root / kqemu.c @ 0de6bb73
History | View | Annotate | Download (25.1 kB)
1 |
/*
|
---|---|
2 |
* KQEMU support
|
3 |
*
|
4 |
* Copyright (c) 2005 Fabrice Bellard
|
5 |
*
|
6 |
* This library is free software; you can redistribute it and/or
|
7 |
* modify it under the terms of the GNU Lesser General Public
|
8 |
* License as published by the Free Software Foundation; either
|
9 |
* version 2 of the License, or (at your option) any later version.
|
10 |
*
|
11 |
* This library is distributed in the hope that it will be useful,
|
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
* Lesser General Public License for more details.
|
15 |
*
|
16 |
* You should have received a copy of the GNU Lesser General Public
|
17 |
* License along with this library; if not, write to the Free Software
|
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
19 |
*/
|
20 |
#include "config.h" |
21 |
#ifdef _WIN32
|
22 |
#include <windows.h> |
23 |
#include <winioctl.h> |
24 |
#else
|
25 |
#include <sys/types.h> |
26 |
#include <sys/mman.h> |
27 |
#include <sys/ioctl.h> |
28 |
#endif
|
29 |
#include <stdlib.h> |
30 |
#include <stdio.h> |
31 |
#include <stdarg.h> |
32 |
#include <string.h> |
33 |
#include <errno.h> |
34 |
#include <unistd.h> |
35 |
#include <inttypes.h> |
36 |
|
37 |
#include "cpu.h" |
38 |
#include "exec-all.h" |
39 |
|
40 |
#ifdef USE_KQEMU
|
41 |
|
42 |
#define DEBUG
|
43 |
//#define PROFILE
|
44 |
|
45 |
#include <unistd.h> |
46 |
#include <fcntl.h> |
47 |
#include "kqemu.h" |
48 |
|
49 |
/* compatibility stuff */
|
50 |
#ifndef KQEMU_RET_SYSCALL
|
51 |
#define KQEMU_RET_SYSCALL 0x0300 /* syscall insn */ |
52 |
#endif
|
53 |
#ifndef KQEMU_MAX_RAM_PAGES_TO_UPDATE
|
54 |
#define KQEMU_MAX_RAM_PAGES_TO_UPDATE 512 |
55 |
#define KQEMU_RAM_PAGES_UPDATE_ALL (KQEMU_MAX_RAM_PAGES_TO_UPDATE + 1) |
56 |
#endif
|
57 |
#ifndef KQEMU_MAX_MODIFIED_RAM_PAGES
|
58 |
#define KQEMU_MAX_MODIFIED_RAM_PAGES 512 |
59 |
#endif
|
60 |
|
61 |
#ifdef _WIN32
|
62 |
#define KQEMU_DEVICE "\\\\.\\kqemu" |
63 |
#else
|
64 |
#define KQEMU_DEVICE "/dev/kqemu" |
65 |
#endif
|
66 |
|
67 |
#ifdef _WIN32
|
68 |
#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
|
69 |
HANDLE kqemu_fd = KQEMU_INVALID_FD; |
70 |
#define kqemu_closefd(x) CloseHandle(x)
|
71 |
#else
|
72 |
#define KQEMU_INVALID_FD -1 |
73 |
int kqemu_fd = KQEMU_INVALID_FD;
|
74 |
#define kqemu_closefd(x) close(x)
|
75 |
#endif
|
76 |
|
77 |
/* 0 = not allowed
|
78 |
1 = user kqemu
|
79 |
2 = kernel kqemu
|
80 |
*/
|
81 |
int kqemu_allowed = 1; |
82 |
unsigned long *pages_to_flush; |
83 |
unsigned int nb_pages_to_flush; |
84 |
unsigned long *ram_pages_to_update; |
85 |
unsigned int nb_ram_pages_to_update; |
86 |
unsigned long *modified_ram_pages; |
87 |
unsigned int nb_modified_ram_pages; |
88 |
uint8_t *modified_ram_pages_table; |
89 |
extern uint32_t **l1_phys_map;
|
90 |
|
91 |
#define cpuid(index, eax, ebx, ecx, edx) \
|
92 |
asm volatile ("cpuid" \ |
93 |
: "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \ |
94 |
: "0" (index))
|
95 |
|
96 |
#ifdef __x86_64__
|
97 |
static int is_cpuid_supported(void) |
98 |
{ |
99 |
return 1; |
100 |
} |
101 |
#else
|
102 |
static int is_cpuid_supported(void) |
103 |
{ |
104 |
int v0, v1;
|
105 |
asm volatile ("pushf\n" |
106 |
"popl %0\n"
|
107 |
"movl %0, %1\n"
|
108 |
"xorl $0x00200000, %0\n"
|
109 |
"pushl %0\n"
|
110 |
"popf\n"
|
111 |
"pushf\n"
|
112 |
"popl %0\n"
|
113 |
: "=a" (v0), "=d" (v1) |
114 |
: |
115 |
: "cc");
|
116 |
return (v0 != v1);
|
117 |
} |
118 |
#endif
|
119 |
|
120 |
static void kqemu_update_cpuid(CPUState *env) |
121 |
{ |
122 |
int critical_features_mask, features, ext_features, ext_features_mask;
|
123 |
uint32_t eax, ebx, ecx, edx; |
124 |
|
125 |
/* the following features are kept identical on the host and
|
126 |
target cpus because they are important for user code. Strictly
|
127 |
speaking, only SSE really matters because the OS must support
|
128 |
it if the user code uses it. */
|
129 |
critical_features_mask = |
130 |
CPUID_CMOV | CPUID_CX8 | |
131 |
CPUID_FXSR | CPUID_MMX | CPUID_SSE | |
132 |
CPUID_SSE2 | CPUID_SEP; |
133 |
ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR; |
134 |
if (!is_cpuid_supported()) {
|
135 |
features = 0;
|
136 |
ext_features = 0;
|
137 |
} else {
|
138 |
cpuid(1, eax, ebx, ecx, edx);
|
139 |
features = edx; |
140 |
ext_features = ecx; |
141 |
} |
142 |
#ifdef __x86_64__
|
143 |
/* NOTE: on x86_64 CPUs, SYSENTER is not supported in
|
144 |
compatibility mode, so in order to have the best performances
|
145 |
it is better not to use it */
|
146 |
features &= ~CPUID_SEP; |
147 |
#endif
|
148 |
env->cpuid_features = (env->cpuid_features & ~critical_features_mask) | |
149 |
(features & critical_features_mask); |
150 |
env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) | |
151 |
(ext_features & ext_features_mask); |
152 |
/* XXX: we could update more of the target CPUID state so that the
|
153 |
non accelerated code sees exactly the same CPU features as the
|
154 |
accelerated code */
|
155 |
} |
156 |
|
157 |
int kqemu_init(CPUState *env)
|
158 |
{ |
159 |
struct kqemu_init init;
|
160 |
int ret, version;
|
161 |
#ifdef _WIN32
|
162 |
DWORD temp; |
163 |
#endif
|
164 |
|
165 |
if (!kqemu_allowed)
|
166 |
return -1; |
167 |
|
168 |
#ifdef _WIN32
|
169 |
kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ, |
170 |
FILE_SHARE_READ | FILE_SHARE_WRITE, |
171 |
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
|
172 |
NULL);
|
173 |
#else
|
174 |
kqemu_fd = open(KQEMU_DEVICE, O_RDWR); |
175 |
#endif
|
176 |
if (kqemu_fd == KQEMU_INVALID_FD) {
|
177 |
fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated\n", KQEMU_DEVICE);
|
178 |
return -1; |
179 |
} |
180 |
version = 0;
|
181 |
#ifdef _WIN32
|
182 |
DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0, |
183 |
&version, sizeof(version), &temp, NULL); |
184 |
#else
|
185 |
ioctl(kqemu_fd, KQEMU_GET_VERSION, &version); |
186 |
#endif
|
187 |
if (version != KQEMU_VERSION) {
|
188 |
fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
|
189 |
version, KQEMU_VERSION); |
190 |
goto fail;
|
191 |
} |
192 |
|
193 |
pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH * |
194 |
sizeof(unsigned long)); |
195 |
if (!pages_to_flush)
|
196 |
goto fail;
|
197 |
|
198 |
ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE * |
199 |
sizeof(unsigned long)); |
200 |
if (!ram_pages_to_update)
|
201 |
goto fail;
|
202 |
|
203 |
modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES * |
204 |
sizeof(unsigned long)); |
205 |
if (!modified_ram_pages)
|
206 |
goto fail;
|
207 |
modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS); |
208 |
if (!modified_ram_pages_table)
|
209 |
goto fail;
|
210 |
|
211 |
init.ram_base = phys_ram_base; |
212 |
init.ram_size = phys_ram_size; |
213 |
init.ram_dirty = phys_ram_dirty; |
214 |
init.phys_to_ram_map = l1_phys_map; |
215 |
init.pages_to_flush = pages_to_flush; |
216 |
#if KQEMU_VERSION >= 0x010200 |
217 |
init.ram_pages_to_update = ram_pages_to_update; |
218 |
#endif
|
219 |
#if KQEMU_VERSION >= 0x010300 |
220 |
init.modified_ram_pages = modified_ram_pages; |
221 |
#endif
|
222 |
#ifdef _WIN32
|
223 |
ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &init, sizeof(init),
|
224 |
NULL, 0, &temp, NULL) == TRUE ? 0 : -1; |
225 |
#else
|
226 |
ret = ioctl(kqemu_fd, KQEMU_INIT, &init); |
227 |
#endif
|
228 |
if (ret < 0) { |
229 |
fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
|
230 |
fail:
|
231 |
kqemu_closefd(kqemu_fd); |
232 |
kqemu_fd = KQEMU_INVALID_FD; |
233 |
return -1; |
234 |
} |
235 |
kqemu_update_cpuid(env); |
236 |
env->kqemu_enabled = kqemu_allowed; |
237 |
nb_pages_to_flush = 0;
|
238 |
nb_ram_pages_to_update = 0;
|
239 |
return 0; |
240 |
} |
241 |
|
242 |
void kqemu_flush_page(CPUState *env, target_ulong addr)
|
243 |
{ |
244 |
#if defined(DEBUG)
|
245 |
if (loglevel & CPU_LOG_INT) {
|
246 |
fprintf(logfile, "kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr); |
247 |
} |
248 |
#endif
|
249 |
if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
|
250 |
nb_pages_to_flush = KQEMU_FLUSH_ALL; |
251 |
else
|
252 |
pages_to_flush[nb_pages_to_flush++] = addr; |
253 |
} |
254 |
|
255 |
void kqemu_flush(CPUState *env, int global) |
256 |
{ |
257 |
#ifdef DEBUG
|
258 |
if (loglevel & CPU_LOG_INT) {
|
259 |
fprintf(logfile, "kqemu_flush:\n");
|
260 |
} |
261 |
#endif
|
262 |
nb_pages_to_flush = KQEMU_FLUSH_ALL; |
263 |
} |
264 |
|
265 |
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
|
266 |
{ |
267 |
#ifdef DEBUG
|
268 |
if (loglevel & CPU_LOG_INT) {
|
269 |
fprintf(logfile, "kqemu_set_notdirty: addr=%08lx\n", ram_addr);
|
270 |
} |
271 |
#endif
|
272 |
/* we only track transitions to dirty state */
|
273 |
if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff) |
274 |
return;
|
275 |
if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
|
276 |
nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL; |
277 |
else
|
278 |
ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr; |
279 |
} |
280 |
|
281 |
static void kqemu_reset_modified_ram_pages(void) |
282 |
{ |
283 |
int i;
|
284 |
unsigned long page_index; |
285 |
|
286 |
for(i = 0; i < nb_modified_ram_pages; i++) { |
287 |
page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS; |
288 |
modified_ram_pages_table[page_index] = 0;
|
289 |
} |
290 |
nb_modified_ram_pages = 0;
|
291 |
} |
292 |
|
293 |
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
|
294 |
{ |
295 |
unsigned long page_index; |
296 |
int ret;
|
297 |
#ifdef _WIN32
|
298 |
DWORD temp; |
299 |
#endif
|
300 |
|
301 |
page_index = ram_addr >> TARGET_PAGE_BITS; |
302 |
if (!modified_ram_pages_table[page_index]) {
|
303 |
#if 0
|
304 |
printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
|
305 |
#endif
|
306 |
modified_ram_pages_table[page_index] = 1;
|
307 |
modified_ram_pages[nb_modified_ram_pages++] = ram_addr; |
308 |
if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
|
309 |
/* flush */
|
310 |
#ifdef _WIN32
|
311 |
ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES, |
312 |
&nb_modified_ram_pages, |
313 |
sizeof(nb_modified_ram_pages),
|
314 |
NULL, 0, &temp, NULL); |
315 |
#else
|
316 |
ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES, |
317 |
&nb_modified_ram_pages); |
318 |
#endif
|
319 |
kqemu_reset_modified_ram_pages(); |
320 |
} |
321 |
} |
322 |
} |
323 |
|
324 |
struct fpstate {
|
325 |
uint16_t fpuc; |
326 |
uint16_t dummy1; |
327 |
uint16_t fpus; |
328 |
uint16_t dummy2; |
329 |
uint16_t fptag; |
330 |
uint16_t dummy3; |
331 |
|
332 |
uint32_t fpip; |
333 |
uint32_t fpcs; |
334 |
uint32_t fpoo; |
335 |
uint32_t fpos; |
336 |
uint8_t fpregs1[8 * 10]; |
337 |
}; |
338 |
|
339 |
struct fpxstate {
|
340 |
uint16_t fpuc; |
341 |
uint16_t fpus; |
342 |
uint16_t fptag; |
343 |
uint16_t fop; |
344 |
uint32_t fpuip; |
345 |
uint16_t cs_sel; |
346 |
uint16_t dummy0; |
347 |
uint32_t fpudp; |
348 |
uint16_t ds_sel; |
349 |
uint16_t dummy1; |
350 |
uint32_t mxcsr; |
351 |
uint32_t mxcsr_mask; |
352 |
uint8_t fpregs1[8 * 16]; |
353 |
uint8_t xmm_regs[16 * 16]; |
354 |
uint8_t dummy2[96];
|
355 |
}; |
356 |
|
357 |
static struct fpxstate fpx1 __attribute__((aligned(16))); |
358 |
|
359 |
static void restore_native_fp_frstor(CPUState *env) |
360 |
{ |
361 |
int fptag, i, j;
|
362 |
struct fpstate fp1, *fp = &fp1;
|
363 |
|
364 |
fp->fpuc = env->fpuc; |
365 |
fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; |
366 |
fptag = 0;
|
367 |
for (i=7; i>=0; i--) { |
368 |
fptag <<= 2;
|
369 |
if (env->fptags[i]) {
|
370 |
fptag |= 3;
|
371 |
} else {
|
372 |
/* the FPU automatically computes it */
|
373 |
} |
374 |
} |
375 |
fp->fptag = fptag; |
376 |
j = env->fpstt; |
377 |
for(i = 0;i < 8; i++) { |
378 |
memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10); |
379 |
j = (j + 1) & 7; |
380 |
} |
381 |
asm volatile ("frstor %0" : "=m" (*fp)); |
382 |
} |
383 |
|
384 |
static void save_native_fp_fsave(CPUState *env) |
385 |
{ |
386 |
int fptag, i, j;
|
387 |
uint16_t fpuc; |
388 |
struct fpstate fp1, *fp = &fp1;
|
389 |
|
390 |
asm volatile ("fsave %0" : : "m" (*fp)); |
391 |
env->fpuc = fp->fpuc; |
392 |
env->fpstt = (fp->fpus >> 11) & 7; |
393 |
env->fpus = fp->fpus & ~0x3800;
|
394 |
fptag = fp->fptag; |
395 |
for(i = 0;i < 8; i++) { |
396 |
env->fptags[i] = ((fptag & 3) == 3); |
397 |
fptag >>= 2;
|
398 |
} |
399 |
j = env->fpstt; |
400 |
for(i = 0;i < 8; i++) { |
401 |
memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10); |
402 |
j = (j + 1) & 7; |
403 |
} |
404 |
/* we must restore the default rounding state */
|
405 |
fpuc = 0x037f | (env->fpuc & (3 << 10)); |
406 |
asm volatile("fldcw %0" : : "m" (fpuc)); |
407 |
} |
408 |
|
409 |
static void restore_native_fp_fxrstor(CPUState *env) |
410 |
{ |
411 |
struct fpxstate *fp = &fpx1;
|
412 |
int i, j, fptag;
|
413 |
|
414 |
fp->fpuc = env->fpuc; |
415 |
fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; |
416 |
fptag = 0;
|
417 |
for(i = 0; i < 8; i++) |
418 |
fptag |= (env->fptags[i] << i); |
419 |
fp->fptag = fptag ^ 0xff;
|
420 |
|
421 |
j = env->fpstt; |
422 |
for(i = 0;i < 8; i++) { |
423 |
memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10); |
424 |
j = (j + 1) & 7; |
425 |
} |
426 |
if (env->cpuid_features & CPUID_SSE) {
|
427 |
fp->mxcsr = env->mxcsr; |
428 |
/* XXX: check if DAZ is not available */
|
429 |
fp->mxcsr_mask = 0xffff;
|
430 |
memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
|
431 |
} |
432 |
asm volatile ("fxrstor %0" : "=m" (*fp)); |
433 |
} |
434 |
|
435 |
static void save_native_fp_fxsave(CPUState *env) |
436 |
{ |
437 |
struct fpxstate *fp = &fpx1;
|
438 |
int fptag, i, j;
|
439 |
uint16_t fpuc; |
440 |
|
441 |
asm volatile ("fxsave %0" : : "m" (*fp)); |
442 |
env->fpuc = fp->fpuc; |
443 |
env->fpstt = (fp->fpus >> 11) & 7; |
444 |
env->fpus = fp->fpus & ~0x3800;
|
445 |
fptag = fp->fptag ^ 0xff;
|
446 |
for(i = 0;i < 8; i++) { |
447 |
env->fptags[i] = (fptag >> i) & 1;
|
448 |
} |
449 |
j = env->fpstt; |
450 |
for(i = 0;i < 8; i++) { |
451 |
memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10); |
452 |
j = (j + 1) & 7; |
453 |
} |
454 |
if (env->cpuid_features & CPUID_SSE) {
|
455 |
env->mxcsr = fp->mxcsr; |
456 |
memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
|
457 |
} |
458 |
|
459 |
/* we must restore the default rounding state */
|
460 |
asm volatile ("fninit"); |
461 |
fpuc = 0x037f | (env->fpuc & (3 << 10)); |
462 |
asm volatile("fldcw %0" : : "m" (fpuc)); |
463 |
} |
464 |
|
465 |
static int do_syscall(CPUState *env, |
466 |
struct kqemu_cpu_state *kenv)
|
467 |
{ |
468 |
int selector;
|
469 |
|
470 |
selector = (env->star >> 32) & 0xffff; |
471 |
#ifdef __x86_64__
|
472 |
if (env->hflags & HF_LMA_MASK) {
|
473 |
env->regs[R_ECX] = kenv->next_eip; |
474 |
env->regs[11] = env->eflags;
|
475 |
|
476 |
cpu_x86_set_cpl(env, 0);
|
477 |
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
|
478 |
0, 0xffffffff, |
479 |
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | |
480 |
DESC_S_MASK | |
481 |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK); |
482 |
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc, |
483 |
0, 0xffffffff, |
484 |
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | |
485 |
DESC_S_MASK | |
486 |
DESC_W_MASK | DESC_A_MASK); |
487 |
env->eflags &= ~env->fmask; |
488 |
if (env->hflags & HF_CS64_MASK)
|
489 |
env->eip = env->lstar; |
490 |
else
|
491 |
env->eip = env->cstar; |
492 |
} else
|
493 |
#endif
|
494 |
{ |
495 |
env->regs[R_ECX] = (uint32_t)kenv->next_eip; |
496 |
|
497 |
cpu_x86_set_cpl(env, 0);
|
498 |
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
|
499 |
0, 0xffffffff, |
500 |
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | |
501 |
DESC_S_MASK | |
502 |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); |
503 |
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc, |
504 |
0, 0xffffffff, |
505 |
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | |
506 |
DESC_S_MASK | |
507 |
DESC_W_MASK | DESC_A_MASK); |
508 |
env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK); |
509 |
env->eip = (uint32_t)env->star; |
510 |
} |
511 |
return 2; |
512 |
} |
513 |
|
514 |
#ifdef CONFIG_PROFILER
|
515 |
|
516 |
#define PC_REC_SIZE 1 |
517 |
#define PC_REC_HASH_BITS 16 |
518 |
#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS) |
519 |
|
520 |
typedef struct PCRecord { |
521 |
unsigned long pc; |
522 |
int64_t count; |
523 |
struct PCRecord *next;
|
524 |
} PCRecord; |
525 |
|
526 |
static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
|
527 |
static int nb_pc_records; |
528 |
|
529 |
static void kqemu_record_pc(unsigned long pc) |
530 |
{ |
531 |
unsigned long h; |
532 |
PCRecord **pr, *r; |
533 |
|
534 |
h = pc / PC_REC_SIZE; |
535 |
h = h ^ (h >> PC_REC_HASH_BITS); |
536 |
h &= (PC_REC_HASH_SIZE - 1);
|
537 |
pr = &pc_rec_hash[h]; |
538 |
for(;;) {
|
539 |
r = *pr; |
540 |
if (r == NULL) |
541 |
break;
|
542 |
if (r->pc == pc) {
|
543 |
r->count++; |
544 |
return;
|
545 |
} |
546 |
pr = &r->next; |
547 |
} |
548 |
r = malloc(sizeof(PCRecord));
|
549 |
r->count = 1;
|
550 |
r->pc = pc; |
551 |
r->next = NULL;
|
552 |
*pr = r; |
553 |
nb_pc_records++; |
554 |
} |
555 |
|
556 |
static int pc_rec_cmp(const void *p1, const void *p2) |
557 |
{ |
558 |
PCRecord *r1 = *(PCRecord **)p1; |
559 |
PCRecord *r2 = *(PCRecord **)p2; |
560 |
if (r1->count < r2->count)
|
561 |
return 1; |
562 |
else if (r1->count == r2->count) |
563 |
return 0; |
564 |
else
|
565 |
return -1; |
566 |
} |
567 |
|
568 |
static void kqemu_record_flush(void) |
569 |
{ |
570 |
PCRecord *r, *r_next; |
571 |
int h;
|
572 |
|
573 |
for(h = 0; h < PC_REC_HASH_SIZE; h++) { |
574 |
for(r = pc_rec_hash[h]; r != NULL; r = r_next) { |
575 |
r_next = r->next; |
576 |
free(r); |
577 |
} |
578 |
pc_rec_hash[h] = NULL;
|
579 |
} |
580 |
nb_pc_records = 0;
|
581 |
} |
582 |
|
583 |
void kqemu_record_dump(void) |
584 |
{ |
585 |
PCRecord **pr, *r; |
586 |
int i, h;
|
587 |
FILE *f; |
588 |
int64_t total, sum; |
589 |
|
590 |
pr = malloc(sizeof(PCRecord *) * nb_pc_records);
|
591 |
i = 0;
|
592 |
total = 0;
|
593 |
for(h = 0; h < PC_REC_HASH_SIZE; h++) { |
594 |
for(r = pc_rec_hash[h]; r != NULL; r = r->next) { |
595 |
pr[i++] = r; |
596 |
total += r->count; |
597 |
} |
598 |
} |
599 |
qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
|
600 |
|
601 |
f = fopen("/tmp/kqemu.stats", "w"); |
602 |
if (!f) {
|
603 |
perror("/tmp/kqemu.stats");
|
604 |
exit(1);
|
605 |
} |
606 |
fprintf(f, "total: %" PRId64 "\n", total); |
607 |
sum = 0;
|
608 |
for(i = 0; i < nb_pc_records; i++) { |
609 |
r = pr[i]; |
610 |
sum += r->count; |
611 |
fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n", |
612 |
r->pc, |
613 |
r->count, |
614 |
(double)r->count / (double)total * 100.0, |
615 |
(double)sum / (double)total * 100.0); |
616 |
} |
617 |
fclose(f); |
618 |
free(pr); |
619 |
|
620 |
kqemu_record_flush(); |
621 |
} |
622 |
#endif
|
623 |
|
624 |
int kqemu_cpu_exec(CPUState *env)
|
625 |
{ |
626 |
struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
|
627 |
int ret, cpl, i;
|
628 |
#ifdef CONFIG_PROFILER
|
629 |
int64_t ti; |
630 |
#endif
|
631 |
|
632 |
#ifdef _WIN32
|
633 |
DWORD temp; |
634 |
#endif
|
635 |
|
636 |
#ifdef CONFIG_PROFILER
|
637 |
ti = profile_getclock(); |
638 |
#endif
|
639 |
#ifdef DEBUG
|
640 |
if (loglevel & CPU_LOG_INT) {
|
641 |
fprintf(logfile, "kqemu: cpu_exec: enter\n");
|
642 |
cpu_dump_state(env, logfile, fprintf, 0);
|
643 |
} |
644 |
#endif
|
645 |
memcpy(kenv->regs, env->regs, sizeof(kenv->regs));
|
646 |
kenv->eip = env->eip; |
647 |
kenv->eflags = env->eflags; |
648 |
memcpy(&kenv->segs, &env->segs, sizeof(env->segs));
|
649 |
memcpy(&kenv->ldt, &env->ldt, sizeof(env->ldt));
|
650 |
memcpy(&kenv->tr, &env->tr, sizeof(env->tr));
|
651 |
memcpy(&kenv->gdt, &env->gdt, sizeof(env->gdt));
|
652 |
memcpy(&kenv->idt, &env->idt, sizeof(env->idt));
|
653 |
kenv->cr0 = env->cr[0];
|
654 |
kenv->cr2 = env->cr[2];
|
655 |
kenv->cr3 = env->cr[3];
|
656 |
kenv->cr4 = env->cr[4];
|
657 |
kenv->a20_mask = env->a20_mask; |
658 |
#if KQEMU_VERSION >= 0x010100 |
659 |
kenv->efer = env->efer; |
660 |
#endif
|
661 |
#if KQEMU_VERSION >= 0x010300 |
662 |
kenv->tsc_offset = 0;
|
663 |
kenv->star = env->star; |
664 |
kenv->sysenter_cs = env->sysenter_cs; |
665 |
kenv->sysenter_esp = env->sysenter_esp; |
666 |
kenv->sysenter_eip = env->sysenter_eip; |
667 |
#ifdef __x86_64__
|
668 |
kenv->lstar = env->lstar; |
669 |
kenv->cstar = env->cstar; |
670 |
kenv->fmask = env->fmask; |
671 |
kenv->kernelgsbase = env->kernelgsbase; |
672 |
#endif
|
673 |
#endif
|
674 |
if (env->dr[7] & 0xff) { |
675 |
kenv->dr7 = env->dr[7];
|
676 |
kenv->dr0 = env->dr[0];
|
677 |
kenv->dr1 = env->dr[1];
|
678 |
kenv->dr2 = env->dr[2];
|
679 |
kenv->dr3 = env->dr[3];
|
680 |
} else {
|
681 |
kenv->dr7 = 0;
|
682 |
} |
683 |
kenv->dr6 = env->dr[6];
|
684 |
cpl = (env->hflags & HF_CPL_MASK); |
685 |
kenv->cpl = cpl; |
686 |
kenv->nb_pages_to_flush = nb_pages_to_flush; |
687 |
#if KQEMU_VERSION >= 0x010200 |
688 |
kenv->user_only = (env->kqemu_enabled == 1);
|
689 |
kenv->nb_ram_pages_to_update = nb_ram_pages_to_update; |
690 |
#endif
|
691 |
nb_ram_pages_to_update = 0;
|
692 |
|
693 |
#if KQEMU_VERSION >= 0x010300 |
694 |
kenv->nb_modified_ram_pages = nb_modified_ram_pages; |
695 |
#endif
|
696 |
kqemu_reset_modified_ram_pages(); |
697 |
|
698 |
if (env->cpuid_features & CPUID_FXSR)
|
699 |
restore_native_fp_fxrstor(env); |
700 |
else
|
701 |
restore_native_fp_frstor(env); |
702 |
|
703 |
#ifdef _WIN32
|
704 |
if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
|
705 |
kenv, sizeof(struct kqemu_cpu_state), |
706 |
kenv, sizeof(struct kqemu_cpu_state), |
707 |
&temp, NULL)) {
|
708 |
ret = kenv->retval; |
709 |
} else {
|
710 |
ret = -1;
|
711 |
} |
712 |
#else
|
713 |
#if KQEMU_VERSION >= 0x010100 |
714 |
ioctl(kqemu_fd, KQEMU_EXEC, kenv); |
715 |
ret = kenv->retval; |
716 |
#else
|
717 |
ret = ioctl(kqemu_fd, KQEMU_EXEC, kenv); |
718 |
#endif
|
719 |
#endif
|
720 |
if (env->cpuid_features & CPUID_FXSR)
|
721 |
save_native_fp_fxsave(env); |
722 |
else
|
723 |
save_native_fp_fsave(env); |
724 |
|
725 |
memcpy(env->regs, kenv->regs, sizeof(env->regs));
|
726 |
env->eip = kenv->eip; |
727 |
env->eflags = kenv->eflags; |
728 |
memcpy(env->segs, kenv->segs, sizeof(env->segs));
|
729 |
cpu_x86_set_cpl(env, kenv->cpl); |
730 |
memcpy(&env->ldt, &kenv->ldt, sizeof(env->ldt));
|
731 |
#if 0
|
732 |
/* no need to restore that */
|
733 |
memcpy(env->tr, kenv->tr, sizeof(env->tr));
|
734 |
memcpy(env->gdt, kenv->gdt, sizeof(env->gdt));
|
735 |
memcpy(env->idt, kenv->idt, sizeof(env->idt));
|
736 |
env->a20_mask = kenv->a20_mask;
|
737 |
#endif
|
738 |
env->cr[0] = kenv->cr0;
|
739 |
env->cr[4] = kenv->cr4;
|
740 |
env->cr[3] = kenv->cr3;
|
741 |
env->cr[2] = kenv->cr2;
|
742 |
env->dr[6] = kenv->dr6;
|
743 |
#if KQEMU_VERSION >= 0x010300 |
744 |
#ifdef __x86_64__
|
745 |
env->kernelgsbase = kenv->kernelgsbase; |
746 |
#endif
|
747 |
#endif
|
748 |
|
749 |
/* flush pages as indicated by kqemu */
|
750 |
if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
|
751 |
tlb_flush(env, 1);
|
752 |
} else {
|
753 |
for(i = 0; i < kenv->nb_pages_to_flush; i++) { |
754 |
tlb_flush_page(env, pages_to_flush[i]); |
755 |
} |
756 |
} |
757 |
nb_pages_to_flush = 0;
|
758 |
|
759 |
#ifdef CONFIG_PROFILER
|
760 |
kqemu_time += profile_getclock() - ti; |
761 |
kqemu_exec_count++; |
762 |
#endif
|
763 |
|
764 |
#if KQEMU_VERSION >= 0x010200 |
765 |
if (kenv->nb_ram_pages_to_update > 0) { |
766 |
cpu_tlb_update_dirty(env); |
767 |
} |
768 |
#endif
|
769 |
|
770 |
#if KQEMU_VERSION >= 0x010300 |
771 |
if (kenv->nb_modified_ram_pages > 0) { |
772 |
for(i = 0; i < kenv->nb_modified_ram_pages; i++) { |
773 |
unsigned long addr; |
774 |
addr = modified_ram_pages[i]; |
775 |
tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
|
776 |
} |
777 |
} |
778 |
#endif
|
779 |
|
780 |
/* restore the hidden flags */
|
781 |
{ |
782 |
unsigned int new_hflags; |
783 |
#ifdef TARGET_X86_64
|
784 |
if ((env->hflags & HF_LMA_MASK) &&
|
785 |
(env->segs[R_CS].flags & DESC_L_MASK)) { |
786 |
/* long mode */
|
787 |
new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; |
788 |
} else
|
789 |
#endif
|
790 |
{ |
791 |
/* legacy / compatibility case */
|
792 |
new_hflags = (env->segs[R_CS].flags & DESC_B_MASK) |
793 |
>> (DESC_B_SHIFT - HF_CS32_SHIFT); |
794 |
new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK) |
795 |
>> (DESC_B_SHIFT - HF_SS32_SHIFT); |
796 |
if (!(env->cr[0] & CR0_PE_MASK) || |
797 |
(env->eflags & VM_MASK) || |
798 |
!(env->hflags & HF_CS32_MASK)) { |
799 |
/* XXX: try to avoid this test. The problem comes from the
|
800 |
fact that is real mode or vm86 mode we only modify the
|
801 |
'base' and 'selector' fields of the segment cache to go
|
802 |
faster. A solution may be to force addseg to one in
|
803 |
translate-i386.c. */
|
804 |
new_hflags |= HF_ADDSEG_MASK; |
805 |
} else {
|
806 |
new_hflags |= ((env->segs[R_DS].base | |
807 |
env->segs[R_ES].base | |
808 |
env->segs[R_SS].base) != 0) <<
|
809 |
HF_ADDSEG_SHIFT; |
810 |
} |
811 |
} |
812 |
env->hflags = (env->hflags & |
813 |
~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) | |
814 |
new_hflags; |
815 |
} |
816 |
/* update FPU flags */
|
817 |
env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | |
818 |
((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); |
819 |
if (env->cr[4] & CR4_OSFXSR_MASK) |
820 |
env->hflags |= HF_OSFXSR_MASK; |
821 |
else
|
822 |
env->hflags &= ~HF_OSFXSR_MASK; |
823 |
|
824 |
#ifdef DEBUG
|
825 |
if (loglevel & CPU_LOG_INT) {
|
826 |
fprintf(logfile, "kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
|
827 |
} |
828 |
#endif
|
829 |
if (ret == KQEMU_RET_SYSCALL) {
|
830 |
/* syscall instruction */
|
831 |
return do_syscall(env, kenv);
|
832 |
} else
|
833 |
if ((ret & 0xff00) == KQEMU_RET_INT) { |
834 |
env->exception_index = ret & 0xff;
|
835 |
env->error_code = 0;
|
836 |
env->exception_is_int = 1;
|
837 |
env->exception_next_eip = kenv->next_eip; |
838 |
#ifdef CONFIG_PROFILER
|
839 |
kqemu_ret_int_count++; |
840 |
#endif
|
841 |
#ifdef DEBUG
|
842 |
if (loglevel & CPU_LOG_INT) {
|
843 |
fprintf(logfile, "kqemu: interrupt v=%02x:\n",
|
844 |
env->exception_index); |
845 |
cpu_dump_state(env, logfile, fprintf, 0);
|
846 |
} |
847 |
#endif
|
848 |
return 1; |
849 |
} else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) { |
850 |
env->exception_index = ret & 0xff;
|
851 |
env->error_code = kenv->error_code; |
852 |
env->exception_is_int = 0;
|
853 |
env->exception_next_eip = 0;
|
854 |
#ifdef CONFIG_PROFILER
|
855 |
kqemu_ret_excp_count++; |
856 |
#endif
|
857 |
#ifdef DEBUG
|
858 |
if (loglevel & CPU_LOG_INT) {
|
859 |
fprintf(logfile, "kqemu: exception v=%02x e=%04x:\n",
|
860 |
env->exception_index, env->error_code); |
861 |
cpu_dump_state(env, logfile, fprintf, 0);
|
862 |
} |
863 |
#endif
|
864 |
return 1; |
865 |
} else if (ret == KQEMU_RET_INTR) { |
866 |
#ifdef CONFIG_PROFILER
|
867 |
kqemu_ret_intr_count++; |
868 |
#endif
|
869 |
#ifdef DEBUG
|
870 |
if (loglevel & CPU_LOG_INT) {
|
871 |
cpu_dump_state(env, logfile, fprintf, 0);
|
872 |
} |
873 |
#endif
|
874 |
return 0; |
875 |
} else if (ret == KQEMU_RET_SOFTMMU) { |
876 |
#ifdef CONFIG_PROFILER
|
877 |
{ |
878 |
unsigned long pc = env->eip + env->segs[R_CS].base; |
879 |
kqemu_record_pc(pc); |
880 |
} |
881 |
#endif
|
882 |
#ifdef DEBUG
|
883 |
if (loglevel & CPU_LOG_INT) {
|
884 |
cpu_dump_state(env, logfile, fprintf, 0);
|
885 |
} |
886 |
#endif
|
887 |
return 2; |
888 |
} else {
|
889 |
cpu_dump_state(env, stderr, fprintf, 0);
|
890 |
fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
|
891 |
exit(1);
|
892 |
} |
893 |
return 0; |
894 |
} |
895 |
|
896 |
void kqemu_cpu_interrupt(CPUState *env)
|
897 |
{ |
898 |
#if defined(_WIN32) && KQEMU_VERSION >= 0x010101 |
899 |
/* cancelling the I/O request causes KQEMU to finish executing the
|
900 |
current block and successfully returning. */
|
901 |
CancelIo(kqemu_fd); |
902 |
#endif
|
903 |
} |
904 |
|
905 |
#endif
|