Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 0f53994f

History | View | Annotate | Download (47 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "hw/apic.h"
29
#include "ioport.h"
30
#include "kvm_x86.h"
31

    
32
#ifdef CONFIG_KVM_PARA
33
#include <linux/kvm_para.h>
34
#endif
35
//
36
//#define DEBUG_KVM
37

    
38
#ifdef DEBUG_KVM
39
#define DPRINTF(fmt, ...) \
40
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41
#else
42
#define DPRINTF(fmt, ...) \
43
    do { } while (0)
44
#endif
45

    
46
#define MSR_KVM_WALL_CLOCK  0x11
47
#define MSR_KVM_SYSTEM_TIME 0x12
48

    
49
#ifndef BUS_MCEERR_AR
50
#define BUS_MCEERR_AR 4
51
#endif
52
#ifndef BUS_MCEERR_AO
53
#define BUS_MCEERR_AO 5
54
#endif
55

    
56
#ifdef KVM_CAP_EXT_CPUID
57

    
58
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
59
{
60
    struct kvm_cpuid2 *cpuid;
61
    int r, size;
62

    
63
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
64
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
65
    cpuid->nent = max;
66
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
67
    if (r == 0 && cpuid->nent >= max) {
68
        r = -E2BIG;
69
    }
70
    if (r < 0) {
71
        if (r == -E2BIG) {
72
            qemu_free(cpuid);
73
            return NULL;
74
        } else {
75
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
76
                    strerror(-r));
77
            exit(1);
78
        }
79
    }
80
    return cpuid;
81
}
82

    
83
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
84
                                      uint32_t index, int reg)
85
{
86
    struct kvm_cpuid2 *cpuid;
87
    int i, max;
88
    uint32_t ret = 0;
89
    uint32_t cpuid_1_edx;
90

    
91
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
92
        return -1U;
93
    }
94

    
95
    max = 1;
96
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
97
        max *= 2;
98
    }
99

    
100
    for (i = 0; i < cpuid->nent; ++i) {
101
        if (cpuid->entries[i].function == function &&
102
            cpuid->entries[i].index == index) {
103
            switch (reg) {
104
            case R_EAX:
105
                ret = cpuid->entries[i].eax;
106
                break;
107
            case R_EBX:
108
                ret = cpuid->entries[i].ebx;
109
                break;
110
            case R_ECX:
111
                ret = cpuid->entries[i].ecx;
112
                break;
113
            case R_EDX:
114
                ret = cpuid->entries[i].edx;
115
                switch (function) {
116
                case 1:
117
                    /* KVM before 2.6.30 misreports the following features */
118
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
119
                    break;
120
                case 0x80000001:
121
                    /* On Intel, kvm returns cpuid according to the Intel spec,
122
                     * so add missing bits according to the AMD spec:
123
                     */
124
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
125
                    ret |= cpuid_1_edx & 0x183f7ff;
126
                    break;
127
                }
128
                break;
129
            }
130
        }
131
    }
132

    
133
    qemu_free(cpuid);
134

    
135
    return ret;
136
}
137

    
138
#else
139

    
140
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
141
                                      uint32_t index, int reg)
142
{
143
    return -1U;
144
}
145

    
146
#endif
147

    
148
#ifdef CONFIG_KVM_PARA
149
struct kvm_para_features {
150
        int cap;
151
        int feature;
152
} para_features[] = {
153
#ifdef KVM_CAP_CLOCKSOURCE
154
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
155
#endif
156
#ifdef KVM_CAP_NOP_IO_DELAY
157
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
158
#endif
159
#ifdef KVM_CAP_PV_MMU
160
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
161
#endif
162
        { -1, -1 }
163
};
164

    
165
static int get_para_features(CPUState *env)
166
{
167
        int i, features = 0;
168

    
169
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
170
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
171
                        features |= (1 << para_features[i].feature);
172
        }
173

    
174
        return features;
175
}
176
#endif
177

    
178
#ifdef KVM_CAP_MCE
179
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
180
                                     int *max_banks)
181
{
182
    int r;
183

    
184
    r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
185
    if (r > 0) {
186
        *max_banks = r;
187
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
188
    }
189
    return -ENOSYS;
190
}
191

    
192
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
193
{
194
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
195
}
196

    
197
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
198
{
199
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
200
}
201

    
202
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
203
{
204
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
205
    int r;
206

    
207
    kmsrs->nmsrs = n;
208
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
209
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
210
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
211
    free(kmsrs);
212
    return r;
213
}
214

    
215
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
216
static int kvm_mce_in_exception(CPUState *env)
217
{
218
    struct kvm_msr_entry msr_mcg_status = {
219
        .index = MSR_MCG_STATUS,
220
    };
221
    int r;
222

    
223
    r = kvm_get_msr(env, &msr_mcg_status, 1);
224
    if (r == -1 || r == 0) {
225
        return -1;
226
    }
227
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228
}
229

    
230
struct kvm_x86_mce_data
231
{
232
    CPUState *env;
233
    struct kvm_x86_mce *mce;
234
    int abort_on_error;
235
};
236

    
237
static void kvm_do_inject_x86_mce(void *_data)
238
{
239
    struct kvm_x86_mce_data *data = _data;
240
    int r;
241

    
242
    /* If there is an MCE excpetion being processed, ignore this SRAO MCE */
243
    r = kvm_mce_in_exception(data->env);
244
    if (r == -1)
245
        fprintf(stderr, "Failed to get MCE status\n");
246
    else if (r && !(data->mce->status & MCI_STATUS_AR))
247
        return;
248

    
249
    r = kvm_set_mce(data->env, data->mce);
250
    if (r < 0) {
251
        perror("kvm_set_mce FAILED");
252
        if (data->abort_on_error) {
253
            abort();
254
        }
255
    }
256
}
257
#endif
258

    
259
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
260
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
261
                        int abort_on_error)
262
{
263
#ifdef KVM_CAP_MCE
264
    struct kvm_x86_mce mce = {
265
        .bank = bank,
266
        .status = status,
267
        .mcg_status = mcg_status,
268
        .addr = addr,
269
        .misc = misc,
270
    };
271
    struct kvm_x86_mce_data data = {
272
            .env = cenv,
273
            .mce = &mce,
274
    };
275

    
276
    if (!cenv->mcg_cap) {
277
        fprintf(stderr, "MCE support is not enabled!\n");
278
        return;
279
    }
280

    
281
    run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
282
#else
283
    if (abort_on_error)
284
        abort();
285
#endif
286
}
287

    
288
int kvm_arch_init_vcpu(CPUState *env)
289
{
290
    struct {
291
        struct kvm_cpuid2 cpuid;
292
        struct kvm_cpuid_entry2 entries[100];
293
    } __attribute__((packed)) cpuid_data;
294
    uint32_t limit, i, j, cpuid_i;
295
    uint32_t unused;
296
    struct kvm_cpuid_entry2 *c;
297
#ifdef KVM_CPUID_SIGNATURE
298
    uint32_t signature[3];
299
#endif
300

    
301
    env->mp_state = KVM_MP_STATE_RUNNABLE;
302

    
303
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
304

    
305
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
306
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
307
    env->cpuid_ext_features |= i;
308

    
309
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
310
                                                             0, R_EDX);
311
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
312
                                                             0, R_ECX);
313
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
314
                                                             0, R_EDX);
315

    
316

    
317
    cpuid_i = 0;
318

    
319
#ifdef CONFIG_KVM_PARA
320
    /* Paravirtualization CPUIDs */
321
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
322
    c = &cpuid_data.entries[cpuid_i++];
323
    memset(c, 0, sizeof(*c));
324
    c->function = KVM_CPUID_SIGNATURE;
325
    c->eax = 0;
326
    c->ebx = signature[0];
327
    c->ecx = signature[1];
328
    c->edx = signature[2];
329

    
330
    c = &cpuid_data.entries[cpuid_i++];
331
    memset(c, 0, sizeof(*c));
332
    c->function = KVM_CPUID_FEATURES;
333
    c->eax = env->cpuid_kvm_features & get_para_features(env);
334
#endif
335

    
336
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
337

    
338
    for (i = 0; i <= limit; i++) {
339
        c = &cpuid_data.entries[cpuid_i++];
340

    
341
        switch (i) {
342
        case 2: {
343
            /* Keep reading function 2 till all the input is received */
344
            int times;
345

    
346
            c->function = i;
347
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
348
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
349
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
350
            times = c->eax & 0xff;
351

    
352
            for (j = 1; j < times; ++j) {
353
                c = &cpuid_data.entries[cpuid_i++];
354
                c->function = i;
355
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
356
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
357
            }
358
            break;
359
        }
360
        case 4:
361
        case 0xb:
362
        case 0xd:
363
            for (j = 0; ; j++) {
364
                c->function = i;
365
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
366
                c->index = j;
367
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
368

    
369
                if (i == 4 && c->eax == 0)
370
                    break;
371
                if (i == 0xb && !(c->ecx & 0xff00))
372
                    break;
373
                if (i == 0xd && c->eax == 0)
374
                    break;
375

    
376
                c = &cpuid_data.entries[cpuid_i++];
377
            }
378
            break;
379
        default:
380
            c->function = i;
381
            c->flags = 0;
382
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
383
            break;
384
        }
385
    }
386
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
387

    
388
    for (i = 0x80000000; i <= limit; i++) {
389
        c = &cpuid_data.entries[cpuid_i++];
390

    
391
        c->function = i;
392
        c->flags = 0;
393
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
394
    }
395

    
396
    cpuid_data.cpuid.nent = cpuid_i;
397

    
398
#ifdef KVM_CAP_MCE
399
    if (((env->cpuid_version >> 8)&0xF) >= 6
400
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
401
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
402
        uint64_t mcg_cap;
403
        int banks;
404

    
405
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
406
            perror("kvm_get_mce_cap_supported FAILED");
407
        else {
408
            if (banks > MCE_BANKS_DEF)
409
                banks = MCE_BANKS_DEF;
410
            mcg_cap &= MCE_CAP_DEF;
411
            mcg_cap |= banks;
412
            if (kvm_setup_mce(env, &mcg_cap))
413
                perror("kvm_setup_mce FAILED");
414
            else
415
                env->mcg_cap = mcg_cap;
416
        }
417
    }
418
#endif
419

    
420
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
421
}
422

    
423
void kvm_arch_reset_vcpu(CPUState *env)
424
{
425
    env->exception_injected = -1;
426
    env->interrupt_injected = -1;
427
    env->nmi_injected = 0;
428
    env->nmi_pending = 0;
429
    if (kvm_irqchip_in_kernel()) {
430
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
431
                                          KVM_MP_STATE_UNINITIALIZED;
432
    } else {
433
        env->mp_state = KVM_MP_STATE_RUNNABLE;
434
    }
435
}
436

    
437
static int kvm_has_msr_star(CPUState *env)
438
{
439
    static int has_msr_star;
440
    int ret;
441

    
442
    /* first time */
443
    if (has_msr_star == 0) {        
444
        struct kvm_msr_list msr_list, *kvm_msr_list;
445

    
446
        has_msr_star = -1;
447

    
448
        /* Obtain MSR list from KVM.  These are the MSRs that we must
449
         * save/restore */
450
        msr_list.nmsrs = 0;
451
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
452
        if (ret < 0 && ret != -E2BIG) {
453
            return 0;
454
        }
455
        /* Old kernel modules had a bug and could write beyond the provided
456
           memory. Allocate at least a safe amount of 1K. */
457
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
458
                                              msr_list.nmsrs *
459
                                              sizeof(msr_list.indices[0])));
460

    
461
        kvm_msr_list->nmsrs = msr_list.nmsrs;
462
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
463
        if (ret >= 0) {
464
            int i;
465

    
466
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
467
                if (kvm_msr_list->indices[i] == MSR_STAR) {
468
                    has_msr_star = 1;
469
                    break;
470
                }
471
            }
472
        }
473

    
474
        free(kvm_msr_list);
475
    }
476

    
477
    if (has_msr_star == 1)
478
        return 1;
479
    return 0;
480
}
481

    
482
static int kvm_init_identity_map_page(KVMState *s)
483
{
484
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
485
    int ret;
486
    uint64_t addr = 0xfffbc000;
487

    
488
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
489
        return 0;
490
    }
491

    
492
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
493
    if (ret < 0) {
494
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
495
        return ret;
496
    }
497
#endif
498
    return 0;
499
}
500

    
501
int kvm_arch_init(KVMState *s, int smp_cpus)
502
{
503
    int ret;
504

    
505
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
506
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
507
     * must be part of guest physical memory, we need to allocate it.  Older
508
     * versions of KVM just assumed that it would be at the end of physical
509
     * memory but that doesn't work with more than 4GB of memory.  We simply
510
     * refuse to work with those older versions of KVM. */
511
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
512
    if (ret <= 0) {
513
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
514
        return ret;
515
    }
516

    
517
    /* this address is 3 pages before the bios, and the bios should present
518
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
519
     * this?
520
     */
521
    /*
522
     * Tell fw_cfg to notify the BIOS to reserve the range.
523
     */
524
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
525
        perror("e820_add_entry() table is full");
526
        exit(1);
527
    }
528
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
529
    if (ret < 0) {
530
        return ret;
531
    }
532

    
533
    return kvm_init_identity_map_page(s);
534
}
535
                    
536
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
537
{
538
    lhs->selector = rhs->selector;
539
    lhs->base = rhs->base;
540
    lhs->limit = rhs->limit;
541
    lhs->type = 3;
542
    lhs->present = 1;
543
    lhs->dpl = 3;
544
    lhs->db = 0;
545
    lhs->s = 1;
546
    lhs->l = 0;
547
    lhs->g = 0;
548
    lhs->avl = 0;
549
    lhs->unusable = 0;
550
}
551

    
552
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
553
{
554
    unsigned flags = rhs->flags;
555
    lhs->selector = rhs->selector;
556
    lhs->base = rhs->base;
557
    lhs->limit = rhs->limit;
558
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
559
    lhs->present = (flags & DESC_P_MASK) != 0;
560
    lhs->dpl = rhs->selector & 3;
561
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
562
    lhs->s = (flags & DESC_S_MASK) != 0;
563
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
564
    lhs->g = (flags & DESC_G_MASK) != 0;
565
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
566
    lhs->unusable = 0;
567
}
568

    
569
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
570
{
571
    lhs->selector = rhs->selector;
572
    lhs->base = rhs->base;
573
    lhs->limit = rhs->limit;
574
    lhs->flags =
575
        (rhs->type << DESC_TYPE_SHIFT)
576
        | (rhs->present * DESC_P_MASK)
577
        | (rhs->dpl << DESC_DPL_SHIFT)
578
        | (rhs->db << DESC_B_SHIFT)
579
        | (rhs->s * DESC_S_MASK)
580
        | (rhs->l << DESC_L_SHIFT)
581
        | (rhs->g * DESC_G_MASK)
582
        | (rhs->avl * DESC_AVL_MASK);
583
}
584

    
585
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
586
{
587
    if (set)
588
        *kvm_reg = *qemu_reg;
589
    else
590
        *qemu_reg = *kvm_reg;
591
}
592

    
593
static int kvm_getput_regs(CPUState *env, int set)
594
{
595
    struct kvm_regs regs;
596
    int ret = 0;
597

    
598
    if (!set) {
599
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
600
        if (ret < 0)
601
            return ret;
602
    }
603

    
604
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
605
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
606
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
607
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
608
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
609
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
610
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
611
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
612
#ifdef TARGET_X86_64
613
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
614
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
615
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
616
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
617
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
618
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
619
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
620
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
621
#endif
622

    
623
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
624
    kvm_getput_reg(&regs.rip, &env->eip, set);
625

    
626
    if (set)
627
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
628

    
629
    return ret;
630
}
631

    
632
static int kvm_put_fpu(CPUState *env)
633
{
634
    struct kvm_fpu fpu;
635
    int i;
636

    
637
    memset(&fpu, 0, sizeof fpu);
638
    fpu.fsw = env->fpus & ~(7 << 11);
639
    fpu.fsw |= (env->fpstt & 7) << 11;
640
    fpu.fcw = env->fpuc;
641
    for (i = 0; i < 8; ++i)
642
        fpu.ftwx |= (!env->fptags[i]) << i;
643
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
644
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
645
    fpu.mxcsr = env->mxcsr;
646

    
647
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
648
}
649

    
650
#ifdef KVM_CAP_XSAVE
651
#define XSAVE_CWD_RIP     2
652
#define XSAVE_CWD_RDP     4
653
#define XSAVE_MXCSR       6
654
#define XSAVE_ST_SPACE    8
655
#define XSAVE_XMM_SPACE   40
656
#define XSAVE_XSTATE_BV   128
657
#define XSAVE_YMMH_SPACE  144
658
#endif
659

    
660
static int kvm_put_xsave(CPUState *env)
661
{
662
#ifdef KVM_CAP_XSAVE
663
    int i, r;
664
    struct kvm_xsave* xsave;
665
    uint16_t cwd, swd, twd, fop;
666

    
667
    if (!kvm_has_xsave())
668
        return kvm_put_fpu(env);
669

    
670
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
671
    memset(xsave, 0, sizeof(struct kvm_xsave));
672
    cwd = swd = twd = fop = 0;
673
    swd = env->fpus & ~(7 << 11);
674
    swd |= (env->fpstt & 7) << 11;
675
    cwd = env->fpuc;
676
    for (i = 0; i < 8; ++i)
677
        twd |= (!env->fptags[i]) << i;
678
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
679
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
680
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
681
            sizeof env->fpregs);
682
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
683
            sizeof env->xmm_regs);
684
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
685
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
686
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
687
            sizeof env->ymmh_regs);
688
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
689
    qemu_free(xsave);
690
    return r;
691
#else
692
    return kvm_put_fpu(env);
693
#endif
694
}
695

    
696
static int kvm_put_xcrs(CPUState *env)
697
{
698
#ifdef KVM_CAP_XCRS
699
    struct kvm_xcrs xcrs;
700

    
701
    if (!kvm_has_xcrs())
702
        return 0;
703

    
704
    xcrs.nr_xcrs = 1;
705
    xcrs.flags = 0;
706
    xcrs.xcrs[0].xcr = 0;
707
    xcrs.xcrs[0].value = env->xcr0;
708
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
709
#else
710
    return 0;
711
#endif
712
}
713

    
714
static int kvm_put_sregs(CPUState *env)
715
{
716
    struct kvm_sregs sregs;
717

    
718
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
719
    if (env->interrupt_injected >= 0) {
720
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
721
                (uint64_t)1 << (env->interrupt_injected % 64);
722
    }
723

    
724
    if ((env->eflags & VM_MASK)) {
725
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
726
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
727
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
728
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
729
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
730
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
731
    } else {
732
            set_seg(&sregs.cs, &env->segs[R_CS]);
733
            set_seg(&sregs.ds, &env->segs[R_DS]);
734
            set_seg(&sregs.es, &env->segs[R_ES]);
735
            set_seg(&sregs.fs, &env->segs[R_FS]);
736
            set_seg(&sregs.gs, &env->segs[R_GS]);
737
            set_seg(&sregs.ss, &env->segs[R_SS]);
738

    
739
            if (env->cr[0] & CR0_PE_MASK) {
740
                /* force ss cpl to cs cpl */
741
                sregs.ss.selector = (sregs.ss.selector & ~3) |
742
                        (sregs.cs.selector & 3);
743
                sregs.ss.dpl = sregs.ss.selector & 3;
744
            }
745
    }
746

    
747
    set_seg(&sregs.tr, &env->tr);
748
    set_seg(&sregs.ldt, &env->ldt);
749

    
750
    sregs.idt.limit = env->idt.limit;
751
    sregs.idt.base = env->idt.base;
752
    sregs.gdt.limit = env->gdt.limit;
753
    sregs.gdt.base = env->gdt.base;
754

    
755
    sregs.cr0 = env->cr[0];
756
    sregs.cr2 = env->cr[2];
757
    sregs.cr3 = env->cr[3];
758
    sregs.cr4 = env->cr[4];
759

    
760
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
761
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
762

    
763
    sregs.efer = env->efer;
764

    
765
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
766
}
767

    
768
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
769
                              uint32_t index, uint64_t value)
770
{
771
    entry->index = index;
772
    entry->data = value;
773
}
774

    
775
static int kvm_put_msrs(CPUState *env, int level)
776
{
777
    struct {
778
        struct kvm_msrs info;
779
        struct kvm_msr_entry entries[100];
780
    } msr_data;
781
    struct kvm_msr_entry *msrs = msr_data.entries;
782
    int i, n = 0;
783

    
784
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
785
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
786
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
787
    if (kvm_has_msr_star(env))
788
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
789
#ifdef TARGET_X86_64
790
    /* FIXME if lm capable */
791
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
792
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
793
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
794
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
795
#endif
796
    if (level == KVM_PUT_FULL_STATE) {
797
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
798
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
799
                          env->system_time_msr);
800
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
801
    }
802
#ifdef KVM_CAP_MCE
803
    if (env->mcg_cap) {
804
        if (level == KVM_PUT_RESET_STATE)
805
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
806
        else if (level == KVM_PUT_FULL_STATE) {
807
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
808
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
809
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
810
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
811
        }
812
    }
813
#endif
814

    
815
    msr_data.info.nmsrs = n;
816

    
817
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
818

    
819
}
820

    
821

    
822
static int kvm_get_fpu(CPUState *env)
823
{
824
    struct kvm_fpu fpu;
825
    int i, ret;
826

    
827
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
828
    if (ret < 0)
829
        return ret;
830

    
831
    env->fpstt = (fpu.fsw >> 11) & 7;
832
    env->fpus = fpu.fsw;
833
    env->fpuc = fpu.fcw;
834
    for (i = 0; i < 8; ++i)
835
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
836
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
837
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
838
    env->mxcsr = fpu.mxcsr;
839

    
840
    return 0;
841
}
842

    
843
static int kvm_get_xsave(CPUState *env)
844
{
845
#ifdef KVM_CAP_XSAVE
846
    struct kvm_xsave* xsave;
847
    int ret, i;
848
    uint16_t cwd, swd, twd, fop;
849

    
850
    if (!kvm_has_xsave())
851
        return kvm_get_fpu(env);
852

    
853
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
854
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
855
    if (ret < 0) {
856
        qemu_free(xsave);
857
        return ret;
858
    }
859

    
860
    cwd = (uint16_t)xsave->region[0];
861
    swd = (uint16_t)(xsave->region[0] >> 16);
862
    twd = (uint16_t)xsave->region[1];
863
    fop = (uint16_t)(xsave->region[1] >> 16);
864
    env->fpstt = (swd >> 11) & 7;
865
    env->fpus = swd;
866
    env->fpuc = cwd;
867
    for (i = 0; i < 8; ++i)
868
        env->fptags[i] = !((twd >> i) & 1);
869
    env->mxcsr = xsave->region[XSAVE_MXCSR];
870
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
871
            sizeof env->fpregs);
872
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
873
            sizeof env->xmm_regs);
874
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
875
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
876
            sizeof env->ymmh_regs);
877
    qemu_free(xsave);
878
    return 0;
879
#else
880
    return kvm_get_fpu(env);
881
#endif
882
}
883

    
884
static int kvm_get_xcrs(CPUState *env)
885
{
886
#ifdef KVM_CAP_XCRS
887
    int i, ret;
888
    struct kvm_xcrs xcrs;
889

    
890
    if (!kvm_has_xcrs())
891
        return 0;
892

    
893
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
894
    if (ret < 0)
895
        return ret;
896

    
897
    for (i = 0; i < xcrs.nr_xcrs; i++)
898
        /* Only support xcr0 now */
899
        if (xcrs.xcrs[0].xcr == 0) {
900
            env->xcr0 = xcrs.xcrs[0].value;
901
            break;
902
        }
903
    return 0;
904
#else
905
    return 0;
906
#endif
907
}
908

    
909
static int kvm_get_sregs(CPUState *env)
910
{
911
    struct kvm_sregs sregs;
912
    uint32_t hflags;
913
    int bit, i, ret;
914

    
915
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
916
    if (ret < 0)
917
        return ret;
918

    
919
    /* There can only be one pending IRQ set in the bitmap at a time, so try
920
       to find it and save its number instead (-1 for none). */
921
    env->interrupt_injected = -1;
922
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
923
        if (sregs.interrupt_bitmap[i]) {
924
            bit = ctz64(sregs.interrupt_bitmap[i]);
925
            env->interrupt_injected = i * 64 + bit;
926
            break;
927
        }
928
    }
929

    
930
    get_seg(&env->segs[R_CS], &sregs.cs);
931
    get_seg(&env->segs[R_DS], &sregs.ds);
932
    get_seg(&env->segs[R_ES], &sregs.es);
933
    get_seg(&env->segs[R_FS], &sregs.fs);
934
    get_seg(&env->segs[R_GS], &sregs.gs);
935
    get_seg(&env->segs[R_SS], &sregs.ss);
936

    
937
    get_seg(&env->tr, &sregs.tr);
938
    get_seg(&env->ldt, &sregs.ldt);
939

    
940
    env->idt.limit = sregs.idt.limit;
941
    env->idt.base = sregs.idt.base;
942
    env->gdt.limit = sregs.gdt.limit;
943
    env->gdt.base = sregs.gdt.base;
944

    
945
    env->cr[0] = sregs.cr0;
946
    env->cr[2] = sregs.cr2;
947
    env->cr[3] = sregs.cr3;
948
    env->cr[4] = sregs.cr4;
949

    
950
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
951

    
952
    env->efer = sregs.efer;
953
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
954

    
955
#define HFLAG_COPY_MASK ~( \
956
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
957
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
958
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
959
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
960

    
961

    
962

    
963
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
964
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
965
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
966
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
967
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
968
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
969
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
970

    
971
    if (env->efer & MSR_EFER_LMA) {
972
        hflags |= HF_LMA_MASK;
973
    }
974

    
975
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
976
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
977
    } else {
978
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
979
                (DESC_B_SHIFT - HF_CS32_SHIFT);
980
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
981
                (DESC_B_SHIFT - HF_SS32_SHIFT);
982
        if (!(env->cr[0] & CR0_PE_MASK) ||
983
                   (env->eflags & VM_MASK) ||
984
                   !(hflags & HF_CS32_MASK)) {
985
                hflags |= HF_ADDSEG_MASK;
986
            } else {
987
                hflags |= ((env->segs[R_DS].base |
988
                                env->segs[R_ES].base |
989
                                env->segs[R_SS].base) != 0) <<
990
                    HF_ADDSEG_SHIFT;
991
            }
992
    }
993
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
994

    
995
    return 0;
996
}
997

    
998
static int kvm_get_msrs(CPUState *env)
999
{
1000
    struct {
1001
        struct kvm_msrs info;
1002
        struct kvm_msr_entry entries[100];
1003
    } msr_data;
1004
    struct kvm_msr_entry *msrs = msr_data.entries;
1005
    int ret, i, n;
1006

    
1007
    n = 0;
1008
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1009
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1010
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1011
    if (kvm_has_msr_star(env))
1012
        msrs[n++].index = MSR_STAR;
1013
    msrs[n++].index = MSR_IA32_TSC;
1014
#ifdef TARGET_X86_64
1015
    /* FIXME lm_capable_kernel */
1016
    msrs[n++].index = MSR_CSTAR;
1017
    msrs[n++].index = MSR_KERNELGSBASE;
1018
    msrs[n++].index = MSR_FMASK;
1019
    msrs[n++].index = MSR_LSTAR;
1020
#endif
1021
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1022
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1023

    
1024
#ifdef KVM_CAP_MCE
1025
    if (env->mcg_cap) {
1026
        msrs[n++].index = MSR_MCG_STATUS;
1027
        msrs[n++].index = MSR_MCG_CTL;
1028
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1029
            msrs[n++].index = MSR_MC0_CTL + i;
1030
    }
1031
#endif
1032

    
1033
    msr_data.info.nmsrs = n;
1034
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1035
    if (ret < 0)
1036
        return ret;
1037

    
1038
    for (i = 0; i < ret; i++) {
1039
        switch (msrs[i].index) {
1040
        case MSR_IA32_SYSENTER_CS:
1041
            env->sysenter_cs = msrs[i].data;
1042
            break;
1043
        case MSR_IA32_SYSENTER_ESP:
1044
            env->sysenter_esp = msrs[i].data;
1045
            break;
1046
        case MSR_IA32_SYSENTER_EIP:
1047
            env->sysenter_eip = msrs[i].data;
1048
            break;
1049
        case MSR_STAR:
1050
            env->star = msrs[i].data;
1051
            break;
1052
#ifdef TARGET_X86_64
1053
        case MSR_CSTAR:
1054
            env->cstar = msrs[i].data;
1055
            break;
1056
        case MSR_KERNELGSBASE:
1057
            env->kernelgsbase = msrs[i].data;
1058
            break;
1059
        case MSR_FMASK:
1060
            env->fmask = msrs[i].data;
1061
            break;
1062
        case MSR_LSTAR:
1063
            env->lstar = msrs[i].data;
1064
            break;
1065
#endif
1066
        case MSR_IA32_TSC:
1067
            env->tsc = msrs[i].data;
1068
            break;
1069
        case MSR_KVM_SYSTEM_TIME:
1070
            env->system_time_msr = msrs[i].data;
1071
            break;
1072
        case MSR_KVM_WALL_CLOCK:
1073
            env->wall_clock_msr = msrs[i].data;
1074
            break;
1075
#ifdef KVM_CAP_MCE
1076
        case MSR_MCG_STATUS:
1077
            env->mcg_status = msrs[i].data;
1078
            break;
1079
        case MSR_MCG_CTL:
1080
            env->mcg_ctl = msrs[i].data;
1081
            break;
1082
#endif
1083
        default:
1084
#ifdef KVM_CAP_MCE
1085
            if (msrs[i].index >= MSR_MC0_CTL &&
1086
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1087
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1088
                break;
1089
            }
1090
#endif
1091
        }
1092
    }
1093

    
1094
    return 0;
1095
}
1096

    
1097
static int kvm_put_mp_state(CPUState *env)
1098
{
1099
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1100

    
1101
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1102
}
1103

    
1104
static int kvm_get_mp_state(CPUState *env)
1105
{
1106
    struct kvm_mp_state mp_state;
1107
    int ret;
1108

    
1109
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1110
    if (ret < 0) {
1111
        return ret;
1112
    }
1113
    env->mp_state = mp_state.mp_state;
1114
    return 0;
1115
}
1116

    
1117
static int kvm_put_vcpu_events(CPUState *env, int level)
1118
{
1119
#ifdef KVM_CAP_VCPU_EVENTS
1120
    struct kvm_vcpu_events events;
1121

    
1122
    if (!kvm_has_vcpu_events()) {
1123
        return 0;
1124
    }
1125

    
1126
    events.exception.injected = (env->exception_injected >= 0);
1127
    events.exception.nr = env->exception_injected;
1128
    events.exception.has_error_code = env->has_error_code;
1129
    events.exception.error_code = env->error_code;
1130

    
1131
    events.interrupt.injected = (env->interrupt_injected >= 0);
1132
    events.interrupt.nr = env->interrupt_injected;
1133
    events.interrupt.soft = env->soft_interrupt;
1134

    
1135
    events.nmi.injected = env->nmi_injected;
1136
    events.nmi.pending = env->nmi_pending;
1137
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1138

    
1139
    events.sipi_vector = env->sipi_vector;
1140

    
1141
    events.flags = 0;
1142
    if (level >= KVM_PUT_RESET_STATE) {
1143
        events.flags |=
1144
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1145
    }
1146

    
1147
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1148
#else
1149
    return 0;
1150
#endif
1151
}
1152

    
1153
static int kvm_get_vcpu_events(CPUState *env)
1154
{
1155
#ifdef KVM_CAP_VCPU_EVENTS
1156
    struct kvm_vcpu_events events;
1157
    int ret;
1158

    
1159
    if (!kvm_has_vcpu_events()) {
1160
        return 0;
1161
    }
1162

    
1163
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1164
    if (ret < 0) {
1165
       return ret;
1166
    }
1167
    env->exception_injected =
1168
       events.exception.injected ? events.exception.nr : -1;
1169
    env->has_error_code = events.exception.has_error_code;
1170
    env->error_code = events.exception.error_code;
1171

    
1172
    env->interrupt_injected =
1173
        events.interrupt.injected ? events.interrupt.nr : -1;
1174
    env->soft_interrupt = events.interrupt.soft;
1175

    
1176
    env->nmi_injected = events.nmi.injected;
1177
    env->nmi_pending = events.nmi.pending;
1178
    if (events.nmi.masked) {
1179
        env->hflags2 |= HF2_NMI_MASK;
1180
    } else {
1181
        env->hflags2 &= ~HF2_NMI_MASK;
1182
    }
1183

    
1184
    env->sipi_vector = events.sipi_vector;
1185
#endif
1186

    
1187
    return 0;
1188
}
1189

    
1190
static int kvm_guest_debug_workarounds(CPUState *env)
1191
{
1192
    int ret = 0;
1193
#ifdef KVM_CAP_SET_GUEST_DEBUG
1194
    unsigned long reinject_trap = 0;
1195

    
1196
    if (!kvm_has_vcpu_events()) {
1197
        if (env->exception_injected == 1) {
1198
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1199
        } else if (env->exception_injected == 3) {
1200
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1201
        }
1202
        env->exception_injected = -1;
1203
    }
1204

    
1205
    /*
1206
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1207
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1208
     * by updating the debug state once again if single-stepping is on.
1209
     * Another reason to call kvm_update_guest_debug here is a pending debug
1210
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1211
     * reinject them via SET_GUEST_DEBUG.
1212
     */
1213
    if (reinject_trap ||
1214
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1215
        ret = kvm_update_guest_debug(env, reinject_trap);
1216
    }
1217
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1218
    return ret;
1219
}
1220

    
1221
static int kvm_put_debugregs(CPUState *env)
1222
{
1223
#ifdef KVM_CAP_DEBUGREGS
1224
    struct kvm_debugregs dbgregs;
1225
    int i;
1226

    
1227
    if (!kvm_has_debugregs()) {
1228
        return 0;
1229
    }
1230

    
1231
    for (i = 0; i < 4; i++) {
1232
        dbgregs.db[i] = env->dr[i];
1233
    }
1234
    dbgregs.dr6 = env->dr[6];
1235
    dbgregs.dr7 = env->dr[7];
1236
    dbgregs.flags = 0;
1237

    
1238
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1239
#else
1240
    return 0;
1241
#endif
1242
}
1243

    
1244
static int kvm_get_debugregs(CPUState *env)
1245
{
1246
#ifdef KVM_CAP_DEBUGREGS
1247
    struct kvm_debugregs dbgregs;
1248
    int i, ret;
1249

    
1250
    if (!kvm_has_debugregs()) {
1251
        return 0;
1252
    }
1253

    
1254
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1255
    if (ret < 0) {
1256
       return ret;
1257
    }
1258
    for (i = 0; i < 4; i++) {
1259
        env->dr[i] = dbgregs.db[i];
1260
    }
1261
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1262
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1263
#endif
1264

    
1265
    return 0;
1266
}
1267

    
1268
int kvm_arch_put_registers(CPUState *env, int level)
1269
{
1270
    int ret;
1271

    
1272
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1273

    
1274
    ret = kvm_getput_regs(env, 1);
1275
    if (ret < 0)
1276
        return ret;
1277

    
1278
    ret = kvm_put_xsave(env);
1279
    if (ret < 0)
1280
        return ret;
1281

    
1282
    ret = kvm_put_xcrs(env);
1283
    if (ret < 0)
1284
        return ret;
1285

    
1286
    ret = kvm_put_sregs(env);
1287
    if (ret < 0)
1288
        return ret;
1289

    
1290
    ret = kvm_put_msrs(env, level);
1291
    if (ret < 0)
1292
        return ret;
1293

    
1294
    if (level >= KVM_PUT_RESET_STATE) {
1295
        ret = kvm_put_mp_state(env);
1296
        if (ret < 0)
1297
            return ret;
1298
    }
1299

    
1300
    ret = kvm_put_vcpu_events(env, level);
1301
    if (ret < 0)
1302
        return ret;
1303

    
1304
    /* must be last */
1305
    ret = kvm_guest_debug_workarounds(env);
1306
    if (ret < 0)
1307
        return ret;
1308

    
1309
    ret = kvm_put_debugregs(env);
1310
    if (ret < 0)
1311
        return ret;
1312

    
1313
    return 0;
1314
}
1315

    
1316
int kvm_arch_get_registers(CPUState *env)
1317
{
1318
    int ret;
1319

    
1320
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1321

    
1322
    ret = kvm_getput_regs(env, 0);
1323
    if (ret < 0)
1324
        return ret;
1325

    
1326
    ret = kvm_get_xsave(env);
1327
    if (ret < 0)
1328
        return ret;
1329

    
1330
    ret = kvm_get_xcrs(env);
1331
    if (ret < 0)
1332
        return ret;
1333

    
1334
    ret = kvm_get_sregs(env);
1335
    if (ret < 0)
1336
        return ret;
1337

    
1338
    ret = kvm_get_msrs(env);
1339
    if (ret < 0)
1340
        return ret;
1341

    
1342
    ret = kvm_get_mp_state(env);
1343
    if (ret < 0)
1344
        return ret;
1345

    
1346
    ret = kvm_get_vcpu_events(env);
1347
    if (ret < 0)
1348
        return ret;
1349

    
1350
    ret = kvm_get_debugregs(env);
1351
    if (ret < 0)
1352
        return ret;
1353

    
1354
    return 0;
1355
}
1356

    
1357
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1358
{
1359
    /* Try to inject an interrupt if the guest can accept it */
1360
    if (run->ready_for_interrupt_injection &&
1361
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1362
        (env->eflags & IF_MASK)) {
1363
        int irq;
1364

    
1365
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1366
        irq = cpu_get_pic_interrupt(env);
1367
        if (irq >= 0) {
1368
            struct kvm_interrupt intr;
1369
            intr.irq = irq;
1370
            /* FIXME: errors */
1371
            DPRINTF("injected interrupt %d\n", irq);
1372
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1373
        }
1374
    }
1375

    
1376
    /* If we have an interrupt but the guest is not ready to receive an
1377
     * interrupt, request an interrupt window exit.  This will
1378
     * cause a return to userspace as soon as the guest is ready to
1379
     * receive interrupts. */
1380
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1381
        run->request_interrupt_window = 1;
1382
    else
1383
        run->request_interrupt_window = 0;
1384

    
1385
    DPRINTF("setting tpr\n");
1386
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1387

    
1388
    return 0;
1389
}
1390

    
1391
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1392
{
1393
    if (run->if_flag)
1394
        env->eflags |= IF_MASK;
1395
    else
1396
        env->eflags &= ~IF_MASK;
1397
    
1398
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1399
    cpu_set_apic_base(env->apic_state, run->apic_base);
1400

    
1401
    return 0;
1402
}
1403

    
1404
int kvm_arch_process_irqchip_events(CPUState *env)
1405
{
1406
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1407
        kvm_cpu_synchronize_state(env);
1408
        do_cpu_init(env);
1409
        env->exception_index = EXCP_HALTED;
1410
    }
1411

    
1412
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1413
        kvm_cpu_synchronize_state(env);
1414
        do_cpu_sipi(env);
1415
    }
1416

    
1417
    return env->halted;
1418
}
1419

    
1420
static int kvm_handle_halt(CPUState *env)
1421
{
1422
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1423
          (env->eflags & IF_MASK)) &&
1424
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1425
        env->halted = 1;
1426
        env->exception_index = EXCP_HLT;
1427
        return 0;
1428
    }
1429

    
1430
    return 1;
1431
}
1432

    
1433
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1434
{
1435
    int ret = 0;
1436

    
1437
    switch (run->exit_reason) {
1438
    case KVM_EXIT_HLT:
1439
        DPRINTF("handle_hlt\n");
1440
        ret = kvm_handle_halt(env);
1441
        break;
1442
    }
1443

    
1444
    return ret;
1445
}
1446

    
1447
#ifdef KVM_CAP_SET_GUEST_DEBUG
1448
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1449
{
1450
    static const uint8_t int3 = 0xcc;
1451

    
1452
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1453
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1454
        return -EINVAL;
1455
    return 0;
1456
}
1457

    
1458
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1459
{
1460
    uint8_t int3;
1461

    
1462
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1463
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1464
        return -EINVAL;
1465
    return 0;
1466
}
1467

    
1468
static struct {
1469
    target_ulong addr;
1470
    int len;
1471
    int type;
1472
} hw_breakpoint[4];
1473

    
1474
static int nb_hw_breakpoint;
1475

    
1476
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1477
{
1478
    int n;
1479

    
1480
    for (n = 0; n < nb_hw_breakpoint; n++)
1481
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1482
            (hw_breakpoint[n].len == len || len == -1))
1483
            return n;
1484
    return -1;
1485
}
1486

    
1487
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1488
                                  target_ulong len, int type)
1489
{
1490
    switch (type) {
1491
    case GDB_BREAKPOINT_HW:
1492
        len = 1;
1493
        break;
1494
    case GDB_WATCHPOINT_WRITE:
1495
    case GDB_WATCHPOINT_ACCESS:
1496
        switch (len) {
1497
        case 1:
1498
            break;
1499
        case 2:
1500
        case 4:
1501
        case 8:
1502
            if (addr & (len - 1))
1503
                return -EINVAL;
1504
            break;
1505
        default:
1506
            return -EINVAL;
1507
        }
1508
        break;
1509
    default:
1510
        return -ENOSYS;
1511
    }
1512

    
1513
    if (nb_hw_breakpoint == 4)
1514
        return -ENOBUFS;
1515

    
1516
    if (find_hw_breakpoint(addr, len, type) >= 0)
1517
        return -EEXIST;
1518

    
1519
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1520
    hw_breakpoint[nb_hw_breakpoint].len = len;
1521
    hw_breakpoint[nb_hw_breakpoint].type = type;
1522
    nb_hw_breakpoint++;
1523

    
1524
    return 0;
1525
}
1526

    
1527
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1528
                                  target_ulong len, int type)
1529
{
1530
    int n;
1531

    
1532
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1533
    if (n < 0)
1534
        return -ENOENT;
1535

    
1536
    nb_hw_breakpoint--;
1537
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1538

    
1539
    return 0;
1540
}
1541

    
1542
void kvm_arch_remove_all_hw_breakpoints(void)
1543
{
1544
    nb_hw_breakpoint = 0;
1545
}
1546

    
1547
static CPUWatchpoint hw_watchpoint;
1548

    
1549
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1550
{
1551
    int handle = 0;
1552
    int n;
1553

    
1554
    if (arch_info->exception == 1) {
1555
        if (arch_info->dr6 & (1 << 14)) {
1556
            if (cpu_single_env->singlestep_enabled)
1557
                handle = 1;
1558
        } else {
1559
            for (n = 0; n < 4; n++)
1560
                if (arch_info->dr6 & (1 << n))
1561
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1562
                    case 0x0:
1563
                        handle = 1;
1564
                        break;
1565
                    case 0x1:
1566
                        handle = 1;
1567
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1568
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1569
                        hw_watchpoint.flags = BP_MEM_WRITE;
1570
                        break;
1571
                    case 0x3:
1572
                        handle = 1;
1573
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1574
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1575
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1576
                        break;
1577
                    }
1578
        }
1579
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1580
        handle = 1;
1581

    
1582
    if (!handle) {
1583
        cpu_synchronize_state(cpu_single_env);
1584
        assert(cpu_single_env->exception_injected == -1);
1585

    
1586
        cpu_single_env->exception_injected = arch_info->exception;
1587
        cpu_single_env->has_error_code = 0;
1588
    }
1589

    
1590
    return handle;
1591
}
1592

    
1593
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1594
{
1595
    const uint8_t type_code[] = {
1596
        [GDB_BREAKPOINT_HW] = 0x0,
1597
        [GDB_WATCHPOINT_WRITE] = 0x1,
1598
        [GDB_WATCHPOINT_ACCESS] = 0x3
1599
    };
1600
    const uint8_t len_code[] = {
1601
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1602
    };
1603
    int n;
1604

    
1605
    if (kvm_sw_breakpoints_active(env))
1606
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1607

    
1608
    if (nb_hw_breakpoint > 0) {
1609
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1610
        dbg->arch.debugreg[7] = 0x0600;
1611
        for (n = 0; n < nb_hw_breakpoint; n++) {
1612
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1613
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1614
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1615
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1616
        }
1617
    }
1618
    /* Legal xcr0 for loading */
1619
    env->xcr0 = 1;
1620
}
1621
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1622

    
1623
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1624
{
1625
      return !(env->cr[0] & CR0_PE_MASK) ||
1626
              ((env->segs[R_CS].selector  & 3) != 3);
1627
}
1628

    
1629
static void hardware_memory_error(void)
1630
{
1631
    fprintf(stderr, "Hardware memory error!\n");
1632
    exit(1);
1633
}
1634

    
1635
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1636
{
1637
#if defined(KVM_CAP_MCE)
1638
    struct kvm_x86_mce mce = {
1639
            .bank = 9,
1640
    };
1641
    void *vaddr;
1642
    ram_addr_t ram_addr;
1643
    target_phys_addr_t paddr;
1644
    int r;
1645

    
1646
    if ((env->mcg_cap & MCG_SER_P) && addr
1647
        && (code == BUS_MCEERR_AR
1648
            || code == BUS_MCEERR_AO)) {
1649
        if (code == BUS_MCEERR_AR) {
1650
            /* Fake an Intel architectural Data Load SRAR UCR */
1651
            mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1652
                | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1653
                | MCI_STATUS_AR | 0x134;
1654
            mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1655
            mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1656
        } else {
1657
            /*
1658
             * If there is an MCE excpetion being processed, ignore
1659
             * this SRAO MCE
1660
             */
1661
            r = kvm_mce_in_exception(env);
1662
            if (r == -1) {
1663
                fprintf(stderr, "Failed to get MCE status\n");
1664
            } else if (r) {
1665
                return 0;
1666
            }
1667
            /* Fake an Intel architectural Memory scrubbing UCR */
1668
            mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1669
                | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1670
                | 0xc0;
1671
            mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1672
            mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1673
        }
1674
        vaddr = (void *)addr;
1675
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1676
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1677
            fprintf(stderr, "Hardware memory error for memory used by "
1678
                    "QEMU itself instead of guest system!\n");
1679
            /* Hope we are lucky for AO MCE */
1680
            if (code == BUS_MCEERR_AO) {
1681
                return 0;
1682
            } else {
1683
                hardware_memory_error();
1684
            }
1685
        }
1686
        mce.addr = paddr;
1687
        r = kvm_set_mce(env, &mce);
1688
        if (r < 0) {
1689
            fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1690
            abort();
1691
        }
1692
    } else
1693
#endif
1694
    {
1695
        if (code == BUS_MCEERR_AO) {
1696
            return 0;
1697
        } else if (code == BUS_MCEERR_AR) {
1698
            hardware_memory_error();
1699
        } else {
1700
            return 1;
1701
        }
1702
    }
1703
    return 0;
1704
}
1705

    
1706
int kvm_on_sigbus(int code, void *addr)
1707
{
1708
#if defined(KVM_CAP_MCE)
1709
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1710
        uint64_t status;
1711
        void *vaddr;
1712
        ram_addr_t ram_addr;
1713
        target_phys_addr_t paddr;
1714
        CPUState *cenv;
1715

    
1716
        /* Hope we are lucky for AO MCE */
1717
        vaddr = addr;
1718
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1719
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1720
            fprintf(stderr, "Hardware memory error for memory used by "
1721
                    "QEMU itself instead of guest system!: %p\n", addr);
1722
            return 0;
1723
        }
1724
        status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1725
            | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1726
            | 0xc0;
1727
        kvm_inject_x86_mce(first_cpu, 9, status,
1728
                           MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1729
                           (MCM_ADDR_PHYS << 6) | 0xc, 1);
1730
        for (cenv = first_cpu->next_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1731
            kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1732
                               MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1733
        }
1734
    } else
1735
#endif
1736
    {
1737
        if (code == BUS_MCEERR_AO) {
1738
            return 0;
1739
        } else if (code == BUS_MCEERR_AR) {
1740
            hardware_memory_error();
1741
        } else {
1742
            return 1;
1743
        }
1744
    }
1745
    return 0;
1746
}