root / linux-user / signal.c @ 0da46a6e
History | View | Annotate | Download (68.9 kB)
1 |
/*
|
---|---|
2 |
* Emulation of Linux signals
|
3 |
*
|
4 |
* Copyright (c) 2003 Fabrice Bellard
|
5 |
*
|
6 |
* This program is free software; you can redistribute it and/or modify
|
7 |
* it under the terms of the GNU General Public License as published by
|
8 |
* the Free Software Foundation; either version 2 of the License, or
|
9 |
* (at your option) any later version.
|
10 |
*
|
11 |
* This program is distributed in the hope that it will be useful,
|
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
* GNU General Public License for more details.
|
15 |
*
|
16 |
* You should have received a copy of the GNU General Public License
|
17 |
* along with this program; if not, write to the Free Software
|
18 |
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
19 |
*/
|
20 |
#include <stdlib.h> |
21 |
#include <stdio.h> |
22 |
#include <string.h> |
23 |
#include <stdarg.h> |
24 |
#include <unistd.h> |
25 |
#include <signal.h> |
26 |
#include <errno.h> |
27 |
#include <sys/ucontext.h> |
28 |
|
29 |
#include "qemu.h" |
30 |
#include "target_signal.h" |
31 |
|
32 |
//#define DEBUG_SIGNAL
|
33 |
|
34 |
#define MAX_SIGQUEUE_SIZE 1024 |
35 |
|
36 |
struct sigqueue {
|
37 |
struct sigqueue *next;
|
38 |
target_siginfo_t info; |
39 |
}; |
40 |
|
41 |
struct emulated_sigaction {
|
42 |
struct target_sigaction sa;
|
43 |
int pending; /* true if signal is pending */ |
44 |
struct sigqueue *first;
|
45 |
struct sigqueue info; /* in order to always have memory for the |
46 |
first signal, we put it here */
|
47 |
}; |
48 |
|
49 |
struct target_sigaltstack target_sigaltstack_used = {
|
50 |
.ss_sp = 0,
|
51 |
.ss_size = 0,
|
52 |
.ss_flags = TARGET_SS_DISABLE, |
53 |
}; |
54 |
|
55 |
static struct emulated_sigaction sigact_table[TARGET_NSIG]; |
56 |
static struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ |
57 |
static struct sigqueue *first_free; /* first free siginfo queue entry */ |
58 |
static int signal_pending; /* non zero if a signal may be pending */ |
59 |
|
60 |
static void host_signal_handler(int host_signum, siginfo_t *info, |
61 |
void *puc);
|
62 |
|
63 |
static uint8_t host_to_target_signal_table[65] = { |
64 |
[SIGHUP] = TARGET_SIGHUP, |
65 |
[SIGINT] = TARGET_SIGINT, |
66 |
[SIGQUIT] = TARGET_SIGQUIT, |
67 |
[SIGILL] = TARGET_SIGILL, |
68 |
[SIGTRAP] = TARGET_SIGTRAP, |
69 |
[SIGABRT] = TARGET_SIGABRT, |
70 |
/* [SIGIOT] = TARGET_SIGIOT,*/
|
71 |
[SIGBUS] = TARGET_SIGBUS, |
72 |
[SIGFPE] = TARGET_SIGFPE, |
73 |
[SIGKILL] = TARGET_SIGKILL, |
74 |
[SIGUSR1] = TARGET_SIGUSR1, |
75 |
[SIGSEGV] = TARGET_SIGSEGV, |
76 |
[SIGUSR2] = TARGET_SIGUSR2, |
77 |
[SIGPIPE] = TARGET_SIGPIPE, |
78 |
[SIGALRM] = TARGET_SIGALRM, |
79 |
[SIGTERM] = TARGET_SIGTERM, |
80 |
#ifdef SIGSTKFLT
|
81 |
[SIGSTKFLT] = TARGET_SIGSTKFLT, |
82 |
#endif
|
83 |
[SIGCHLD] = TARGET_SIGCHLD, |
84 |
[SIGCONT] = TARGET_SIGCONT, |
85 |
[SIGSTOP] = TARGET_SIGSTOP, |
86 |
[SIGTSTP] = TARGET_SIGTSTP, |
87 |
[SIGTTIN] = TARGET_SIGTTIN, |
88 |
[SIGTTOU] = TARGET_SIGTTOU, |
89 |
[SIGURG] = TARGET_SIGURG, |
90 |
[SIGXCPU] = TARGET_SIGXCPU, |
91 |
[SIGXFSZ] = TARGET_SIGXFSZ, |
92 |
[SIGVTALRM] = TARGET_SIGVTALRM, |
93 |
[SIGPROF] = TARGET_SIGPROF, |
94 |
[SIGWINCH] = TARGET_SIGWINCH, |
95 |
[SIGIO] = TARGET_SIGIO, |
96 |
[SIGPWR] = TARGET_SIGPWR, |
97 |
[SIGSYS] = TARGET_SIGSYS, |
98 |
/* next signals stay the same */
|
99 |
}; |
100 |
static uint8_t target_to_host_signal_table[65]; |
101 |
|
102 |
static inline int on_sig_stack(unsigned long sp) |
103 |
{ |
104 |
return (sp - target_sigaltstack_used.ss_sp
|
105 |
< target_sigaltstack_used.ss_size); |
106 |
} |
107 |
|
108 |
static inline int sas_ss_flags(unsigned long sp) |
109 |
{ |
110 |
return (target_sigaltstack_used.ss_size == 0 ? SS_DISABLE |
111 |
: on_sig_stack(sp) ? SS_ONSTACK : 0);
|
112 |
} |
113 |
|
114 |
static inline int host_to_target_signal(int sig) |
115 |
{ |
116 |
return host_to_target_signal_table[sig];
|
117 |
} |
118 |
|
119 |
static inline int target_to_host_signal(int sig) |
120 |
{ |
121 |
return target_to_host_signal_table[sig];
|
122 |
} |
123 |
|
124 |
static void host_to_target_sigset_internal(target_sigset_t *d, |
125 |
const sigset_t *s)
|
126 |
{ |
127 |
int i;
|
128 |
unsigned long sigmask; |
129 |
uint32_t target_sigmask; |
130 |
|
131 |
sigmask = ((unsigned long *)s)[0]; |
132 |
target_sigmask = 0;
|
133 |
for(i = 0; i < 32; i++) { |
134 |
if (sigmask & (1 << i)) |
135 |
target_sigmask |= 1 << (host_to_target_signal(i + 1) - 1); |
136 |
} |
137 |
#if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 32 |
138 |
d->sig[0] = target_sigmask;
|
139 |
for(i = 1;i < TARGET_NSIG_WORDS; i++) { |
140 |
d->sig[i] = ((unsigned long *)s)[i]; |
141 |
} |
142 |
#elif TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2 |
143 |
d->sig[0] = target_sigmask;
|
144 |
d->sig[1] = sigmask >> 32; |
145 |
#else
|
146 |
#warning host_to_target_sigset
|
147 |
#endif
|
148 |
} |
149 |
|
150 |
void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) |
151 |
{ |
152 |
target_sigset_t d1; |
153 |
int i;
|
154 |
|
155 |
host_to_target_sigset_internal(&d1, s); |
156 |
for(i = 0;i < TARGET_NSIG_WORDS; i++) |
157 |
d->sig[i] = tswapl(d1.sig[i]); |
158 |
} |
159 |
|
160 |
void target_to_host_sigset_internal(sigset_t *d, const target_sigset_t *s) |
161 |
{ |
162 |
int i;
|
163 |
unsigned long sigmask; |
164 |
abi_ulong target_sigmask; |
165 |
|
166 |
target_sigmask = s->sig[0];
|
167 |
sigmask = 0;
|
168 |
for(i = 0; i < 32; i++) { |
169 |
if (target_sigmask & (1 << i)) |
170 |
sigmask |= 1 << (target_to_host_signal(i + 1) - 1); |
171 |
} |
172 |
#if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 32 |
173 |
((unsigned long *)d)[0] = sigmask; |
174 |
for(i = 1;i < TARGET_NSIG_WORDS; i++) { |
175 |
((unsigned long *)d)[i] = s->sig[i]; |
176 |
} |
177 |
#elif TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2 |
178 |
((unsigned long *)d)[0] = sigmask | ((unsigned long)(s->sig[1]) << 32); |
179 |
#else
|
180 |
#warning target_to_host_sigset
|
181 |
#endif /* TARGET_ABI_BITS */ |
182 |
} |
183 |
|
184 |
void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) |
185 |
{ |
186 |
target_sigset_t s1; |
187 |
int i;
|
188 |
|
189 |
for(i = 0;i < TARGET_NSIG_WORDS; i++) |
190 |
s1.sig[i] = tswapl(s->sig[i]); |
191 |
target_to_host_sigset_internal(d, &s1); |
192 |
} |
193 |
|
194 |
void host_to_target_old_sigset(abi_ulong *old_sigset,
|
195 |
const sigset_t *sigset)
|
196 |
{ |
197 |
target_sigset_t d; |
198 |
host_to_target_sigset(&d, sigset); |
199 |
*old_sigset = d.sig[0];
|
200 |
} |
201 |
|
202 |
void target_to_host_old_sigset(sigset_t *sigset,
|
203 |
const abi_ulong *old_sigset)
|
204 |
{ |
205 |
target_sigset_t d; |
206 |
int i;
|
207 |
|
208 |
d.sig[0] = *old_sigset;
|
209 |
for(i = 1;i < TARGET_NSIG_WORDS; i++) |
210 |
d.sig[i] = 0;
|
211 |
target_to_host_sigset(sigset, &d); |
212 |
} |
213 |
|
214 |
/* siginfo conversion */
|
215 |
|
216 |
static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, |
217 |
const siginfo_t *info)
|
218 |
{ |
219 |
int sig;
|
220 |
sig = host_to_target_signal(info->si_signo); |
221 |
tinfo->si_signo = sig; |
222 |
tinfo->si_errno = 0;
|
223 |
tinfo->si_code = 0;
|
224 |
if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
|
225 |
sig == SIGBUS || sig == SIGTRAP) { |
226 |
/* should never come here, but who knows. The information for
|
227 |
the target is irrelevant */
|
228 |
tinfo->_sifields._sigfault._addr = 0;
|
229 |
} else if (sig == SIGIO) { |
230 |
tinfo->_sifields._sigpoll._fd = info->si_fd; |
231 |
} else if (sig >= TARGET_SIGRTMIN) { |
232 |
tinfo->_sifields._rt._pid = info->si_pid; |
233 |
tinfo->_sifields._rt._uid = info->si_uid; |
234 |
/* XXX: potential problem if 64 bit */
|
235 |
tinfo->_sifields._rt._sigval.sival_ptr = |
236 |
(abi_ulong)info->si_value.sival_ptr; |
237 |
} |
238 |
} |
239 |
|
240 |
static void tswap_siginfo(target_siginfo_t *tinfo, |
241 |
const target_siginfo_t *info)
|
242 |
{ |
243 |
int sig;
|
244 |
sig = info->si_signo; |
245 |
tinfo->si_signo = tswap32(sig); |
246 |
tinfo->si_errno = tswap32(info->si_errno); |
247 |
tinfo->si_code = tswap32(info->si_code); |
248 |
if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
|
249 |
sig == SIGBUS || sig == SIGTRAP) { |
250 |
tinfo->_sifields._sigfault._addr = |
251 |
tswapl(info->_sifields._sigfault._addr); |
252 |
} else if (sig == SIGIO) { |
253 |
tinfo->_sifields._sigpoll._fd = tswap32(info->_sifields._sigpoll._fd); |
254 |
} else if (sig >= TARGET_SIGRTMIN) { |
255 |
tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid); |
256 |
tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid); |
257 |
tinfo->_sifields._rt._sigval.sival_ptr = |
258 |
tswapl(info->_sifields._rt._sigval.sival_ptr); |
259 |
} |
260 |
} |
261 |
|
262 |
|
263 |
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) |
264 |
{ |
265 |
host_to_target_siginfo_noswap(tinfo, info); |
266 |
tswap_siginfo(tinfo, tinfo); |
267 |
} |
268 |
|
269 |
/* XXX: we support only POSIX RT signals are used. */
|
270 |
/* XXX: find a solution for 64 bit (additional malloced data is needed) */
|
271 |
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) |
272 |
{ |
273 |
info->si_signo = tswap32(tinfo->si_signo); |
274 |
info->si_errno = tswap32(tinfo->si_errno); |
275 |
info->si_code = tswap32(tinfo->si_code); |
276 |
info->si_pid = tswap32(tinfo->_sifields._rt._pid); |
277 |
info->si_uid = tswap32(tinfo->_sifields._rt._uid); |
278 |
info->si_value.sival_ptr = |
279 |
(void *)tswapl(tinfo->_sifields._rt._sigval.sival_ptr);
|
280 |
} |
281 |
|
282 |
void signal_init(void) |
283 |
{ |
284 |
struct sigaction act;
|
285 |
int i, j;
|
286 |
|
287 |
/* generate signal conversion tables */
|
288 |
for(i = 1; i <= 64; i++) { |
289 |
if (host_to_target_signal_table[i] == 0) |
290 |
host_to_target_signal_table[i] = i; |
291 |
} |
292 |
for(i = 1; i <= 64; i++) { |
293 |
j = host_to_target_signal_table[i]; |
294 |
target_to_host_signal_table[j] = i; |
295 |
} |
296 |
|
297 |
/* set all host signal handlers. ALL signals are blocked during
|
298 |
the handlers to serialize them. */
|
299 |
sigfillset(&act.sa_mask); |
300 |
act.sa_flags = SA_SIGINFO; |
301 |
act.sa_sigaction = host_signal_handler; |
302 |
for(i = 1; i < NSIG; i++) { |
303 |
sigaction(i, &act, NULL);
|
304 |
} |
305 |
|
306 |
memset(sigact_table, 0, sizeof(sigact_table)); |
307 |
|
308 |
first_free = &sigqueue_table[0];
|
309 |
for(i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) |
310 |
sigqueue_table[i].next = &sigqueue_table[i + 1];
|
311 |
sigqueue_table[MAX_SIGQUEUE_SIZE - 1].next = NULL; |
312 |
} |
313 |
|
314 |
/* signal queue handling */
|
315 |
|
316 |
static inline struct sigqueue *alloc_sigqueue(void) |
317 |
{ |
318 |
struct sigqueue *q = first_free;
|
319 |
if (!q)
|
320 |
return NULL; |
321 |
first_free = q->next; |
322 |
return q;
|
323 |
} |
324 |
|
325 |
static inline void free_sigqueue(struct sigqueue *q) |
326 |
{ |
327 |
q->next = first_free; |
328 |
first_free = q; |
329 |
} |
330 |
|
331 |
/* abort execution with signal */
|
332 |
void __attribute((noreturn)) force_sig(int sig) |
333 |
{ |
334 |
int host_sig;
|
335 |
host_sig = target_to_host_signal(sig); |
336 |
fprintf(stderr, "qemu: uncaught target signal %d (%s) - exiting\n",
|
337 |
sig, strsignal(host_sig)); |
338 |
#if 1 |
339 |
_exit(-host_sig); |
340 |
#else
|
341 |
{ |
342 |
struct sigaction act;
|
343 |
sigemptyset(&act.sa_mask); |
344 |
act.sa_flags = SA_SIGINFO; |
345 |
act.sa_sigaction = SIG_DFL; |
346 |
sigaction(SIGABRT, &act, NULL);
|
347 |
abort(); |
348 |
} |
349 |
#endif
|
350 |
} |
351 |
|
352 |
/* queue a signal so that it will be send to the virtual CPU as soon
|
353 |
as possible */
|
354 |
int queue_signal(int sig, target_siginfo_t *info) |
355 |
{ |
356 |
struct emulated_sigaction *k;
|
357 |
struct sigqueue *q, **pq;
|
358 |
abi_ulong handler; |
359 |
|
360 |
#if defined(DEBUG_SIGNAL)
|
361 |
fprintf(stderr, "queue_signal: sig=%d\n",
|
362 |
sig); |
363 |
#endif
|
364 |
k = &sigact_table[sig - 1];
|
365 |
handler = k->sa._sa_handler; |
366 |
if (handler == TARGET_SIG_DFL) {
|
367 |
/* default handler : ignore some signal. The other are fatal */
|
368 |
if (sig != TARGET_SIGCHLD &&
|
369 |
sig != TARGET_SIGURG && |
370 |
sig != TARGET_SIGWINCH) { |
371 |
force_sig(sig); |
372 |
} else {
|
373 |
return 0; /* indicate ignored */ |
374 |
} |
375 |
} else if (handler == TARGET_SIG_IGN) { |
376 |
/* ignore signal */
|
377 |
return 0; |
378 |
} else if (handler == TARGET_SIG_ERR) { |
379 |
force_sig(sig); |
380 |
} else {
|
381 |
pq = &k->first; |
382 |
if (sig < TARGET_SIGRTMIN) {
|
383 |
/* if non real time signal, we queue exactly one signal */
|
384 |
if (!k->pending)
|
385 |
q = &k->info; |
386 |
else
|
387 |
return 0; |
388 |
} else {
|
389 |
if (!k->pending) {
|
390 |
/* first signal */
|
391 |
q = &k->info; |
392 |
} else {
|
393 |
q = alloc_sigqueue(); |
394 |
if (!q)
|
395 |
return -EAGAIN;
|
396 |
while (*pq != NULL) |
397 |
pq = &(*pq)->next; |
398 |
} |
399 |
} |
400 |
*pq = q; |
401 |
q->info = *info; |
402 |
q->next = NULL;
|
403 |
k->pending = 1;
|
404 |
/* signal that a new signal is pending */
|
405 |
signal_pending = 1;
|
406 |
return 1; /* indicates that the signal was queued */ |
407 |
} |
408 |
} |
409 |
|
410 |
static void host_signal_handler(int host_signum, siginfo_t *info, |
411 |
void *puc)
|
412 |
{ |
413 |
int sig;
|
414 |
target_siginfo_t tinfo; |
415 |
|
416 |
/* the CPU emulator uses some host signals to detect exceptions,
|
417 |
we we forward to it some signals */
|
418 |
if (host_signum == SIGSEGV || host_signum == SIGBUS
|
419 |
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
|
420 |
|| host_signum == SIGFPE |
421 |
#endif
|
422 |
) { |
423 |
if (cpu_signal_handler(host_signum, info, puc))
|
424 |
return;
|
425 |
} |
426 |
|
427 |
/* get target signal number */
|
428 |
sig = host_to_target_signal(host_signum); |
429 |
if (sig < 1 || sig > TARGET_NSIG) |
430 |
return;
|
431 |
#if defined(DEBUG_SIGNAL)
|
432 |
fprintf(stderr, "qemu: got signal %d\n", sig);
|
433 |
#endif
|
434 |
host_to_target_siginfo_noswap(&tinfo, info); |
435 |
if (queue_signal(sig, &tinfo) == 1) { |
436 |
/* interrupt the virtual CPU as soon as possible */
|
437 |
cpu_interrupt(global_env, CPU_INTERRUPT_EXIT); |
438 |
} |
439 |
} |
440 |
|
441 |
/* do_sigaltstack() returns target values and errnos. */
|
442 |
int do_sigaltstack(const struct target_sigaltstack *uss, |
443 |
struct target_sigaltstack *uoss,
|
444 |
abi_ulong sp) |
445 |
{ |
446 |
int ret;
|
447 |
struct target_sigaltstack oss;
|
448 |
|
449 |
/* XXX: test errors */
|
450 |
if(uoss)
|
451 |
{ |
452 |
__put_user(target_sigaltstack_used.ss_sp, &oss.ss_sp); |
453 |
__put_user(target_sigaltstack_used.ss_size, &oss.ss_size); |
454 |
__put_user(sas_ss_flags(sp), &oss.ss_flags); |
455 |
} |
456 |
|
457 |
if(uss)
|
458 |
{ |
459 |
struct target_sigaltstack ss;
|
460 |
|
461 |
ret = -TARGET_EFAULT; |
462 |
if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) |
463 |
|| __get_user(ss.ss_sp, &uss->ss_sp) |
464 |
|| __get_user(ss.ss_size, &uss->ss_size) |
465 |
|| __get_user(ss.ss_flags, &uss->ss_flags)) |
466 |
goto out;
|
467 |
|
468 |
ret = -TARGET_EPERM; |
469 |
if (on_sig_stack(sp))
|
470 |
goto out;
|
471 |
|
472 |
ret = -TARGET_EINVAL; |
473 |
if (ss.ss_flags != TARGET_SS_DISABLE
|
474 |
&& ss.ss_flags != TARGET_SS_ONSTACK |
475 |
&& ss.ss_flags != 0)
|
476 |
goto out;
|
477 |
|
478 |
if (ss.ss_flags == TARGET_SS_DISABLE) {
|
479 |
ss.ss_size = 0;
|
480 |
ss.ss_sp = 0;
|
481 |
} else {
|
482 |
ret = -TARGET_ENOMEM; |
483 |
if (ss.ss_size < MINSIGSTKSZ)
|
484 |
goto out;
|
485 |
} |
486 |
|
487 |
target_sigaltstack_used.ss_sp = ss.ss_sp; |
488 |
target_sigaltstack_used.ss_size = ss.ss_size; |
489 |
} |
490 |
|
491 |
if (uoss) {
|
492 |
ret = -TARGET_EFAULT; |
493 |
if (!access_ok(VERIFY_WRITE, uoss, sizeof(oss))) |
494 |
goto out;
|
495 |
memcpy(uoss, &oss, sizeof(oss));
|
496 |
} |
497 |
|
498 |
ret = 0;
|
499 |
out:
|
500 |
return ret;
|
501 |
} |
502 |
|
503 |
/* do_sigaction() return host values and errnos */
|
504 |
int do_sigaction(int sig, const struct target_sigaction *act, |
505 |
struct target_sigaction *oact)
|
506 |
{ |
507 |
struct emulated_sigaction *k;
|
508 |
struct sigaction act1;
|
509 |
int host_sig;
|
510 |
int ret = 0; |
511 |
|
512 |
if (sig < 1 || sig > TARGET_NSIG || sig == SIGKILL || sig == SIGSTOP) |
513 |
return -EINVAL;
|
514 |
k = &sigact_table[sig - 1];
|
515 |
#if defined(DEBUG_SIGNAL)
|
516 |
fprintf(stderr, "sigaction sig=%d act=0x%08x, oact=0x%08x\n",
|
517 |
sig, (int)act, (int)oact); |
518 |
#endif
|
519 |
if (oact) {
|
520 |
oact->_sa_handler = tswapl(k->sa._sa_handler); |
521 |
oact->sa_flags = tswapl(k->sa.sa_flags); |
522 |
#if !defined(TARGET_MIPS)
|
523 |
oact->sa_restorer = tswapl(k->sa.sa_restorer); |
524 |
#endif
|
525 |
oact->sa_mask = k->sa.sa_mask; |
526 |
} |
527 |
if (act) {
|
528 |
k->sa._sa_handler = tswapl(act->_sa_handler); |
529 |
k->sa.sa_flags = tswapl(act->sa_flags); |
530 |
#if !defined(TARGET_MIPS)
|
531 |
k->sa.sa_restorer = tswapl(act->sa_restorer); |
532 |
#endif
|
533 |
k->sa.sa_mask = act->sa_mask; |
534 |
|
535 |
/* we update the host linux signal state */
|
536 |
host_sig = target_to_host_signal(sig); |
537 |
if (host_sig != SIGSEGV && host_sig != SIGBUS) {
|
538 |
sigfillset(&act1.sa_mask); |
539 |
act1.sa_flags = SA_SIGINFO; |
540 |
if (k->sa.sa_flags & TARGET_SA_RESTART)
|
541 |
act1.sa_flags |= SA_RESTART; |
542 |
/* NOTE: it is important to update the host kernel signal
|
543 |
ignore state to avoid getting unexpected interrupted
|
544 |
syscalls */
|
545 |
if (k->sa._sa_handler == TARGET_SIG_IGN) {
|
546 |
act1.sa_sigaction = (void *)SIG_IGN;
|
547 |
} else if (k->sa._sa_handler == TARGET_SIG_DFL) { |
548 |
act1.sa_sigaction = (void *)SIG_DFL;
|
549 |
} else {
|
550 |
act1.sa_sigaction = host_signal_handler; |
551 |
} |
552 |
ret = sigaction(host_sig, &act1, NULL);
|
553 |
} |
554 |
} |
555 |
return ret;
|
556 |
} |
557 |
|
558 |
#ifndef offsetof
|
559 |
#define offsetof(type, field) ((size_t) &((type *)0)->field) |
560 |
#endif
|
561 |
|
562 |
static inline int copy_siginfo_to_user(target_siginfo_t *tinfo, |
563 |
const target_siginfo_t *info)
|
564 |
{ |
565 |
tswap_siginfo(tinfo, info); |
566 |
return 0; |
567 |
} |
568 |
|
569 |
#ifdef TARGET_I386
|
570 |
|
571 |
/* from the Linux kernel */
|
572 |
|
573 |
struct target_fpreg {
|
574 |
uint16_t significand[4];
|
575 |
uint16_t exponent; |
576 |
}; |
577 |
|
578 |
struct target_fpxreg {
|
579 |
uint16_t significand[4];
|
580 |
uint16_t exponent; |
581 |
uint16_t padding[3];
|
582 |
}; |
583 |
|
584 |
struct target_xmmreg {
|
585 |
abi_ulong element[4];
|
586 |
}; |
587 |
|
588 |
struct target_fpstate {
|
589 |
/* Regular FPU environment */
|
590 |
abi_ulong cw; |
591 |
abi_ulong sw; |
592 |
abi_ulong tag; |
593 |
abi_ulong ipoff; |
594 |
abi_ulong cssel; |
595 |
abi_ulong dataoff; |
596 |
abi_ulong datasel; |
597 |
struct target_fpreg _st[8]; |
598 |
uint16_t status; |
599 |
uint16_t magic; /* 0xffff = regular FPU data only */
|
600 |
|
601 |
/* FXSR FPU environment */
|
602 |
abi_ulong _fxsr_env[6]; /* FXSR FPU env is ignored */ |
603 |
abi_ulong mxcsr; |
604 |
abi_ulong reserved; |
605 |
struct target_fpxreg _fxsr_st[8]; /* FXSR FPU reg data is ignored */ |
606 |
struct target_xmmreg _xmm[8]; |
607 |
abi_ulong padding[56];
|
608 |
}; |
609 |
|
610 |
#define X86_FXSR_MAGIC 0x0000 |
611 |
|
612 |
struct target_sigcontext {
|
613 |
uint16_t gs, __gsh; |
614 |
uint16_t fs, __fsh; |
615 |
uint16_t es, __esh; |
616 |
uint16_t ds, __dsh; |
617 |
abi_ulong edi; |
618 |
abi_ulong esi; |
619 |
abi_ulong ebp; |
620 |
abi_ulong esp; |
621 |
abi_ulong ebx; |
622 |
abi_ulong edx; |
623 |
abi_ulong ecx; |
624 |
abi_ulong eax; |
625 |
abi_ulong trapno; |
626 |
abi_ulong err; |
627 |
abi_ulong eip; |
628 |
uint16_t cs, __csh; |
629 |
abi_ulong eflags; |
630 |
abi_ulong esp_at_signal; |
631 |
uint16_t ss, __ssh; |
632 |
abi_ulong fpstate; /* pointer */
|
633 |
abi_ulong oldmask; |
634 |
abi_ulong cr2; |
635 |
}; |
636 |
|
637 |
struct target_ucontext {
|
638 |
abi_ulong tuc_flags; |
639 |
abi_ulong tuc_link; |
640 |
target_stack_t tuc_stack; |
641 |
struct target_sigcontext tuc_mcontext;
|
642 |
target_sigset_t tuc_sigmask; /* mask last for extensibility */
|
643 |
}; |
644 |
|
645 |
struct sigframe
|
646 |
{ |
647 |
abi_ulong pretcode; |
648 |
int sig;
|
649 |
struct target_sigcontext sc;
|
650 |
struct target_fpstate fpstate;
|
651 |
abi_ulong extramask[TARGET_NSIG_WORDS-1];
|
652 |
char retcode[8]; |
653 |
}; |
654 |
|
655 |
struct rt_sigframe
|
656 |
{ |
657 |
abi_ulong pretcode; |
658 |
int sig;
|
659 |
abi_ulong pinfo; |
660 |
abi_ulong puc; |
661 |
struct target_siginfo info;
|
662 |
struct target_ucontext uc;
|
663 |
struct target_fpstate fpstate;
|
664 |
char retcode[8]; |
665 |
}; |
666 |
|
667 |
/*
|
668 |
* Set up a signal frame.
|
669 |
*/
|
670 |
|
671 |
/* XXX: save x87 state */
|
672 |
static int |
673 |
setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate, |
674 |
CPUX86State *env, unsigned long mask) |
675 |
{ |
676 |
int err = 0; |
677 |
|
678 |
err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs); |
679 |
err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs); |
680 |
err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es); |
681 |
err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds); |
682 |
err |= __put_user(env->regs[R_EDI], &sc->edi); |
683 |
err |= __put_user(env->regs[R_ESI], &sc->esi); |
684 |
err |= __put_user(env->regs[R_EBP], &sc->ebp); |
685 |
err |= __put_user(env->regs[R_ESP], &sc->esp); |
686 |
err |= __put_user(env->regs[R_EBX], &sc->ebx); |
687 |
err |= __put_user(env->regs[R_EDX], &sc->edx); |
688 |
err |= __put_user(env->regs[R_ECX], &sc->ecx); |
689 |
err |= __put_user(env->regs[R_EAX], &sc->eax); |
690 |
err |= __put_user(env->exception_index, &sc->trapno); |
691 |
err |= __put_user(env->error_code, &sc->err); |
692 |
err |= __put_user(env->eip, &sc->eip); |
693 |
err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs); |
694 |
err |= __put_user(env->eflags, &sc->eflags); |
695 |
err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal); |
696 |
err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss); |
697 |
|
698 |
cpu_x86_fsave(env, (void *)fpstate, 1); |
699 |
fpstate->status = fpstate->sw; |
700 |
err |= __put_user(0xffff, &fpstate->magic);
|
701 |
err |= __put_user(fpstate, &sc->fpstate); |
702 |
|
703 |
/* non-iBCS2 extensions.. */
|
704 |
err |= __put_user(mask, &sc->oldmask); |
705 |
err |= __put_user(env->cr[2], &sc->cr2);
|
706 |
return err;
|
707 |
} |
708 |
|
709 |
/*
|
710 |
* Determine which stack to use..
|
711 |
*/
|
712 |
|
713 |
static inline void * |
714 |
get_sigframe(struct emulated_sigaction *ka, CPUX86State *env, size_t frame_size)
|
715 |
{ |
716 |
unsigned long esp; |
717 |
|
718 |
/* Default to using normal stack */
|
719 |
esp = env->regs[R_ESP]; |
720 |
/* This is the X/Open sanctioned signal stack switching. */
|
721 |
if (ka->sa.sa_flags & TARGET_SA_ONSTACK) {
|
722 |
if (sas_ss_flags(esp) == 0) |
723 |
esp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
724 |
} |
725 |
|
726 |
/* This is the legacy signal stack switching. */
|
727 |
else
|
728 |
if ((env->segs[R_SS].selector & 0xffff) != __USER_DS && |
729 |
!(ka->sa.sa_flags & TARGET_SA_RESTORER) && |
730 |
ka->sa.sa_restorer) { |
731 |
esp = (unsigned long) ka->sa.sa_restorer; |
732 |
} |
733 |
return g2h((esp - frame_size) & -8ul); |
734 |
} |
735 |
|
736 |
static void setup_frame(int sig, struct emulated_sigaction *ka, |
737 |
target_sigset_t *set, CPUX86State *env) |
738 |
{ |
739 |
struct sigframe *frame;
|
740 |
int i, err = 0; |
741 |
|
742 |
frame = get_sigframe(ka, env, sizeof(*frame));
|
743 |
|
744 |
if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame))) |
745 |
goto give_sigsegv;
|
746 |
err |= __put_user((/*current->exec_domain
|
747 |
&& current->exec_domain->signal_invmap
|
748 |
&& sig < 32
|
749 |
? current->exec_domain->signal_invmap[sig]
|
750 |
: */ sig),
|
751 |
&frame->sig); |
752 |
if (err)
|
753 |
goto give_sigsegv;
|
754 |
|
755 |
setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0]);
|
756 |
if (err)
|
757 |
goto give_sigsegv;
|
758 |
|
759 |
for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
760 |
if (__put_user(set->sig[i], &frame->extramask[i - 1])) |
761 |
goto give_sigsegv;
|
762 |
} |
763 |
|
764 |
/* Set up to return from userspace. If provided, use a stub
|
765 |
already in userspace. */
|
766 |
if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
|
767 |
err |= __put_user(ka->sa.sa_restorer, &frame->pretcode); |
768 |
} else {
|
769 |
err |= __put_user(frame->retcode, &frame->pretcode); |
770 |
/* This is popl %eax ; movl $,%eax ; int $0x80 */
|
771 |
err |= __put_user(0xb858, (short *)(frame->retcode+0)); |
772 |
#if defined(TARGET_X86_64)
|
773 |
#warning "Fix this !" |
774 |
#else
|
775 |
err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2)); |
776 |
#endif
|
777 |
err |= __put_user(0x80cd, (short *)(frame->retcode+6)); |
778 |
} |
779 |
|
780 |
if (err)
|
781 |
goto give_sigsegv;
|
782 |
|
783 |
/* Set up registers for signal handler */
|
784 |
env->regs[R_ESP] = h2g(frame); |
785 |
env->eip = (unsigned long) ka->sa._sa_handler; |
786 |
|
787 |
cpu_x86_load_seg(env, R_DS, __USER_DS); |
788 |
cpu_x86_load_seg(env, R_ES, __USER_DS); |
789 |
cpu_x86_load_seg(env, R_SS, __USER_DS); |
790 |
cpu_x86_load_seg(env, R_CS, __USER_CS); |
791 |
env->eflags &= ~TF_MASK; |
792 |
|
793 |
return;
|
794 |
|
795 |
give_sigsegv:
|
796 |
if (sig == TARGET_SIGSEGV)
|
797 |
ka->sa._sa_handler = TARGET_SIG_DFL; |
798 |
force_sig(TARGET_SIGSEGV /* , current */);
|
799 |
} |
800 |
|
801 |
static void setup_rt_frame(int sig, struct emulated_sigaction *ka, |
802 |
target_siginfo_t *info, |
803 |
target_sigset_t *set, CPUX86State *env) |
804 |
{ |
805 |
struct rt_sigframe *frame;
|
806 |
int i, err = 0; |
807 |
|
808 |
frame = get_sigframe(ka, env, sizeof(*frame));
|
809 |
|
810 |
if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame))) |
811 |
goto give_sigsegv;
|
812 |
|
813 |
err |= __put_user((/*current->exec_domain
|
814 |
&& current->exec_domain->signal_invmap
|
815 |
&& sig < 32
|
816 |
? current->exec_domain->signal_invmap[sig]
|
817 |
: */sig),
|
818 |
&frame->sig); |
819 |
err |= __put_user((abi_ulong)&frame->info, &frame->pinfo); |
820 |
err |= __put_user((abi_ulong)&frame->uc, &frame->puc); |
821 |
err |= copy_siginfo_to_user(&frame->info, info); |
822 |
if (err)
|
823 |
goto give_sigsegv;
|
824 |
|
825 |
/* Create the ucontext. */
|
826 |
err |= __put_user(0, &frame->uc.tuc_flags);
|
827 |
err |= __put_user(0, &frame->uc.tuc_link);
|
828 |
err |= __put_user(target_sigaltstack_used.ss_sp, |
829 |
&frame->uc.tuc_stack.ss_sp); |
830 |
err |= __put_user(sas_ss_flags(get_sp_from_cpustate(env)), |
831 |
&frame->uc.tuc_stack.ss_flags); |
832 |
err |= __put_user(target_sigaltstack_used.ss_size, |
833 |
&frame->uc.tuc_stack.ss_size); |
834 |
err |= setup_sigcontext(&frame->uc.tuc_mcontext, &frame->fpstate, |
835 |
env, set->sig[0]);
|
836 |
for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
837 |
if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]))
|
838 |
goto give_sigsegv;
|
839 |
} |
840 |
|
841 |
/* Set up to return from userspace. If provided, use a stub
|
842 |
already in userspace. */
|
843 |
if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
|
844 |
err |= __put_user(ka->sa.sa_restorer, &frame->pretcode); |
845 |
} else {
|
846 |
err |= __put_user(frame->retcode, &frame->pretcode); |
847 |
/* This is movl $,%eax ; int $0x80 */
|
848 |
err |= __put_user(0xb8, (char *)(frame->retcode+0)); |
849 |
err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1)); |
850 |
err |= __put_user(0x80cd, (short *)(frame->retcode+5)); |
851 |
} |
852 |
|
853 |
if (err)
|
854 |
goto give_sigsegv;
|
855 |
|
856 |
/* Set up registers for signal handler */
|
857 |
env->regs[R_ESP] = (unsigned long) frame; |
858 |
env->eip = (unsigned long) ka->sa._sa_handler; |
859 |
|
860 |
cpu_x86_load_seg(env, R_DS, __USER_DS); |
861 |
cpu_x86_load_seg(env, R_ES, __USER_DS); |
862 |
cpu_x86_load_seg(env, R_SS, __USER_DS); |
863 |
cpu_x86_load_seg(env, R_CS, __USER_CS); |
864 |
env->eflags &= ~TF_MASK; |
865 |
|
866 |
return;
|
867 |
|
868 |
give_sigsegv:
|
869 |
if (sig == TARGET_SIGSEGV)
|
870 |
ka->sa._sa_handler = TARGET_SIG_DFL; |
871 |
force_sig(TARGET_SIGSEGV /* , current */);
|
872 |
} |
873 |
|
874 |
static int |
875 |
restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax) |
876 |
{ |
877 |
unsigned int err = 0; |
878 |
|
879 |
cpu_x86_load_seg(env, R_GS, lduw(&sc->gs)); |
880 |
cpu_x86_load_seg(env, R_FS, lduw(&sc->fs)); |
881 |
cpu_x86_load_seg(env, R_ES, lduw(&sc->es)); |
882 |
cpu_x86_load_seg(env, R_DS, lduw(&sc->ds)); |
883 |
|
884 |
env->regs[R_EDI] = ldl(&sc->edi); |
885 |
env->regs[R_ESI] = ldl(&sc->esi); |
886 |
env->regs[R_EBP] = ldl(&sc->ebp); |
887 |
env->regs[R_ESP] = ldl(&sc->esp); |
888 |
env->regs[R_EBX] = ldl(&sc->ebx); |
889 |
env->regs[R_EDX] = ldl(&sc->edx); |
890 |
env->regs[R_ECX] = ldl(&sc->ecx); |
891 |
env->eip = ldl(&sc->eip); |
892 |
|
893 |
cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3);
|
894 |
cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3);
|
895 |
|
896 |
{ |
897 |
unsigned int tmpflags; |
898 |
tmpflags = ldl(&sc->eflags); |
899 |
env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5); |
900 |
// regs->orig_eax = -1; /* disable syscall checks */
|
901 |
} |
902 |
|
903 |
{ |
904 |
struct _fpstate * buf;
|
905 |
buf = (void *)ldl(&sc->fpstate);
|
906 |
if (buf) {
|
907 |
#if 0
|
908 |
if (verify_area(VERIFY_READ, buf, sizeof(*buf)))
|
909 |
goto badframe;
|
910 |
#endif
|
911 |
cpu_x86_frstor(env, (void *)buf, 1); |
912 |
} |
913 |
} |
914 |
|
915 |
*peax = ldl(&sc->eax); |
916 |
return err;
|
917 |
#if 0
|
918 |
badframe:
|
919 |
return 1;
|
920 |
#endif
|
921 |
} |
922 |
|
923 |
long do_sigreturn(CPUX86State *env)
|
924 |
{ |
925 |
struct sigframe *frame = (struct sigframe *)g2h(env->regs[R_ESP] - 8); |
926 |
target_sigset_t target_set; |
927 |
sigset_t set; |
928 |
int eax, i;
|
929 |
|
930 |
#if defined(DEBUG_SIGNAL)
|
931 |
fprintf(stderr, "do_sigreturn\n");
|
932 |
#endif
|
933 |
/* set blocked signals */
|
934 |
if (__get_user(target_set.sig[0], &frame->sc.oldmask)) |
935 |
goto badframe;
|
936 |
for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
937 |
if (__get_user(target_set.sig[i], &frame->extramask[i - 1])) |
938 |
goto badframe;
|
939 |
} |
940 |
|
941 |
target_to_host_sigset_internal(&set, &target_set); |
942 |
sigprocmask(SIG_SETMASK, &set, NULL);
|
943 |
|
944 |
/* restore registers */
|
945 |
if (restore_sigcontext(env, &frame->sc, &eax))
|
946 |
goto badframe;
|
947 |
return eax;
|
948 |
|
949 |
badframe:
|
950 |
force_sig(TARGET_SIGSEGV); |
951 |
return 0; |
952 |
} |
953 |
|
954 |
long do_rt_sigreturn(CPUX86State *env)
|
955 |
{ |
956 |
struct rt_sigframe *frame = (struct rt_sigframe *)g2h(env->regs[R_ESP] - 4); |
957 |
sigset_t set; |
958 |
int eax;
|
959 |
|
960 |
#if 0
|
961 |
if (verify_area(VERIFY_READ, frame, sizeof(*frame)))
|
962 |
goto badframe;
|
963 |
#endif
|
964 |
target_to_host_sigset(&set, &frame->uc.tuc_sigmask); |
965 |
sigprocmask(SIG_SETMASK, &set, NULL);
|
966 |
|
967 |
if (restore_sigcontext(env, &frame->uc.tuc_mcontext, &eax))
|
968 |
goto badframe;
|
969 |
|
970 |
if (do_sigaltstack(&frame->uc.tuc_stack, NULL, get_sp_from_cpustate(env)) == -EFAULT) |
971 |
goto badframe;
|
972 |
|
973 |
return eax;
|
974 |
|
975 |
badframe:
|
976 |
force_sig(TARGET_SIGSEGV); |
977 |
return 0; |
978 |
} |
979 |
|
980 |
#elif defined(TARGET_ARM)
|
981 |
|
982 |
struct target_sigcontext {
|
983 |
abi_ulong trap_no; |
984 |
abi_ulong error_code; |
985 |
abi_ulong oldmask; |
986 |
abi_ulong arm_r0; |
987 |
abi_ulong arm_r1; |
988 |
abi_ulong arm_r2; |
989 |
abi_ulong arm_r3; |
990 |
abi_ulong arm_r4; |
991 |
abi_ulong arm_r5; |
992 |
abi_ulong arm_r6; |
993 |
abi_ulong arm_r7; |
994 |
abi_ulong arm_r8; |
995 |
abi_ulong arm_r9; |
996 |
abi_ulong arm_r10; |
997 |
abi_ulong arm_fp; |
998 |
abi_ulong arm_ip; |
999 |
abi_ulong arm_sp; |
1000 |
abi_ulong arm_lr; |
1001 |
abi_ulong arm_pc; |
1002 |
abi_ulong arm_cpsr; |
1003 |
abi_ulong fault_address; |
1004 |
}; |
1005 |
|
1006 |
struct target_ucontext {
|
1007 |
abi_ulong tuc_flags; |
1008 |
abi_ulong tuc_link; |
1009 |
target_stack_t tuc_stack; |
1010 |
struct target_sigcontext tuc_mcontext;
|
1011 |
target_sigset_t tuc_sigmask; /* mask last for extensibility */
|
1012 |
}; |
1013 |
|
1014 |
struct sigframe
|
1015 |
{ |
1016 |
struct target_sigcontext sc;
|
1017 |
abi_ulong extramask[TARGET_NSIG_WORDS-1];
|
1018 |
abi_ulong retcode; |
1019 |
}; |
1020 |
|
1021 |
struct rt_sigframe
|
1022 |
{ |
1023 |
struct target_siginfo *pinfo;
|
1024 |
void *puc;
|
1025 |
struct target_siginfo info;
|
1026 |
struct target_ucontext uc;
|
1027 |
abi_ulong retcode; |
1028 |
}; |
1029 |
|
1030 |
#define TARGET_CONFIG_CPU_32 1 |
1031 |
|
1032 |
/*
|
1033 |
* For ARM syscalls, we encode the syscall number into the instruction.
|
1034 |
*/
|
1035 |
#define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE)) |
1036 |
#define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE)) |
1037 |
|
1038 |
/*
|
1039 |
* For Thumb syscalls, we pass the syscall number via r7. We therefore
|
1040 |
* need two 16-bit instructions.
|
1041 |
*/
|
1042 |
#define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn)) |
1043 |
#define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn)) |
1044 |
|
1045 |
static const abi_ulong retcodes[4] = { |
1046 |
SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN, |
1047 |
SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN |
1048 |
}; |
1049 |
|
1050 |
|
1051 |
#define __put_user_error(x,p,e) __put_user(x, p)
|
1052 |
#define __get_user_error(x,p,e) __get_user(x, p)
|
1053 |
|
1054 |
static inline int valid_user_regs(CPUState *regs) |
1055 |
{ |
1056 |
return 1; |
1057 |
} |
1058 |
|
1059 |
static int |
1060 |
setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ |
1061 |
CPUState *env, unsigned long mask) |
1062 |
{ |
1063 |
int err = 0; |
1064 |
|
1065 |
__put_user_error(env->regs[0], &sc->arm_r0, err);
|
1066 |
__put_user_error(env->regs[1], &sc->arm_r1, err);
|
1067 |
__put_user_error(env->regs[2], &sc->arm_r2, err);
|
1068 |
__put_user_error(env->regs[3], &sc->arm_r3, err);
|
1069 |
__put_user_error(env->regs[4], &sc->arm_r4, err);
|
1070 |
__put_user_error(env->regs[5], &sc->arm_r5, err);
|
1071 |
__put_user_error(env->regs[6], &sc->arm_r6, err);
|
1072 |
__put_user_error(env->regs[7], &sc->arm_r7, err);
|
1073 |
__put_user_error(env->regs[8], &sc->arm_r8, err);
|
1074 |
__put_user_error(env->regs[9], &sc->arm_r9, err);
|
1075 |
__put_user_error(env->regs[10], &sc->arm_r10, err);
|
1076 |
__put_user_error(env->regs[11], &sc->arm_fp, err);
|
1077 |
__put_user_error(env->regs[12], &sc->arm_ip, err);
|
1078 |
__put_user_error(env->regs[13], &sc->arm_sp, err);
|
1079 |
__put_user_error(env->regs[14], &sc->arm_lr, err);
|
1080 |
__put_user_error(env->regs[15], &sc->arm_pc, err);
|
1081 |
#ifdef TARGET_CONFIG_CPU_32
|
1082 |
__put_user_error(cpsr_read(env), &sc->arm_cpsr, err); |
1083 |
#endif
|
1084 |
|
1085 |
__put_user_error(/* current->thread.trap_no */ 0, &sc->trap_no, err); |
1086 |
__put_user_error(/* current->thread.error_code */ 0, &sc->error_code, err); |
1087 |
__put_user_error(/* current->thread.address */ 0, &sc->fault_address, err); |
1088 |
__put_user_error(mask, &sc->oldmask, err); |
1089 |
|
1090 |
return err;
|
1091 |
} |
1092 |
|
1093 |
static inline void * |
1094 |
get_sigframe(struct emulated_sigaction *ka, CPUState *regs, int framesize) |
1095 |
{ |
1096 |
unsigned long sp = regs->regs[13]; |
1097 |
|
1098 |
/*
|
1099 |
* This is the X/Open sanctioned signal stack switching.
|
1100 |
*/
|
1101 |
if ((ka->sa.sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp))
|
1102 |
sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
1103 |
/*
|
1104 |
* ATPCS B01 mandates 8-byte alignment
|
1105 |
*/
|
1106 |
return g2h((sp - framesize) & ~7); |
1107 |
} |
1108 |
|
1109 |
static int |
1110 |
setup_return(CPUState *env, struct emulated_sigaction *ka,
|
1111 |
abi_ulong *rc, void *frame, int usig) |
1112 |
{ |
1113 |
abi_ulong handler = (abi_ulong)ka->sa._sa_handler; |
1114 |
abi_ulong retcode; |
1115 |
int thumb = 0; |
1116 |
#if defined(TARGET_CONFIG_CPU_32)
|
1117 |
#if 0
|
1118 |
abi_ulong cpsr = env->cpsr;
|
1119 |
|
1120 |
/*
|
1121 |
* Maybe we need to deliver a 32-bit signal to a 26-bit task.
|
1122 |
*/
|
1123 |
if (ka->sa.sa_flags & SA_THIRTYTWO)
|
1124 |
cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
|
1125 |
|
1126 |
#ifdef CONFIG_ARM_THUMB
|
1127 |
if (elf_hwcap & HWCAP_THUMB) {
|
1128 |
/*
|
1129 |
* The LSB of the handler determines if we're going to
|
1130 |
* be using THUMB or ARM mode for this signal handler.
|
1131 |
*/
|
1132 |
thumb = handler & 1;
|
1133 |
|
1134 |
if (thumb)
|
1135 |
cpsr |= T_BIT;
|
1136 |
else
|
1137 |
cpsr &= ~T_BIT;
|
1138 |
}
|
1139 |
#endif /* CONFIG_ARM_THUMB */
|
1140 |
#endif /* 0 */ |
1141 |
#endif /* TARGET_CONFIG_CPU_32 */ |
1142 |
|
1143 |
if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
|
1144 |
retcode = (abi_ulong)ka->sa.sa_restorer; |
1145 |
} else {
|
1146 |
unsigned int idx = thumb; |
1147 |
|
1148 |
if (ka->sa.sa_flags & TARGET_SA_SIGINFO)
|
1149 |
idx += 2;
|
1150 |
|
1151 |
if (__put_user(retcodes[idx], rc))
|
1152 |
return 1; |
1153 |
#if 0
|
1154 |
flush_icache_range((abi_ulong)rc,
|
1155 |
(abi_ulong)(rc + 1));
|
1156 |
#endif
|
1157 |
retcode = ((abi_ulong)rc) + thumb; |
1158 |
} |
1159 |
|
1160 |
env->regs[0] = usig;
|
1161 |
env->regs[13] = h2g(frame);
|
1162 |
env->regs[14] = retcode;
|
1163 |
env->regs[15] = handler & (thumb ? ~1 : ~3); |
1164 |
|
1165 |
#if 0
|
1166 |
#ifdef TARGET_CONFIG_CPU_32
|
1167 |
env->cpsr = cpsr;
|
1168 |
#endif
|
1169 |
#endif
|
1170 |
|
1171 |
return 0; |
1172 |
} |
1173 |
|
1174 |
static void setup_frame(int usig, struct emulated_sigaction *ka, |
1175 |
target_sigset_t *set, CPUState *regs) |
1176 |
{ |
1177 |
struct sigframe *frame = get_sigframe(ka, regs, sizeof(*frame)); |
1178 |
int i, err = 0; |
1179 |
|
1180 |
err |= setup_sigcontext(&frame->sc, /*&frame->fpstate,*/ regs, set->sig[0]); |
1181 |
|
1182 |
for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
1183 |
if (__put_user(set->sig[i], &frame->extramask[i - 1])) |
1184 |
return;
|
1185 |
} |
1186 |
|
1187 |
if (err == 0) |
1188 |
err = setup_return(regs, ka, &frame->retcode, frame, usig); |
1189 |
// return err;
|
1190 |
} |
1191 |
|
1192 |
static void setup_rt_frame(int usig, struct emulated_sigaction *ka, |
1193 |
target_siginfo_t *info, |
1194 |
target_sigset_t *set, CPUState *env) |
1195 |
{ |
1196 |
struct rt_sigframe *frame = get_sigframe(ka, env, sizeof(*frame)); |
1197 |
struct target_sigaltstack stack;
|
1198 |
int i, err = 0; |
1199 |
|
1200 |
if (!access_ok(VERIFY_WRITE, frame, sizeof (*frame))) |
1201 |
return /* 1 */; |
1202 |
|
1203 |
__put_user_error(&frame->info, (abi_ulong *)&frame->pinfo, err); |
1204 |
__put_user_error(&frame->uc, (abi_ulong *)&frame->puc, err); |
1205 |
err |= copy_siginfo_to_user(&frame->info, info); |
1206 |
|
1207 |
/* Clear all the bits of the ucontext we don't use. */
|
1208 |
memset(&frame->uc, 0, offsetof(struct target_ucontext, tuc_mcontext)); |
1209 |
|
1210 |
memset(&stack, 0, sizeof(stack)); |
1211 |
__put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); |
1212 |
__put_user(target_sigaltstack_used.ss_size, &stack.ss_size); |
1213 |
__put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); |
1214 |
if (!access_ok(VERIFY_WRITE, &frame->uc.tuc_stack, sizeof(stack))) |
1215 |
err = 1;
|
1216 |
else
|
1217 |
memcpy(&frame->uc.tuc_stack, &stack, sizeof(stack));
|
1218 |
|
1219 |
err |= setup_sigcontext(&frame->uc.tuc_mcontext, /*&frame->fpstate,*/
|
1220 |
env, set->sig[0]);
|
1221 |
for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
1222 |
if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]))
|
1223 |
return;
|
1224 |
} |
1225 |
|
1226 |
if (err == 0) |
1227 |
err = setup_return(env, ka, &frame->retcode, frame, usig); |
1228 |
|
1229 |
if (err == 0) { |
1230 |
/*
|
1231 |
* For realtime signals we must also set the second and third
|
1232 |
* arguments for the signal handler.
|
1233 |
* -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
|
1234 |
*/
|
1235 |
env->regs[1] = (abi_ulong)frame->pinfo;
|
1236 |
env->regs[2] = (abi_ulong)frame->puc;
|
1237 |
} |
1238 |
|
1239 |
// return err;
|
1240 |
} |
1241 |
|
1242 |
static int |
1243 |
restore_sigcontext(CPUState *env, struct target_sigcontext *sc)
|
1244 |
{ |
1245 |
int err = 0; |
1246 |
uint32_t cpsr; |
1247 |
|
1248 |
__get_user_error(env->regs[0], &sc->arm_r0, err);
|
1249 |
__get_user_error(env->regs[1], &sc->arm_r1, err);
|
1250 |
__get_user_error(env->regs[2], &sc->arm_r2, err);
|
1251 |
__get_user_error(env->regs[3], &sc->arm_r3, err);
|
1252 |
__get_user_error(env->regs[4], &sc->arm_r4, err);
|
1253 |
__get_user_error(env->regs[5], &sc->arm_r5, err);
|
1254 |
__get_user_error(env->regs[6], &sc->arm_r6, err);
|
1255 |
__get_user_error(env->regs[7], &sc->arm_r7, err);
|
1256 |
__get_user_error(env->regs[8], &sc->arm_r8, err);
|
1257 |
__get_user_error(env->regs[9], &sc->arm_r9, err);
|
1258 |
__get_user_error(env->regs[10], &sc->arm_r10, err);
|
1259 |
__get_user_error(env->regs[11], &sc->arm_fp, err);
|
1260 |
__get_user_error(env->regs[12], &sc->arm_ip, err);
|
1261 |
__get_user_error(env->regs[13], &sc->arm_sp, err);
|
1262 |
__get_user_error(env->regs[14], &sc->arm_lr, err);
|
1263 |
__get_user_error(env->regs[15], &sc->arm_pc, err);
|
1264 |
#ifdef TARGET_CONFIG_CPU_32
|
1265 |
__get_user_error(cpsr, &sc->arm_cpsr, err); |
1266 |
cpsr_write(env, cpsr, 0xffffffff);
|
1267 |
#endif
|
1268 |
|
1269 |
err |= !valid_user_regs(env); |
1270 |
|
1271 |
return err;
|
1272 |
} |
1273 |
|
1274 |
long do_sigreturn(CPUState *env)
|
1275 |
{ |
1276 |
struct sigframe *frame;
|
1277 |
target_sigset_t set; |
1278 |
sigset_t host_set; |
1279 |
int i;
|
1280 |
|
1281 |
/*
|
1282 |
* Since we stacked the signal on a 64-bit boundary,
|
1283 |
* then 'sp' should be word aligned here. If it's
|
1284 |
* not, then the user is trying to mess with us.
|
1285 |
*/
|
1286 |
if (env->regs[13] & 7) |
1287 |
goto badframe;
|
1288 |
|
1289 |
frame = (struct sigframe *)g2h(env->regs[13]); |
1290 |
|
1291 |
#if 0
|
1292 |
if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
|
1293 |
goto badframe;
|
1294 |
#endif
|
1295 |
if (__get_user(set.sig[0], &frame->sc.oldmask)) |
1296 |
goto badframe;
|
1297 |
for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
1298 |
if (__get_user(set.sig[i], &frame->extramask[i - 1])) |
1299 |
goto badframe;
|
1300 |
} |
1301 |
|
1302 |
target_to_host_sigset_internal(&host_set, &set); |
1303 |
sigprocmask(SIG_SETMASK, &host_set, NULL);
|
1304 |
|
1305 |
if (restore_sigcontext(env, &frame->sc))
|
1306 |
goto badframe;
|
1307 |
|
1308 |
#if 0
|
1309 |
/* Send SIGTRAP if we're single-stepping */
|
1310 |
if (ptrace_cancel_bpt(current))
|
1311 |
send_sig(SIGTRAP, current, 1);
|
1312 |
#endif
|
1313 |
return env->regs[0]; |
1314 |
|
1315 |
badframe:
|
1316 |
force_sig(SIGSEGV /* , current */);
|
1317 |
return 0; |
1318 |
} |
1319 |
|
1320 |
long do_rt_sigreturn(CPUState *env)
|
1321 |
{ |
1322 |
struct rt_sigframe *frame;
|
1323 |
sigset_t host_set; |
1324 |
|
1325 |
/*
|
1326 |
* Since we stacked the signal on a 64-bit boundary,
|
1327 |
* then 'sp' should be word aligned here. If it's
|
1328 |
* not, then the user is trying to mess with us.
|
1329 |
*/
|
1330 |
if (env->regs[13] & 7) |
1331 |
goto badframe;
|
1332 |
|
1333 |
frame = (struct rt_sigframe *)env->regs[13]; |
1334 |
|
1335 |
#if 0
|
1336 |
if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
|
1337 |
goto badframe;
|
1338 |
#endif
|
1339 |
target_to_host_sigset(&host_set, &frame->uc.tuc_sigmask); |
1340 |
sigprocmask(SIG_SETMASK, &host_set, NULL);
|
1341 |
|
1342 |
if (restore_sigcontext(env, &frame->uc.tuc_mcontext))
|
1343 |
goto badframe;
|
1344 |
|
1345 |
if (do_sigaltstack(&frame->uc.tuc_stack, NULL, get_sp_from_cpustate(env)) == -EFAULT) |
1346 |
goto badframe;
|
1347 |
|
1348 |
#if 0
|
1349 |
/* Send SIGTRAP if we're single-stepping */
|
1350 |
if (ptrace_cancel_bpt(current))
|
1351 |
send_sig(SIGTRAP, current, 1);
|
1352 |
#endif
|
1353 |
return env->regs[0]; |
1354 |
|
1355 |
badframe:
|
1356 |
force_sig(SIGSEGV /* , current */);
|
1357 |
return 0; |
1358 |
} |
1359 |
|
1360 |
#elif defined(TARGET_SPARC)
|
1361 |
|
1362 |
#define __SUNOS_MAXWIN 31 |
1363 |
|
1364 |
/* This is what SunOS does, so shall I. */
|
1365 |
struct target_sigcontext {
|
1366 |
abi_ulong sigc_onstack; /* state to restore */
|
1367 |
|
1368 |
abi_ulong sigc_mask; /* sigmask to restore */
|
1369 |
abi_ulong sigc_sp; /* stack pointer */
|
1370 |
abi_ulong sigc_pc; /* program counter */
|
1371 |
abi_ulong sigc_npc; /* next program counter */
|
1372 |
abi_ulong sigc_psr; /* for condition codes etc */
|
1373 |
abi_ulong sigc_g1; /* User uses these two registers */
|
1374 |
abi_ulong sigc_o0; /* within the trampoline code. */
|
1375 |
|
1376 |
/* Now comes information regarding the users window set
|
1377 |
* at the time of the signal.
|
1378 |
*/
|
1379 |
abi_ulong sigc_oswins; /* outstanding windows */
|
1380 |
|
1381 |
/* stack ptrs for each regwin buf */
|
1382 |
char *sigc_spbuf[__SUNOS_MAXWIN];
|
1383 |
|
1384 |
/* Windows to restore after signal */
|
1385 |
struct {
|
1386 |
abi_ulong locals[8];
|
1387 |
abi_ulong ins[8];
|
1388 |
} sigc_wbuf[__SUNOS_MAXWIN]; |
1389 |
}; |
1390 |
/* A Sparc stack frame */
|
1391 |
struct sparc_stackf {
|
1392 |
abi_ulong locals[8];
|
1393 |
abi_ulong ins[6];
|
1394 |
struct sparc_stackf *fp;
|
1395 |
abi_ulong callers_pc; |
1396 |
char *structptr;
|
1397 |
abi_ulong xargs[6];
|
1398 |
abi_ulong xxargs[1];
|
1399 |
}; |
1400 |
|
1401 |
typedef struct { |
1402 |
struct {
|
1403 |
abi_ulong psr; |
1404 |
abi_ulong pc; |
1405 |
abi_ulong npc; |
1406 |
abi_ulong y; |
1407 |
abi_ulong u_regs[16]; /* globals and ins */ |
1408 |
} si_regs; |
1409 |
int si_mask;
|
1410 |
} __siginfo_t; |
1411 |
|
1412 |
typedef struct { |
1413 |
unsigned long si_float_regs [32]; |
1414 |
unsigned long si_fsr; |
1415 |
unsigned long si_fpqdepth; |
1416 |
struct {
|
1417 |
unsigned long *insn_addr; |
1418 |
unsigned long insn; |
1419 |
} si_fpqueue [16];
|
1420 |
} qemu_siginfo_fpu_t; |
1421 |
|
1422 |
|
1423 |
struct target_signal_frame {
|
1424 |
struct sparc_stackf ss;
|
1425 |
__siginfo_t info; |
1426 |
qemu_siginfo_fpu_t *fpu_save; |
1427 |
abi_ulong insns[2] __attribute__ ((aligned (8))); |
1428 |
abi_ulong extramask[TARGET_NSIG_WORDS - 1];
|
1429 |
abi_ulong extra_size; /* Should be 0 */
|
1430 |
qemu_siginfo_fpu_t fpu_state; |
1431 |
}; |
1432 |
struct target_rt_signal_frame {
|
1433 |
struct sparc_stackf ss;
|
1434 |
siginfo_t info; |
1435 |
abi_ulong regs[20];
|
1436 |
sigset_t mask; |
1437 |
qemu_siginfo_fpu_t *fpu_save; |
1438 |
unsigned int insns[2]; |
1439 |
stack_t stack; |
1440 |
unsigned int extra_size; /* Should be 0 */ |
1441 |
qemu_siginfo_fpu_t fpu_state; |
1442 |
}; |
1443 |
|
1444 |
#define UREG_O0 16 |
1445 |
#define UREG_O6 22 |
1446 |
#define UREG_I0 0 |
1447 |
#define UREG_I1 1 |
1448 |
#define UREG_I2 2 |
1449 |
#define UREG_I3 3 |
1450 |
#define UREG_I4 4 |
1451 |
#define UREG_I5 5 |
1452 |
#define UREG_I6 6 |
1453 |
#define UREG_I7 7 |
1454 |
#define UREG_L0 8 |
1455 |
#define UREG_FP UREG_I6
|
1456 |
#define UREG_SP UREG_O6
|
1457 |
|
1458 |
static inline void *get_sigframe(struct emulated_sigaction *sa, CPUState *env, unsigned long framesize) |
1459 |
{ |
1460 |
unsigned long sp; |
1461 |
|
1462 |
sp = env->regwptr[UREG_FP]; |
1463 |
|
1464 |
/* This is the X/Open sanctioned signal stack switching. */
|
1465 |
if (sa->sa.sa_flags & TARGET_SA_ONSTACK) {
|
1466 |
if (!on_sig_stack(sp)
|
1467 |
&& !((target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size) & 7))
|
1468 |
sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
1469 |
} |
1470 |
return g2h(sp - framesize);
|
1471 |
} |
1472 |
|
1473 |
static int |
1474 |
setup___siginfo(__siginfo_t *si, CPUState *env, abi_ulong mask) |
1475 |
{ |
1476 |
int err = 0, i; |
1477 |
|
1478 |
err |= __put_user(env->psr, &si->si_regs.psr); |
1479 |
err |= __put_user(env->pc, &si->si_regs.pc); |
1480 |
err |= __put_user(env->npc, &si->si_regs.npc); |
1481 |
err |= __put_user(env->y, &si->si_regs.y); |
1482 |
for (i=0; i < 8; i++) { |
1483 |
err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]); |
1484 |
} |
1485 |
for (i=0; i < 8; i++) { |
1486 |
err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]);
|
1487 |
} |
1488 |
err |= __put_user(mask, &si->si_mask); |
1489 |
return err;
|
1490 |
} |
1491 |
|
1492 |
#if 0
|
1493 |
static int
|
1494 |
setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
|
1495 |
CPUState *env, unsigned long mask)
|
1496 |
{
|
1497 |
int err = 0;
|
1498 |
|
1499 |
err |= __put_user(mask, &sc->sigc_mask);
|
1500 |
err |= __put_user(env->regwptr[UREG_SP], &sc->sigc_sp);
|
1501 |
err |= __put_user(env->pc, &sc->sigc_pc);
|
1502 |
err |= __put_user(env->npc, &sc->sigc_npc);
|
1503 |
err |= __put_user(env->psr, &sc->sigc_psr);
|
1504 |
err |= __put_user(env->gregs[1], &sc->sigc_g1);
|
1505 |
err |= __put_user(env->regwptr[UREG_O0], &sc->sigc_o0);
|
1506 |
|
1507 |
return err;
|
1508 |
}
|
1509 |
#endif
|
1510 |
#define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) |
1511 |
|
1512 |
static void setup_frame(int sig, struct emulated_sigaction *ka, |
1513 |
target_sigset_t *set, CPUState *env) |
1514 |
{ |
1515 |
struct target_signal_frame *sf;
|
1516 |
int sigframe_size, err, i;
|
1517 |
|
1518 |
/* 1. Make sure everything is clean */
|
1519 |
//synchronize_user_stack();
|
1520 |
|
1521 |
sigframe_size = NF_ALIGNEDSZ; |
1522 |
|
1523 |
sf = (struct target_signal_frame *)
|
1524 |
get_sigframe(ka, env, sigframe_size); |
1525 |
|
1526 |
//fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
|
1527 |
#if 0
|
1528 |
if (invalid_frame_pointer(sf, sigframe_size))
|
1529 |
goto sigill_and_return;
|
1530 |
#endif
|
1531 |
/* 2. Save the current process state */
|
1532 |
err = setup___siginfo(&sf->info, env, set->sig[0]);
|
1533 |
err |= __put_user(0, &sf->extra_size);
|
1534 |
|
1535 |
//err |= save_fpu_state(regs, &sf->fpu_state);
|
1536 |
//err |= __put_user(&sf->fpu_state, &sf->fpu_save);
|
1537 |
|
1538 |
err |= __put_user(set->sig[0], &sf->info.si_mask);
|
1539 |
for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { |
1540 |
err |= __put_user(set->sig[i + 1], &sf->extramask[i]);
|
1541 |
} |
1542 |
|
1543 |
for (i = 0; i < 8; i++) { |
1544 |
err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]); |
1545 |
} |
1546 |
for (i = 0; i < 8; i++) { |
1547 |
err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]); |
1548 |
} |
1549 |
if (err)
|
1550 |
goto sigsegv;
|
1551 |
|
1552 |
/* 3. signal handler back-trampoline and parameters */
|
1553 |
env->regwptr[UREG_FP] = h2g(sf); |
1554 |
env->regwptr[UREG_I0] = sig; |
1555 |
env->regwptr[UREG_I1] = h2g(&sf->info); |
1556 |
env->regwptr[UREG_I2] = h2g(&sf->info); |
1557 |
|
1558 |
/* 4. signal handler */
|
1559 |
env->pc = (unsigned long) ka->sa._sa_handler; |
1560 |
env->npc = (env->pc + 4);
|
1561 |
/* 5. return to kernel instructions */
|
1562 |
if (ka->sa.sa_restorer)
|
1563 |
env->regwptr[UREG_I7] = (unsigned long)ka->sa.sa_restorer; |
1564 |
else {
|
1565 |
env->regwptr[UREG_I7] = h2g(&(sf->insns[0]) - 2); |
1566 |
|
1567 |
/* mov __NR_sigreturn, %g1 */
|
1568 |
err |= __put_user(0x821020d8, &sf->insns[0]); |
1569 |
|
1570 |
/* t 0x10 */
|
1571 |
err |= __put_user(0x91d02010, &sf->insns[1]); |
1572 |
if (err)
|
1573 |
goto sigsegv;
|
1574 |
|
1575 |
/* Flush instruction space. */
|
1576 |
//flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
|
1577 |
// tb_flush(env);
|
1578 |
} |
1579 |
return;
|
1580 |
|
1581 |
//sigill_and_return:
|
1582 |
force_sig(TARGET_SIGILL); |
1583 |
sigsegv:
|
1584 |
//fprintf(stderr, "force_sig\n");
|
1585 |
force_sig(TARGET_SIGSEGV); |
1586 |
} |
1587 |
static inline int |
1588 |
restore_fpu_state(CPUState *env, qemu_siginfo_fpu_t *fpu) |
1589 |
{ |
1590 |
int err;
|
1591 |
#if 0
|
1592 |
#ifdef CONFIG_SMP
|
1593 |
if (current->flags & PF_USEDFPU)
|
1594 |
regs->psr &= ~PSR_EF;
|
1595 |
#else
|
1596 |
if (current == last_task_used_math) {
|
1597 |
last_task_used_math = 0;
|
1598 |
regs->psr &= ~PSR_EF; |
1599 |
} |
1600 |
#endif
|
1601 |
current->used_math = 1;
|
1602 |
current->flags &= ~PF_USEDFPU; |
1603 |
#endif
|
1604 |
#if 0
|
1605 |
if (verify_area (VERIFY_READ, fpu, sizeof(*fpu)))
|
1606 |
return -EFAULT;
|
1607 |
#endif
|
1608 |
|
1609 |
#if 0
|
1610 |
/* XXX: incorrect */
|
1611 |
err = __copy_from_user(&env->fpr[0], &fpu->si_float_regs[0],
|
1612 |
(sizeof(unsigned long) * 32));
|
1613 |
#endif
|
1614 |
err |= __get_user(env->fsr, &fpu->si_fsr); |
1615 |
#if 0
|
1616 |
err |= __get_user(current->thread.fpqdepth, &fpu->si_fpqdepth);
|
1617 |
if (current->thread.fpqdepth != 0)
|
1618 |
err |= __copy_from_user(¤t->thread.fpqueue[0],
|
1619 |
&fpu->si_fpqueue[0],
|
1620 |
((sizeof(unsigned long) +
|
1621 |
(sizeof(unsigned long *)))*16));
|
1622 |
#endif
|
1623 |
return err;
|
1624 |
} |
1625 |
|
1626 |
|
1627 |
static void setup_rt_frame(int sig, struct emulated_sigaction *ka, |
1628 |
target_siginfo_t *info, |
1629 |
target_sigset_t *set, CPUState *env) |
1630 |
{ |
1631 |
fprintf(stderr, "setup_rt_frame: not implemented\n");
|
1632 |
} |
1633 |
|
1634 |
long do_sigreturn(CPUState *env)
|
1635 |
{ |
1636 |
struct target_signal_frame *sf;
|
1637 |
uint32_t up_psr, pc, npc; |
1638 |
target_sigset_t set; |
1639 |
sigset_t host_set; |
1640 |
abi_ulong fpu_save; |
1641 |
int err, i;
|
1642 |
|
1643 |
sf = (struct target_signal_frame *)g2h(env->regwptr[UREG_FP]);
|
1644 |
#if 0
|
1645 |
fprintf(stderr, "sigreturn\n");
|
1646 |
fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
|
1647 |
#endif
|
1648 |
//cpu_dump_state(env, stderr, fprintf, 0);
|
1649 |
|
1650 |
/* 1. Make sure we are not getting garbage from the user */
|
1651 |
#if 0
|
1652 |
if (verify_area (VERIFY_READ, sf, sizeof (*sf)))
|
1653 |
goto segv_and_exit;
|
1654 |
#endif
|
1655 |
|
1656 |
if (((uint) sf) & 3) |
1657 |
goto segv_and_exit;
|
1658 |
|
1659 |
err = __get_user(pc, &sf->info.si_regs.pc); |
1660 |
err |= __get_user(npc, &sf->info.si_regs.npc); |
1661 |
|
1662 |
if ((pc | npc) & 3) |
1663 |
goto segv_and_exit;
|
1664 |
|
1665 |
/* 2. Restore the state */
|
1666 |
err |= __get_user(up_psr, &sf->info.si_regs.psr); |
1667 |
|
1668 |
/* User can only change condition codes and FPU enabling in %psr. */
|
1669 |
env->psr = (up_psr & (PSR_ICC /* | PSR_EF */))
|
1670 |
| (env->psr & ~(PSR_ICC /* | PSR_EF */));
|
1671 |
|
1672 |
env->pc = pc; |
1673 |
env->npc = npc; |
1674 |
err |= __get_user(env->y, &sf->info.si_regs.y); |
1675 |
for (i=0; i < 8; i++) { |
1676 |
err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); |
1677 |
} |
1678 |
for (i=0; i < 8; i++) { |
1679 |
err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]);
|
1680 |
} |
1681 |
|
1682 |
err |= __get_user(fpu_save, (abi_ulong *)&sf->fpu_save); |
1683 |
|
1684 |
//if (fpu_save)
|
1685 |
// err |= restore_fpu_state(env, fpu_save);
|
1686 |
|
1687 |
/* This is pretty much atomic, no amount locking would prevent
|
1688 |
* the races which exist anyways.
|
1689 |
*/
|
1690 |
err |= __get_user(set.sig[0], &sf->info.si_mask);
|
1691 |
for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
1692 |
err |= (__get_user(set.sig[i], &sf->extramask[i - 1]));
|
1693 |
} |
1694 |
|
1695 |
target_to_host_sigset_internal(&host_set, &set); |
1696 |
sigprocmask(SIG_SETMASK, &host_set, NULL);
|
1697 |
|
1698 |
if (err)
|
1699 |
goto segv_and_exit;
|
1700 |
|
1701 |
return env->regwptr[0]; |
1702 |
|
1703 |
segv_and_exit:
|
1704 |
force_sig(TARGET_SIGSEGV); |
1705 |
} |
1706 |
|
1707 |
long do_rt_sigreturn(CPUState *env)
|
1708 |
{ |
1709 |
fprintf(stderr, "do_rt_sigreturn: not implemented\n");
|
1710 |
return -ENOSYS;
|
1711 |
} |
1712 |
|
1713 |
#ifdef TARGET_SPARC64
|
1714 |
#define MC_TSTATE 0 |
1715 |
#define MC_PC 1 |
1716 |
#define MC_NPC 2 |
1717 |
#define MC_Y 3 |
1718 |
#define MC_G1 4 |
1719 |
#define MC_G2 5 |
1720 |
#define MC_G3 6 |
1721 |
#define MC_G4 7 |
1722 |
#define MC_G5 8 |
1723 |
#define MC_G6 9 |
1724 |
#define MC_G7 10 |
1725 |
#define MC_O0 11 |
1726 |
#define MC_O1 12 |
1727 |
#define MC_O2 13 |
1728 |
#define MC_O3 14 |
1729 |
#define MC_O4 15 |
1730 |
#define MC_O5 16 |
1731 |
#define MC_O6 17 |
1732 |
#define MC_O7 18 |
1733 |
#define MC_NGREG 19 |
1734 |
|
1735 |
typedef abi_ulong target_mc_greg_t;
|
1736 |
typedef target_mc_greg_t target_mc_gregset_t[MC_NGREG];
|
1737 |
|
1738 |
struct target_mc_fq {
|
1739 |
abi_ulong *mcfq_addr; |
1740 |
uint32_t mcfq_insn; |
1741 |
}; |
1742 |
|
1743 |
struct target_mc_fpu {
|
1744 |
union {
|
1745 |
uint32_t sregs[32];
|
1746 |
uint64_t dregs[32];
|
1747 |
//uint128_t qregs[16];
|
1748 |
} mcfpu_fregs; |
1749 |
abi_ulong mcfpu_fsr; |
1750 |
abi_ulong mcfpu_fprs; |
1751 |
abi_ulong mcfpu_gsr; |
1752 |
struct target_mc_fq *mcfpu_fq;
|
1753 |
unsigned char mcfpu_qcnt; |
1754 |
unsigned char mcfpu_qentsz; |
1755 |
unsigned char mcfpu_enab; |
1756 |
}; |
1757 |
typedef struct target_mc_fpu target_mc_fpu_t; |
1758 |
|
1759 |
typedef struct { |
1760 |
target_mc_gregset_t mc_gregs; |
1761 |
target_mc_greg_t mc_fp; |
1762 |
target_mc_greg_t mc_i7; |
1763 |
target_mc_fpu_t mc_fpregs; |
1764 |
} target_mcontext_t; |
1765 |
|
1766 |
struct target_ucontext {
|
1767 |
struct target_ucontext *uc_link;
|
1768 |
abi_ulong uc_flags; |
1769 |
target_sigset_t uc_sigmask; |
1770 |
target_mcontext_t uc_mcontext; |
1771 |
}; |
1772 |
|
1773 |
/* A V9 register window */
|
1774 |
struct target_reg_window {
|
1775 |
abi_ulong locals[8];
|
1776 |
abi_ulong ins[8];
|
1777 |
}; |
1778 |
|
1779 |
#define TARGET_STACK_BIAS 2047 |
1780 |
|
1781 |
/* {set, get}context() needed for 64-bit SparcLinux userland. */
|
1782 |
void sparc64_set_context(CPUSPARCState *env)
|
1783 |
{ |
1784 |
struct target_ucontext *ucp = (struct target_ucontext *) |
1785 |
env->regwptr[UREG_I0]; |
1786 |
target_mc_gregset_t *grp; |
1787 |
abi_ulong pc, npc, tstate; |
1788 |
abi_ulong fp, i7; |
1789 |
unsigned char fenab; |
1790 |
int err;
|
1791 |
unsigned int i; |
1792 |
abi_ulong *src, *dst; |
1793 |
|
1794 |
grp = &ucp->uc_mcontext.mc_gregs; |
1795 |
err = get_user(pc, &((*grp)[MC_PC])); |
1796 |
err |= get_user(npc, &((*grp)[MC_NPC])); |
1797 |
if (err || ((pc | npc) & 3)) |
1798 |
goto do_sigsegv;
|
1799 |
if (env->regwptr[UREG_I1]) {
|
1800 |
target_sigset_t target_set; |
1801 |
sigset_t set; |
1802 |
|
1803 |
if (TARGET_NSIG_WORDS == 1) { |
1804 |
if (get_user(target_set.sig[0], &ucp->uc_sigmask.sig[0])) |
1805 |
goto do_sigsegv;
|
1806 |
} else {
|
1807 |
src = &ucp->uc_sigmask; |
1808 |
dst = &target_set; |
1809 |
for (i = 0; i < sizeof(target_sigset_t) / sizeof(abi_ulong); |
1810 |
i++, dst++, src++) |
1811 |
err |= get_user(dst, src); |
1812 |
if (err)
|
1813 |
goto do_sigsegv;
|
1814 |
} |
1815 |
target_to_host_sigset_internal(&set, &target_set); |
1816 |
sigprocmask(SIG_SETMASK, &set, NULL);
|
1817 |
} |
1818 |
env->pc = pc; |
1819 |
env->npc = npc; |
1820 |
err |= get_user(env->y, &((*grp)[MC_Y])); |
1821 |
err |= get_user(tstate, &((*grp)[MC_TSTATE])); |
1822 |
env->asi = (tstate >> 24) & 0xff; |
1823 |
PUT_CCR(env, tstate >> 32);
|
1824 |
PUT_CWP64(env, tstate & 0x1f);
|
1825 |
err |= get_user(env->gregs[1], (&(*grp)[MC_G1]));
|
1826 |
err |= get_user(env->gregs[2], (&(*grp)[MC_G2]));
|
1827 |
err |= get_user(env->gregs[3], (&(*grp)[MC_G3]));
|
1828 |
err |= get_user(env->gregs[4], (&(*grp)[MC_G4]));
|
1829 |
err |= get_user(env->gregs[5], (&(*grp)[MC_G5]));
|
1830 |
err |= get_user(env->gregs[6], (&(*grp)[MC_G6]));
|
1831 |
err |= get_user(env->gregs[7], (&(*grp)[MC_G7]));
|
1832 |
err |= get_user(env->regwptr[UREG_I0], (&(*grp)[MC_O0])); |
1833 |
err |= get_user(env->regwptr[UREG_I1], (&(*grp)[MC_O1])); |
1834 |
err |= get_user(env->regwptr[UREG_I2], (&(*grp)[MC_O2])); |
1835 |
err |= get_user(env->regwptr[UREG_I3], (&(*grp)[MC_O3])); |
1836 |
err |= get_user(env->regwptr[UREG_I4], (&(*grp)[MC_O4])); |
1837 |
err |= get_user(env->regwptr[UREG_I5], (&(*grp)[MC_O5])); |
1838 |
err |= get_user(env->regwptr[UREG_I6], (&(*grp)[MC_O6])); |
1839 |
err |= get_user(env->regwptr[UREG_I7], (&(*grp)[MC_O7])); |
1840 |
|
1841 |
err |= get_user(fp, &(ucp->uc_mcontext.mc_fp)); |
1842 |
err |= get_user(i7, &(ucp->uc_mcontext.mc_i7)); |
1843 |
err |= put_user(fp, |
1844 |
(&(((struct target_reg_window *)(TARGET_STACK_BIAS+env->regwptr[UREG_I6]))->ins[6]))); |
1845 |
err |= put_user(i7, |
1846 |
(&(((struct target_reg_window *)(TARGET_STACK_BIAS+env->regwptr[UREG_I6]))->ins[7]))); |
1847 |
|
1848 |
err |= get_user(fenab, &(ucp->uc_mcontext.mc_fpregs.mcfpu_enab)); |
1849 |
err |= get_user(env->fprs, &(ucp->uc_mcontext.mc_fpregs.mcfpu_fprs)); |
1850 |
src = &(ucp->uc_mcontext.mc_fpregs.mcfpu_fregs); |
1851 |
dst = &env->fpr; |
1852 |
for (i = 0; i < 64; i++, dst++, src++) |
1853 |
err |= get_user(dst, src); |
1854 |
err |= get_user(env->fsr, |
1855 |
&(ucp->uc_mcontext.mc_fpregs.mcfpu_fsr)); |
1856 |
err |= get_user(env->gsr, |
1857 |
&(ucp->uc_mcontext.mc_fpregs.mcfpu_gsr)); |
1858 |
if (err)
|
1859 |
goto do_sigsegv;
|
1860 |
|
1861 |
return;
|
1862 |
do_sigsegv:
|
1863 |
force_sig(SIGSEGV); |
1864 |
} |
1865 |
|
1866 |
void sparc64_get_context(CPUSPARCState *env)
|
1867 |
{ |
1868 |
struct target_ucontext *ucp = (struct target_ucontext *) |
1869 |
env->regwptr[UREG_I0]; |
1870 |
target_mc_gregset_t *grp; |
1871 |
target_mcontext_t *mcp; |
1872 |
abi_ulong fp, i7; |
1873 |
int err;
|
1874 |
unsigned int i; |
1875 |
abi_ulong *src, *dst; |
1876 |
target_sigset_t target_set; |
1877 |
sigset_t set; |
1878 |
|
1879 |
mcp = &ucp->uc_mcontext; |
1880 |
grp = &mcp->mc_gregs; |
1881 |
|
1882 |
/* Skip over the trap instruction, first. */
|
1883 |
env->pc = env->npc; |
1884 |
env->npc += 4;
|
1885 |
|
1886 |
err = 0;
|
1887 |
|
1888 |
sigprocmask(0, NULL, &set); |
1889 |
host_to_target_sigset_internal(&target_set, &set); |
1890 |
if (TARGET_NSIG_WORDS == 1) |
1891 |
err |= put_user(target_set.sig[0],
|
1892 |
(abi_ulong *)&ucp->uc_sigmask); |
1893 |
else {
|
1894 |
src = &target_set; |
1895 |
dst = &ucp->uc_sigmask; |
1896 |
for (i = 0; i < sizeof(target_sigset_t) / sizeof(abi_ulong); |
1897 |
i++, dst++, src++) |
1898 |
err |= put_user(src, dst); |
1899 |
if (err)
|
1900 |
goto do_sigsegv;
|
1901 |
} |
1902 |
|
1903 |
err |= put_user(env->tstate, &((*grp)[MC_TSTATE])); |
1904 |
err |= put_user(env->pc, &((*grp)[MC_PC])); |
1905 |
err |= put_user(env->npc, &((*grp)[MC_NPC])); |
1906 |
err |= put_user(env->y, &((*grp)[MC_Y])); |
1907 |
err |= put_user(env->gregs[1], &((*grp)[MC_G1]));
|
1908 |
err |= put_user(env->gregs[2], &((*grp)[MC_G2]));
|
1909 |
err |= put_user(env->gregs[3], &((*grp)[MC_G3]));
|
1910 |
err |= put_user(env->gregs[4], &((*grp)[MC_G4]));
|
1911 |
err |= put_user(env->gregs[5], &((*grp)[MC_G5]));
|
1912 |
err |= put_user(env->gregs[6], &((*grp)[MC_G6]));
|
1913 |
err |= put_user(env->gregs[7], &((*grp)[MC_G7]));
|
1914 |
err |= put_user(env->regwptr[UREG_I0], &((*grp)[MC_O0])); |
1915 |
err |= put_user(env->regwptr[UREG_I1], &((*grp)[MC_O1])); |
1916 |
err |= put_user(env->regwptr[UREG_I2], &((*grp)[MC_O2])); |
1917 |
err |= put_user(env->regwptr[UREG_I3], &((*grp)[MC_O3])); |
1918 |
err |= put_user(env->regwptr[UREG_I4], &((*grp)[MC_O4])); |
1919 |
err |= put_user(env->regwptr[UREG_I5], &((*grp)[MC_O5])); |
1920 |
err |= put_user(env->regwptr[UREG_I6], &((*grp)[MC_O6])); |
1921 |
err |= put_user(env->regwptr[UREG_I7], &((*grp)[MC_O7])); |
1922 |
|
1923 |
err |= get_user(fp, |
1924 |
(&(((struct target_reg_window *)(TARGET_STACK_BIAS+env->regwptr[UREG_I6]))->ins[6]))); |
1925 |
err |= get_user(i7, |
1926 |
(&(((struct target_reg_window *)(TARGET_STACK_BIAS+env->regwptr[UREG_I6]))->ins[7]))); |
1927 |
err |= put_user(fp, &(mcp->mc_fp)); |
1928 |
err |= put_user(i7, &(mcp->mc_i7)); |
1929 |
|
1930 |
src = &env->fpr; |
1931 |
dst = &(ucp->uc_mcontext.mc_fpregs.mcfpu_fregs); |
1932 |
for (i = 0; i < 64; i++, dst++, src++) |
1933 |
err |= put_user(src, dst); |
1934 |
err |= put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr)); |
1935 |
err |= put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr)); |
1936 |
err |= put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs)); |
1937 |
|
1938 |
if (err)
|
1939 |
goto do_sigsegv;
|
1940 |
|
1941 |
return;
|
1942 |
do_sigsegv:
|
1943 |
force_sig(SIGSEGV); |
1944 |
} |
1945 |
#endif
|
1946 |
#elif defined(TARGET_MIPS64)
|
1947 |
|
1948 |
# warning signal handling not implemented
|
1949 |
|
1950 |
static void setup_frame(int sig, struct emulated_sigaction *ka, |
1951 |
target_sigset_t *set, CPUState *env) |
1952 |
{ |
1953 |
fprintf(stderr, "setup_frame: not implemented\n");
|
1954 |
} |
1955 |
|
1956 |
static void setup_rt_frame(int sig, struct emulated_sigaction *ka, |
1957 |
target_siginfo_t *info, |
1958 |
target_sigset_t *set, CPUState *env) |
1959 |
{ |
1960 |
fprintf(stderr, "setup_rt_frame: not implemented\n");
|
1961 |
} |
1962 |
|
1963 |
long do_sigreturn(CPUState *env)
|
1964 |
{ |
1965 |
fprintf(stderr, "do_sigreturn: not implemented\n");
|
1966 |
return -ENOSYS;
|
1967 |
} |
1968 |
|
1969 |
long do_rt_sigreturn(CPUState *env)
|
1970 |
{ |
1971 |
fprintf(stderr, "do_rt_sigreturn: not implemented\n");
|
1972 |
return -ENOSYS;
|
1973 |
} |
1974 |
|
1975 |
#elif defined(TARGET_MIPSN32)
|
1976 |
|
1977 |
# warning signal handling not implemented
|
1978 |
|
1979 |
static void setup_frame(int sig, struct emulated_sigaction *ka, |
1980 |
target_sigset_t *set, CPUState *env) |
1981 |
{ |
1982 |
fprintf(stderr, "setup_frame: not implemented\n");
|
1983 |
} |
1984 |
|
1985 |
static void setup_rt_frame(int sig, struct emulated_sigaction *ka, |
1986 |
target_siginfo_t *info, |
1987 |
target_sigset_t *set, CPUState *env) |
1988 |
{ |
1989 |
fprintf(stderr, "setup_rt_frame: not implemented\n");
|
1990 |
} |
1991 |
|
1992 |
long do_sigreturn(CPUState *env)
|
1993 |
{ |
1994 |
fprintf(stderr, "do_sigreturn: not implemented\n");
|
1995 |
return -ENOSYS;
|
1996 |
} |
1997 |
|
1998 |
long do_rt_sigreturn(CPUState *env)
|
1999 |
{ |
2000 |
fprintf(stderr, "do_rt_sigreturn: not implemented\n");
|
2001 |
return -ENOSYS;
|
2002 |
} |
2003 |
|
2004 |
#elif defined(TARGET_MIPS)
|
2005 |
|
2006 |
struct target_sigcontext {
|
2007 |
uint32_t sc_regmask; /* Unused */
|
2008 |
uint32_t sc_status; |
2009 |
uint64_t sc_pc; |
2010 |
uint64_t sc_regs[32];
|
2011 |
uint64_t sc_fpregs[32];
|
2012 |
uint32_t sc_ownedfp; /* Unused */
|
2013 |
uint32_t sc_fpc_csr; |
2014 |
uint32_t sc_fpc_eir; /* Unused */
|
2015 |
uint32_t sc_used_math; |
2016 |
uint32_t sc_dsp; /* dsp status, was sc_ssflags */
|
2017 |
uint64_t sc_mdhi; |
2018 |
uint64_t sc_mdlo; |
2019 |
target_ulong sc_hi1; /* Was sc_cause */
|
2020 |
target_ulong sc_lo1; /* Was sc_badvaddr */
|
2021 |
target_ulong sc_hi2; /* Was sc_sigset[4] */
|
2022 |
target_ulong sc_lo2; |
2023 |
target_ulong sc_hi3; |
2024 |
target_ulong sc_lo3; |
2025 |
}; |
2026 |
|
2027 |
struct sigframe {
|
2028 |
uint32_t sf_ass[4]; /* argument save space for o32 */ |
2029 |
uint32_t sf_code[2]; /* signal trampoline */ |
2030 |
struct target_sigcontext sf_sc;
|
2031 |
target_sigset_t sf_mask; |
2032 |
}; |
2033 |
|
2034 |
/* Install trampoline to jump back from signal handler */
|
2035 |
static inline int install_sigtramp(unsigned int *tramp, unsigned int syscall) |
2036 |
{ |
2037 |
int err;
|
2038 |
|
2039 |
/*
|
2040 |
* Set up the return code ...
|
2041 |
*
|
2042 |
* li v0, __NR__foo_sigreturn
|
2043 |
* syscall
|
2044 |
*/
|
2045 |
|
2046 |
err = __put_user(0x24020000 + syscall, tramp + 0); |
2047 |
err |= __put_user(0x0000000c , tramp + 1); |
2048 |
/* flush_cache_sigtramp((unsigned long) tramp); */
|
2049 |
return err;
|
2050 |
} |
2051 |
|
2052 |
static inline int |
2053 |
setup_sigcontext(CPUState *regs, struct target_sigcontext *sc)
|
2054 |
{ |
2055 |
int err = 0; |
2056 |
|
2057 |
err |= __put_user(regs->PC[regs->current_tc], &sc->sc_pc); |
2058 |
|
2059 |
#define save_gp_reg(i) do { \ |
2060 |
err |= __put_user(regs->gpr[i][regs->current_tc], &sc->sc_regs[i]); \ |
2061 |
} while(0) |
2062 |
__put_user(0, &sc->sc_regs[0]); save_gp_reg(1); save_gp_reg(2); |
2063 |
save_gp_reg(3); save_gp_reg(4); save_gp_reg(5); save_gp_reg(6); |
2064 |
save_gp_reg(7); save_gp_reg(8); save_gp_reg(9); save_gp_reg(10); |
2065 |
save_gp_reg(11); save_gp_reg(12); save_gp_reg(13); save_gp_reg(14); |
2066 |
save_gp_reg(15); save_gp_reg(16); save_gp_reg(17); save_gp_reg(18); |
2067 |
save_gp_reg(19); save_gp_reg(20); save_gp_reg(21); save_gp_reg(22); |
2068 |
save_gp_reg(23); save_gp_reg(24); save_gp_reg(25); save_gp_reg(26); |
2069 |
save_gp_reg(27); save_gp_reg(28); save_gp_reg(29); save_gp_reg(30); |
2070 |
save_gp_reg(31);
|
2071 |
#undef save_gp_reg
|
2072 |
|
2073 |
err |= __put_user(regs->HI[0][regs->current_tc], &sc->sc_mdhi);
|
2074 |
err |= __put_user(regs->LO[0][regs->current_tc], &sc->sc_mdlo);
|
2075 |
|
2076 |
/* Not used yet, but might be useful if we ever have DSP suppport */
|
2077 |
#if 0
|
2078 |
if (cpu_has_dsp) {
|
2079 |
err |= __put_user(mfhi1(), &sc->sc_hi1);
|
2080 |
err |= __put_user(mflo1(), &sc->sc_lo1);
|
2081 |
err |= __put_user(mfhi2(), &sc->sc_hi2);
|
2082 |
err |= __put_user(mflo2(), &sc->sc_lo2);
|
2083 |
err |= __put_user(mfhi3(), &sc->sc_hi3);
|
2084 |
err |= __put_user(mflo3(), &sc->sc_lo3);
|
2085 |
err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp);
|
2086 |
}
|
2087 |
/* same with 64 bit */
|
2088 |
#ifdef CONFIG_64BIT
|
2089 |
err |= __put_user(regs->hi, &sc->sc_hi[0]);
|
2090 |
err |= __put_user(regs->lo, &sc->sc_lo[0]);
|
2091 |
if (cpu_has_dsp) {
|
2092 |
err |= __put_user(mfhi1(), &sc->sc_hi[1]);
|
2093 |
err |= __put_user(mflo1(), &sc->sc_lo[1]);
|
2094 |
err |= __put_user(mfhi2(), &sc->sc_hi[2]);
|
2095 |
err |= __put_user(mflo2(), &sc->sc_lo[2]);
|
2096 |
err |= __put_user(mfhi3(), &sc->sc_hi[3]);
|
2097 |
err |= __put_user(mflo3(), &sc->sc_lo[3]);
|
2098 |
err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp);
|
2099 |
}
|
2100 |
#endif
|
2101 |
#endif
|
2102 |
|
2103 |
#if 0
|
2104 |
err |= __put_user(!!used_math(), &sc->sc_used_math);
|
2105 |
|
2106 |
if (!used_math())
|
2107 |
goto out;
|
2108 |
|
2109 |
/*
|
2110 |
* Save FPU state to signal context. Signal handler will "inherit"
|
2111 |
* current FPU state.
|
2112 |
*/
|
2113 |
preempt_disable();
|
2114 |
|
2115 |
if (!is_fpu_owner()) {
|
2116 |
own_fpu();
|
2117 |
restore_fp(current);
|
2118 |
}
|
2119 |
err |= save_fp_context(sc);
|
2120 |
|
2121 |
preempt_enable();
|
2122 |
out:
|
2123 |
#endif
|
2124 |
return err;
|
2125 |
} |
2126 |
|
2127 |
static inline int |
2128 |
restore_sigcontext(CPUState *regs, struct target_sigcontext *sc)
|
2129 |
{ |
2130 |
int err = 0; |
2131 |
|
2132 |
err |= __get_user(regs->CP0_EPC, &sc->sc_pc); |
2133 |
|
2134 |
err |= __get_user(regs->HI[0][regs->current_tc], &sc->sc_mdhi);
|
2135 |
err |= __get_user(regs->LO[0][regs->current_tc], &sc->sc_mdlo);
|
2136 |
|
2137 |
#define restore_gp_reg(i) do { \ |
2138 |
err |= __get_user(regs->gpr[i][regs->current_tc], &sc->sc_regs[i]); \ |
2139 |
} while(0) |
2140 |
restore_gp_reg( 1); restore_gp_reg( 2); restore_gp_reg( 3); |
2141 |
restore_gp_reg( 4); restore_gp_reg( 5); restore_gp_reg( 6); |
2142 |
restore_gp_reg( 7); restore_gp_reg( 8); restore_gp_reg( 9); |
2143 |
restore_gp_reg(10); restore_gp_reg(11); restore_gp_reg(12); |
2144 |
restore_gp_reg(13); restore_gp_reg(14); restore_gp_reg(15); |
2145 |
restore_gp_reg(16); restore_gp_reg(17); restore_gp_reg(18); |
2146 |
restore_gp_reg(19); restore_gp_reg(20); restore_gp_reg(21); |
2147 |
restore_gp_reg(22); restore_gp_reg(23); restore_gp_reg(24); |
2148 |
restore_gp_reg(25); restore_gp_reg(26); restore_gp_reg(27); |
2149 |
restore_gp_reg(28); restore_gp_reg(29); restore_gp_reg(30); |
2150 |
restore_gp_reg(31);
|
2151 |
#undef restore_gp_reg
|
2152 |
|
2153 |
#if 0
|
2154 |
if (cpu_has_dsp) {
|
2155 |
err |= __get_user(treg, &sc->sc_hi1); mthi1(treg);
|
2156 |
err |= __get_user(treg, &sc->sc_lo1); mtlo1(treg);
|
2157 |
err |= __get_user(treg, &sc->sc_hi2); mthi2(treg);
|
2158 |
err |= __get_user(treg, &sc->sc_lo2); mtlo2(treg);
|
2159 |
err |= __get_user(treg, &sc->sc_hi3); mthi3(treg);
|
2160 |
err |= __get_user(treg, &sc->sc_lo3); mtlo3(treg);
|
2161 |
err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK);
|
2162 |
}
|
2163 |
#ifdef CONFIG_64BIT
|
2164 |
err |= __get_user(regs->hi, &sc->sc_hi[0]);
|
2165 |
err |= __get_user(regs->lo, &sc->sc_lo[0]);
|
2166 |
if (cpu_has_dsp) {
|
2167 |
err |= __get_user(treg, &sc->sc_hi[1]); mthi1(treg);
|
2168 |
err |= __get_user(treg, &sc->sc_lo[1]); mthi1(treg);
|
2169 |
err |= __get_user(treg, &sc->sc_hi[2]); mthi2(treg);
|
2170 |
err |= __get_user(treg, &sc->sc_lo[2]); mthi2(treg);
|
2171 |
err |= __get_user(treg, &sc->sc_hi[3]); mthi3(treg);
|
2172 |
err |= __get_user(treg, &sc->sc_lo[3]); mthi3(treg);
|
2173 |
err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK);
|
2174 |
}
|
2175 |
#endif
|
2176 |
|
2177 |
err |= __get_user(used_math, &sc->sc_used_math); |
2178 |
conditional_used_math(used_math); |
2179 |
|
2180 |
preempt_disable(); |
2181 |
|
2182 |
if (used_math()) {
|
2183 |
/* restore fpu context if we have used it before */
|
2184 |
own_fpu(); |
2185 |
err |= restore_fp_context(sc); |
2186 |
} else {
|
2187 |
/* signal handler may have used FPU. Give it up. */
|
2188 |
lose_fpu(); |
2189 |
} |
2190 |
|
2191 |
preempt_enable(); |
2192 |
#endif
|
2193 |
return err;
|
2194 |
} |
2195 |
/*
|
2196 |
* Determine which stack to use..
|
2197 |
*/
|
2198 |
static inline void * |
2199 |
get_sigframe(struct emulated_sigaction *ka, CPUState *regs, size_t frame_size)
|
2200 |
{ |
2201 |
unsigned long sp; |
2202 |
|
2203 |
/* Default to using normal stack */
|
2204 |
sp = regs->gpr[29][regs->current_tc];
|
2205 |
|
2206 |
/*
|
2207 |
* FPU emulator may have it's own trampoline active just
|
2208 |
* above the user stack, 16-bytes before the next lowest
|
2209 |
* 16 byte boundary. Try to avoid trashing it.
|
2210 |
*/
|
2211 |
sp -= 32;
|
2212 |
|
2213 |
/* This is the X/Open sanctioned signal stack switching. */
|
2214 |
if ((ka->sa.sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { |
2215 |
sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
2216 |
} |
2217 |
|
2218 |
return g2h((sp - frame_size) & ~7); |
2219 |
} |
2220 |
|
2221 |
static void setup_frame(int sig, struct emulated_sigaction * ka, |
2222 |
target_sigset_t *set, CPUState *regs) |
2223 |
{ |
2224 |
struct sigframe *frame;
|
2225 |
int i;
|
2226 |
|
2227 |
frame = get_sigframe(ka, regs, sizeof(*frame));
|
2228 |
if (!access_ok(VERIFY_WRITE, frame, sizeof (*frame))) |
2229 |
goto give_sigsegv;
|
2230 |
|
2231 |
install_sigtramp(frame->sf_code, TARGET_NR_sigreturn); |
2232 |
|
2233 |
if(setup_sigcontext(regs, &frame->sf_sc))
|
2234 |
goto give_sigsegv;
|
2235 |
|
2236 |
for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
2237 |
if(__put_user(set->sig[i], &frame->sf_mask.sig[i]))
|
2238 |
goto give_sigsegv;
|
2239 |
} |
2240 |
|
2241 |
/*
|
2242 |
* Arguments to signal handler:
|
2243 |
*
|
2244 |
* a0 = signal number
|
2245 |
* a1 = 0 (should be cause)
|
2246 |
* a2 = pointer to struct sigcontext
|
2247 |
*
|
2248 |
* $25 and PC point to the signal handler, $29 points to the
|
2249 |
* struct sigframe.
|
2250 |
*/
|
2251 |
regs->gpr[ 4][regs->current_tc] = sig;
|
2252 |
regs->gpr[ 5][regs->current_tc] = 0; |
2253 |
regs->gpr[ 6][regs->current_tc] = h2g(&frame->sf_sc);
|
2254 |
regs->gpr[29][regs->current_tc] = h2g(frame);
|
2255 |
regs->gpr[31][regs->current_tc] = h2g(frame->sf_code);
|
2256 |
/* The original kernel code sets CP0_EPC to the handler
|
2257 |
* since it returns to userland using eret
|
2258 |
* we cannot do this here, and we must set PC directly */
|
2259 |
regs->PC[regs->current_tc] = regs->gpr[25][regs->current_tc] = ka->sa._sa_handler;
|
2260 |
return;
|
2261 |
|
2262 |
give_sigsegv:
|
2263 |
force_sig(TARGET_SIGSEGV/*, current*/);
|
2264 |
return;
|
2265 |
} |
2266 |
|
2267 |
long do_sigreturn(CPUState *regs)
|
2268 |
{ |
2269 |
struct sigframe *frame;
|
2270 |
sigset_t blocked; |
2271 |
target_sigset_t target_set; |
2272 |
int i;
|
2273 |
|
2274 |
#if defined(DEBUG_SIGNAL)
|
2275 |
fprintf(stderr, "do_sigreturn\n");
|
2276 |
#endif
|
2277 |
frame = (struct sigframe *) regs->gpr[29][regs->current_tc]; |
2278 |
if (!access_ok(VERIFY_READ, frame, sizeof(*frame))) |
2279 |
goto badframe;
|
2280 |
|
2281 |
for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
2282 |
if(__get_user(target_set.sig[i], &frame->sf_mask.sig[i]))
|
2283 |
goto badframe;
|
2284 |
} |
2285 |
|
2286 |
target_to_host_sigset_internal(&blocked, &target_set); |
2287 |
sigprocmask(SIG_SETMASK, &blocked, NULL);
|
2288 |
|
2289 |
if (restore_sigcontext(regs, &frame->sf_sc))
|
2290 |
goto badframe;
|
2291 |
|
2292 |
#if 0
|
2293 |
/*
|
2294 |
* Don't let your children do this ...
|
2295 |
*/
|
2296 |
__asm__ __volatile__(
|
2297 |
"move\t$29, %0\n\t"
|
2298 |
"j\tsyscall_exit"
|
2299 |
:/* no outputs */
|
2300 |
:"r" (®s));
|
2301 |
/* Unreached */
|
2302 |
#endif
|
2303 |
|
2304 |
regs->PC[regs->current_tc] = regs->CP0_EPC; |
2305 |
/* I am not sure this is right, but it seems to work
|
2306 |
* maybe a problem with nested signals ? */
|
2307 |
regs->CP0_EPC = 0;
|
2308 |
return 0; |
2309 |
|
2310 |
badframe:
|
2311 |
force_sig(TARGET_SIGSEGV/*, current*/);
|
2312 |
return 0; |
2313 |
} |
2314 |
|
2315 |
static void setup_rt_frame(int sig, struct emulated_sigaction *ka, |
2316 |
target_siginfo_t *info, |
2317 |
target_sigset_t *set, CPUState *env) |
2318 |
{ |
2319 |
fprintf(stderr, "setup_rt_frame: not implemented\n");
|
2320 |
} |
2321 |
|
2322 |
long do_rt_sigreturn(CPUState *env)
|
2323 |
{ |
2324 |
fprintf(stderr, "do_rt_sigreturn: not implemented\n");
|
2325 |
return -ENOSYS;
|
2326 |
} |
2327 |
|
2328 |
#else
|
2329 |
|
2330 |
static void setup_frame(int sig, struct emulated_sigaction *ka, |
2331 |
target_sigset_t *set, CPUState *env) |
2332 |
{ |
2333 |
fprintf(stderr, "setup_frame: not implemented\n");
|
2334 |
} |
2335 |
|
2336 |
static void setup_rt_frame(int sig, struct emulated_sigaction *ka, |
2337 |
target_siginfo_t *info, |
2338 |
target_sigset_t *set, CPUState *env) |
2339 |
{ |
2340 |
fprintf(stderr, "setup_rt_frame: not implemented\n");
|
2341 |
} |
2342 |
|
2343 |
long do_sigreturn(CPUState *env)
|
2344 |
{ |
2345 |
fprintf(stderr, "do_sigreturn: not implemented\n");
|
2346 |
return -ENOSYS;
|
2347 |
} |
2348 |
|
2349 |
long do_rt_sigreturn(CPUState *env)
|
2350 |
{ |
2351 |
fprintf(stderr, "do_rt_sigreturn: not implemented\n");
|
2352 |
return -ENOSYS;
|
2353 |
} |
2354 |
|
2355 |
#endif
|
2356 |
|
2357 |
void process_pending_signals(void *cpu_env) |
2358 |
{ |
2359 |
int sig;
|
2360 |
abi_ulong handler; |
2361 |
sigset_t set, old_set; |
2362 |
target_sigset_t target_old_set; |
2363 |
struct emulated_sigaction *k;
|
2364 |
struct sigqueue *q;
|
2365 |
|
2366 |
if (!signal_pending)
|
2367 |
return;
|
2368 |
|
2369 |
k = sigact_table; |
2370 |
for(sig = 1; sig <= TARGET_NSIG; sig++) { |
2371 |
if (k->pending)
|
2372 |
goto handle_signal;
|
2373 |
k++; |
2374 |
} |
2375 |
/* if no signal is pending, just return */
|
2376 |
signal_pending = 0;
|
2377 |
return;
|
2378 |
|
2379 |
handle_signal:
|
2380 |
#ifdef DEBUG_SIGNAL
|
2381 |
fprintf(stderr, "qemu: process signal %d\n", sig);
|
2382 |
#endif
|
2383 |
/* dequeue signal */
|
2384 |
q = k->first; |
2385 |
k->first = q->next; |
2386 |
if (!k->first)
|
2387 |
k->pending = 0;
|
2388 |
|
2389 |
sig = gdb_handlesig (cpu_env, sig); |
2390 |
if (!sig) {
|
2391 |
fprintf (stderr, "Lost signal\n");
|
2392 |
abort(); |
2393 |
} |
2394 |
|
2395 |
handler = k->sa._sa_handler; |
2396 |
if (handler == TARGET_SIG_DFL) {
|
2397 |
/* default handler : ignore some signal. The other are fatal */
|
2398 |
if (sig != TARGET_SIGCHLD &&
|
2399 |
sig != TARGET_SIGURG && |
2400 |
sig != TARGET_SIGWINCH) { |
2401 |
force_sig(sig); |
2402 |
} |
2403 |
} else if (handler == TARGET_SIG_IGN) { |
2404 |
/* ignore sig */
|
2405 |
} else if (handler == TARGET_SIG_ERR) { |
2406 |
force_sig(sig); |
2407 |
} else {
|
2408 |
/* compute the blocked signals during the handler execution */
|
2409 |
target_to_host_sigset(&set, &k->sa.sa_mask); |
2410 |
/* SA_NODEFER indicates that the current signal should not be
|
2411 |
blocked during the handler */
|
2412 |
if (!(k->sa.sa_flags & TARGET_SA_NODEFER))
|
2413 |
sigaddset(&set, target_to_host_signal(sig)); |
2414 |
|
2415 |
/* block signals in the handler using Linux */
|
2416 |
sigprocmask(SIG_BLOCK, &set, &old_set); |
2417 |
/* save the previous blocked signal state to restore it at the
|
2418 |
end of the signal execution (see do_sigreturn) */
|
2419 |
host_to_target_sigset_internal(&target_old_set, &old_set); |
2420 |
|
2421 |
/* if the CPU is in VM86 mode, we restore the 32 bit values */
|
2422 |
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
|
2423 |
{ |
2424 |
CPUX86State *env = cpu_env; |
2425 |
if (env->eflags & VM_MASK)
|
2426 |
save_v86_state(env); |
2427 |
} |
2428 |
#endif
|
2429 |
/* prepare the stack frame of the virtual CPU */
|
2430 |
if (k->sa.sa_flags & TARGET_SA_SIGINFO)
|
2431 |
setup_rt_frame(sig, k, &q->info, &target_old_set, cpu_env); |
2432 |
else
|
2433 |
setup_frame(sig, k, &target_old_set, cpu_env); |
2434 |
if (k->sa.sa_flags & TARGET_SA_RESETHAND)
|
2435 |
k->sa._sa_handler = TARGET_SIG_DFL; |
2436 |
} |
2437 |
if (q != &k->info)
|
2438 |
free_sigqueue(q); |
2439 |
} |