223
        ioport_read_table[1][i] = default_ioport_readw;
224
        ioport_write_table[1][i] = default_ioport_writew;
225
        ioport_read_table[2][i] = default_ioport_readl;
226
        ioport_write_table[2][i] = default_ioport_writel;
227
    }
228
}
229

    
230
/* size is the word size in byte */
231
int register_ioport_read(int start, int length, int size, 
232
                         IOPortReadFunc *func, void *opaque)
233
{
234
    int i, bsize;
235

    
236
    if (size == 1) {
237
        bsize = 0;
238
    } else if (size == 2) {
239
        bsize = 1;
240
    } else if (size == 4) {
241
        bsize = 2;
242
    } else {
243
        hw_error("register_ioport_read: invalid size");
244
        return -1;
245
    }
246
    for(i = start; i < start + length; i += size) {
247
        ioport_read_table[bsize][i] = func;
248
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
249
            hw_error("register_ioport_read: invalid opaque");
250
        ioport_opaque[i] = opaque;
251
    }
252
    return 0;
253
}
254

    
255
/* size is the word size in byte */
256
int register_ioport_write(int start, int length, int size, 
257
                          IOPortWriteFunc *func, void *opaque)
258
{
259
    int i, bsize;
260

    
261
    if (size == 1) {
262
        bsize = 0;
263
    } else if (size == 2) {
264
        bsize = 1;
265
    } else if (size == 4) {
266
        bsize = 2;
267
    } else {
268
        hw_error("register_ioport_write: invalid size");
269
        return -1;
270
    }
271
    for(i = start; i < start + length; i += size) {
272
        ioport_write_table[bsize][i] = func;
273
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
274
            hw_error("register_ioport_read: invalid opaque");
275
        ioport_opaque[i] = opaque;
276
    }
277
    return 0;
278
}
279

    
280
void isa_unassign_ioport(int start, int length)
281
{
282
    int i;
283

    
284
    for(i = start; i < start + length; i++) {
285
        ioport_read_table[0][i] = default_ioport_readb;
286
        ioport_read_table[1][i] = default_ioport_readw;
287
        ioport_read_table[2][i] = default_ioport_readl;
288

    
289
        ioport_write_table[0][i] = default_ioport_writeb;
290
        ioport_write_table[1][i] = default_ioport_writew;
291
        ioport_write_table[2][i] = default_ioport_writel;
292
    }
293
}
294

    
295
/***********************************************************/
296

    
297
void pstrcpy(char *buf, int buf_size, const char *str)
298
{
299
    int c;
300
    char *q = buf;
301

    
302
    if (buf_size <= 0)
303
        return;
304

    
305
    for(;;) {
306
        c = *str++;
307
        if (c == 0 || q >= buf + buf_size - 1)
308
            break;
309
        *q++ = c;
310
    }
311
    *q = '\0';
312
}
313

    
314
/* strcat and truncate. */
315
char *pstrcat(char *buf, int buf_size, const char *s)
316
{
317
    int len;
318
    len = strlen(buf);
319
    if (len < buf_size) 
320
        pstrcpy(buf + len, buf_size - len, s);
321
    return buf;
322
}
323

    
324
int strstart(const char *str, const char *val, const char **ptr)
325
{
326
    const char *p, *q;
327
    p = str;
328
    q = val;
329
    while (*q != '\0') {
330
        if (*p != *q)
331
            return 0;
332
        p++;
333
        q++;
334
    }
335
    if (ptr)
336
        *ptr = p;
337
    return 1;
338
}
339

    
340
void cpu_outb(CPUState *env, int addr, int val)
341
{
342
#ifdef DEBUG_IOPORT
343
    if (loglevel & CPU_LOG_IOPORT)
344
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
345
#endif    
346
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
347
#ifdef USE_KQEMU
348
    if (env)
349
        env->last_io_time = cpu_get_time_fast();
350
#endif
351
}
352

    
353
void cpu_outw(CPUState *env, int addr, int val)
354
{
355
#ifdef DEBUG_IOPORT
356
    if (loglevel & CPU_LOG_IOPORT)
357
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
358
#endif    
359
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
360
#ifdef USE_KQEMU
361
    if (env)
362
        env->last_io_time = cpu_get_time_fast();
363
#endif
364
}
365

    
366
void cpu_outl(CPUState *env, int addr, int val)
367
{
368
#ifdef DEBUG_IOPORT
369
    if (loglevel & CPU_LOG_IOPORT)
370
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
371
#endif
372
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
373
#ifdef USE_KQEMU
374
    if (env)
375
        env->last_io_time = cpu_get_time_fast();
376
#endif
377
}
378

    
379
int cpu_inb(CPUState *env, int addr)
380
{
381
    int val;
382
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
383
#ifdef DEBUG_IOPORT
384
    if (loglevel & CPU_LOG_IOPORT)
385
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
386
#endif
387
#ifdef USE_KQEMU
388
    if (env)
389
        env->last_io_time = cpu_get_time_fast();
390
#endif
391
    return val;
392
}
393

    
394
int cpu_inw(CPUState *env, int addr)
395
{
396
    int val;
397
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
398
#ifdef DEBUG_IOPORT
399
    if (loglevel & CPU_LOG_IOPORT)
400
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
401
#endif
402
#ifdef USE_KQEMU
403
    if (env)
404
        env->last_io_time = cpu_get_time_fast();
405
#endif
406
    return val;
407
}
408

    
409
int cpu_inl(CPUState *env, int addr)
410
{
411
    int val;
412
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
413
#ifdef DEBUG_IOPORT
414
    if (loglevel & CPU_LOG_IOPORT)
415
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
416
#endif
417
#ifdef USE_KQEMU
418
    if (env)
419
        env->last_io_time = cpu_get_time_fast();
420
#endif
421
    return val;
422
}
423

    
424
/***********************************************************/
425
void hw_error(const char *fmt, ...)
426
{
427
    va_list ap;
428
    CPUState *env;
429

    
430
    va_start(ap, fmt);
431
    fprintf(stderr, "qemu: hardware error: ");
432
    vfprintf(stderr, fmt, ap);
433
    fprintf(stderr, "\n");
434
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
435
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
436
#ifdef TARGET_I386
437
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
438
#else
439
        cpu_dump_state(env, stderr, fprintf, 0);
440
#endif
441
    }
442
    va_end(ap);
443
    abort();
444
}
445

    
446
/***********************************************************/
447
/* keyboard/mouse */
448

    
449
static QEMUPutKBDEvent *qemu_put_kbd_event;
450
static void *qemu_put_kbd_event_opaque;
451
static QEMUPutMouseEvent *qemu_put_mouse_event;
452
static void *qemu_put_mouse_event_opaque;
453
static int qemu_put_mouse_event_absolute;
454

    
455
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
456
{
457
    qemu_put_kbd_event_opaque = opaque;
458
    qemu_put_kbd_event = func;
459
}
460

    
461
void qemu_add_mouse_event_handler(QEMUPutMouseEvent *func, void *opaque, int absolute)
462
{
463
    qemu_put_mouse_event_opaque = opaque;
464
    qemu_put_mouse_event = func;
465
    qemu_put_mouse_event_absolute = absolute;
466
}
467

    
468
void kbd_put_keycode(int keycode)
469
{
470
    if (qemu_put_kbd_event) {
471
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
472
    }
473
}
474

    
475
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
476
{
477
    if (qemu_put_mouse_event) {
478
        qemu_put_mouse_event(qemu_put_mouse_event_opaque, 
479
                             dx, dy, dz, buttons_state);
480
    }
481
}
482

    
483
int kbd_mouse_is_absolute(void)
484
{
485
    return qemu_put_mouse_event_absolute;
486
}
487

    
488
/***********************************************************/
489
/* timers */
490

    
491
#if defined(__powerpc__)
492

    
493
static inline uint32_t get_tbl(void) 
494
{
495
    uint32_t tbl;
496
    asm volatile("mftb %0" : "=r" (tbl));
497
    return tbl;
498
}
499

    
500
static inline uint32_t get_tbu(void) 
501
{
502
        uint32_t tbl;
503
        asm volatile("mftbu %0" : "=r" (tbl));
504
        return tbl;
505
}
506

    
507
int64_t cpu_get_real_ticks(void)
508
{
509
    uint32_t l, h, h1;
510
    /* NOTE: we test if wrapping has occurred */
511
    do {
512
        h = get_tbu();
513
        l = get_tbl();
514
        h1 = get_tbu();
515
    } while (h != h1);
516
    return ((int64_t)h << 32) | l;
517
}
518

    
519
#elif defined(__i386__)
520

    
521
int64_t cpu_get_real_ticks(void)
522
{
523
#ifdef _WIN32
524
    LARGE_INTEGER ti;
525
    QueryPerformanceCounter(&ti);
526
    return ti.QuadPart;
527
#else
528
    int64_t val;
529
    asm volatile ("rdtsc" : "=A" (val));
530
    return val;
531
#endif
532
}
533

    
534
#elif defined(__x86_64__)
535

    
536
int64_t cpu_get_real_ticks(void)
537
{
538
    uint32_t low,high;
539
    int64_t val;
540
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
541
    val = high;
542
    val <<= 32;
543
    val |= low;
544
    return val;
545
}
546

    
547
#elif defined(__ia64)
548

    
549
int64_t cpu_get_real_ticks(void)
550
{
551
        int64_t val;
552
        asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
553
        return val;
554
}
555

    
556
#elif defined(__s390__)
557

    
558
int64_t cpu_get_real_ticks(void)
559
{
560
    int64_t val;
561
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
562
    return val;
563
}
564

    
565
#else
566
#error unsupported CPU
567
#endif
568

    
569
static int64_t cpu_ticks_prev;
570
static int64_t cpu_ticks_offset;
571
static int cpu_ticks_enabled;
572

    
573
static inline int64_t cpu_get_ticks(void)
574
{
575
    if (!cpu_ticks_enabled) {
576
        return cpu_ticks_offset;
577
    } else {
578
        int64_t ticks;
579
        ticks = cpu_get_real_ticks();
580
        if (cpu_ticks_prev > ticks) {
581
            /* Note: non increasing ticks may happen if the host uses
582
               software suspend */
583
            cpu_ticks_offset += cpu_ticks_prev - ticks;
584
        }
585
        cpu_ticks_prev = ticks;
586
        return ticks + cpu_ticks_offset;
587
    }
588
}
589

    
590
/* enable cpu_get_ticks() */
591
void cpu_enable_ticks(void)
592
{
593
    if (!cpu_ticks_enabled) {
594
        cpu_ticks_offset -= cpu_get_real_ticks();
595
        cpu_ticks_enabled = 1;
596
    }
597
}
598

    
599
/* disable cpu_get_ticks() : the clock is stopped. You must not call
600
   cpu_get_ticks() after that.  */
601
void cpu_disable_ticks(void)
602
{
603
    if (cpu_ticks_enabled) {
604
        cpu_ticks_offset = cpu_get_ticks();
605
        cpu_ticks_enabled = 0;
606
    }
607
}
608

    
609
#ifdef _WIN32
610
void cpu_calibrate_ticks(void)
611
{
612
    LARGE_INTEGER freq;
613
    int ret;
614

    
615
    ret = QueryPerformanceFrequency(&freq);
616
    if (ret == 0) {
617
        fprintf(stderr, "Could not calibrate ticks\n");
618
        exit(1);
619
    }
620
    ticks_per_sec = freq.QuadPart;
621
}
622

    
623
#else
624
static int64_t get_clock(void)
625
{
626
    struct timeval tv;
627
    gettimeofday(&tv, NULL);
628
    return tv.tv_sec * 1000000LL + tv.tv_usec;
629
}
630

    
631
void cpu_calibrate_ticks(void)
632
{
633
    int64_t usec, ticks;
634

    
635
    usec = get_clock();
636
    ticks = cpu_get_real_ticks();
637
    usleep(50 * 1000);
638
    usec = get_clock() - usec;
639
    ticks = cpu_get_real_ticks() - ticks;
640
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
641
}
642
#endif /* !_WIN32 */
643

    
644
/* compute with 96 bit intermediate result: (a*b)/c */
645
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
646
{
647
    union {
648
        uint64_t ll;
649
        struct {
650
#ifdef WORDS_BIGENDIAN
651
            uint32_t high, low;
652
#else
653
            uint32_t low, high;
654
#endif            
655
        } l;
656
    } u, res;
657
    uint64_t rl, rh;
658

    
659
    u.ll = a;
660
    rl = (uint64_t)u.l.low * (uint64_t)b;
661
    rh = (uint64_t)u.l.high * (uint64_t)b;
662
    rh += (rl >> 32);
663
    res.l.high = rh / c;
664
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
665
    return res.ll;
666
}
667

    
668
#define QEMU_TIMER_REALTIME 0
669
#define QEMU_TIMER_VIRTUAL  1
670

    
671
struct QEMUClock {
672
    int type;
673
    /* XXX: add frequency */
674
};
675

    
676
struct QEMUTimer {
677
    QEMUClock *clock;
678
    int64_t expire_time;
679
    QEMUTimerCB *cb;
680
    void *opaque;
681
    struct QEMUTimer *next;
682
};
683

    
684
QEMUClock *rt_clock;
685
QEMUClock *vm_clock;
686

    
687
static QEMUTimer *active_timers[2];
688
#ifdef _WIN32
689
static MMRESULT timerID;
690
static HANDLE host_alarm = NULL;
691
static unsigned int period = 1;
692
#else
693
/* frequency of the times() clock tick */
694
static int timer_freq;
695
#endif
696

    
697
QEMUClock *qemu_new_clock(int type)
698
{
699
    QEMUClock *clock;
700
    clock = qemu_mallocz(sizeof(QEMUClock));
701
    if (!clock)
702
        return NULL;
703
    clock->type = type;
704
    return clock;
705
}
706

    
707
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
708
{
709
    QEMUTimer *ts;
710

    
711
    ts = qemu_mallocz(sizeof(QEMUTimer));
712
    ts->clock = clock;
713
    ts->cb = cb;
714
    ts->opaque = opaque;
715
    return ts;
716
}
717

    
718
void qemu_free_timer(QEMUTimer *ts)
719
{
720
    qemu_free(ts);
721
}
722

    
723
/* stop a timer, but do not dealloc it */
724
void qemu_del_timer(QEMUTimer *ts)
725
{
726
    QEMUTimer **pt, *t;
727

    
728
    /* NOTE: this code must be signal safe because
729
       qemu_timer_expired() can be called from a signal. */
730
    pt = &active_timers[ts->clock->type];
731
    for(;;) {
732
        t = *pt;
733
        if (!t)
734
            break;
735
        if (t == ts) {
736
            *pt = t->next;
737
            break;
738
        }
739
        pt = &t->next;
740
    }
741
}
742

    
743
/* modify the current timer so that it will be fired when current_time
744
   >= expire_time. The corresponding callback will be called. */
745
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
746
{
747
    QEMUTimer **pt, *t;
748

    
749
    qemu_del_timer(ts);
750

    
751
    /* add the timer in the sorted list */
752
    /* NOTE: this code must be signal safe because
753
       qemu_timer_expired() can be called from a signal. */
754
    pt = &active_timers[ts->clock->type];
755
    for(;;) {
756
        t = *pt;
757
        if (!t)
758
            break;
759
        if (t->expire_time > expire_time) 
760
            break;
761
        pt = &t->next;
762
    }
763
    ts->expire_time = expire_time;
764
    ts->next = *pt;
765
    *pt = ts;
766
}
767

    
768
int qemu_timer_pending(QEMUTimer *ts)
769
{
770
    QEMUTimer *t;
771
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
772
        if (t == ts)
773
            return 1;
774
    }
775
    return 0;
776
}
777

    
778
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
779
{
780
    if (!timer_head)
781
        return 0;
782
    return (timer_head->expire_time <= current_time);
783
}
784

    
785
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
786
{
787
    QEMUTimer *ts;
788
    
789
    for(;;) {
790
        ts = *ptimer_head;
791
        if (!ts || ts->expire_time > current_time)
792
            break;
793
        /* remove timer from the list before calling the callback */
794
        *ptimer_head = ts->next;
795
        ts->next = NULL;
796
        
797
        /* run the callback (the timer list can be modified) */
798
        ts->cb(ts->opaque);
799
    }
800
}
801

    
802
int64_t qemu_get_clock(QEMUClock *clock)
803
{
804
    switch(clock->type) {
805
    case QEMU_TIMER_REALTIME:
806
#ifdef _WIN32
807
        return GetTickCount();
808
#else
809
        {
810
            struct tms tp;
811

    
812
            /* Note that using gettimeofday() is not a good solution
813
               for timers because its value change when the date is
814
               modified. */
815
            if (timer_freq == 100) {
816
                return times(&tp) * 10;
817
            } else {
818
                return ((int64_t)times(&tp) * 1000) / timer_freq;
819
            }
820
        }
821
#endif
822
    default:
823
    case QEMU_TIMER_VIRTUAL:
824
        return cpu_get_ticks();
825
    }
826
}
827

    
828
/* save a timer */
829
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
830
{
831
    uint64_t expire_time;
832

    
833
    if (qemu_timer_pending(ts)) {
834
        expire_time = ts->expire_time;
835
    } else {
836
        expire_time = -1;
837
    }
838
    qemu_put_be64(f, expire_time);
839
}
840

    
841
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
842
{
843
    uint64_t expire_time;
844

    
845
    expire_time = qemu_get_be64(f);
846
    if (expire_time != -1) {
847
        qemu_mod_timer(ts, expire_time);
848
    } else {
849
        qemu_del_timer(ts);
850
    }
851
}
852

    
853
static void timer_save(QEMUFile *f, void *opaque)
854
{
855
    if (cpu_ticks_enabled) {
856
        hw_error("cannot save state if virtual timers are running");
857
    }
858
    qemu_put_be64s(f, &cpu_ticks_offset);
859
    qemu_put_be64s(f, &ticks_per_sec);
860
}
861

    
862
static int timer_load(QEMUFile *f, void *opaque, int version_id)
863
{
864
    if (version_id != 1)
865
        return -EINVAL;
866
    if (cpu_ticks_enabled) {
867
        return -EINVAL;
868
    }
869
    qemu_get_be64s(f, &cpu_ticks_offset);
870
    qemu_get_be64s(f, &ticks_per_sec);
871
    return 0;
872
}
873

    
874
#ifdef _WIN32
875
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, 
876
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
877
#else
878
static void host_alarm_handler(int host_signum)
879
#endif
880
{
881
#if 0
882
#define DISP_FREQ 1000
883
    {
884
        static int64_t delta_min = INT64_MAX;
885
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
886
        static int count;
887
        ti = qemu_get_clock(vm_clock);
888
        if (last_clock != 0) {
889
            delta = ti - last_clock;
890
            if (delta < delta_min)
891
                delta_min = delta;
892
            if (delta > delta_max)
893
                delta_max = delta;
894
            delta_cum += delta;
895
            if (++count == DISP_FREQ) {
896
                printf("timer: min=%lld us max=%lld us avg=%lld us avg_freq=%0.3f Hz\n",
897
                       muldiv64(delta_min, 1000000, ticks_per_sec),
898
                       muldiv64(delta_max, 1000000, ticks_per_sec),
899
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
900
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
901
                count = 0;
902
                delta_min = INT64_MAX;
903
                delta_max = 0;
904
                delta_cum = 0;
905
            }
906
        }
907
        last_clock = ti;
908
    }
909
#endif
910
    if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
911
                           qemu_get_clock(vm_clock)) ||
912
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
913
                           qemu_get_clock(rt_clock))) {
914
#ifdef _WIN32
915
        SetEvent(host_alarm);
916
#endif
917
        CPUState *env = cpu_single_env;
918
        if (env) {
919
            /* stop the currently executing cpu because a timer occured */
920
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
921
#ifdef USE_KQEMU
922
            if (env->kqemu_enabled) {
923
                kqemu_cpu_interrupt(env);
924
            }
925
#endif
926
        }
927
    }
928
}
929

    
930
#ifndef _WIN32
931

    
932
#if defined(__linux__)
933

    
934
#define RTC_FREQ 1024
935

    
936
static int rtc_fd;
937

    
938
static int start_rtc_timer(void)
939
{
940
    rtc_fd = open("/dev/rtc", O_RDONLY);
941
    if (rtc_fd < 0)
942
        return -1;
943
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
944
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
945
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
946
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
947
        goto fail;
948
    }
949
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
950
    fail:
951
        close(rtc_fd);
952
        return -1;
953
    }
954
    pit_min_timer_count = PIT_FREQ / RTC_FREQ;
955
    return 0;
956
}
957

    
958
#else
959

    
960
static int start_rtc_timer(void)
961
{
962
    return -1;
963
}
964

    
965
#endif /* !defined(__linux__) */
966

    
967
#endif /* !defined(_WIN32) */
968

    
969
static void init_timers(void)
970
{
971
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
972
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
973

    
974
#ifdef _WIN32
975
    {
976
        int count=0;
977
        TIMECAPS tc;
978

    
979
        ZeroMemory(&tc, sizeof(TIMECAPS));
980
        timeGetDevCaps(&tc, sizeof(TIMECAPS));
981
        if (period < tc.wPeriodMin)
982
            period = tc.wPeriodMin;
983
        timeBeginPeriod(period);
984
        timerID = timeSetEvent(1,     // interval (ms)
985
                               period,     // resolution
986
                               host_alarm_handler, // function
987
                               (DWORD)&count,  // user parameter
988
                               TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
989
         if( !timerID ) {
990
            perror("failed timer alarm");
991
            exit(1);
992
         }
993
        host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
994
        if (!host_alarm) {
995
            perror("failed CreateEvent");
996
            exit(1);
997
        }
998
        ResetEvent(host_alarm);
999
    }
1000
    pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1001
#else
1002
    {
1003
        struct sigaction act;
1004
        struct itimerval itv;
1005
        
1006
        /* get times() syscall frequency */
1007
        timer_freq = sysconf(_SC_CLK_TCK);
1008
        
1009
        /* timer signal */
1010
        sigfillset(&act.sa_mask);
1011
       act.sa_flags = 0;
1012
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
1013
        act.sa_flags |= SA_ONSTACK;
1014
#endif
1015
        act.sa_handler = host_alarm_handler;
1016
        sigaction(SIGALRM, &act, NULL);
1017

    
1018
        itv.it_interval.tv_sec = 0;
1019
        itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1020
        itv.it_value.tv_sec = 0;
1021
        itv.it_value.tv_usec = 10 * 1000;
1022
        setitimer(ITIMER_REAL, &itv, NULL);
1023
        /* we probe the tick duration of the kernel to inform the user if
1024
           the emulated kernel requested a too high timer frequency */
1025
        getitimer(ITIMER_REAL, &itv);
1026

    
1027
#if defined(__linux__)
1028
        /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1029
           have timers with 1 ms resolution. The correct solution will
1030
           be to use the POSIX real time timers available in recent
1031
           2.6 kernels */
1032
        if (itv.it_interval.tv_usec > 1000 || 1) {
1033
            /* try to use /dev/rtc to have a faster timer */
1034
            if (start_rtc_timer() < 0)
1035
                goto use_itimer;
1036
            /* disable itimer */
1037
            itv.it_interval.tv_sec = 0;
1038
            itv.it_interval.tv_usec = 0;
1039
            itv.it_value.tv_sec = 0;
1040
            itv.it_value.tv_usec = 0;
1041
            setitimer(ITIMER_REAL, &itv, NULL);
1042

    
1043
            /* use the RTC */
1044
            sigaction(SIGIO, &act, NULL);
1045
            fcntl(rtc_fd, F_SETFL, O_ASYNC);
1046
            fcntl(rtc_fd, F_SETOWN, getpid());
1047
        } else 
1048
#endif /* defined(__linux__) */
1049
        {
1050
        use_itimer:
1051
            pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * 
1052
                                   PIT_FREQ) / 1000000;
1053
        }
1054
    }
1055
#endif
1056
}
1057

    
1058
void quit_timers(void)
1059
{
1060
#ifdef _WIN32
1061
    timeKillEvent(timerID);
1062
    timeEndPeriod(period);
1063
    if (host_alarm) {
1064
        CloseHandle(host_alarm);
1065
        host_alarm = NULL;
1066
    }
1067
#endif
1068
}
1069

    
1070
/***********************************************************/
1071
/* character device */
1072

    
1073
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1074
{
1075
    return s->chr_write(s, buf, len);
1076
}
1077

    
1078
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1079
{
1080
    if (!s->chr_ioctl)
1081
        return -ENOTSUP;
1082
    return s->chr_ioctl(s, cmd, arg);
1083
}
1084

    
1085
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1086
{
1087
    char buf[4096];
1088
    va_list ap;
1089
    va_start(ap, fmt);
1090
    vsnprintf(buf, sizeof(buf), fmt, ap);
1091
    qemu_chr_write(s, buf, strlen(buf));
1092
    va_end(ap);
1093
}
1094

    
1095
void qemu_chr_send_event(CharDriverState *s, int event)
1096
{
1097
    if (s->chr_send_event)
1098
        s->chr_send_event(s, event);
1099
}
1100

    
1101
void qemu_chr_add_read_handler(CharDriverState *s, 
1102
                               IOCanRWHandler *fd_can_read, 
1103
                               IOReadHandler *fd_read, void *opaque)
1104
{
1105
    s->chr_add_read_handler(s, fd_can_read, fd_read, opaque);
1106
}
1107
             
1108
void qemu_chr_add_event_handler(CharDriverState *s, IOEventHandler *chr_event)
1109
{
1110
    s->chr_event = chr_event;
1111
}
1112

    
1113
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1114
{
1115
    return len;
1116
}
1117

    
1118
static void null_chr_add_read_handler(CharDriverState *chr, 
1119
                                    IOCanRWHandler *fd_can_read, 
1120
                                    IOReadHandler *fd_read, void *opaque)
1121
{
1122
}
1123

    
1124
CharDriverState *qemu_chr_open_null(void)
1125
{
1126
    CharDriverState *chr;
1127

    
1128
    chr = qemu_mallocz(sizeof(CharDriverState));
1129
    if (!chr)
1130
        return NULL;
1131
    chr->chr_write = null_chr_write;
1132
    chr->chr_add_read_handler = null_chr_add_read_handler;
1133
    return chr;
1134
}
1135

    
1136
#ifdef _WIN32
1137

    
1138
static void socket_cleanup(void)
1139
{
1140
    WSACleanup();
1141
}
1142

    
1143
static int socket_init(void)
1144
{
1145
    WSADATA Data;
1146
    int ret, err;
1147

    
1148
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1149
    if (ret != 0) {
1150
        err = WSAGetLastError();
1151
        fprintf(stderr, "WSAStartup: %d\n", err);
1152
        return -1;
1153
    }
1154
    atexit(socket_cleanup);
1155
    return 0;
1156
}
1157

    
1158
static int send_all(int fd, const uint8_t *buf, int len1)
1159
{
1160
    int ret, len;
1161
    
1162
    len = len1;
1163
    while (len > 0) {
1164
        ret = send(fd, buf, len, 0);
1165
        if (ret < 0) {
1166
            int errno;
1167
            errno = WSAGetLastError();
1168
            if (errno != WSAEWOULDBLOCK) {
1169
                return -1;
1170
            }
1171
        } else if (ret == 0) {
1172
            break;
1173
        } else {
1174
            buf += ret;
1175
            len -= ret;
1176
        }
1177
    }
1178
    return len1 - len;
1179
}
1180

    
1181
void socket_set_nonblock(int fd)
1182
{
1183
    unsigned long opt = 1;
1184
    ioctlsocket(fd, FIONBIO, &opt);
1185
}
1186

    
1187
#else
1188

    
1189
static int unix_write(int fd, const uint8_t *buf, int len1)
1190
{
1191
    int ret, len;
1192

    
1193
    len = len1;
1194
    while (len > 0) {
1195
        ret = write(fd, buf, len);
1196
        if (ret < 0) {
1197
            if (errno != EINTR && errno != EAGAIN)
1198
                return -1;
1199
        } else if (ret == 0) {
1200
            break;
1201
        } else {
1202
            buf += ret;
1203
            len -= ret;
1204
        }
1205
    }
1206
    return len1 - len;
1207
}
1208

    
1209
static inline int send_all(int fd, const uint8_t *buf, int len1)
1210
{
1211
    return unix_write(fd, buf, len1);
1212
}
1213

    
1214
void socket_set_nonblock(int fd)
1215
{
1216
    fcntl(fd, F_SETFL, O_NONBLOCK);
1217
}
1218
#endif /* !_WIN32 */
1219

    
1220
#ifndef _WIN32
1221

    
1222
typedef struct {
1223
    int fd_in, fd_out;
1224
    IOCanRWHandler *fd_can_read; 
1225
    IOReadHandler *fd_read;
1226
    void *fd_opaque;
1227
    int max_size;
1228
} FDCharDriver;
1229

    
1230
#define STDIO_MAX_CLIENTS 2
1231

    
1232
static int stdio_nb_clients;
1233
static CharDriverState *stdio_clients[STDIO_MAX_CLIENTS];
1234

    
1235
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1236
{
1237
    FDCharDriver *s = chr->opaque;
1238
    return unix_write(s->fd_out, buf, len);
1239
}
1240

    
1241
static int fd_chr_read_poll(void *opaque)
1242
{
1243
    CharDriverState *chr = opaque;
1244
    FDCharDriver *s = chr->opaque;
1245

    
1246
    s->max_size = s->fd_can_read(s->fd_opaque);
1247
    return s->max_size;
1248
}
1249

    
1250
static void fd_chr_read(void *opaque)
1251
{
1252
    CharDriverState *chr = opaque;
1253
    FDCharDriver *s = chr->opaque;
1254
    int size, len;
1255
    uint8_t buf[1024];
1256
    
1257
    len = sizeof(buf);
1258
    if (len > s->max_size)
1259
        len = s->max_size;
1260
    if (len == 0)
1261
        return;
1262
    size = read(s->fd_in, buf, len);
1263
    if (size > 0) {
1264
        s->fd_read(s->fd_opaque, buf, size);
1265
    }
1266
}
1267

    
1268
static void fd_chr_add_read_handler(CharDriverState *chr, 
1269
                                    IOCanRWHandler *fd_can_read, 
1270
                                    IOReadHandler *fd_read, void *opaque)
1271
{
1272
    FDCharDriver *s = chr->opaque;
1273

    
1274
    if (s->fd_in >= 0) {
1275
        s->fd_can_read = fd_can_read;
1276
        s->fd_read = fd_read;
1277
        s->fd_opaque = opaque;
1278
        if (nographic && s->fd_in == 0) {
1279
        } else {
1280
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll, 
1281
                                 fd_chr_read, NULL, chr);
1282
        }
1283
    }
1284
}
1285

    
1286
/* open a character device to a unix fd */
1287
CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1288
{
1289
    CharDriverState *chr;
1290
    FDCharDriver *s;
1291

    
1292
    chr = qemu_mallocz(sizeof(CharDriverState));
1293
    if (!chr)
1294
        return NULL;
1295
    s = qemu_mallocz(sizeof(FDCharDriver));
1296
    if (!s) {
1297
        free(chr);
1298
        return NULL;
1299
    }
1300
    s->fd_in = fd_in;
1301
    s->fd_out = fd_out;
1302
    chr->opaque = s;
1303
    chr->chr_write = fd_chr_write;
1304
    chr->chr_add_read_handler = fd_chr_add_read_handler;
1305
    return chr;
1306
}
1307

    
1308
CharDriverState *qemu_chr_open_file_out(const char *file_out)
1309
{
1310
    int fd_out;
1311

    
1312
    fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1313
    if (fd_out < 0)
1314
        return NULL;
1315
    return qemu_chr_open_fd(-1, fd_out);
1316
}
1317

    
1318
CharDriverState *qemu_chr_open_pipe(const char *filename)
1319
{
1320
    int fd;
1321

    
1322
    fd = open(filename, O_RDWR | O_BINARY);
1323
    if (fd < 0)
1324
        return NULL;
1325
    return qemu_chr_open_fd(fd, fd);
1326
}
1327

    
1328

    
1329
/* for STDIO, we handle the case where several clients use it
1330
   (nographic mode) */
1331

    
1332
#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1333

    
1334
#define TERM_FIFO_MAX_SIZE 1
1335

    
1336
static int term_got_escape, client_index;
1337
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1338
int term_fifo_size;
1339

    
1340
void term_print_help(void)
1341
{
1342
    printf("\n"
1343
           "C-a h    print this help\n"
1344
           "C-a x    exit emulator\n"
1345
           "C-a s    save disk data back to file (if -snapshot)\n"
1346
           "C-a b    send break (magic sysrq)\n"
1347
           "C-a c    switch between console and monitor\n"
1348
           "C-a C-a  send C-a\n"
1349
           );
1350
}
1351

    
1352
/* called when a char is received */
1353
static void stdio_received_byte(int ch)
1354
{
1355
    if (term_got_escape) {
1356
        term_got_escape = 0;
1357
        switch(ch) {
1358
        case 'h':
1359
            term_print_help();
1360
            break;
1361
        case 'x':
1362
            exit(0);
1363
            break;
1364
        case 's': 
1365
            {
1366
                int i;
1367
                for (i = 0; i < MAX_DISKS; i++) {
1368
                    if (bs_table[i])
1369
                        bdrv_commit(bs_table[i]);
1370
                }
1371
            }
1372
            break;
1373
        case 'b':
1374
            if (client_index < stdio_nb_clients) {
1375
                CharDriverState *chr;
1376
                FDCharDriver *s;
1377

    
1378
                chr = stdio_clients[client_index];
1379
                s = chr->opaque;
1380
                chr->chr_event(s->fd_opaque, CHR_EVENT_BREAK);
1381
            }
1382
            break;
1383
        case 'c':
1384
            client_index++;
1385
            if (client_index >= stdio_nb_clients)
1386
                client_index = 0;
1387
            if (client_index == 0) {
1388
                /* send a new line in the monitor to get the prompt */
1389
                ch = '\r';
1390
                goto send_char;
1391
            }
1392
            break;
1393
        case TERM_ESCAPE:
1394
            goto send_char;
1395
        }
1396
    } else if (ch == TERM_ESCAPE) {
1397
        term_got_escape = 1;
1398
    } else {
1399
    send_char:
1400
        if (client_index < stdio_nb_clients) {
1401
            uint8_t buf[1];
1402
            CharDriverState *chr;
1403
            FDCharDriver *s;
1404
            
1405
            chr = stdio_clients[client_index];
1406
            s = chr->opaque;
1407
            if (s->fd_can_read(s->fd_opaque) > 0) {
1408
                buf[0] = ch;
1409
                s->fd_read(s->fd_opaque, buf, 1);
1410
            } else if (term_fifo_size == 0) {
1411
                term_fifo[term_fifo_size++] = ch;
1412
            }
1413
        }
1414
    }
1415
}
1416

    
1417
static int stdio_read_poll(void *opaque)
1418
{
1419
    CharDriverState *chr;
1420
    FDCharDriver *s;
1421

    
1422
    if (client_index < stdio_nb_clients) {
1423
        chr = stdio_clients[client_index];
1424
        s = chr->opaque;
1425
        /* try to flush the queue if needed */
1426
        if (term_fifo_size != 0 && s->fd_can_read(s->fd_opaque) > 0) {
1427
            s->fd_read(s->fd_opaque, term_fifo, 1);
1428
            term_fifo_size = 0;
1429
        }
1430
        /* see if we can absorb more chars */
1431
        if (term_fifo_size == 0)
1432
            return 1;
1433
        else
1434
            return 0;
1435
    } else {
1436
        return 1;
1437
    }
1438
}
1439

    
1440
static void stdio_read(void *opaque)
1441
{
1442
    int size;
1443
    uint8_t buf[1];
1444
    
1445
    size = read(0, buf, 1);
1446
    if (size > 0)
1447
        stdio_received_byte(buf[0]);
1448
}
1449

    
1450
/* init terminal so that we can grab keys */
1451
static struct termios oldtty;
1452
static int old_fd0_flags;
1453

    
1454
static void term_exit(void)
1455
{
1456
    tcsetattr (0, TCSANOW, &oldtty);
1457
    fcntl(0, F_SETFL, old_fd0_flags);
1458
}
1459

    
1460
static void term_init(void)
1461
{
1462
    struct termios tty;
1463

    
1464
    tcgetattr (0, &tty);
1465
    oldtty = tty;
1466
    old_fd0_flags = fcntl(0, F_GETFL);
1467

    
1468
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1469
                          |INLCR|IGNCR|ICRNL|IXON);
1470
    tty.c_oflag |= OPOST;
1471
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1472
    /* if graphical mode, we allow Ctrl-C handling */
1473
    if (nographic)
1474
        tty.c_lflag &= ~ISIG;
1475
    tty.c_cflag &= ~(CSIZE|PARENB);
1476
    tty.c_cflag |= CS8;
1477
    tty.c_cc[VMIN] = 1;
1478
    tty.c_cc[VTIME] = 0;
1479
    
1480
    tcsetattr (0, TCSANOW, &tty);
1481

    
1482
    atexit(term_exit);
1483

    
1484
    fcntl(0, F_SETFL, O_NONBLOCK);
1485
}
1486

    
1487
CharDriverState *qemu_chr_open_stdio(void)
1488
{
1489
    CharDriverState *chr;
1490

    
1491
    if (nographic) {
1492
        if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1493
            return NULL;
1494
        chr = qemu_chr_open_fd(0, 1);
1495
        if (stdio_nb_clients == 0)
1496
            qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, NULL);
1497
        client_index = stdio_nb_clients;
1498
    } else {
1499
        if (stdio_nb_clients != 0)
1500
            return NULL;
1501
        chr = qemu_chr_open_fd(0, 1);
1502
    }
1503
    stdio_clients[stdio_nb_clients++] = chr;
1504
    if (stdio_nb_clients == 1) {
1505
        /* set the terminal in raw mode */
1506
        term_init();
1507
    }
1508
    return chr;
1509
}
1510

    
1511
#if defined(__linux__)
1512
CharDriverState *qemu_chr_open_pty(void)
1513
{
1514
    struct termios tty;
1515
    char slave_name[1024];
1516
    int master_fd, slave_fd;
1517
    
1518
    /* Not satisfying */
1519
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1520
        return NULL;
1521
    }
1522
    
1523
    /* Disabling local echo and line-buffered output */
1524
    tcgetattr (master_fd, &tty);
1525
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1526
    tty.c_cc[VMIN] = 1;
1527
    tty.c_cc[VTIME] = 0;
1528
    tcsetattr (master_fd, TCSAFLUSH, &tty);
1529

    
1530
    fprintf(stderr, "char device redirected to %s\n", slave_name);
1531
    return qemu_chr_open_fd(master_fd, master_fd);
1532
}
1533

    
1534
static void tty_serial_init(int fd, int speed, 
1535
                            int parity, int data_bits, int stop_bits)
1536
{
1537
    struct termios tty;
1538
    speed_t spd;
1539

    
1540
#if 0
1541
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n", 
1542
           speed, parity, data_bits, stop_bits);
1543
#endif
1544
    tcgetattr (fd, &tty);
1545

    
1546
    switch(speed) {
1547
    case 50:
1548
        spd = B50;
1549
        break;
1550
    case 75:
1551
        spd = B75;
1552
        break;
1553
    case 300:
1554
        spd = B300;
1555
        break;
1556
    case 600:
1557
        spd = B600;
1558
        break;
1559
    case 1200:
1560
        spd = B1200;
1561
        break;
1562
    case 2400:
1563
        spd = B2400;
1564
        break;
1565
    case 4800:
1566
        spd = B4800;
1567
        break;
1568
    case 9600:
1569
        spd = B9600;
1570
        break;
1571
    case 19200:
1572
        spd = B19200;
1573
        break;
1574
    case 38400:
1575
        spd = B38400;
1576
        break;
1577
    case 57600:
1578
        spd = B57600;
1579
        break;
1580
    default:
1581
    case 115200:
1582
        spd = B115200;
1583
        break;
1584
    }
1585

    
1586
    cfsetispeed(&tty, spd);
1587
    cfsetospeed(&tty, spd);
1588

    
1589
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1590
                          |INLCR|IGNCR|ICRNL|IXON);
1591
    tty.c_oflag |= OPOST;
1592
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1593
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS);
1594
    switch(data_bits) {
1595
    default:
1596
    case 8:
1597
        tty.c_cflag |= CS8;
1598
        break;
1599
    case 7:
1600
        tty.c_cflag |= CS7;
1601
        break;
1602
    case 6:
1603
        tty.c_cflag |= CS6;
1604
        break;
1605
    case 5:
1606
        tty.c_cflag |= CS5;
1607
        break;
1608
    }
1609
    switch(parity) {
1610
    default:
1611
    case 'N':
1612
        break;
1613
    case 'E':
1614
        tty.c_cflag |= PARENB;
1615
        break;
1616
    case 'O':
1617
        tty.c_cflag |= PARENB | PARODD;
1618
        break;
1619
    }
1620
    
1621
    tcsetattr (fd, TCSANOW, &tty);
1622
}
1623

    
1624
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1625
{
1626
    FDCharDriver *s = chr->opaque;
1627
    
1628
    switch(cmd) {
1629
    case CHR_IOCTL_SERIAL_SET_PARAMS:
1630
        {
1631
            QEMUSerialSetParams *ssp = arg;
1632
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity, 
1633
                            ssp->data_bits, ssp->stop_bits);
1634
        }
1635
        break;
1636
    case CHR_IOCTL_SERIAL_SET_BREAK:
1637
        {
1638
            int enable = *(int *)arg;
1639
            if (enable)
1640
                tcsendbreak(s->fd_in, 1);
1641
        }
1642
        break;
1643
    default:
1644
        return -ENOTSUP;
1645
    }
1646
    return 0;
1647
}
1648

    
1649
CharDriverState *qemu_chr_open_tty(const char *filename)
1650
{
1651
    CharDriverState *chr;
1652
    int fd;
1653

    
1654
    fd = open(filename, O_RDWR | O_NONBLOCK);
1655
    if (fd < 0)
1656
        return NULL;
1657
    fcntl(fd, F_SETFL, O_NONBLOCK);
1658
    tty_serial_init(fd, 115200, 'N', 8, 1);
1659
    chr = qemu_chr_open_fd(fd, fd);
1660
    if (!chr)
1661
        return NULL;
1662
    chr->chr_ioctl = tty_serial_ioctl;
1663
    return chr;
1664
}
1665

    
1666
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1667
{
1668
    int fd = (int)chr->opaque;
1669
    uint8_t b;
1670

    
1671
    switch(cmd) {
1672
    case CHR_IOCTL_PP_READ_DATA:
1673
        if (ioctl(fd, PPRDATA, &b) < 0)
1674
            return -ENOTSUP;
1675
        *(uint8_t *)arg = b;
1676
        break;
1677
    case CHR_IOCTL_PP_WRITE_DATA:
1678
        b = *(uint8_t *)arg;
1679
        if (ioctl(fd, PPWDATA, &b) < 0)
1680
            return -ENOTSUP;
1681
        break;
1682
    case CHR_IOCTL_PP_READ_CONTROL:
1683
        if (ioctl(fd, PPRCONTROL, &b) < 0)
1684
            return -ENOTSUP;
1685
        *(uint8_t *)arg = b;
1686
        break;
1687
    case CHR_IOCTL_PP_WRITE_CONTROL:
1688
        b = *(uint8_t *)arg;
1689
        if (ioctl(fd, PPWCONTROL, &b) < 0)
1690
            return -ENOTSUP;
1691
        break;
1692
    case CHR_IOCTL_PP_READ_STATUS:
1693
        if (ioctl(fd, PPRSTATUS, &b) < 0)
1694
            return -ENOTSUP;
1695
        *(uint8_t *)arg = b;
1696
        break;
1697
    default:
1698
        return -ENOTSUP;
1699
    }
1700
    return 0;
1701
}
1702

    
1703
CharDriverState *qemu_chr_open_pp(const char *filename)
1704
{
1705
    CharDriverState *chr;
1706
    int fd;
1707

    
1708
    fd = open(filename, O_RDWR);
1709
    if (fd < 0)
1710
        return NULL;
1711

    
1712
    if (ioctl(fd, PPCLAIM) < 0) {
1713
        close(fd);
1714
        return NULL;
1715
    }
1716

    
1717
    chr = qemu_mallocz(sizeof(CharDriverState));
1718
    if (!chr) {
1719
        close(fd);
1720
        return NULL;
1721
    }
1722
    chr->opaque = (void *)fd;
1723
    chr->chr_write = null_chr_write;
1724
    chr->chr_add_read_handler = null_chr_add_read_handler;
1725
    chr->chr_ioctl = pp_ioctl;
1726
    return chr;
1727
}
1728

    
1729
#else
1730
CharDriverState *qemu_chr_open_pty(void)
1731
{
1732
    return NULL;
1733
}
1734
#endif
1735

    
1736
#endif /* !defined(_WIN32) */
1737

    
1738
#ifdef _WIN32
1739
typedef struct {
1740
    IOCanRWHandler *fd_can_read; 
1741
    IOReadHandler *fd_read;
1742
    void *win_opaque;
1743
    int max_size;
1744
    HANDLE hcom, hrecv, hsend;
1745
    OVERLAPPED orecv, osend;
1746
    BOOL fpipe;
1747
    DWORD len;
1748
} WinCharState;
1749

    
1750
#define NSENDBUF 2048
1751
#define NRECVBUF 2048
1752
#define MAXCONNECT 1
1753
#define NTIMEOUT 5000
1754

    
1755
static int win_chr_poll(void *opaque);
1756
static int win_chr_pipe_poll(void *opaque);
1757

    
1758
static void win_chr_close2(WinCharState *s)
1759
{
1760
    if (s->hsend) {
1761
        CloseHandle(s->hsend);
1762
        s->hsend = NULL;
1763
    }
1764
    if (s->hrecv) {
1765
        CloseHandle(s->hrecv);
1766
        s->hrecv = NULL;
1767
    }
1768
    if (s->hcom) {
1769
        CloseHandle(s->hcom);
1770
        s->hcom = NULL;
1771
    }
1772
    if (s->fpipe)
1773
        qemu_del_polling_cb(win_chr_pipe_poll, s);
1774
    else
1775
        qemu_del_polling_cb(win_chr_poll, s);
1776
}
1777

    
1778
static void win_chr_close(CharDriverState *chr)
1779
{
1780
    WinCharState *s = chr->opaque;
1781
    win_chr_close2(s);
1782
}
1783

    
1784
static int win_chr_init(WinCharState *s, const char *filename)
1785
{
1786
    COMMCONFIG comcfg;
1787
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
1788
    COMSTAT comstat;
1789
    DWORD size;
1790
    DWORD err;
1791
    
1792
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
1793
    if (!s->hsend) {
1794
        fprintf(stderr, "Failed CreateEvent\n");
1795
        goto fail;
1796
    }
1797
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
1798
    if (!s->hrecv) {
1799
        fprintf(stderr, "Failed CreateEvent\n");
1800
        goto fail;
1801
    }
1802

    
1803
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
1804
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
1805
    if (s->hcom == INVALID_HANDLE_VALUE) {
1806
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
1807
        s->hcom = NULL;
1808
        goto fail;
1809
    }
1810
    
1811
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
1812
        fprintf(stderr, "Failed SetupComm\n");
1813
        goto fail;
1814
    }
1815
    
1816
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
1817
    size = sizeof(COMMCONFIG);
1818
    GetDefaultCommConfig(filename, &comcfg, &size);
1819
    comcfg.dcb.DCBlength = sizeof(DCB);
1820
    CommConfigDialog(filename, NULL, &comcfg);
1821

    
1822
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
1823
        fprintf(stderr, "Failed SetCommState\n");
1824
        goto fail;
1825
    }
1826

    
1827
    if (!SetCommMask(s->hcom, EV_ERR)) {
1828
        fprintf(stderr, "Failed SetCommMask\n");
1829
        goto fail;
1830
    }
1831

    
1832
    cto.ReadIntervalTimeout = MAXDWORD;
1833
    if (!SetCommTimeouts(s->hcom, &cto)) {
1834
        fprintf(stderr, "Failed SetCommTimeouts\n");
1835
        goto fail;
1836
    }
1837
    
1838
    if (!ClearCommError(s->hcom, &err, &comstat)) {
1839
        fprintf(stderr, "Failed ClearCommError\n");
1840
        goto fail;
1841
    }
1842
    qemu_add_polling_cb(win_chr_poll, s);
1843
    return 0;
1844

    
1845
 fail:
1846
    win_chr_close2(s);
1847
    return -1;
1848
}
1849

    
1850
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
1851
{
1852
    WinCharState *s = chr->opaque;
1853
    DWORD len, ret, size, err;
1854

    
1855
    len = len1;
1856
    ZeroMemory(&s->osend, sizeof(s->osend));
1857
    s->osend.hEvent = s->hsend;
1858
    while (len > 0) {
1859
        if (s->hsend)
1860
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
1861
        else
1862
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
1863
        if (!ret) {
1864
            err = GetLastError();
1865
            if (err == ERROR_IO_PENDING) {
1866
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
1867
                if (ret) {
1868
                    buf += size;
1869
                    len -= size;
1870
                } else {
1871
                    break;
1872
                }
1873
            } else {
1874
                break;
1875
            }
1876
        } else {
1877
            buf += size;
1878
            len -= size;
1879
        }
1880
    }
1881
    return len1 - len;
1882
}
1883

    
1884
static int win_chr_read_poll(WinCharState *s)
1885
{
1886
    s->max_size = s->fd_can_read(s->win_opaque);
1887
    return s->max_size;
1888
}
1889
            
1890
static void win_chr_readfile(WinCharState *s)
1891
{
1892
    int ret, err;
1893
    uint8_t buf[1024];
1894
    DWORD size;
1895
    
1896
    ZeroMemory(&s->orecv, sizeof(s->orecv));
1897
    s->orecv.hEvent = s->hrecv;
1898
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
1899
    if (!ret) {
1900
        err = GetLastError();
1901
        if (err == ERROR_IO_PENDING) {
1902
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
1903
        }
1904
    }
1905

    
1906
    if (size > 0) {
1907
        s->fd_read(s->win_opaque, buf, size);
1908
    }
1909
}
1910

    
1911
static void win_chr_read(WinCharState *s)
1912
{
1913
    if (s->len > s->max_size)
1914
        s->len = s->max_size;
1915
    if (s->len == 0)
1916
        return;
1917
    
1918
    win_chr_readfile(s);
1919
}
1920

    
1921
static int win_chr_poll(void *opaque)
1922
{
1923
    WinCharState *s = opaque;
1924
    COMSTAT status;
1925
    DWORD comerr;
1926
    
1927
    ClearCommError(s->hcom, &comerr, &status);
1928
    if (status.cbInQue > 0) {
1929
        s->len = status.cbInQue;
1930
        win_chr_read_poll(s);
1931
        win_chr_read(s);
1932
        return 1;
1933
    }
1934
    return 0;
1935
}
1936

    
1937
static void win_chr_add_read_handler(CharDriverState *chr, 
1938
                                    IOCanRWHandler *fd_can_read, 
1939
                                    IOReadHandler *fd_read, void *opaque)
1940
{
1941
    WinCharState *s = chr->opaque;
1942

    
1943
    s->fd_can_read = fd_can_read;
1944
    s->fd_read = fd_read;
1945
    s->win_opaque = opaque;
1946
}
1947

    
1948
CharDriverState *qemu_chr_open_win(const char *filename)
1949
{
1950
    CharDriverState *chr;
1951
    WinCharState *s;
1952
    
1953
    chr = qemu_mallocz(sizeof(CharDriverState));
1954
    if (!chr)
1955
        return NULL;
1956
    s = qemu_mallocz(sizeof(WinCharState));
1957
    if (!s) {
1958
        free(chr);
1959
        return NULL;
1960
    }
1961
    chr->opaque = s;
1962
    chr->chr_write = win_chr_write;
1963
    chr->chr_add_read_handler = win_chr_add_read_handler;
1964
    chr->chr_close = win_chr_close;
1965

    
1966
    if (win_chr_init(s, filename) < 0) {
1967
        free(s);
1968
        free(chr);
1969
        return NULL;
1970
    }
1971
    return chr;
1972
}
1973

    
1974
static int win_chr_pipe_poll(void *opaque)
1975
{
1976
    WinCharState *s = opaque;
1977
    DWORD size;
1978

    
1979
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
1980
    if (size > 0) {
1981
        s->len = size;
1982
        win_chr_read_poll(s);
1983
        win_chr_read(s);
1984
        return 1;
1985
    }
1986
    return 0;
1987
}
1988

    
1989
static int win_chr_pipe_init(WinCharState *s, const char *filename)
1990
{
1991
    OVERLAPPED ov;
1992
    int ret;
1993
    DWORD size;
1994
    char openname[256];
1995
    
1996
    s->fpipe = TRUE;
1997

    
1998
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
1999
    if (!s->hsend) {
2000
        fprintf(stderr, "Failed CreateEvent\n");
2001
        goto fail;
2002
    }
2003
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2004
    if (!s->hrecv) {
2005
        fprintf(stderr, "Failed CreateEvent\n");
2006
        goto fail;
2007
    }
2008
    
2009
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2010
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2011
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2012
                              PIPE_WAIT,
2013
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2014
    if (s->hcom == INVALID_HANDLE_VALUE) {
2015
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2016
        s->hcom = NULL;
2017
        goto fail;
2018
    }
2019

    
2020
    ZeroMemory(&ov, sizeof(ov));
2021
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2022
    ret = ConnectNamedPipe(s->hcom, &ov);
2023
    if (ret) {
2024
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2025
        goto fail;
2026
    }
2027

    
2028
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2029
    if (!ret) {
2030
        fprintf(stderr, "Failed GetOverlappedResult\n");
2031
        if (ov.hEvent) {
2032
            CloseHandle(ov.hEvent);
2033
            ov.hEvent = NULL;
2034
        }
2035
        goto fail;
2036
    }
2037

    
2038
    if (ov.hEvent) {
2039
        CloseHandle(ov.hEvent);
2040
        ov.hEvent = NULL;
2041
    }
2042
    qemu_add_polling_cb(win_chr_pipe_poll, s);
2043
    return 0;
2044

    
2045
 fail:
2046
    win_chr_close2(s);
2047
    return -1;
2048
}
2049

    
2050

    
2051
CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2052
{
2053
    CharDriverState *chr;
2054
    WinCharState *s;
2055

    
2056
    chr = qemu_mallocz(sizeof(CharDriverState));
2057
    if (!chr)
2058
        return NULL;
2059
    s = qemu_mallocz(sizeof(WinCharState));
2060
    if (!s) {
2061
        free(chr);
2062
        return NULL;
2063
    }
2064
    chr->opaque = s;
2065
    chr->chr_write = win_chr_write;
2066
    chr->chr_add_read_handler = win_chr_add_read_handler;
2067
    chr->chr_close = win_chr_close;
2068
    
2069
    if (win_chr_pipe_init(s, filename) < 0) {
2070
        free(s);
2071
        free(chr);
2072
        return NULL;
2073
    }
2074
    return chr;
2075
}
2076

    
2077
CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2078
{
2079
    CharDriverState *chr;
2080
    WinCharState *s;
2081

    
2082
    chr = qemu_mallocz(sizeof(CharDriverState));
2083
    if (!chr)
2084
        return NULL;
2085
    s = qemu_mallocz(sizeof(WinCharState));
2086
    if (!s) {
2087
        free(chr);
2088
        return NULL;
2089
    }
2090
    s->hcom = fd_out;
2091
    chr->opaque = s;
2092
    chr->chr_write = win_chr_write;
2093
    chr->chr_add_read_handler = win_chr_add_read_handler;
2094
    return chr;
2095
}
2096
    
2097
CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2098
{
2099
    HANDLE fd_out;
2100
    
2101
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2102
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2103
    if (fd_out == INVALID_HANDLE_VALUE)
2104
        return NULL;
2105

    
2106
    return qemu_chr_open_win_file(fd_out);
2107
}
2108
#endif
2109

    
2110
CharDriverState *qemu_chr_open(const char *filename)
2111
{
2112
    const char *p;
2113

    
2114
    if (!strcmp(filename, "vc")) {
2115
        return text_console_init(&display_state);
2116
    } else if (!strcmp(filename, "null")) {
2117
        return qemu_chr_open_null();
2118
    } else 
2119
#ifndef _WIN32
2120
    if (strstart(filename, "file:", &p)) {
2121
        return qemu_chr_open_file_out(p);
2122
    } else if (strstart(filename, "pipe:", &p)) {
2123
        return qemu_chr_open_pipe(p);
2124
    } else if (!strcmp(filename, "pty")) {
2125
        return qemu_chr_open_pty();
2126
    } else if (!strcmp(filename, "stdio")) {
2127
        return qemu_chr_open_stdio();
2128
    } else 
2129
#endif
2130
#if defined(__linux__)
2131
    if (strstart(filename, "/dev/parport", NULL)) {
2132
        return qemu_chr_open_pp(filename);
2133
    } else 
2134
    if (strstart(filename, "/dev/", NULL)) {
2135
        return qemu_chr_open_tty(filename);
2136
    } else 
2137
#endif
2138
#ifdef _WIN32
2139
    if (strstart(filename, "COM", NULL)) {
2140
        return qemu_chr_open_win(filename);
2141
    } else
2142
    if (strstart(filename, "pipe:", &p)) {
2143
        return qemu_chr_open_win_pipe(p);
2144
    } else
2145
    if (strstart(filename, "file:", &p)) {
2146
        return qemu_chr_open_win_file_out(p);
2147
    }
2148
#endif
2149
    {
2150
        return NULL;
2151
    }
2152
}
2153

    
2154
void qemu_chr_close(CharDriverState *chr)
2155
{
2156
    if (chr->chr_close)
2157
        chr->chr_close(chr);
2158
}
2159

    
2160
/***********************************************************/
2161
/* network device redirectors */
2162

    
2163
void hex_dump(FILE *f, const uint8_t *buf, int size)
2164
{
2165
    int len, i, j, c;
2166

    
2167
    for(i=0;i<size;i+=16) {
2168
        len = size - i;
2169
        if (len > 16)
2170
            len = 16;
2171
        fprintf(f, "%08x ", i);
2172
        for(j=0;j<16;j++) {
2173
            if (j < len)
2174
                fprintf(f, " %02x", buf[i+j]);
2175
            else
2176
                fprintf(f, "   ");
2177
        }
2178
        fprintf(f, " ");
2179
        for(j=0;j<len;j++) {
2180
            c = buf[i+j];
2181
            if (c < ' ' || c > '~')
2182
                c = '.';
2183
            fprintf(f, "%c", c);
2184
        }
2185
        fprintf(f, "\n");
2186
    }
2187
}
2188

    
2189
static int parse_macaddr(uint8_t *macaddr, const char *p)
2190
{
2191
    int i;
2192
    for(i = 0; i < 6; i++) {
2193
        macaddr[i] = strtol(p, (char **)&p, 16);
2194
        if (i == 5) {
2195
            if (*p != '\0') 
2196
                return -1;
2197
        } else {
2198
            if (*p != ':') 
2199
                return -1;
2200
            p++;
2201
        }
2202
    }
2203
    return 0;
2204
}
2205

    
2206
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
2207
{
2208
    const char *p, *p1;
2209
    int len;
2210
    p = *pp;
2211
    p1 = strchr(p, sep);
2212
    if (!p1)
2213
        return -1;
2214
    len = p1 - p;
2215
    p1++;
2216
    if (buf_size > 0) {
2217
        if (len > buf_size - 1)
2218
            len = buf_size - 1;
2219
        memcpy(buf, p, len);
2220
        buf[len] = '\0';
2221
    }
2222
    *pp = p1;
2223
    return 0;
2224
}
2225

    
2226
int parse_host_port(struct sockaddr_in *saddr, const char *str)
2227
{
2228
    char buf[512];
2229
    struct hostent *he;
2230
    const char *p, *r;
2231
    int port;
2232

    
2233
    p = str;
2234
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2235
        return -1;
2236
    saddr->sin_family = AF_INET;
2237
    if (buf[0] == '\0') {
2238
        saddr->sin_addr.s_addr = 0;
2239
    } else {
2240
        if (isdigit(buf[0])) {
2241
            if (!inet_aton(buf, &saddr->sin_addr))
2242
                return -1;
2243
        } else {
2244
            if ((he = gethostbyname(buf)) == NULL)
2245
                return - 1;
2246
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
2247
        }
2248
    }
2249
    port = strtol(p, (char **)&r, 0);
2250
    if (r == p)
2251
        return -1;
2252
    saddr->sin_port = htons(port);
2253
    return 0;
2254
}
2255

    
2256
/* find or alloc a new VLAN */
2257
VLANState *qemu_find_vlan(int id)
2258
{
2259
    VLANState **pvlan, *vlan;
2260
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
2261
        if (vlan->id == id)
2262
            return vlan;
2263
    }
2264
    vlan = qemu_mallocz(sizeof(VLANState));
2265
    if (!vlan)
2266
        return NULL;
2267
    vlan->id = id;
2268
    vlan->next = NULL;
2269
    pvlan = &first_vlan;
2270
    while (*pvlan != NULL)
2271
        pvlan = &(*pvlan)->next;
2272
    *pvlan = vlan;
2273
    return vlan;
2274
}
2275

    
2276
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
2277
                                      IOReadHandler *fd_read,
2278
                                      IOCanRWHandler *fd_can_read,
2279
                                      void *opaque)
2280
{
2281
    VLANClientState *vc, **pvc;
2282
    vc = qemu_mallocz(sizeof(VLANClientState));
2283
    if (!vc)
2284
        return NULL;
2285
    vc->fd_read = fd_read;
2286
    vc->fd_can_read = fd_can_read;
2287
    vc->opaque = opaque;
2288
    vc->vlan = vlan;
2289

    
2290
    vc->next = NULL;
2291
    pvc = &vlan->first_client;
2292
    while (*pvc != NULL)
2293
        pvc = &(*pvc)->next;
2294
    *pvc = vc;
2295
    return vc;
2296
}
2297

    
2298
int qemu_can_send_packet(VLANClientState *vc1)
2299
{
2300
    VLANState *vlan = vc1->vlan;
2301
    VLANClientState *vc;
2302

    
2303
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
2304
        if (vc != vc1) {
2305
            if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
2306
                return 0;
2307
        }
2308
    }
2309
    return 1;
2310
}
2311

    
2312
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
2313
{
2314
    VLANState *vlan = vc1->vlan;
2315
    VLANClientState *vc;
2316

    
2317
#if 0
2318
    printf("vlan %d send:\n", vlan->id);
2319
    hex_dump(stdout, buf, size);
2320
#endif
2321
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
2322
        if (vc != vc1) {
2323
            vc->fd_read(vc->opaque, buf, size);
2324
        }
2325
    }
2326
}
2327

    
2328
#if defined(CONFIG_SLIRP)
2329

    
2330
/* slirp network adapter */
2331

    
2332
static int slirp_inited;
2333
static VLANClientState *slirp_vc;
2334

    
2335
int slirp_can_output(void)
2336
{
2337
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
2338
}
2339

    
2340
void slirp_output(const uint8_t *pkt, int pkt_len)
2341
{
2342
#if 0
2343
    printf("slirp output:\n");
2344
    hex_dump(stdout, pkt, pkt_len);
2345
#endif
2346
    if (!slirp_vc)
2347
        return;
2348
    qemu_send_packet(slirp_vc, pkt, pkt_len);
2349
}
2350

    
2351
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
2352
{
2353
#if 0
2354
    printf("slirp input:\n");
2355
    hex_dump(stdout, buf, size);
2356
#endif
2357
    slirp_input(buf, size);
2358
}
2359

    
2360
static int net_slirp_init(VLANState *vlan)
2361
{
2362
    if (!slirp_inited) {
2363
        slirp_inited = 1;
2364
        slirp_init();
2365
    }
2366
    slirp_vc = qemu_new_vlan_client(vlan, 
2367
                                    slirp_receive, NULL, NULL);
2368
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
2369
    return 0;
2370
}
2371

    
2372
static void net_slirp_redir(const char *redir_str)
2373
{
2374
    int is_udp;
2375
    char buf[256], *r;
2376
    const char *p;
2377
    struct in_addr guest_addr;
2378
    int host_port, guest_port;
2379
    
2380
    if (!slirp_inited) {
2381
        slirp_inited = 1;
2382
        slirp_init();
2383
    }
2384

    
2385
    p = redir_str;
2386
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2387
        goto fail;
2388
    if (!strcmp(buf, "tcp")) {
2389
        is_udp = 0;
2390
    } else if (!strcmp(buf, "udp")) {
2391
        is_udp = 1;
2392
    } else {
2393
        goto fail;
2394
    }
2395

    
2396
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2397
        goto fail;
2398
    host_port = strtol(buf, &r, 0);
2399
    if (r == buf)
2400
        goto fail;
2401

    
2402
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2403
        goto fail;
2404
    if (buf[0] == '\0') {
2405
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
2406
    }
2407
    if (!inet_aton(buf, &guest_addr))
2408
        goto fail;
2409
    
2410
    guest_port = strtol(p, &r, 0);
2411
    if (r == p)
2412
        goto fail;
2413
    
2414
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
2415
        fprintf(stderr, "qemu: could not set up redirection\n");
2416
        exit(1);
2417
    }
2418
    return;
2419
 fail:
2420
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
2421
    exit(1);
2422
}
2423
    
2424
#ifndef _WIN32
2425

    
2426
char smb_dir[1024];
2427

    
2428
static void smb_exit(void)
2429
{
2430
    DIR *d;
2431
    struct dirent *de;
2432
    char filename[1024];
2433

    
2434
    /* erase all the files in the directory */
2435
    d = opendir(smb_dir);
2436
    for(;;) {
2437
        de = readdir(d);
2438
        if (!de)
2439
            break;
2440
        if (strcmp(de->d_name, ".") != 0 &&
2441
            strcmp(de->d_name, "..") != 0) {
2442
            snprintf(filename, sizeof(filename), "%s/%s", 
2443
                     smb_dir, de->d_name);
2444
            unlink(filename);
2445
        }
2446
    }
2447
    closedir(d);
2448
    rmdir(smb_dir);
2449
}
2450

    
2451
/* automatic user mode samba server configuration */
2452
void net_slirp_smb(const char *exported_dir)
2453
{
2454
    char smb_conf[1024];
2455
    char smb_cmdline[1024];
2456
    FILE *f;
2457

    
2458
    if (!slirp_inited) {
2459
        slirp_inited = 1;
2460
        slirp_init();
2461
    }
2462

    
2463
    /* XXX: better tmp dir construction */
2464
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
2465
    if (mkdir(smb_dir, 0700) < 0) {
2466
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
2467
        exit(1);
2468
    }
2469
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
2470
    
2471
    f = fopen(smb_conf, "w");
2472
    if (!f) {
2473
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
2474
        exit(1);
2475
    }
2476
    fprintf(f, 
2477
            "[global]\n"
2478
            "private dir=%s\n"
2479
            "smb ports=0\n"
2480
            "socket address=127.0.0.1\n"
2481
            "pid directory=%s\n"
2482
            "lock directory=%s\n"
2483
            "log file=%s/log.smbd\n"
2484
            "smb passwd file=%s/smbpasswd\n"
2485
            "security = share\n"
2486
            "[qemu]\n"
2487
            "path=%s\n"
2488
            "read only=no\n"
2489
            "guest ok=yes\n",
2490
            smb_dir,
2491
            smb_dir,
2492
            smb_dir,
2493
            smb_dir,
2494
            smb_dir,
2495
            exported_dir
2496
            );
2497
    fclose(f);
2498
    atexit(smb_exit);
2499

    
2500
    snprintf(smb_cmdline, sizeof(smb_cmdline), "/usr/sbin/smbd -s %s",
2501
             smb_conf);
2502
    
2503
    slirp_add_exec(0, smb_cmdline, 4, 139);
2504
}
2505

    
2506
#endif /* !defined(_WIN32) */
2507

    
2508
#endif /* CONFIG_SLIRP */
2509

    
2510
#if !defined(_WIN32)
2511

    
2512
typedef struct TAPState {
2513
    VLANClientState *vc;
2514
    int fd;
2515
} TAPState;
2516

    
2517
static void tap_receive(void *opaque, const uint8_t *buf, int size)
2518
{
2519
    TAPState *s = opaque;
2520
    int ret;
2521
    for(;;) {
2522
        ret = write(s->fd, buf, size);
2523
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
2524
        } else {
2525
            break;
2526
        }
2527
    }
2528
}
2529

    
2530
static void tap_send(void *opaque)
2531
{
2532
    TAPState *s = opaque;
2533
    uint8_t buf[4096];
2534
    int size;
2535

    
2536
    size = read(s->fd, buf, sizeof(buf));
2537
    if (size > 0) {
2538
        qemu_send_packet(s->vc, buf, size);
2539
    }
2540
}
2541

    
2542
/* fd support */
2543

    
2544
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
2545
{
2546
    TAPState *s;
2547

    
2548
    s = qemu_mallocz(sizeof(TAPState));
2549
    if (!s)
2550
        return NULL;
2551
    s->fd = fd;
2552
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
2553
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
2554
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
2555
    return s;
2556
}
2557

    
2558
#ifdef _BSD
2559
static int tap_open(char *ifname, int ifname_size)
2560
{
2561
    int fd;
2562
    char *dev;
2563
    struct stat s;
2564

    
2565
    fd = open("/dev/tap", O_RDWR);
2566
    if (fd < 0) {
2567
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
2568
        return -1;
2569
    }
2570

    
2571
    fstat(fd, &s);
2572
    dev = devname(s.st_rdev, S_IFCHR);
2573
    pstrcpy(ifname, ifname_size, dev);
2574

    
2575
    fcntl(fd, F_SETFL, O_NONBLOCK);
2576
    return fd;
2577
}
2578
#elif defined(__sun__)
2579
static int tap_open(char *ifname, int ifname_size)
2580
{
2581
    fprintf(stderr, "warning: tap_open not yet implemented\n");
2582
    return -1;
2583
}
2584
#else
2585
static int tap_open(char *ifname, int ifname_size)
2586
{
2587
    struct ifreq ifr;
2588
    int fd, ret;
2589
    
2590
    fd = open("/dev/net/tun", O_RDWR);
2591
    if (fd < 0) {
2592
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
2593
        return -1;
2594
    }
2595
    memset(&ifr, 0, sizeof(ifr));
2596
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
2597
    if (ifname[0] != '\0')
2598
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
2599
    else
2600
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
2601
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
2602
    if (ret != 0) {
2603
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
2604
        close(fd);
2605
        return -1;
2606
    }
2607
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
2608
    fcntl(fd, F_SETFL, O_NONBLOCK);
2609
    return fd;
2610
}
2611
#endif
2612

    
2613
static int net_tap_init(VLANState *vlan, const char *ifname1,
2614
                        const char *setup_script)
2615
{
2616
    TAPState *s;
2617
    int pid, status, fd;
2618
    char *args[3];
2619
    char **parg;
2620
    char ifname[128];
2621

    
2622
    if (ifname1 != NULL)
2623
        pstrcpy(ifname, sizeof(ifname), ifname1);
2624
    else
2625
        ifname[0] = '\0';
2626
    fd = tap_open(ifname, sizeof(ifname));
2627
    if (fd < 0)
2628
        return -1;
2629

    
2630
    if (!setup_script)
2631
        setup_script = "";
2632
    if (setup_script[0] != '\0') {
2633
        /* try to launch network init script */
2634
        pid = fork();
2635
        if (pid >= 0) {
2636
            if (pid == 0) {
2637
                parg = args;
2638
                *parg++ = (char *)setup_script;
2639
                *parg++ = ifname;
2640
                *parg++ = NULL;
2641
                execv(setup_script, args);
2642
                _exit(1);
2643
            }
2644
            while (waitpid(pid, &status, 0) != pid);
2645
            if (!WIFEXITED(status) ||
2646
                WEXITSTATUS(status) != 0) {
2647
                fprintf(stderr, "%s: could not launch network script\n",
2648
                        setup_script);
2649
                return -1;
2650
            }
2651
        }
2652
    }
2653
    s = net_tap_fd_init(vlan, fd);
2654
    if (!s)
2655
        return -1;
2656
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), 
2657
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
2658
    return 0;
2659
}
2660

    
2661
#endif /* !_WIN32 */
2662

    
2663
/* network connection */
2664
typedef struct NetSocketState {
2665
    VLANClientState *vc;
2666
    int fd;
2667
    int state; /* 0 = getting length, 1 = getting data */
2668
    int index;
2669
    int packet_len;
2670
    uint8_t buf[4096];
2671
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
2672
} NetSocketState;
2673

    
2674
typedef struct NetSocketListenState {
2675
    VLANState *vlan;
2676
    int fd;
2677
} NetSocketListenState;
2678

    
2679
/* XXX: we consider we can send the whole packet without blocking */
2680
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
2681
{
2682
    NetSocketState *s = opaque;
2683
    uint32_t len;
2684
    len = htonl(size);
2685

    
2686
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
2687
    send_all(s->fd, buf, size);
2688
}
2689

    
2690
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
2691
{
2692
    NetSocketState *s = opaque;
2693
    sendto(s->fd, buf, size, 0, 
2694
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
2695
}
2696

    
2697
static void net_socket_send(void *opaque)
2698
{
2699
    NetSocketState *s = opaque;
2700
    int l, size, err;
2701
    uint8_t buf1[4096];
2702
    const uint8_t *buf;
2703

    
2704
    size = recv(s->fd, buf1, sizeof(buf1), 0);
2705
    if (size < 0) {
2706
        err = socket_error();
2707
        if (err != EWOULDBLOCK) 
2708
            goto eoc;
2709
    } else if (size == 0) {
2710
        /* end of connection */
2711
    eoc:
2712
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2713
        closesocket(s->fd);
2714
        return;
2715
    }
2716
    buf = buf1;
2717
    while (size > 0) {
2718
        /* reassemble a packet from the network */
2719
        switch(s->state) {
2720
        case 0:
2721
            l = 4 - s->index;
2722
            if (l > size)
2723
                l = size;
2724
            memcpy(s->buf + s->index, buf, l);
2725
            buf += l;
2726
            size -= l;
2727
            s->index += l;
2728
            if (s->index == 4) {
2729
                /* got length */
2730
                s->packet_len = ntohl(*(uint32_t *)s->buf);
2731
                s->index = 0;
2732
                s->state = 1;
2733
            }
2734
            break;
2735
        case 1:
2736
            l = s->packet_len - s->index;
2737
            if (l > size)
2738
                l = size;
2739
            memcpy(s->buf + s->index, buf, l);
2740
            s->index += l;
2741
            buf += l;
2742
            size -= l;
2743
            if (s->index >= s->packet_len) {
2744
                qemu_send_packet(s->vc, s->buf, s->packet_len);
2745
                s->index = 0;
2746
                s->state = 0;
2747
            }
2748
            break;
2749
        }
2750
    }
2751
}
2752

    
2753
static void net_socket_send_dgram(void *opaque)
2754
{
2755
    NetSocketState *s = opaque;
2756
    int size;
2757

    
2758
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
2759
    if (size < 0) 
2760
        return;
2761
    if (size == 0) {
2762
        /* end of connection */
2763
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2764
        return;
2765
    }
2766
    qemu_send_packet(s->vc, s->buf, size);
2767
}
2768

    
2769
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
2770
{
2771
    struct ip_mreq imr;
2772
    int fd;
2773
    int val, ret;
2774
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
2775
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
2776
                inet_ntoa(mcastaddr->sin_addr), 
2777
                (int)ntohl(mcastaddr->sin_addr.s_addr));
2778
        return -1;
2779

    
2780
    }
2781
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2782
    if (fd < 0) {
2783
        perror("socket(PF_INET, SOCK_DGRAM)");
2784
        return -1;
2785
    }
2786

    
2787
    val = 1;
2788
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, 
2789
                   (const char *)&val, sizeof(val));
2790
    if (ret < 0) {
2791
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
2792
        goto fail;
2793
    }
2794

    
2795
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
2796
    if (ret < 0) {
2797
        perror("bind");
2798
        goto fail;
2799
    }
2800
    
2801
    /* Add host to multicast group */
2802
    imr.imr_multiaddr = mcastaddr->sin_addr;
2803
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
2804

    
2805
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, 
2806
                     (const char *)&imr, sizeof(struct ip_mreq));
2807
    if (ret < 0) {
2808
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
2809
        goto fail;
2810
    }
2811

    
2812
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
2813
    val = 1;
2814
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP, 
2815
                   (const char *)&val, sizeof(val));
2816
    if (ret < 0) {
2817
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
2818
        goto fail;
2819
    }
2820

    
2821
    socket_set_nonblock(fd);
2822
    return fd;
2823
fail:
2824
    if (fd>=0) close(fd);
2825
    return -1;
2826
}
2827

    
2828
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd, 
2829
                                          int is_connected)
2830
{
2831
    struct sockaddr_in saddr;
2832
    int newfd;
2833
    socklen_t saddr_len;
2834
    NetSocketState *s;
2835

    
2836
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
2837
     * Because this may be "shared" socket from a "master" process, datagrams would be recv() 
2838
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
2839
     */
2840

    
2841
    if (is_connected) {
2842
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
2843
            /* must be bound */
2844
            if (saddr.sin_addr.s_addr==0) {
2845
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
2846
                        fd);
2847
                return NULL;
2848
            }
2849
            /* clone dgram socket */
2850
            newfd = net_socket_mcast_create(&saddr);
2851
            if (newfd < 0) {
2852
                /* error already reported by net_socket_mcast_create() */
2853
                close(fd);
2854
                return NULL;
2855
            }
2856
            /* clone newfd to fd, close newfd */
2857
            dup2(newfd, fd);
2858
            close(newfd);
2859
        
2860
        } else {
2861
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
2862
                    fd, strerror(errno));
2863
            return NULL;
2864
        }
2865
    }
2866

    
2867
    s = qemu_mallocz(sizeof(NetSocketState));
2868
    if (!s)
2869
        return NULL;
2870
    s->fd = fd;
2871

    
2872
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
2873
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
2874

    
2875
    /* mcast: save bound address as dst */
2876
    if (is_connected) s->dgram_dst=saddr;
2877

    
2878
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
2879
            "socket: fd=%d (%s mcast=%s:%d)", 
2880
            fd, is_connected? "cloned" : "",
2881
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
2882
    return s;
2883
}
2884

    
2885
static void net_socket_connect(void *opaque)
2886
{
2887
    NetSocketState *s = opaque;
2888
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
2889
}
2890

    
2891
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd, 
2892
                                          int is_connected)
2893
{
2894
    NetSocketState *s;
2895
    s = qemu_mallocz(sizeof(NetSocketState));
2896
    if (!s)
2897
        return NULL;
2898
    s->fd = fd;
2899
    s->vc = qemu_new_vlan_client(vlan, 
2900
                                 net_socket_receive, NULL, s);
2901
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
2902
             "socket: fd=%d", fd);
2903
    if (is_connected) {
2904
        net_socket_connect(s);
2905
    } else {
2906
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
2907
    }
2908
    return s;
2909
}
2910

    
2911
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd, 
2912
                                          int is_connected)
2913
{
2914
    int so_type=-1, optlen=sizeof(so_type);
2915

    
2916
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
2917
        fprintf(stderr, "qemu: error: setsockopt(SO_TYPE) for fd=%d failed\n", fd);
2918
        return NULL;
2919
    }
2920
    switch(so_type) {
2921
    case SOCK_DGRAM:
2922
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
2923
    case SOCK_STREAM:
2924
        return net_socket_fd_init_stream(vlan, fd, is_connected);
2925
    default:
2926
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
2927
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
2928
        return net_socket_fd_init_stream(vlan, fd, is_connected);
2929
    }
2930
    return NULL;
2931
}
2932

    
2933
static void net_socket_accept(void *opaque)
2934
{
2935
    NetSocketListenState *s = opaque;    
2936
    NetSocketState *s1;
2937
    struct sockaddr_in saddr;
2938
    socklen_t len;
2939
    int fd;
2940

    
2941
    for(;;) {
2942
        len = sizeof(saddr);
2943
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
2944
        if (fd < 0 && errno != EINTR) {
2945
            return;
2946
        } else if (fd >= 0) {
2947
            break;
2948
        }
2949
    }
2950
    s1 = net_socket_fd_init(s->vlan, fd, 1); 
2951
    if (!s1) {
2952
        close(fd);
2953
    } else {
2954
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
2955
                 "socket: connection from %s:%d", 
2956
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
2957
    }
2958
}
2959

    
2960
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
2961
{
2962
    NetSocketListenState *s;
2963
    int fd, val, ret;
2964
    struct sockaddr_in saddr;
2965

    
2966
    if (parse_host_port(&saddr, host_str) < 0)
2967
        return -1;
2968
    
2969
    s = qemu_mallocz(sizeof(NetSocketListenState));
2970
    if (!s)
2971
        return -1;
2972

    
2973
    fd = socket(PF_INET, SOCK_STREAM, 0);
2974
    if (fd < 0) {
2975
        perror("socket");
2976
        return -1;
2977
    }
2978
    socket_set_nonblock(fd);
2979

    
2980
    /* allow fast reuse */
2981
    val = 1;
2982
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2983
    
2984
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
2985
    if (ret < 0) {
2986
        perror("bind");
2987
        return -1;
2988
    }
2989
    ret = listen(fd, 0);
2990
    if (ret < 0) {
2991
        perror("listen");
2992
        return -1;
2993
    }
2994
    s->vlan = vlan;
2995
    s->fd = fd;
2996
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
2997
    return 0;
2998
}
2999

    
3000
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
3001
{
3002
    NetSocketState *s;
3003
    int fd, connected, ret, err;
3004
    struct sockaddr_in saddr;
3005

    
3006
    if (parse_host_port(&saddr, host_str) < 0)
3007
        return -1;
3008

    
3009
    fd = socket(PF_INET, SOCK_STREAM, 0);
3010
    if (fd < 0) {
3011
        perror("socket");
3012
        return -1;
3013
    }
3014
    socket_set_nonblock(fd);
3015

    
3016
    connected = 0;
3017
    for(;;) {
3018
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
3019
        if (ret < 0) {
3020
            err = socket_error();
3021
            if (err == EINTR || err == EWOULDBLOCK) {
3022
            } else if (err == EINPROGRESS) {
3023
                break;
3024
            } else {
3025
                perror("connect");
3026
                closesocket(fd);
3027
                return -1;
3028
            }
3029
        } else {
3030
            connected = 1;
3031
            break;
3032
        }
3033
    }
3034
    s = net_socket_fd_init(vlan, fd, connected);
3035
    if (!s)
3036
        return -1;
3037
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3038
             "socket: connect to %s:%d", 
3039
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3040
    return 0;
3041
}
3042

    
3043
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
3044
{
3045
    NetSocketState *s;
3046
    int fd;
3047
    struct sockaddr_in saddr;
3048

    
3049
    if (parse_host_port(&saddr, host_str) < 0)
3050
        return -1;
3051

    
3052

    
3053
    fd = net_socket_mcast_create(&saddr);
3054
    if (fd < 0)
3055
        return -1;
3056

    
3057
    s = net_socket_fd_init(vlan, fd, 0);
3058
    if (!s)
3059
        return -1;
3060

    
3061
    s->dgram_dst = saddr;
3062
    
3063
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3064
             "socket: mcast=%s:%d", 
3065
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3066
    return 0;
3067

    
3068
}
3069

    
3070
static int get_param_value(char *buf, int buf_size,
3071
                           const char *tag, const char *str)
3072
{
3073
    const char *p;
3074
    char *q;
3075
    char option[128];
3076

    
3077
    p = str;
3078
    for(;;) {
3079
        q = option;
3080
        while (*p != '\0' && *p != '=') {
3081
            if ((q - option) < sizeof(option) - 1)
3082
                *q++ = *p;
3083
            p++;
3084
        }
3085
        *q = '\0';
3086
        if (*p != '=')
3087
            break;
3088
        p++;
3089
        if (!strcmp(tag, option)) {
3090
            q = buf;
3091
            while (*p != '\0' && *p != ',') {
3092
                if ((q - buf) < buf_size - 1)
3093
                    *q++ = *p;
3094
                p++;
3095
            }
3096
            *q = '\0';
3097
            return q - buf;
3098
        } else {
3099
            while (*p != '\0' && *p != ',') {
3100
                p++;
3101
            }
3102
        }
3103
        if (*p != ',')
3104
            break;
3105
        p++;
3106
    }
3107
    return 0;
3108
}
3109

    
3110
int net_client_init(const char *str)
3111
{
3112
    const char *p;
3113
    char *q;
3114
    char device[64];
3115
    char buf[1024];
3116
    int vlan_id, ret;
3117
    VLANState *vlan;
3118

    
3119
    p = str;
3120
    q = device;
3121
    while (*p != '\0' && *p != ',') {
3122
        if ((q - device) < sizeof(device) - 1)
3123
            *q++ = *p;
3124
        p++;
3125
    }
3126
    *q = '\0';
3127
    if (*p == ',')
3128
        p++;
3129
    vlan_id = 0;
3130
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
3131
        vlan_id = strtol(buf, NULL, 0);
3132
    }
3133
    vlan = qemu_find_vlan(vlan_id);
3134
    if (!vlan) {
3135
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
3136
        return -1;
3137
    }
3138
    if (!strcmp(device, "nic")) {
3139
        NICInfo *nd;
3140
        uint8_t *macaddr;
3141

    
3142
        if (nb_nics >= MAX_NICS) {
3143
            fprintf(stderr, "Too Many NICs\n");
3144
            return -1;
3145
        }
3146
        nd = &nd_table[nb_nics];
3147
        macaddr = nd->macaddr;
3148
        macaddr[0] = 0x52;
3149
        macaddr[1] = 0x54;
3150
        macaddr[2] = 0x00;
3151
        macaddr[3] = 0x12;
3152
        macaddr[4] = 0x34;
3153
        macaddr[5] = 0x56 + nb_nics;
3154

    
3155
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
3156
            if (parse_macaddr(macaddr, buf) < 0) {
3157
                fprintf(stderr, "invalid syntax for ethernet address\n");
3158
                return -1;
3159
            }
3160
        }
3161
        if (get_param_value(buf, sizeof(buf), "model", p)) {
3162
            nd->model = strdup(buf);
3163
        }
3164
        nd->vlan = vlan;
3165
        nb_nics++;
3166
        ret = 0;
3167
    } else
3168
    if (!strcmp(device, "none")) {
3169
        /* does nothing. It is needed to signal that no network cards
3170
           are wanted */
3171
        ret = 0;
3172
    } else
3173
#ifdef CONFIG_SLIRP
3174
    if (!strcmp(device, "user")) {
3175
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
3176
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
3177
        }
3178
        ret = net_slirp_init(vlan);
3179
    } else
3180
#endif
3181
#ifdef _WIN32
3182
    if (!strcmp(device, "tap")) {
3183
        char ifname[64];
3184
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
3185
            fprintf(stderr, "tap: no interface name\n");
3186
            return -1;
3187
        }
3188
        ret = tap_win32_init(vlan, ifname);
3189
    } else
3190
#else
3191
    if (!strcmp(device, "tap")) {
3192
        char ifname[64];
3193
        char setup_script[1024];
3194
        int fd;
3195
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
3196
            fd = strtol(buf, NULL, 0);
3197
            ret = -1;
3198
            if (net_tap_fd_init(vlan, fd))
3199
                ret = 0;
3200
        } else {
3201
            get_param_value(ifname, sizeof(ifname), "ifname", p);
3202
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
3203
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
3204
            }
3205
            ret = net_tap_init(vlan, ifname, setup_script);
3206
        }
3207
    } else
3208
#endif
3209
    if (!strcmp(device, "socket")) {
3210
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
3211
            int fd;
3212
            fd = strtol(buf, NULL, 0);
3213
            ret = -1;
3214
            if (net_socket_fd_init(vlan, fd, 1))
3215
                ret = 0;
3216
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
3217
            ret = net_socket_listen_init(vlan, buf);
3218
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
3219
            ret = net_socket_connect_init(vlan, buf);
3220
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
3221
            ret = net_socket_mcast_init(vlan, buf);
3222
        } else {
3223
            fprintf(stderr, "Unknown socket options: %s\n", p);
3224
            return -1;
3225
        }
3226
    } else
3227
    {
3228
        fprintf(stderr, "Unknown network device: %s\n", device);
3229
        return -1;
3230
    }
3231
    if (ret < 0) {
3232
        fprintf(stderr, "Could not initialize device '%s'\n", device);
3233
    }
3234
    
3235
    return ret;
3236
}
3237

    
3238
void do_info_network(void)
3239
{
3240
    VLANState *vlan;
3241
    VLANClientState *vc;
3242

    
3243
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3244
        term_printf("VLAN %d devices:\n", vlan->id);
3245
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
3246
            term_printf("  %s\n", vc->info_str);
3247
    }
3248
}
3249
 
3250
/***********************************************************/
3251
/* USB devices */
3252

    
3253
static USBPort *used_usb_ports;
3254
static USBPort *free_usb_ports;
3255

    
3256
/* ??? Maybe change this to register a hub to keep track of the topology.  */
3257
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
3258
                            usb_attachfn attach)
3259
{
3260
    port->opaque = opaque;
3261
    port->index = index;
3262
    port->attach = attach;
3263
    port->next = free_usb_ports;
3264
    free_usb_ports = port;
3265
}
3266

    
3267
static int usb_device_add(const char *devname)
3268
{
3269
    const char *p;
3270
    USBDevice *dev;
3271
    USBPort *port;
3272

    
3273
    if (!free_usb_ports)
3274
        return -1;
3275

    
3276
    if (strstart(devname, "host:", &p)) {
3277
        dev = usb_host_device_open(p);
3278
    } else if (!strcmp(devname, "mouse")) {
3279
        dev = usb_mouse_init();
3280
    } else if (!strcmp(devname, "tablet")) {
3281
        dev = usb_tablet_init();
3282
    } else {
3283
        return -1;
3284
    }
3285
    if (!dev)
3286
        return -1;
3287

    
3288
    /* Find a USB port to add the device to.  */
3289
    port = free_usb_ports;
3290
    if (!port->next) {
3291
        USBDevice *hub;
3292

    
3293
        /* Create a new hub and chain it on.  */
3294
        free_usb_ports = NULL;
3295
        port->next = used_usb_ports;
3296
        used_usb_ports = port;
3297

    
3298
        hub = usb_hub_init(VM_USB_HUB_SIZE);
3299
        usb_attach(port, hub);
3300
        port = free_usb_ports;
3301
    }
3302

    
3303
    free_usb_ports = port->next;
3304
    port->next = used_usb_ports;
3305
    used_usb_ports = port;
3306
    usb_attach(port, dev);
3307
    return 0;
3308
}
3309

    
3310
static int usb_device_del(const char *devname)
3311
{
3312
    USBPort *port;
3313
    USBPort **lastp;
3314
    int bus_num, addr;
3315
    const char *p;
3316

    
3317
    if (!used_usb_ports)
3318
        return -1;
3319

    
3320
    p = strchr(devname, '.');
3321
    if (!p) 
3322
        return -1;
3323
    bus_num = strtoul(devname, NULL, 0);
3324
    addr = strtoul(p + 1, NULL, 0);
3325
    if (bus_num != 0)
3326
        return -1;
3327

    
3328
    lastp = &used_usb_ports;
3329
    port = used_usb_ports;
3330
    while (port && port->dev->addr != addr) {
3331
        lastp = &port->next;
3332
        port = port->next;
3333
    }
3334

    
3335
    if (!port)
3336
        return -1;
3337

    
3338
    *lastp = port->next;
3339
    usb_attach(port, NULL);
3340
    port->next = free_usb_ports;
3341
    free_usb_ports = port;
3342
    return 0;
3343
}
3344

    
3345
void do_usb_add(const char *devname)
3346
{
3347
    int ret;
3348
    ret = usb_device_add(devname);
3349
    if (ret < 0) 
3350
        term_printf("Could not add USB device '%s'\n", devname);
3351
}
3352

    
3353
void do_usb_del(const char *devname)
3354
{
3355
    int ret;
3356
    ret = usb_device_del(devname);
3357
    if (ret < 0) 
3358
        term_printf("Could not remove USB device '%s'\n", devname);
3359
}
3360

    
3361
void usb_info(void)
3362
{
3363
    USBDevice *dev;
3364
    USBPort *port;
3365
    const char *speed_str;
3366

    
3367
    if (!usb_enabled) {
3368
        term_printf("USB support not enabled\n");
3369
        return;
3370
    }
3371

    
3372
    for (port = used_usb_ports; port; port = port->next) {
3373
        dev = port->dev;
3374
        if (!dev)
3375
            continue;
3376
        switch(dev->speed) {
3377
        case USB_SPEED_LOW: 
3378
            speed_str = "1.5"; 
3379
            break;
3380
        case USB_SPEED_FULL: 
3381
            speed_str = "12"; 
3382
            break;
3383
        case USB_SPEED_HIGH: 
3384
            speed_str = "480"; 
3385
            break;
3386
        default:
3387
            speed_str = "?"; 
3388
            break;
3389
        }
3390
        term_printf("  Device %d.%d, speed %s Mb/s\n", 
3391
                    0, dev->addr, speed_str);
3392
    }
3393
}
3394

    
3395
/***********************************************************/
3396
/* pid file */
3397

    
3398
static char *pid_filename;
3399

    
3400
/* Remove PID file. Called on normal exit */
3401

    
3402
static void remove_pidfile(void) 
3403
{
3404
    unlink (pid_filename);
3405
}
3406

    
3407
static void create_pidfile(const char *filename)
3408
{
3409
    struct stat pidstat;
3410
    FILE *f;
3411

    
3412
    /* Try to write our PID to the named file */
3413
    if (stat(filename, &pidstat) < 0) {
3414
        if (errno == ENOENT) {
3415
            if ((f = fopen (filename, "w")) == NULL) {
3416
                perror("Opening pidfile");
3417
                exit(1);
3418
            }
3419
            fprintf(f, "%d\n", getpid());
3420
            fclose(f);
3421
            pid_filename = qemu_strdup(filename);
3422
            if (!pid_filename) {
3423
                fprintf(stderr, "Could not save PID filename");
3424
                exit(1);
3425
            }
3426
            atexit(remove_pidfile);
3427
        }
3428
    } else {
3429
        fprintf(stderr, "%s already exists. Remove it and try again.\n", 
3430
                filename);
3431
        exit(1);
3432
    }
3433
}
3434

    
3435
/***********************************************************/
3436
/* dumb display */
3437

    
3438
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
3439
{
3440
}
3441

    
3442
static void dumb_resize(DisplayState *ds, int w, int h)
3443
{
3444
}
3445

    
3446
static void dumb_refresh(DisplayState *ds)
3447
{
3448
    vga_hw_update();
3449
}
3450

    
3451
void dumb_display_init(DisplayState *ds)
3452
{
3453
    ds->data = NULL;
3454
    ds->linesize = 0;
3455
    ds->depth = 0;
3456
    ds->dpy_update = dumb_update;
3457
    ds->dpy_resize = dumb_resize;
3458
    ds->dpy_refresh = dumb_refresh;
3459
}
3460

    
3461
#if !defined(CONFIG_SOFTMMU)
3462
/***********************************************************/
3463
/* cpu signal handler */
3464
static void host_segv_handler(int host_signum, siginfo_t *info, 
3465
                              void *puc)
3466
{
3467
    if (cpu_signal_handler(host_signum, info, puc))
3468
        return;
3469
    if (stdio_nb_clients > 0)
3470
        term_exit();
3471
    abort();
3472
}
3473
#endif
3474

    
3475
/***********************************************************/
3476
/* I/O handling */
3477

    
3478
#define MAX_IO_HANDLERS 64
3479

    
3480
typedef struct IOHandlerRecord {
3481
    int fd;
3482
    IOCanRWHandler *fd_read_poll;
3483
    IOHandler *fd_read;
3484
    IOHandler *fd_write;
3485
    void *opaque;
3486
    /* temporary data */
3487
    struct pollfd *ufd;
3488
    struct IOHandlerRecord *next;
3489
} IOHandlerRecord;
3490

    
3491
static IOHandlerRecord *first_io_handler;
3492

    
3493
/* XXX: fd_read_poll should be suppressed, but an API change is
3494
   necessary in the character devices to suppress fd_can_read(). */
3495
int qemu_set_fd_handler2(int fd, 
3496
                         IOCanRWHandler *fd_read_poll, 
3497
                         IOHandler *fd_read, 
3498
                         IOHandler *fd_write, 
3499
                         void *opaque)
3500
{
3501
    IOHandlerRecord **pioh, *ioh;
3502

    
3503
    if (!fd_read && !fd_write) {
3504
        pioh = &first_io_handler;
3505
        for(;;) {
3506
            ioh = *pioh;
3507
            if (ioh == NULL)
3508
                break;
3509
            if (ioh->fd == fd) {
3510
                *pioh = ioh->next;
3511
                qemu_free(ioh);
3512
                break;
3513
            }
3514
            pioh = &ioh->next;
3515
        }
3516
    } else {
3517
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3518
            if (ioh->fd == fd)
3519
                goto found;
3520
        }
3521
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
3522
        if (!ioh)
3523
            return -1;
3524
        ioh->next = first_io_handler;
3525
        first_io_handler = ioh;
3526
    found:
3527
        ioh->fd = fd;
3528
        ioh->fd_read_poll = fd_read_poll;
3529
        ioh->fd_read = fd_read;
3530
        ioh->fd_write = fd_write;
3531
        ioh->opaque = opaque;
3532
    }
3533
    return 0;
3534
}
3535

    
3536
int qemu_set_fd_handler(int fd, 
3537
                        IOHandler *fd_read, 
3538
                        IOHandler *fd_write, 
3539
                        void *opaque)
3540
{
3541
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3542
}
3543

    
3544
/***********************************************************/
3545
/* Polling handling */
3546

    
3547
typedef struct PollingEntry {
3548
    PollingFunc *func;
3549
    void *opaque;
3550
    struct PollingEntry *next;
3551
} PollingEntry;
3552

    
3553
static PollingEntry *first_polling_entry;
3554

    
3555
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3556
{
3557
    PollingEntry **ppe, *pe;
3558
    pe = qemu_mallocz(sizeof(PollingEntry));
3559
    if (!pe)
3560
        return -1;
3561
    pe->func = func;
3562
    pe->opaque = opaque;
3563
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3564
    *ppe = pe;
3565
    return 0;
3566
}
3567

    
3568
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3569
{
3570
    PollingEntry **ppe, *pe;
3571
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3572
        pe = *ppe;
3573
        if (pe->func == func && pe->opaque == opaque) {
3574
            *ppe = pe->next;
3575
            qemu_free(pe);
3576
            break;
3577
        }
3578
    }
3579
}
3580

    
3581
/***********************************************************/
3582
/* savevm/loadvm support */
3583

    
3584
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
3585
{
3586
    fwrite(buf, 1, size, f);
3587
}
3588

    
3589
void qemu_put_byte(QEMUFile *f, int v)
3590
{
3591
    fputc(v, f);
3592
}
3593

    
3594
void qemu_put_be16(QEMUFile *f, unsigned int v)
3595
{
3596
    qemu_put_byte(f, v >> 8);
3597
    qemu_put_byte(f, v);
3598
}
3599

    
3600
void qemu_put_be32(QEMUFile *f, unsigned int v)
3601
{
3602
    qemu_put_byte(f, v >> 24);
3603
    qemu_put_byte(f, v >> 16);
3604
    qemu_put_byte(f, v >> 8);
3605
    qemu_put_byte(f, v);
3606
}
3607

    
3608
void qemu_put_be64(QEMUFile *f, uint64_t v)
3609
{
3610
    qemu_put_be32(f, v >> 32);
3611
    qemu_put_be32(f, v);
3612
}
3613

    
3614
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
3615
{
3616
    return fread(buf, 1, size, f);
3617
}
3618

    
3619
int qemu_get_byte(QEMUFile *f)
3620
{
3621
    int v;
3622
    v = fgetc(f);
3623
    if (v == EOF)
3624
        return 0;
3625
    else
3626
        return v;
3627
}
3628

    
3629
unsigned int qemu_get_be16(QEMUFile *f)
3630
{
3631
    unsigned int v;
3632
    v = qemu_get_byte(f) << 8;
3633
    v |= qemu_get_byte(f);
3634
    return v;
3635
}
3636

    
3637
unsigned int qemu_get_be32(QEMUFile *f)
3638
{
3639
    unsigned int v;
3640
    v = qemu_get_byte(f) << 24;
3641
    v |= qemu_get_byte(f) << 16;
3642
    v |= qemu_get_byte(f) << 8;
3643
    v |= qemu_get_byte(f);
3644
    return v;
3645
}
3646

    
3647
uint64_t qemu_get_be64(QEMUFile *f)
3648
{
3649
    uint64_t v;
3650
    v = (uint64_t)qemu_get_be32(f) << 32;
3651
    v |= qemu_get_be32(f);
3652
    return v;
3653
}
3654

    
3655
int64_t qemu_ftell(QEMUFile *f)
3656
{
3657
    return ftell(f);
3658
}
3659

    
3660
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
3661
{
3662
    if (fseek(f, pos, whence) < 0)
3663
        return -1;
3664
    return ftell(f);
3665
}
3666

    
3667
typedef struct SaveStateEntry {
3668
    char idstr[256];
3669
    int instance_id;
3670
    int version_id;
3671
    SaveStateHandler *save_state;
3672
    LoadStateHandler *load_state;
3673
    void *opaque;
3674
    struct SaveStateEntry *next;
3675
} SaveStateEntry;
3676

    
3677
static SaveStateEntry *first_se;
3678

    
3679
int register_savevm(const char *idstr, 
3680
                    int instance_id, 
3681
                    int version_id,
3682
                    SaveStateHandler *save_state,
3683
                    LoadStateHandler *load_state,
3684
                    void *opaque)
3685
{
3686
    SaveStateEntry *se, **pse;
3687

    
3688
    se = qemu_malloc(sizeof(SaveStateEntry));
3689
    if (!se)
3690
        return -1;
3691
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
3692
    se->instance_id = instance_id;
3693
    se->version_id = version_id;
3694
    se->save_state = save_state;
3695
    se->load_state = load_state;
3696
    se->opaque = opaque;
3697
    se->next = NULL;
3698

    
3699
    /* add at the end of list */
3700
    pse = &first_se;
3701
    while (*pse != NULL)
3702
        pse = &(*pse)->next;
3703
    *pse = se;
3704
    return 0;
3705
}
3706

    
3707
#define QEMU_VM_FILE_MAGIC   0x5145564d
3708
#define QEMU_VM_FILE_VERSION 0x00000001
3709

    
3710
int qemu_savevm(const char *filename)
3711
{
3712
    SaveStateEntry *se;
3713
    QEMUFile *f;
3714
    int len, len_pos, cur_pos, saved_vm_running, ret;
3715

    
3716
    saved_vm_running = vm_running;
3717
    vm_stop(0);
3718

    
3719
    f = fopen(filename, "wb");
3720
    if (!f) {
3721
        ret = -1;
3722
        goto the_end;
3723
    }
3724

    
3725
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
3726
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
3727

    
3728
    for(se = first_se; se != NULL; se = se->next) {
3729
        /* ID string */
3730
        len = strlen(se->idstr);
3731
        qemu_put_byte(f, len);
3732
        qemu_put_buffer(f, se->idstr, len);
3733

    
3734
        qemu_put_be32(f, se->instance_id);
3735
        qemu_put_be32(f, se->version_id);
3736

    
3737
        /* record size: filled later */
3738
        len_pos = ftell(f);
3739
        qemu_put_be32(f, 0);
3740
        
3741
        se->save_state(f, se->opaque);
3742

    
3743
        /* fill record size */
3744
        cur_pos = ftell(f);
3745
        len = ftell(f) - len_pos - 4;
3746
        fseek(f, len_pos, SEEK_SET);
3747
        qemu_put_be32(f, len);
3748
        fseek(f, cur_pos, SEEK_SET);
3749
    }
3750

    
3751
    fclose(f);
3752
    ret = 0;
3753
 the_end:
3754
    if (saved_vm_running)
3755
        vm_start();
3756
    return ret;
3757
}
3758

    
3759
static SaveStateEntry *find_se(const char *idstr, int instance_id)
3760
{
3761
    SaveStateEntry *se;
3762

    
3763
    for(se = first_se; se != NULL; se = se->next) {
3764
        if (!strcmp(se->idstr, idstr) && 
3765
            instance_id == se->instance_id)
3766
            return se;
3767
    }
3768
    return NULL;
3769
}
3770

    
3771
int qemu_loadvm(const char *filename)
3772
{
3773
    SaveStateEntry *se;
3774
    QEMUFile *f;
3775
    int len, cur_pos, ret, instance_id, record_len, version_id;
3776
    int saved_vm_running;
3777
    unsigned int v;
3778
    char idstr[256];
3779
    
3780
    saved_vm_running = vm_running;
3781
    vm_stop(0);
3782

    
3783
    f = fopen(filename, "rb");
3784
    if (!f) {
3785
        ret = -1;
3786
        goto the_end;
3787
    }
3788

    
3789
    v = qemu_get_be32(f);
3790
    if (v != QEMU_VM_FILE_MAGIC)
3791
        goto fail;
3792
    v = qemu_get_be32(f);
3793
    if (v != QEMU_VM_FILE_VERSION) {
3794
    fail:
3795
        fclose(f);
3796
        ret = -1;
3797
        goto the_end;
3798
    }
3799
    for(;;) {
3800
        len = qemu_get_byte(f);
3801
        if (feof(f))
3802
            break;
3803
        qemu_get_buffer(f, idstr, len);
3804
        idstr[len] = '\0';
3805
        instance_id = qemu_get_be32(f);
3806
        version_id = qemu_get_be32(f);
3807
        record_len = qemu_get_be32(f);
3808
#if 0
3809
        printf("idstr=%s instance=0x%x version=%d len=%d\n", 
3810
               idstr, instance_id, version_id, record_len);
3811
#endif
3812
        cur_pos = ftell(f);
3813
        se = find_se(idstr, instance_id);
3814
        if (!se) {
3815
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n", 
3816
                    instance_id, idstr);
3817
        } else {
3818
            ret = se->load_state(f, se->opaque, version_id);
3819
            if (ret < 0) {
3820
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", 
3821
                        instance_id, idstr);
3822
            }
3823
        }
3824
        /* always seek to exact end of record */
3825
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
3826
    }
3827
    fclose(f);
3828
    ret = 0;
3829
 the_end:
3830
    if (saved_vm_running)
3831
        vm_start();
3832
    return ret;
3833
}
3834

    
3835
/***********************************************************/
3836
/* cpu save/restore */
3837

    
3838
#if defined(TARGET_I386)
3839

    
3840
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
3841
{
3842
    qemu_put_be32(f, dt->selector);
3843
    qemu_put_betl(f, dt->base);
3844
    qemu_put_be32(f, dt->limit);
3845
    qemu_put_be32(f, dt->flags);
3846
}
3847

    
3848
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
3849
{
3850
    dt->selector = qemu_get_be32(f);
3851
    dt->base = qemu_get_betl(f);
3852
    dt->limit = qemu_get_be32(f);
3853
    dt->flags = qemu_get_be32(f);
3854
}
3855

    
3856
void cpu_save(QEMUFile *f, void *opaque)
3857
{
3858
    CPUState *env = opaque;
3859
    uint16_t fptag, fpus, fpuc, fpregs_format;
3860
    uint32_t hflags;
3861
    int i;
3862
    
3863
    for(i = 0; i < CPU_NB_REGS; i++)
3864
        qemu_put_betls(f, &env->regs[i]);
3865
    qemu_put_betls(f, &env->eip);
3866
    qemu_put_betls(f, &env->eflags);
3867
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
3868
    qemu_put_be32s(f, &hflags);
3869
    
3870
    /* FPU */
3871
    fpuc = env->fpuc;
3872
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
3873
    fptag = 0;
3874
    for(i = 0; i < 8; i++) {
3875
        fptag |= ((!env->fptags[i]) << i);
3876
    }
3877
    
3878
    qemu_put_be16s(f, &fpuc);
3879
    qemu_put_be16s(f, &fpus);
3880
    qemu_put_be16s(f, &fptag);
3881

    
3882
#ifdef USE_X86LDOUBLE
3883
    fpregs_format = 0;
3884
#else
3885
    fpregs_format = 1;
3886
#endif
3887
    qemu_put_be16s(f, &fpregs_format);
3888
    
3889
    for(i = 0; i < 8; i++) {
3890
#ifdef USE_X86LDOUBLE
3891
        {
3892
            uint64_t mant;
3893
            uint16_t exp;
3894
            /* we save the real CPU data (in case of MMX usage only 'mant'
3895
               contains the MMX register */
3896
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
3897
            qemu_put_be64(f, mant);
3898
            qemu_put_be16(f, exp);
3899
        }
3900
#else
3901
        /* if we use doubles for float emulation, we save the doubles to
3902
           avoid losing information in case of MMX usage. It can give
3903
           problems if the image is restored on a CPU where long
3904
           doubles are used instead. */
3905
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
3906
#endif
3907
    }
3908

    
3909
    for(i = 0; i < 6; i++)
3910
        cpu_put_seg(f, &env->segs[i]);
3911
    cpu_put_seg(f, &env->ldt);
3912
    cpu_put_seg(f, &env->tr);
3913
    cpu_put_seg(f, &env->gdt);
3914
    cpu_put_seg(f, &env->idt);
3915
    
3916
    qemu_put_be32s(f, &env->sysenter_cs);
3917
    qemu_put_be32s(f, &env->sysenter_esp);
3918
    qemu_put_be32s(f, &env->sysenter_eip);
3919
    
3920
    qemu_put_betls(f, &env->cr[0]);
3921
    qemu_put_betls(f, &env->cr[2]);
3922
    qemu_put_betls(f, &env->cr[3]);
3923
    qemu_put_betls(f, &env->cr[4]);
3924
    
3925
    for(i = 0; i < 8; i++)
3926
        qemu_put_betls(f, &env->dr[i]);
3927

    
3928
    /* MMU */
3929
    qemu_put_be32s(f, &env->a20_mask);
3930

    
3931
    /* XMM */
3932
    qemu_put_be32s(f, &env->mxcsr);
3933
    for(i = 0; i < CPU_NB_REGS; i++) {
3934
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
3935
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
3936
    }
3937

    
3938
#ifdef TARGET_X86_64
3939
    qemu_put_be64s(f, &env->efer);
3940
    qemu_put_be64s(f, &env->star);
3941
    qemu_put_be64s(f, &env->lstar);
3942
    qemu_put_be64s(f, &env->cstar);
3943
    qemu_put_be64s(f, &env->fmask);
3944
    qemu_put_be64s(f, &env->kernelgsbase);
3945
#endif
3946
}
3947

    
3948
#ifdef USE_X86LDOUBLE
3949
/* XXX: add that in a FPU generic layer */
3950
union x86_longdouble {
3951
    uint64_t mant;
3952
    uint16_t exp;
3953
};
3954

    
3955
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
3956
#define EXPBIAS1 1023
3957
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
3958
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
3959

    
3960
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
3961
{
3962
    int e;
3963
    /* mantissa */
3964
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
3965
    /* exponent + sign */
3966
    e = EXPD1(temp) - EXPBIAS1 + 16383;
3967
    e |= SIGND1(temp) >> 16;
3968
    p->exp = e;
3969
}
3970
#endif
3971

    
3972
int cpu_load(QEMUFile *f, void *opaque, int version_id)
3973
{
3974
    CPUState *env = opaque;
3975
    int i, guess_mmx;
3976
    uint32_t hflags;
3977
    uint16_t fpus, fpuc, fptag, fpregs_format;
3978

    
3979
    if (version_id != 3)
3980
        return -EINVAL;
3981
    for(i = 0; i < CPU_NB_REGS; i++)
3982
        qemu_get_betls(f, &env->regs[i]);
3983
    qemu_get_betls(f, &env->eip);
3984
    qemu_get_betls(f, &env->eflags);
3985
    qemu_get_be32s(f, &hflags);
3986

    
3987
    qemu_get_be16s(f, &fpuc);
3988
    qemu_get_be16s(f, &fpus);
3989
    qemu_get_be16s(f, &fptag);
3990
    qemu_get_be16s(f, &fpregs_format);
3991
    
3992
    /* NOTE: we cannot always restore the FPU state if the image come
3993
       from a host with a different 'USE_X86LDOUBLE' define. We guess
3994
       if we are in an MMX state to restore correctly in that case. */
3995
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
3996
    for(i = 0; i < 8; i++) {
3997
        uint64_t mant;
3998
        uint16_t exp;
3999
        
4000
        switch(fpregs_format) {
4001
        case 0:
4002
            mant = qemu_get_be64(f);
4003
            exp = qemu_get_be16(f);
4004
#ifdef USE_X86LDOUBLE
4005
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
4006
#else
4007
            /* difficult case */
4008
            if (guess_mmx)
4009
                env->fpregs[i].mmx.MMX_Q(0) = mant;
4010
            else
4011
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
4012
#endif
4013
            break;
4014
        case 1:
4015
            mant = qemu_get_be64(f);
4016
#ifdef USE_X86LDOUBLE
4017
            {
4018
                union x86_longdouble *p;
4019
                /* difficult case */
4020
                p = (void *)&env->fpregs[i];
4021
                if (guess_mmx) {
4022
                    p->mant = mant;
4023
                    p->exp = 0xffff;
4024
                } else {
4025
                    fp64_to_fp80(p, mant);
4026
                }
4027
            }
4028
#else
4029
            env->fpregs[i].mmx.MMX_Q(0) = mant;
4030
#endif            
4031
            break;
4032
        default:
4033
            return -EINVAL;
4034
        }
4035
    }
4036

    
4037
    env->fpuc = fpuc;
4038
    /* XXX: restore FPU round state */
4039
    env->fpstt = (fpus >> 11) & 7;
4040
    env->fpus = fpus & ~0x3800;
4041
    fptag ^= 0xff;
4042
    for(i = 0; i < 8; i++) {
4043
        env->fptags[i] = (fptag >> i) & 1;
4044
    }
4045
    
4046
    for(i = 0; i < 6; i++)
4047
        cpu_get_seg(f, &env->segs[i]);
4048
    cpu_get_seg(f, &env->ldt);
4049
    cpu_get_seg(f, &env->tr);
4050
    cpu_get_seg(f, &env->gdt);
4051
    cpu_get_seg(f, &env->idt);
4052
    
4053
    qemu_get_be32s(f, &env->sysenter_cs);
4054
    qemu_get_be32s(f, &env->sysenter_esp);
4055
    qemu_get_be32s(f, &env->sysenter_eip);
4056
    
4057
    qemu_get_betls(f, &env->cr[0]);
4058
    qemu_get_betls(f, &env->cr[2]);
4059
    qemu_get_betls(f, &env->cr[3]);
4060
    qemu_get_betls(f, &env->cr[4]);
4061
    
4062
    for(i = 0; i < 8; i++)
4063
        qemu_get_betls(f, &env->dr[i]);
4064

    
4065
    /* MMU */
4066
    qemu_get_be32s(f, &env->a20_mask);
4067

    
4068
    qemu_get_be32s(f, &env->mxcsr);
4069
    for(i = 0; i < CPU_NB_REGS; i++) {
4070
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
4071
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
4072
    }
4073

    
4074
#ifdef TARGET_X86_64
4075
    qemu_get_be64s(f, &env->efer);
4076
    qemu_get_be64s(f, &env->star);
4077
    qemu_get_be64s(f, &env->lstar);
4078
    qemu_get_be64s(f, &env->cstar);
4079
    qemu_get_be64s(f, &env->fmask);
4080
    qemu_get_be64s(f, &env->kernelgsbase);
4081
#endif
4082

    
4083
    /* XXX: compute hflags from scratch, except for CPL and IIF */
4084
    env->hflags = hflags;
4085
    tlb_flush(env, 1);
4086
    return 0;
4087
}
4088

    
4089
#elif defined(TARGET_PPC)
4090
void cpu_save(QEMUFile *f, void *opaque)
4091
{
4092
}
4093

    
4094
int cpu_load(QEMUFile *f, void *opaque, int version_id)
4095
{
4096
    return 0;
4097
}
4098

    
4099
#elif defined(TARGET_MIPS)
4100
void cpu_save(QEMUFile *f, void *opaque)
4101
{
4102
}
4103

    
4104
int cpu_load(QEMUFile *f, void *opaque, int version_id)
4105
{
4106
    return 0;
4107
}
4108

    
4109
#elif defined(TARGET_SPARC)
4110
void cpu_save(QEMUFile *f, void *opaque)
4111
{
4112
    CPUState *env = opaque;
4113
    int i;
4114
    uint32_t tmp;
4115

    
4116
    for(i = 0; i < 8; i++)
4117
        qemu_put_betls(f, &env->gregs[i]);
4118
    for(i = 0; i < NWINDOWS * 16; i++)
4119
        qemu_put_betls(f, &env->regbase[i]);
4120

    
4121
    /* FPU */
4122
    for(i = 0; i < TARGET_FPREGS; i++) {
4123
        union {
4124
            TARGET_FPREG_T f;
4125
            target_ulong i;
4126
        } u;
4127
        u.f = env->fpr[i];
4128
        qemu_put_betl(f, u.i);
4129
    }
4130

    
4131
    qemu_put_betls(f, &env->pc);
4132
    qemu_put_betls(f, &env->npc);
4133
    qemu_put_betls(f, &env->y);
4134
    tmp = GET_PSR(env);
4135
    qemu_put_be32(f, tmp);
4136
    qemu_put_betls(f, &env->fsr);
4137
    qemu_put_betls(f, &env->tbr);
4138
#ifndef TARGET_SPARC64
4139
    qemu_put_be32s(f, &env->wim);
4140
    /* MMU */
4141
    for(i = 0; i < 16; i++)
4142
        qemu_put_be32s(f, &env->mmuregs[i]);
4143
#endif
4144
}
4145

    
4146
int cpu_load(QEMUFile *f, void *opaque, int version_id)
4147
{
4148
    CPUState *env = opaque;
4149
    int i;
4150
    uint32_t tmp;
4151

    
4152
    for(i = 0; i < 8; i++)
4153
        qemu_get_betls(f, &env->gregs[i]);
4154
    for(i = 0; i < NWINDOWS * 16; i++)
4155
        qemu_get_betls(f, &env->regbase[i]);
4156

    
4157
    /* FPU */
4158
    for(i = 0; i < TARGET_FPREGS; i++) {
4159
        union {
4160
            TARGET_FPREG_T f;
4161
            target_ulong i;
4162
        } u;
4163
        u.i = qemu_get_betl(f);
4164
        env->fpr[i] = u.f;
4165
    }
4166

    
4167
    qemu_get_betls(f, &env->pc);
4168
    qemu_get_betls(f, &env->npc);
4169
    qemu_get_betls(f, &env->y);
4170
    tmp = qemu_get_be32(f);
4171
    env->cwp = 0; /* needed to ensure that the wrapping registers are
4172
                     correctly updated */
4173
    PUT_PSR(env, tmp);
4174
    qemu_get_betls(f, &env->fsr);
4175
    qemu_get_betls(f, &env->tbr);
4176
#ifndef TARGET_SPARC64
4177
    qemu_get_be32s(f, &env->wim);
4178
    /* MMU */
4179
    for(i = 0; i < 16; i++)
4180
        qemu_get_be32s(f, &env->mmuregs[i]);
4181
#endif
4182
    tlb_flush(env, 1);
4183
    return 0;
4184
}
4185

    
4186
#elif defined(TARGET_ARM)
4187

    
4188
/* ??? Need to implement these.  */
4189
void cpu_save(QEMUFile *f, void *opaque)
4190
{
4191
}
4192

    
4193
int cpu_load(QEMUFile *f, void *opaque, int version_id)
4194
{
4195
    return 0;
4196
}
4197

    
4198
#else
4199

    
4200
#warning No CPU save/restore functions
4201

    
4202
#endif
4203

    
4204
/***********************************************************/
4205
/* ram save/restore */
4206

    
4207
/* we just avoid storing empty pages */
4208
static void ram_put_page(QEMUFile *f, const uint8_t *buf, int len)
4209
{
4210
    int i, v;
4211

    
4212
    v = buf[0];
4213
    for(i = 1; i < len; i++) {
4214
        if (buf[i] != v)
4215
            goto normal_save;
4216
    }
4217
    qemu_put_byte(f, 1);
4218
    qemu_put_byte(f, v);
4219
    return;
4220
 normal_save:
4221
    qemu_put_byte(f, 0); 
4222
    qemu_put_buffer(f, buf, len);
4223
}
4224

    
4225
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
4226
{
4227
    int v;
4228

    
4229
    v = qemu_get_byte(f);
4230
    switch(v) {
4231
    case 0:
4232
        if (qemu_get_buffer(f, buf, len) != len)
4233
            return -EIO;
4234
        break;
4235
    case 1:
4236
        v = qemu_get_byte(f);
4237
        memset(buf, v, len);
4238
        break;
4239
    default:
4240
        return -EINVAL;
4241
    }
4242
    return 0;
4243
}
4244

    
4245
static void ram_save(QEMUFile *f, void *opaque)
4246
{
4247
    int i;
4248
    qemu_put_be32(f, phys_ram_size);
4249
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
4250
        ram_put_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
4251
    }
4252
}
4253

    
4254
static int ram_load(QEMUFile *f, void *opaque, int version_id)
4255
{
4256
    int i, ret;
4257

    
4258
    if (version_id != 1)
4259
        return -EINVAL;
4260
    if (qemu_get_be32(f) != phys_ram_size)
4261
        return -EINVAL;
4262
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
4263
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
4264
        if (ret)
4265
            return ret;
4266
    }
4267
    return 0;
4268
}
4269

    
4270
/***********************************************************/
4271
/* machine registration */
4272

    
4273
QEMUMachine *first_machine = NULL;
4274

    
4275
int qemu_register_machine(QEMUMachine *m)
4276
{
4277
    QEMUMachine **pm;
4278
    pm = &first_machine;
4279
    while (*pm != NULL)
4280
        pm = &(*pm)->next;
4281
    m->next = NULL;
4282
    *pm = m;
4283
    return 0;
4284
}
4285

    
4286
QEMUMachine *find_machine(const char *name)
4287
{
4288
    QEMUMachine *m;
4289

    
4290
    for(m = first_machine; m != NULL; m = m->next) {
4291
        if (!strcmp(m->name, name))
4292
            return m;
4293
    }
4294
    return NULL;
4295
}
4296

    
4297
/***********************************************************/
4298
/* main execution loop */
4299

    
4300
void gui_update(void *opaque)
4301
{
4302
    display_state.dpy_refresh(&display_state);
4303
    qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
4304
}
4305

    
4306
struct vm_change_state_entry {
4307
    VMChangeStateHandler *cb;
4308
    void *opaque;
4309
    LIST_ENTRY (vm_change_state_entry) entries;
4310
};
4311

    
4312
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
4313

    
4314
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
4315
                                                     void *opaque)
4316
{
4317
    VMChangeStateEntry *e;
4318

    
4319
    e = qemu_mallocz(sizeof (*e));
4320
    if (!e)
4321
        return NULL;
4322

    
4323
    e->cb = cb;
4324
    e->opaque = opaque;
4325
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
4326
    return e;
4327
}
4328

    
4329
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
4330
{
4331
    LIST_REMOVE (e, entries);
4332
    qemu_free (e);
4333
}
4334

    
4335
static void vm_state_notify(int running)
4336
{
4337
    VMChangeStateEntry *e;
4338

    
4339
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
4340
        e->cb(e->opaque, running);
4341
    }
4342
}
4343

    
4344
/* XXX: support several handlers */
4345
static VMStopHandler *vm_stop_cb;
4346
static void *vm_stop_opaque;
4347

    
4348
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
4349
{
4350
    vm_stop_cb = cb;
4351
    vm_stop_opaque = opaque;
4352
    return 0;
4353
}
4354

    
4355
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
4356
{
4357
    vm_stop_cb = NULL;
4358
}
4359

    
4360
void vm_start(void)
4361
{
4362
    if (!vm_running) {
4363
        cpu_enable_ticks();
4364
        vm_running = 1;
4365
        vm_state_notify(1);
4366
    }
4367
}
4368

    
4369
void vm_stop(int reason) 
4370
{
4371
    if (vm_running) {
4372
        cpu_disable_ticks();
4373
        vm_running = 0;
4374
        if (reason != 0) {
4375
            if (vm_stop_cb) {
4376
                vm_stop_cb(vm_stop_opaque, reason);
4377
            }
4378
        }
4379
        vm_state_notify(0);
4380
    }
4381
}
4382

    
4383
/* reset/shutdown handler */
4384

    
4385
typedef struct QEMUResetEntry {
4386
    QEMUResetHandler *func;
4387
    void *opaque;
4388
    struct QEMUResetEntry *next;
4389
} QEMUResetEntry;
4390

    
4391
static QEMUResetEntry *first_reset_entry;
4392
static int reset_requested;
4393
static int shutdown_requested;
4394
static int powerdown_requested;
4395

    
4396
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
4397
{
4398
    QEMUResetEntry **pre, *re;
4399

    
4400
    pre = &first_reset_entry;
4401
    while (*pre != NULL)
4402
        pre = &(*pre)->next;
4403
    re = qemu_mallocz(sizeof(QEMUResetEntry));
4404
    re->func = func;
4405
    re->opaque = opaque;
4406
    re->next = NULL;
4407
    *pre = re;
4408
}
4409

    
4410
void qemu_system_reset(void)
4411
{
4412
    QEMUResetEntry *re;
4413

    
4414
    /* reset all devices */
4415
    for(re = first_reset_entry; re != NULL; re = re->next) {
4416
        re->func(re->opaque);
4417
    }
4418
}
4419

    
4420
void qemu_system_reset_request(void)
4421
{
4422
    reset_requested = 1;
4423
    if (cpu_single_env)
4424
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4425
}
4426

    
4427
void qemu_system_shutdown_request(void)
4428
{
4429
    shutdown_requested = 1;
4430
    if (cpu_single_env)
4431
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4432
}
4433

    
4434
void qemu_system_powerdown_request(void)
4435
{
4436
    powerdown_requested = 1;
4437
    if (cpu_single_env)
4438
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4439
}
4440

    
4441
void main_loop_wait(int timeout)
4442
{
4443
    IOHandlerRecord *ioh, *ioh_next;
4444
    fd_set rfds, wfds, xfds;
4445
    int ret, nfds;
4446
    struct timeval tv;
4447
    PollingEntry *pe;
4448

    
4449

    
4450
    /* XXX: need to suppress polling by better using win32 events */
4451
    ret = 0;
4452
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4453
        ret |= pe->func(pe->opaque);
4454
    }
4455
#ifdef _WIN32
4456
    if (ret == 0 && timeout > 0) {
4457
            int err;
4458
            HANDLE hEvents[1];
4459

    
4460
            hEvents[0] = host_alarm;
4461
            ret = WaitForMultipleObjects(1, hEvents, FALSE, timeout);
4462
            switch(ret) {
4463
            case WAIT_OBJECT_0 + 0:
4464
                break;
4465
            case WAIT_TIMEOUT:
4466
                break;
4467
            default:
4468
                err = GetLastError();
4469
                fprintf(stderr, "Wait error %d %d\n", ret, err);
4470
                break;
4471
            }
4472
    }
4473
#endif
4474
    /* poll any events */
4475
    /* XXX: separate device handlers from system ones */
4476
    nfds = -1;
4477
    FD_ZERO(&rfds);
4478
    FD_ZERO(&wfds);
4479
    FD_ZERO(&xfds);
4480
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4481
        if (ioh->fd_read &&
4482
            (!ioh->fd_read_poll ||
4483
             ioh->fd_read_poll(ioh->opaque) != 0)) {
4484
            FD_SET(ioh->fd, &rfds);
4485
            if (ioh->fd > nfds)
4486
                nfds = ioh->fd;
4487
        }
4488
        if (ioh->fd_write) {
4489
            FD_SET(ioh->fd, &wfds);
4490
            if (ioh->fd > nfds)
4491
                nfds = ioh->fd;
4492
        }
4493
    }
4494
    
4495
    tv.tv_sec = 0;
4496
#ifdef _WIN32
4497
    tv.tv_usec = 0;
4498
#else
4499
    tv.tv_usec = timeout * 1000;
4500
#endif
4501
#if defined(CONFIG_SLIRP)
4502
    if (slirp_inited) {
4503
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4504
    }
4505
#endif
4506
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4507
    if (ret > 0) {
4508
        /* XXX: better handling of removal */
4509
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh_next) {
4510
            ioh_next = ioh->next;
4511
            if (FD_ISSET(ioh->fd, &rfds)) {
4512
                ioh->fd_read(ioh->opaque);
4513
            }
4514
            if (FD_ISSET(ioh->fd, &wfds)) {
4515
                ioh->fd_write(ioh->opaque);
4516
            }
4517
        }
4518
    }
4519
#if defined(CONFIG_SLIRP)
4520
    if (slirp_inited) {
4521
        if (ret < 0) {
4522
            FD_ZERO(&rfds);
4523
            FD_ZERO(&wfds);
4524
            FD_ZERO(&xfds);
4525
        }
4526
        slirp_select_poll(&rfds, &wfds, &xfds);
4527
    }
4528
#endif
4529
#ifdef _WIN32
4530
    tap_win32_poll();
4531
#endif
4532

    
4533
    if (vm_running) {
4534
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], 
4535
                        qemu_get_clock(vm_clock));
4536
        /* run dma transfers, if any */
4537
        DMA_run();
4538
    }
4539
    
4540
    /* real time timers */
4541
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], 
4542
                    qemu_get_clock(rt_clock));
4543
}
4544

    
4545
static CPUState *cur_cpu;
4546

    
4547
int main_loop(void)
4548
{
4549
    int ret, timeout;
4550
#ifdef CONFIG_PROFILER
4551
    int64_t ti;
4552
#endif
4553
    CPUState *env;
4554

    
4555
    cur_cpu = first_cpu;
4556
    for(;;) {
4557
        if (vm_running) {
4558

    
4559
            env = cur_cpu;
4560
            for(;;) {
4561
                /* get next cpu */
4562
                env = env->next_cpu;
4563
                if (!env)
4564
                    env = first_cpu;
4565
#ifdef CONFIG_PROFILER
4566
                ti = profile_getclock();
4567
#endif
4568
                ret = cpu_exec(env);
4569
#ifdef CONFIG_PROFILER
4570
                qemu_time += profile_getclock() - ti;
4571
#endif
4572
                if (ret != EXCP_HALTED)
4573
                    break;
4574
                /* all CPUs are halted ? */
4575
                if (env == cur_cpu) {
4576
                    ret = EXCP_HLT;
4577
                    break;
4578
                }
4579
            }
4580
            cur_cpu = env;
4581

    
4582
            if (shutdown_requested) {
4583
                ret = EXCP_INTERRUPT;
4584
                break;
4585
            }
4586
            if (reset_requested) {
4587
                reset_requested = 0;
4588
                qemu_system_reset();
4589
                ret = EXCP_INTERRUPT;
4590
            }
4591
            if (powerdown_requested) {
4592
                powerdown_requested = 0;
4593
                qemu_system_powerdown();
4594
                ret = EXCP_INTERRUPT;
4595
            }
4596
            if (ret == EXCP_DEBUG) {
4597
                vm_stop(EXCP_DEBUG);
4598
            }
4599
            /* if hlt instruction, we wait until the next IRQ */
4600
            /* XXX: use timeout computed from timers */
4601
            if (ret == EXCP_HLT)
4602
                timeout = 10;
4603
            else
4604
                timeout = 0;
4605
        } else {
4606
            timeout = 10;
4607
        }
4608
#ifdef CONFIG_PROFILER
4609
        ti = profile_getclock();
4610
#endif
4611
        main_loop_wait(timeout);
4612
#ifdef CONFIG_PROFILER
4613
        dev_time += profile_getclock() - ti;
4614
#endif
4615
    }
4616
    cpu_disable_ticks();
4617
    return ret;
4618
}
4619

    
4620
void help(void)
4621
{
4622
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2005 Fabrice Bellard\n"
4623
           "usage: %s [options] [disk_image]\n"
4624
           "\n"
4625
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4626
           "\n"
4627
           "Standard options:\n"
4628
           "-M machine      select emulated machine (-M ? for list)\n"
4629
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
4630
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
4631
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
4632
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
4633
           "-boot [a|c|d]   boot on floppy (a), hard disk (c) or CD-ROM (d)\n"
4634
           "-snapshot       write to temporary files instead of disk image files\n"
4635
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
4636
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
4637
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
4638
#ifndef _WIN32
4639
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
4640
#endif
4641
#ifdef HAS_AUDIO
4642
           "-audio-help     print list of audio drivers and their options\n"
4643
           "-soundhw c1,... enable audio support\n"
4644
           "                and only specified sound cards (comma separated list)\n"
4645
           "                use -soundhw ? to get the list of supported cards\n"
4646
           "                use -soundhw all to enable all of them\n"
4647
#endif
4648
           "-localtime      set the real time clock to local time [default=utc]\n"
4649
           "-full-screen    start in full screen\n"
4650
#ifdef TARGET_I386
4651
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
4652
#endif
4653
           "-usb            enable the USB driver (will be the default soon)\n"
4654
           "-usbdevice name add the host or guest USB device 'name'\n"
4655
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
4656
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
4657
#endif
4658
           "\n"
4659
           "Network options:\n"
4660
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
4661
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
4662
#ifdef CONFIG_SLIRP
4663
           "-net user[,vlan=n][,hostname=host]\n"
4664
           "                connect the user mode network stack to VLAN 'n' and send\n"
4665
           "                hostname 'host' to DHCP clients\n"
4666
#endif
4667
#ifdef _WIN32
4668
           "-net tap[,vlan=n],ifname=name\n"
4669
           "                connect the host TAP network interface to VLAN 'n'\n"
4670
#else
4671
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
4672
           "                connect the host TAP network interface to VLAN 'n' and use\n"
4673
           "                the network script 'file' (default=%s);\n"
4674
           "                use 'fd=h' to connect to an already opened TAP interface\n"
4675
#endif
4676
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
4677
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
4678
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
4679
           "                connect the vlan 'n' to multicast maddr and port\n"
4680
           "-net none       use it alone to have zero network devices; if no -net option\n"
4681
           "                is provided, the default is '-net nic -net user'\n"
4682
           "\n"
4683
#ifdef CONFIG_SLIRP
4684
           "-tftp prefix    allow tftp access to files starting with prefix [-net user]\n"
4685
#ifndef _WIN32
4686
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
4687
#endif
4688
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
4689
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
4690
#endif
4691
           "\n"
4692
           "Linux boot specific:\n"
4693
           "-kernel bzImage use 'bzImage' as kernel image\n"
4694
           "-append cmdline use 'cmdline' as kernel command line\n"
4695
           "-initrd file    use 'file' as initial ram disk\n"
4696
           "\n"
4697
           "Debug/Expert options:\n"
4698
           "-monitor dev    redirect the monitor to char device 'dev'\n"
4699
           "-serial dev     redirect the serial port to char device 'dev'\n"
4700
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
4701
           "-pidfile file   Write PID to 'file'\n"
4702
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
4703
           "-s              wait gdb connection to port %d\n"
4704
           "-p port         change gdb connection port\n"
4705
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
4706
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
4707
           "                translation (t=none or lba) (usually qemu can guess them)\n"
4708
           "-L path         set the directory for the BIOS and VGA BIOS\n"
4709
#ifdef USE_KQEMU
4710
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
4711
           "-no-kqemu       disable KQEMU kernel module usage\n"
4712
#endif
4713
#ifdef USE_CODE_COPY
4714
           "-no-code-copy   disable code copy acceleration\n"
4715
#endif
4716
#ifdef TARGET_I386
4717
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
4718
           "                (default is CL-GD5446 PCI VGA)\n"
4719
           "-no-acpi        disable ACPI\n"
4720
#endif
4721
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
4722
           "-vnc display    start a VNC server on display\n"
4723
           "\n"
4724
           "During emulation, the following keys are useful:\n"
4725
           "ctrl-alt-f      toggle full screen\n"
4726
           "ctrl-alt-n      switch to virtual console 'n'\n"
4727
           "ctrl-alt        toggle mouse and keyboard grab\n"
4728
           "\n"
4729
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
4730
           ,
4731
#ifdef CONFIG_SOFTMMU
4732
           "qemu",
4733
#else
4734
           "qemu-fast",
4735
#endif
4736
           DEFAULT_RAM_SIZE,
4737
#ifndef _WIN32
4738
           DEFAULT_NETWORK_SCRIPT,
4739
#endif
4740
           DEFAULT_GDBSTUB_PORT,
4741
           "/tmp/qemu.log");
4742
#ifndef CONFIG_SOFTMMU
4743
    printf("\n"
4744
           "NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n"
4745
           "work. Please use the 'qemu' executable to have a more accurate (but slower)\n"
4746
           "PC emulation.\n");
4747
#endif
4748
    exit(1);
4749
}
4750

    
4751
#define HAS_ARG 0x0001
4752

    
4753
enum {
4754
    QEMU_OPTION_h,
4755

    
4756
    QEMU_OPTION_M,
4757
    QEMU_OPTION_fda,
4758
    QEMU_OPTION_fdb,
4759
    QEMU_OPTION_hda,
4760
    QEMU_OPTION_hdb,
4761
    QEMU_OPTION_hdc,
4762
    QEMU_OPTION_hdd,
4763
    QEMU_OPTION_cdrom,
4764
    QEMU_OPTION_boot,
4765
    QEMU_OPTION_snapshot,
4766
    QEMU_OPTION_m,
4767
    QEMU_OPTION_nographic,
4768
#ifdef HAS_AUDIO
4769
    QEMU_OPTION_audio_help,
4770
    QEMU_OPTION_soundhw,
4771
#endif
4772

    
4773
    QEMU_OPTION_net,
4774
    QEMU_OPTION_tftp,
4775
    QEMU_OPTION_smb,
4776
    QEMU_OPTION_redir,
4777

    
4778
    QEMU_OPTION_kernel,
4779
    QEMU_OPTION_append,
4780
    QEMU_OPTION_initrd,
4781

    
4782
    QEMU_OPTION_S,
4783
    QEMU_OPTION_s,
4784
    QEMU_OPTION_p,
4785
    QEMU_OPTION_d,
4786
    QEMU_OPTION_hdachs,
4787
    QEMU_OPTION_L,
4788
    QEMU_OPTION_no_code_copy,
4789
    QEMU_OPTION_k,
4790
    QEMU_OPTION_localtime,
4791
    QEMU_OPTION_cirrusvga,
4792
    QEMU_OPTION_g,
4793
    QEMU_OPTION_std_vga,
4794
    QEMU_OPTION_monitor,
4795
    QEMU_OPTION_serial,
4796
    QEMU_OPTION_parallel,
4797
    QEMU_OPTION_loadvm,
4798
    QEMU_OPTION_full_screen,
4799
    QEMU_OPTION_pidfile,
4800
    QEMU_OPTION_no_kqemu,
4801
    QEMU_OPTION_kernel_kqemu,
4802
    QEMU_OPTION_win2k_hack,
4803
    QEMU_OPTION_usb,
4804
    QEMU_OPTION_usbdevice,
4805
    QEMU_OPTION_smp,
4806
    QEMU_OPTION_vnc,
4807
    QEMU_OPTION_no_acpi,
4808
};
4809

    
4810
typedef struct QEMUOption {
4811
    const char *name;
4812
    int flags;
4813
    int index;
4814
} QEMUOption;
4815

    
4816
const QEMUOption qemu_options[] = {
4817
    { "h", 0, QEMU_OPTION_h },
4818

    
4819
    { "M", HAS_ARG, QEMU_OPTION_M },
4820
    { "fda", HAS_ARG, QEMU_OPTION_fda },
4821
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4822
    { "hda", HAS_ARG, QEMU_OPTION_hda },
4823
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4824
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4825
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4826
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4827
    { "boot", HAS_ARG, QEMU_OPTION_boot },
4828
    { "snapshot", 0, QEMU_OPTION_snapshot },
4829
    { "m", HAS_ARG, QEMU_OPTION_m },
4830
    { "nographic", 0, QEMU_OPTION_nographic },
4831
    { "k", HAS_ARG, QEMU_OPTION_k },
4832
#ifdef HAS_AUDIO
4833
    { "audio-help", 0, QEMU_OPTION_audio_help },
4834
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4835
#endif
4836

    
4837
    { "net", HAS_ARG, QEMU_OPTION_net},
4838
#ifdef CONFIG_SLIRP
4839
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4840
#ifndef _WIN32
4841
    { "smb", HAS_ARG, QEMU_OPTION_smb },
4842
#endif
4843
    { "redir", HAS_ARG, QEMU_OPTION_redir },
4844
#endif
4845

    
4846
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4847
    { "append", HAS_ARG, QEMU_OPTION_append },
4848
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4849

    
4850
    { "S", 0, QEMU_OPTION_S },
4851
    { "s", 0, QEMU_OPTION_s },
4852
    { "p", HAS_ARG, QEMU_OPTION_p },
4853
    { "d", HAS_ARG, QEMU_OPTION_d },
4854
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4855
    { "L", HAS_ARG, QEMU_OPTION_L },
4856
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
4857
#ifdef USE_KQEMU
4858
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4859
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4860
#endif
4861
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
4862
    { "g", 1, QEMU_OPTION_g },
4863
#endif
4864
    { "localtime", 0, QEMU_OPTION_localtime },
4865
    { "std-vga", 0, QEMU_OPTION_std_vga },
4866
    { "monitor", 1, QEMU_OPTION_monitor },
4867
    { "serial", 1, QEMU_OPTION_serial },
4868
    { "parallel", 1, QEMU_OPTION_parallel },
4869
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4870
    { "full-screen", 0, QEMU_OPTION_full_screen },
4871
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4872
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4873
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4874
    { "smp", HAS_ARG, QEMU_OPTION_smp },
4875
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4876
    
4877
    /* temporary options */
4878
    { "usb", 0, QEMU_OPTION_usb },
4879
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
4880
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
4881
    { NULL },
4882
};
4883

    
4884
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
4885

    
4886
/* this stack is only used during signal handling */
4887
#define SIGNAL_STACK_SIZE 32768
4888

    
4889
static uint8_t *signal_stack;
4890

    
4891
#endif
4892

    
4893
/* password input */
4894

    
4895
static BlockDriverState *get_bdrv(int index)
4896
{
4897
    BlockDriverState *bs;
4898

    
4899
    if (index < 4) {
4900
        bs = bs_table[index];
4901
    } else if (index < 6) {
4902
        bs = fd_table[index - 4];
4903
    } else {
4904
        bs = NULL;
4905
    }
4906
    return bs;
4907
}
4908

    
4909
static void read_passwords(void)
4910
{
4911
    BlockDriverState *bs;
4912
    int i, j;
4913
    char password[256];
4914

    
4915
    for(i = 0; i < 6; i++) {
4916
        bs = get_bdrv(i);
4917
        if (bs && bdrv_is_encrypted(bs)) {
4918
            term_printf("%s is encrypted.\n", bdrv_get_device_name(bs));
4919
            for(j = 0; j < 3; j++) {
4920
                monitor_readline("Password: ", 
4921
                                 1, password, sizeof(password));
4922
                if (bdrv_set_key(bs, password) == 0)
4923
                    break;
4924
                term_printf("invalid password\n");
4925
            }
4926
        }
4927
    }
4928
}
4929

    
4930
/* XXX: currently we cannot use simultaneously different CPUs */
4931
void register_machines(void)
4932
{
4933
#if defined(TARGET_I386)
4934
    qemu_register_machine(&pc_machine);
4935
    qemu_register_machine(&isapc_machine);
4936
#elif defined(TARGET_PPC)
4937
    qemu_register_machine(&heathrow_machine);
4938
    qemu_register_machine(&core99_machine);
4939
    qemu_register_machine(&prep_machine);
4940
#elif defined(TARGET_MIPS)
4941
    qemu_register_machine(&mips_machine);
4942
#elif defined(TARGET_SPARC)
4943
#ifdef TARGET_SPARC64
4944
    qemu_register_machine(&sun4u_machine);
4945
#else
4946
    qemu_register_machine(&sun4m_machine);
4947
#endif
4948
#elif defined(TARGET_ARM)
4949
    qemu_register_machine(&integratorcp926_machine);
4950
    qemu_register_machine(&integratorcp1026_machine);
4951
    qemu_register_machine(&versatilepb_machine);
4952
    qemu_register_machine(&versatileab_machine);
4953
#elif defined(TARGET_SH4)
4954
    qemu_register_machine(&shix_machine);
4955
#else
4956
#error unsupported CPU
4957
#endif
4958
}
4959

    
4960
#ifdef HAS_AUDIO
4961
struct soundhw soundhw[] = {
4962
#ifdef TARGET_I386
4963
    {
4964
        "pcspk",
4965
        "PC speaker",
4966
        0,
4967
        1,
4968
        { .init_isa = pcspk_audio_init }
4969
    },
4970
#endif
4971
    {
4972
        "sb16",
4973
        "Creative Sound Blaster 16",
4974
        0,
4975
        1,
4976
        { .init_isa = SB16_init }
4977
    },
4978

    
4979
#ifdef CONFIG_ADLIB
4980
    {
4981
        "adlib",
4982
#ifdef HAS_YMF262
4983
        "Yamaha YMF262 (OPL3)",
4984
#else
4985
        "Yamaha YM3812 (OPL2)",
4986
#endif
4987
        0,
4988
        1,
4989
        { .init_isa = Adlib_init }
4990
    },
4991
#endif
4992

    
4993
#ifdef CONFIG_GUS
4994
    {
4995
        "gus",
4996
        "Gravis Ultrasound GF1",
4997
        0,
4998
        1,
4999
        { .init_isa = GUS_init }
5000
    },
5001
#endif
5002

    
5003
    {
5004
        "es1370",
5005
        "ENSONIQ AudioPCI ES1370",
5006
        0,
5007
        0,
5008
        { .init_pci = es1370_init }
5009
    },
5010

    
5011
    { NULL, NULL, 0, 0, { NULL } }
5012
};
5013

    
5014
static void select_soundhw (const char *optarg)
5015
{
5016
    struct soundhw *c;
5017

    
5018
    if (*optarg == '?') {
5019
    show_valid_cards:
5020

    
5021
        printf ("Valid sound card names (comma separated):\n");
5022
        for (c = soundhw; c->name; ++c) {
5023
            printf ("%-11s %s\n", c->name, c->descr);
5024
        }
5025
        printf ("\n-soundhw all will enable all of the above\n");
5026
        exit (*optarg != '?');
5027
    }
5028
    else {
5029
        size_t l;
5030
        const char *p;
5031
        char *e;
5032
        int bad_card = 0;
5033

    
5034
        if (!strcmp (optarg, "all")) {
5035
            for (c = soundhw; c->name; ++c) {
5036
                c->enabled = 1;
5037
            }
5038
            return;
5039
        }
5040

    
5041
        p = optarg;
5042
        while (*p) {
5043
            e = strchr (p, ',');
5044
            l = !e ? strlen (p) : (size_t) (e - p);
5045

    
5046
            for (c = soundhw; c->name; ++c) {
5047
                if (!strncmp (c->name, p, l)) {
5048
                    c->enabled = 1;
5049
                    break;
5050
                }
5051
            }
5052

    
5053
            if (!c->name) {
5054
                if (l > 80) {
5055
                    fprintf (stderr,
5056
                             "Unknown sound card name (too big to show)\n");
5057
                }
5058
                else {
5059
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
5060
                             (int) l, p);
5061
                }
5062
                bad_card = 1;
5063
            }
5064
            p += l + (e != NULL);
5065
        }
5066

    
5067
        if (bad_card)
5068
            goto show_valid_cards;
5069
    }
5070
}
5071
#endif
5072

    
5073
#define MAX_NET_CLIENTS 32
5074

    
5075
int main(int argc, char **argv)
5076
{
5077
#ifdef CONFIG_GDBSTUB
5078
    int use_gdbstub, gdbstub_port;
5079
#endif
5080
    int i, cdrom_index;
5081
    int snapshot, linux_boot;
5082
    const char *initrd_filename;
5083
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
5084
    const char *kernel_filename, *kernel_cmdline;
5085
    DisplayState *ds = &display_state;
5086
    int cyls, heads, secs, translation;
5087
    int start_emulation = 1;
5088
    char net_clients[MAX_NET_CLIENTS][256];
5089
    int nb_net_clients;
5090
    int optind;
5091
    const char *r, *optarg;
5092
    CharDriverState *monitor_hd;
5093
    char monitor_device[128];
5094
    char serial_devices[MAX_SERIAL_PORTS][128];
5095
    int serial_device_index;
5096
    char parallel_devices[MAX_PARALLEL_PORTS][128];
5097
    int parallel_device_index;
5098
    const char *loadvm = NULL;
5099
    QEMUMachine *machine;
5100
    char usb_devices[MAX_USB_CMDLINE][128];
5101
    int usb_devices_index;
5102

    
5103
    LIST_INIT (&vm_change_state_head);
5104
#if !defined(CONFIG_SOFTMMU)
5105
    /* we never want that malloc() uses mmap() */
5106
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
5107
#endif
5108
    register_machines();
5109
    machine = first_machine;
5110
    initrd_filename = NULL;
5111
    for(i = 0; i < MAX_FD; i++)
5112
        fd_filename[i] = NULL;
5113
    for(i = 0; i < MAX_DISKS; i++)
5114
        hd_filename[i] = NULL;
5115
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5116
    vga_ram_size = VGA_RAM_SIZE;
5117
    bios_size = BIOS_SIZE;
5118
#ifdef CONFIG_GDBSTUB
5119
    use_gdbstub = 0;
5120
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
5121
#endif
5122
    snapshot = 0;
5123
    nographic = 0;
5124
    kernel_filename = NULL;
5125
    kernel_cmdline = "";
5126
#ifdef TARGET_PPC
5127
    cdrom_index = 1;
5128
#else
5129
    cdrom_index = 2;
5130
#endif
5131
    cyls = heads = secs = 0;
5132
    translation = BIOS_ATA_TRANSLATION_AUTO;
5133
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
5134

    
5135
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
5136
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
5137
        serial_devices[i][0] = '\0';
5138
    serial_device_index = 0;
5139
    
5140
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
5141
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5142
        parallel_devices[i][0] = '\0';
5143
    parallel_device_index = 0;
5144
    
5145
    usb_devices_index = 0;
5146
    
5147
    nb_net_clients = 0;
5148

    
5149
    nb_nics = 0;
5150
    /* default mac address of the first network interface */
5151
    
5152
    optind = 1;
5153
    for(;;) {
5154
        if (optind >= argc)
5155
            break;
5156
        r = argv[optind];
5157
        if (r[0] != '-') {
5158
            hd_filename[0] = argv[optind++];
5159
        } else {
5160
            const QEMUOption *popt;
5161

    
5162
            optind++;
5163
            popt = qemu_options;
5164
            for(;;) {
5165
                if (!popt->name) {
5166
                    fprintf(stderr, "%s: invalid option -- '%s'\n", 
5167
                            argv[0], r);
5168
                    exit(1);
5169
                }
5170
                if (!strcmp(popt->name, r + 1))
5171
                    break;
5172
                popt++;
5173
            }
5174
            if (popt->flags & HAS_ARG) {
5175
                if (optind >= argc) {
5176
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
5177
                            argv[0], r);
5178
                    exit(1);
5179
                }
5180
                optarg = argv[optind++];
5181
            } else {
5182
                optarg = NULL;
5183
            }
5184

    
5185
            switch(popt->index) {
5186
            case QEMU_OPTION_M:
5187
                machine = find_machine(optarg);
5188
                if (!machine) {
5189
                    QEMUMachine *m;
5190
                    printf("Supported machines are:\n");
5191
                    for(m = first_machine; m != NULL; m = m->next) {
5192
                        printf("%-10s %s%s\n",
5193
                               m->name, m->desc, 
5194
                               m == first_machine ? " (default)" : "");
5195
                    }
5196
                    exit(1);
5197
                }
5198
                break;
5199
            case QEMU_OPTION_initrd:
5200
                initrd_filename = optarg;
5201
                break;
5202
            case QEMU_OPTION_hda:
5203
            case QEMU_OPTION_hdb:
5204
            case QEMU_OPTION_hdc:
5205
            case QEMU_OPTION_hdd:
5206
                {
5207
                    int hd_index;
5208
                    hd_index = popt->index - QEMU_OPTION_hda;
5209
                    hd_filename[hd_index] = optarg;
5210
                    if (hd_index == cdrom_index)
5211
                        cdrom_index = -1;
5212
                }
5213
                break;
5214
            case QEMU_OPTION_snapshot:
5215
                snapshot = 1;
5216
                break;
5217
            case QEMU_OPTION_hdachs:
5218
                {
5219
                    const char *p;
5220
                    p = optarg;
5221
                    cyls = strtol(p, (char **)&p, 0);
5222
                    if (cyls < 1 || cyls > 16383)
5223
                        goto chs_fail;
5224
                    if (*p != ',')
5225
                        goto chs_fail;
5226
                    p++;
5227
                    heads = strtol(p, (char **)&p, 0);
5228
                    if (heads < 1 || heads > 16)
5229
                        goto chs_fail;
5230
                    if (*p != ',')
5231
                        goto chs_fail;
5232
                    p++;
5233
                    secs = strtol(p, (char **)&p, 0);
5234
                    if (secs < 1 || secs > 63)
5235
                        goto chs_fail;
5236
                    if (*p == ',') {
5237
                        p++;
5238
                        if (!strcmp(p, "none"))
5239
                            translation = BIOS_ATA_TRANSLATION_NONE;
5240
                        else if (!strcmp(p, "lba"))
5241
                            translation = BIOS_ATA_TRANSLATION_LBA;
5242
                        else if (!strcmp(p, "auto"))
5243
                            translation = BIOS_ATA_TRANSLATION_AUTO;
5244
                        else
5245
                            goto chs_fail;
5246
                    } else if (*p != '\0') {
5247
                    chs_fail:
5248
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
5249
                        exit(1);
5250
                    }
5251
                }
5252
                break;
5253
            case QEMU_OPTION_nographic:
5254
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
5255
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
5256
                nographic = 1;
5257
                break;
5258
            case QEMU_OPTION_kernel:
5259
                kernel_filename = optarg;
5260
                break;
5261
            case QEMU_OPTION_append:
5262
                kernel_cmdline = optarg;
5263
                break;
5264
            case QEMU_OPTION_cdrom:
5265
                if (cdrom_index >= 0) {
5266
                    hd_filename[cdrom_index] = optarg;
5267
                }
5268
                break;
5269
            case QEMU_OPTION_boot:
5270
                boot_device = optarg[0];
5271
                if (boot_device != 'a' && 
5272
#ifdef TARGET_SPARC
5273
                    // Network boot
5274
                    boot_device != 'n' &&
5275
#endif
5276
                    boot_device != 'c' && boot_device != 'd') {
5277
                    fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
5278
                    exit(1);
5279
                }
5280
                break;
5281
            case QEMU_OPTION_fda:
5282
                fd_filename[0] = optarg;
5283
                break;
5284
            case QEMU_OPTION_fdb:
5285
                fd_filename[1] = optarg;
5286
                break;
5287
            case QEMU_OPTION_no_code_copy:
5288
                code_copy_enabled = 0;
5289
                break;
5290
            case QEMU_OPTION_net:
5291
                if (nb_net_clients >= MAX_NET_CLIENTS) {
5292
                    fprintf(stderr, "qemu: too many network clients\n");
5293
                    exit(1);
5294
                }
5295
                pstrcpy(net_clients[nb_net_clients],
5296
                        sizeof(net_clients[0]),
5297
                        optarg);
5298
                nb_net_clients++;
5299
                break;
5300
#ifdef CONFIG_SLIRP
5301
            case QEMU_OPTION_tftp:
5302
                tftp_prefix = optarg;
5303
                break;
5304
#ifndef _WIN32
5305
            case QEMU_OPTION_smb:
5306
                net_slirp_smb(optarg);
5307
                break;
5308
#endif
5309
            case QEMU_OPTION_redir:
5310
                net_slirp_redir(optarg);                
5311
                break;
5312
#endif
5313
#ifdef HAS_AUDIO
5314
            case QEMU_OPTION_audio_help:
5315
                AUD_help ();
5316
                exit (0);
5317
                break;
5318
            case QEMU_OPTION_soundhw:
5319
                select_soundhw (optarg);
5320
                break;
5321
#endif
5322
            case QEMU_OPTION_h:
5323
                help();
5324
                break;
5325
            case QEMU_OPTION_m:
5326
                ram_size = atoi(optarg) * 1024 * 1024;
5327
                if (ram_size <= 0)
5328
                    help();
5329
                if (ram_size > PHYS_RAM_MAX_SIZE) {
5330
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
5331
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
5332
                    exit(1);
5333
                }
5334
                break;
5335
            case QEMU_OPTION_d:
5336
                {
5337
                    int mask;
5338
                    CPULogItem *item;
5339
                    
5340
                    mask = cpu_str_to_log_mask(optarg);
5341
                    if (!mask) {
5342
                        printf("Log items (comma separated):\n");
5343
                    for(item = cpu_log_items; item->mask != 0; item++) {
5344
                        printf("%-10s %s\n", item->name, item->help);
5345
                    }
5346
                    exit(1);
5347
                    }
5348
                    cpu_set_log(mask);
5349
                }
5350
                break;
5351
#ifdef CONFIG_GDBSTUB
5352
            case QEMU_OPTION_s:
5353
                use_gdbstub = 1;
5354
                break;
5355
            case QEMU_OPTION_p:
5356
                gdbstub_port = atoi(optarg);
5357
                break;
5358
#endif
5359
            case QEMU_OPTION_L:
5360
                bios_dir = optarg;
5361
                break;
5362
            case QEMU_OPTION_S:
5363
                start_emulation = 0;
5364
                break;
5365
            case QEMU_OPTION_k:
5366
                keyboard_layout = optarg;
5367
                break;
5368
            case QEMU_OPTION_localtime:
5369
                rtc_utc = 0;
5370
                break;
5371
            case QEMU_OPTION_cirrusvga:
5372
                cirrus_vga_enabled = 1;
5373
                break;
5374
            case QEMU_OPTION_std_vga:
5375
                cirrus_vga_enabled = 0;
5376
                break;
5377
            case QEMU_OPTION_g:
5378
                {
5379
                    const char *p;
5380
                    int w, h, depth;
5381
                    p = optarg;
5382
                    w = strtol(p, (char **)&p, 10);
5383
                    if (w <= 0) {
5384
                    graphic_error:
5385
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
5386
                        exit(1);
5387
                    }
5388
                    if (*p != 'x')
5389
                        goto graphic_error;
5390
                    p++;
5391
                    h = strtol(p, (char **)&p, 10);
5392
                    if (h <= 0)
5393
                        goto graphic_error;
5394
                    if (*p == 'x') {
5395
                        p++;
5396
                        depth = strtol(p, (char **)&p, 10);
5397
                        if (depth != 8 && depth != 15 && depth != 16 && 
5398
                            depth != 24 && depth != 32)
5399
                            goto graphic_error;
5400
                    } else if (*p == '\0') {
5401
                        depth = graphic_depth;
5402
                    } else {
5403
                        goto graphic_error;
5404
                    }
5405
                    
5406
                    graphic_width = w;
5407
                    graphic_height = h;
5408
                    graphic_depth = depth;
5409
                }
5410
                break;
5411
            case QEMU_OPTION_monitor:
5412
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
5413
                break;
5414
            case QEMU_OPTION_serial:
5415
                if (serial_device_index >= MAX_SERIAL_PORTS) {
5416
                    fprintf(stderr, "qemu: too many serial ports\n");
5417
                    exit(1);
5418
                }
5419
                pstrcpy(serial_devices[serial_device_index], 
5420
                        sizeof(serial_devices[0]), optarg);
5421
                serial_device_index++;
5422
                break;
5423
            case QEMU_OPTION_parallel:
5424
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5425
                    fprintf(stderr, "qemu: too many parallel ports\n");
5426
                    exit(1);
5427
                }
5428
                pstrcpy(parallel_devices[parallel_device_index], 
5429
                        sizeof(parallel_devices[0]), optarg);
5430
                parallel_device_index++;
5431
                break;
5432
            case QEMU_OPTION_loadvm:
5433
                loadvm = optarg;
5434
                break;
5435
            case QEMU_OPTION_full_screen:
5436
                full_screen = 1;
5437
                break;
5438
            case QEMU_OPTION_pidfile:
5439
                create_pidfile(optarg);
5440
                break;
5441
#ifdef TARGET_I386
5442
            case QEMU_OPTION_win2k_hack:
5443
                win2k_install_hack = 1;
5444
                break;
5445
#endif
5446
#ifdef USE_KQEMU
5447
            case QEMU_OPTION_no_kqemu:
5448
                kqemu_allowed = 0;
5449
                break;
5450
            case QEMU_OPTION_kernel_kqemu:
5451
                kqemu_allowed = 2;
5452
                break;
5453
#endif
5454
            case QEMU_OPTION_usb:
5455
                usb_enabled = 1;
5456
                break;
5457
            case QEMU_OPTION_usbdevice:
5458
                usb_enabled = 1;
5459
                if (usb_devices_index >= MAX_USB_CMDLINE) {
5460
                    fprintf(stderr, "Too many USB devices\n");
5461
                    exit(1);
5462
                }
5463
                pstrcpy(usb_devices[usb_devices_index],
5464
                        sizeof(usb_devices[usb_devices_index]),
5465
                        optarg);
5466
                usb_devices_index++;
5467
                break;
5468
            case QEMU_OPTION_smp:
5469
                smp_cpus = atoi(optarg);
5470
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
5471
                    fprintf(stderr, "Invalid number of CPUs\n");
5472
                    exit(1);
5473
                }
5474
                break;
5475
            case QEMU_OPTION_vnc:
5476
                vnc_display = atoi(optarg);
5477
                if (vnc_display < 0) {
5478
                    fprintf(stderr, "Invalid VNC display\n");
5479
                    exit(1);
5480
                }
5481
                break;
5482
            case QEMU_OPTION_no_acpi:
5483
                acpi_enabled = 0;
5484
                break;
5485
            }
5486
        }
5487
    }
5488

    
5489
#ifdef USE_KQEMU
5490
    if (smp_cpus > 1)
5491
        kqemu_allowed = 0;
5492
#endif
5493
    linux_boot = (kernel_filename != NULL);
5494
        
5495
    if (!linux_boot && 
5496
        hd_filename[0] == '\0' && 
5497
        (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
5498
        fd_filename[0] == '\0')
5499
        help();
5500
    
5501
    /* boot to cd by default if no hard disk */
5502
    if (hd_filename[0] == '\0' && boot_device == 'c') {
5503
        if (fd_filename[0] != '\0')
5504
            boot_device = 'a';
5505
        else
5506
            boot_device = 'd';
5507
    }
5508

    
5509
#if !defined(CONFIG_SOFTMMU)
5510
    /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
5511
    {
5512
        static uint8_t stdout_buf[4096];
5513
        setvbuf(stdout, stdout_buf, _IOLBF, sizeof(stdout_buf));
5514
    }
5515
#else
5516
    setvbuf(stdout, NULL, _IOLBF, 0);
5517
#endif
5518
    
5519
#ifdef _WIN32
5520
    socket_init();
5521
#endif
5522

    
5523
    /* init network clients */
5524
    if (nb_net_clients == 0) {
5525
        /* if no clients, we use a default config */
5526
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
5527
                "nic");
5528
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
5529
                "user");
5530
        nb_net_clients = 2;
5531
    }
5532

    
5533
    for(i = 0;i < nb_net_clients; i++) {
5534
        if (net_client_init(net_clients[i]) < 0)
5535
            exit(1);
5536
    }
5537

    
5538
    /* init the memory */
5539
    phys_ram_size = ram_size + vga_ram_size + bios_size;
5540

    
5541
#ifdef CONFIG_SOFTMMU
5542
    phys_ram_base = qemu_vmalloc(phys_ram_size);
5543
    if (!phys_ram_base) {
5544
        fprintf(stderr, "Could not allocate physical memory\n");
5545
        exit(1);
5546
    }
5547
#else
5548
    /* as we must map the same page at several addresses, we must use
5549
       a fd */
5550
    {
5551
        const char *tmpdir;
5552

    
5553
        tmpdir = getenv("QEMU_TMPDIR");
5554
        if (!tmpdir)
5555
            tmpdir = "/tmp";
5556
        snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
5557
        if (mkstemp(phys_ram_file) < 0) {
5558
            fprintf(stderr, "Could not create temporary memory file '%s'\n", 
5559
                    phys_ram_file);
5560
            exit(1);
5561
        }
5562
        phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
5563
        if (phys_ram_fd < 0) {
5564
            fprintf(stderr, "Could not open temporary memory file '%s'\n", 
5565
                    phys_ram_file);
5566
            exit(1);
5567
        }
5568
        ftruncate(phys_ram_fd, phys_ram_size);
5569
        unlink(phys_ram_file);
5570
        phys_ram_base = mmap(get_mmap_addr(phys_ram_size), 
5571
                             phys_ram_size, 
5572
                             PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
5573
                             phys_ram_fd, 0);
5574
        if (phys_ram_base == MAP_FAILED) {
5575
            fprintf(stderr, "Could not map physical memory\n");
5576
            exit(1);
5577
        }
5578
    }
5579
#endif
5580

    
5581
    /* we always create the cdrom drive, even if no disk is there */
5582
    bdrv_init();
5583
    if (cdrom_index >= 0) {
5584
        bs_table[cdrom_index] = bdrv_new("cdrom");
5585
        bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
5586
    }
5587

    
5588
    /* open the virtual block devices */
5589
    for(i = 0; i < MAX_DISKS; i++) {
5590
        if (hd_filename[i]) {
5591
            if (!bs_table[i]) {
5592
                char buf[64];
5593
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
5594
                bs_table[i] = bdrv_new(buf);
5595
            }
5596
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot) < 0) {
5597
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
5598
                        hd_filename[i]);
5599
                exit(1);
5600
            }
5601
            if (i == 0 && cyls != 0) {
5602
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
5603
                bdrv_set_translation_hint(bs_table[i], translation);
5604
            }
5605
        }
5606
    }
5607

    
5608
    /* we always create at least one floppy disk */
5609
    fd_table[0] = bdrv_new("fda");
5610
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
5611

    
5612
    for(i = 0; i < MAX_FD; i++) {
5613
        if (fd_filename[i]) {
5614
            if (!fd_table[i]) {
5615
                char buf[64];
5616
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
5617
                fd_table[i] = bdrv_new(buf);
5618
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
5619
            }
5620
            if (fd_filename[i] != '\0') {
5621
                if (bdrv_open(fd_table[i], fd_filename[i], snapshot) < 0) {
5622
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
5623
                            fd_filename[i]);
5624
                    exit(1);
5625
                }
5626
            }
5627
        }
5628
    }
5629

    
5630
    register_savevm("timer", 0, 1, timer_save, timer_load, NULL);
5631
    register_savevm("ram", 0, 1, ram_save, ram_load, NULL);
5632

    
5633
    init_ioports();
5634
    cpu_calibrate_ticks();
5635

    
5636
    /* terminal init */
5637
    if (nographic) {
5638
        dumb_display_init(ds);
5639
    } else if (vnc_display != -1) {
5640
        vnc_display_init(ds, vnc_display);
5641
    } else {
5642
#if defined(CONFIG_SDL)
5643
        sdl_display_init(ds, full_screen);
5644
#elif defined(CONFIG_COCOA)
5645
        cocoa_display_init(ds, full_screen);
5646
#else
5647
        dumb_display_init(ds);
5648
#endif
5649
    }
5650

    
5651
    monitor_hd = qemu_chr_open(monitor_device);
5652
    if (!monitor_hd) {
5653
        fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5654
        exit(1);
5655
    }
5656
    monitor_init(monitor_hd, !nographic);
5657

    
5658
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5659
        if (serial_devices[i][0] != '\0') {
5660
            serial_hds[i] = qemu_chr_open(serial_devices[i]);
5661
            if (!serial_hds[i]) {
5662
                fprintf(stderr, "qemu: could not open serial device '%s'\n", 
5663
                        serial_devices[i]);
5664
                exit(1);
5665
            }
5666
            if (!strcmp(serial_devices[i], "vc"))
5667
                qemu_chr_printf(serial_hds[i], "serial%d console\n", i);
5668
        }
5669
    }
5670

    
5671
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5672
        if (parallel_devices[i][0] != '\0') {
5673
            parallel_hds[i] = qemu_chr_open(parallel_devices[i]);
5674
            if (!parallel_hds[i]) {
5675
                fprintf(stderr, "qemu: could not open parallel device '%s'\n", 
5676
                        parallel_devices[i]);
5677
                exit(1);
5678
            }
5679
            if (!strcmp(parallel_devices[i], "vc"))
5680
                qemu_chr_printf(parallel_hds[i], "parallel%d console\n", i);
5681
        }
5682
    }
5683

    
5684
    /* setup cpu signal handlers for MMU / self modifying code handling */
5685
#if !defined(CONFIG_SOFTMMU)
5686
    
5687
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
5688
    {
5689
        stack_t stk;
5690
        signal_stack = memalign(16, SIGNAL_STACK_SIZE);
5691
        stk.ss_sp = signal_stack;
5692
        stk.ss_size = SIGNAL_STACK_SIZE;
5693
        stk.ss_flags = 0;
5694

    
5695
        if (sigaltstack(&stk, NULL) < 0) {
5696
            perror("sigaltstack");
5697
            exit(1);
5698
        }
5699
    }
5700
#endif
5701
    {
5702
        struct sigaction act;
5703
        
5704
        sigfillset(&act.sa_mask);
5705
        act.sa_flags = SA_SIGINFO;
5706
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
5707
        act.sa_flags |= SA_ONSTACK;
5708
#endif
5709
        act.sa_sigaction = host_segv_handler;
5710
        sigaction(SIGSEGV, &act, NULL);
5711
        sigaction(SIGBUS, &act, NULL);
5712
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
5713
        sigaction(SIGFPE, &act, NULL);
5714
#endif
5715
    }
5716
#endif
5717

    
5718
#ifndef _WIN32
5719
    {
5720
        struct sigaction act;
5721
        sigfillset(&act.sa_mask);
5722
        act.sa_flags = 0;
5723
        act.sa_handler = SIG_IGN;
5724
        sigaction(SIGPIPE, &act, NULL);
5725
    }
5726
#endif
5727
    init_timers();
5728

    
5729
    machine->init(ram_size, vga_ram_size, boot_device,
5730
                  ds, fd_filename, snapshot,
5731
                  kernel_filename, kernel_cmdline, initrd_filename);
5732

    
5733
    /* init USB devices */
5734
    if (usb_enabled) {
5735
        for(i = 0; i < usb_devices_index; i++) {
5736
            if (usb_device_add(usb_devices[i]) < 0) {
5737
                fprintf(stderr, "Warning: could not add USB device %s\n",
5738
                        usb_devices[i]);
5739
            }
5740
        }
5741
    }
5742

    
5743
    gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
5744
    qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
5745

    
5746
#ifdef CONFIG_GDBSTUB
5747
    if (use_gdbstub) {
5748
        if (gdbserver_start(gdbstub_port) < 0) {
5749
            fprintf(stderr, "Could not open gdbserver socket on port %d\n", 
5750
                    gdbstub_port);
5751
            exit(1);
5752
        } else {
5753
            printf("Waiting gdb connection on port %d\n", gdbstub_port);
5754
        }
5755
    } else 
5756
#endif
5757
    if (loadvm)
5758
        qemu_loadvm(loadvm);
5759

    
5760
    {
5761
        /* XXX: simplify init */
5762
        read_passwords();
5763
        if (start_emulation) {
5764
            vm_start();
5765
        }
5766
    }
5767
    main_loop();
5768
    quit_timers();
5769
    return 0;
5770
}