Statistics
| Branch: | Revision:

root / cpu-exec.c @ 111bfab3

History | View | Annotate | Download (38 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50

    
51
/* exit the current TB from a signal handler. The host registers are
52
   restored in a state compatible with the CPU emulator
53
 */
54
void cpu_resume_from_signal(CPUState *env1, void *puc) 
55
{
56
#if !defined(CONFIG_SOFTMMU)
57
    struct ucontext *uc = puc;
58
#endif
59

    
60
    env = env1;
61

    
62
    /* XXX: restore cpu registers saved in host registers */
63

    
64
#if !defined(CONFIG_SOFTMMU)
65
    if (puc) {
66
        /* XXX: use siglongjmp ? */
67
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
68
    }
69
#endif
70
    longjmp(env->jmp_env, 1);
71
}
72

    
73
/* main execution loop */
74

    
75
int cpu_exec(CPUState *env1)
76
{
77
    int saved_T0, saved_T1, saved_T2;
78
    CPUState *saved_env;
79
#ifdef reg_EAX
80
    int saved_EAX;
81
#endif
82
#ifdef reg_ECX
83
    int saved_ECX;
84
#endif
85
#ifdef reg_EDX
86
    int saved_EDX;
87
#endif
88
#ifdef reg_EBX
89
    int saved_EBX;
90
#endif
91
#ifdef reg_ESP
92
    int saved_ESP;
93
#endif
94
#ifdef reg_EBP
95
    int saved_EBP;
96
#endif
97
#ifdef reg_ESI
98
    int saved_ESI;
99
#endif
100
#ifdef reg_EDI
101
    int saved_EDI;
102
#endif
103
#ifdef __sparc__
104
    int saved_i7, tmp_T0;
105
#endif
106
    int code_gen_size, ret, interrupt_request;
107
    void (*gen_func)(void);
108
    TranslationBlock *tb, **ptb;
109
    target_ulong cs_base, pc;
110
    uint8_t *tc_ptr;
111
    unsigned int flags;
112

    
113
    /* first we save global registers */
114
    saved_env = env;
115
    env = env1;
116
    saved_T0 = T0;
117
    saved_T1 = T1;
118
    saved_T2 = T2;
119
#ifdef __sparc__
120
    /* we also save i7 because longjmp may not restore it */
121
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
122
#endif
123

    
124
#if defined(TARGET_I386)
125
#ifdef reg_EAX
126
    saved_EAX = EAX;
127
#endif
128
#ifdef reg_ECX
129
    saved_ECX = ECX;
130
#endif
131
#ifdef reg_EDX
132
    saved_EDX = EDX;
133
#endif
134
#ifdef reg_EBX
135
    saved_EBX = EBX;
136
#endif
137
#ifdef reg_ESP
138
    saved_ESP = ESP;
139
#endif
140
#ifdef reg_EBP
141
    saved_EBP = EBP;
142
#endif
143
#ifdef reg_ESI
144
    saved_ESI = ESI;
145
#endif
146
#ifdef reg_EDI
147
    saved_EDI = EDI;
148
#endif
149

    
150
    env_to_regs();
151
    /* put eflags in CPU temporary format */
152
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
153
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
154
    CC_OP = CC_OP_EFLAGS;
155
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
156
#elif defined(TARGET_ARM)
157
    {
158
        unsigned int psr;
159
        psr = env->cpsr;
160
        env->CF = (psr >> 29) & 1;
161
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
162
        env->VF = (psr << 3) & 0x80000000;
163
        env->QF = (psr >> 27) & 1;
164
        env->cpsr = psr & ~CACHED_CPSR_BITS;
165
    }
166
#elif defined(TARGET_SPARC)
167
#elif defined(TARGET_PPC)
168
#else
169
#error unsupported target CPU
170
#endif
171
    env->exception_index = -1;
172

    
173
    /* prepare setjmp context for exception handling */
174
    for(;;) {
175
        if (setjmp(env->jmp_env) == 0) {
176
            env->current_tb = NULL;
177
            /* if an exception is pending, we execute it here */
178
            if (env->exception_index >= 0) {
179
                if (env->exception_index >= EXCP_INTERRUPT) {
180
                    /* exit request from the cpu execution loop */
181
                    ret = env->exception_index;
182
                    break;
183
                } else if (env->user_mode_only) {
184
                    /* if user mode only, we simulate a fake exception
185
                       which will be hanlded outside the cpu execution
186
                       loop */
187
#if defined(TARGET_I386)
188
                    do_interrupt_user(env->exception_index, 
189
                                      env->exception_is_int, 
190
                                      env->error_code, 
191
                                      env->exception_next_eip);
192
#endif
193
                    ret = env->exception_index;
194
                    break;
195
                } else {
196
#if defined(TARGET_I386)
197
                    /* simulate a real cpu exception. On i386, it can
198
                       trigger new exceptions, but we do not handle
199
                       double or triple faults yet. */
200
                    do_interrupt(env->exception_index, 
201
                                 env->exception_is_int, 
202
                                 env->error_code, 
203
                                 env->exception_next_eip, 0);
204
#elif defined(TARGET_PPC)
205
                    do_interrupt(env);
206
#elif defined(TARGET_SPARC)
207
                    do_interrupt(env->exception_index);
208
#endif
209
                }
210
                env->exception_index = -1;
211
            } 
212
#ifdef USE_KQEMU
213
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
214
                int ret;
215
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
216
                ret = kqemu_cpu_exec(env);
217
                /* put eflags in CPU temporary format */
218
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
219
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
220
                CC_OP = CC_OP_EFLAGS;
221
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
222
                if (ret == 1) {
223
                    /* exception */
224
                    longjmp(env->jmp_env, 1);
225
                } else if (ret == 2) {
226
                    /* softmmu execution needed */
227
                } else {
228
                    if (env->interrupt_request != 0) {
229
                        /* hardware interrupt will be executed just after */
230
                    } else {
231
                        /* otherwise, we restart */
232
                        longjmp(env->jmp_env, 1);
233
                    }
234
                }
235
            }
236
#endif
237

    
238
            T0 = 0; /* force lookup of first TB */
239
            for(;;) {
240
#ifdef __sparc__
241
                /* g1 can be modified by some libc? functions */ 
242
                tmp_T0 = T0;
243
#endif            
244
                interrupt_request = env->interrupt_request;
245
                if (__builtin_expect(interrupt_request, 0)) {
246
#if defined(TARGET_I386)
247
                    /* if hardware interrupt pending, we execute it */
248
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
249
                        (env->eflags & IF_MASK) && 
250
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
251
                        int intno;
252
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
253
                        intno = cpu_get_pic_interrupt(env);
254
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
255
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
256
                        }
257
                        do_interrupt(intno, 0, 0, 0, 1);
258
                        /* ensure that no TB jump will be modified as
259
                           the program flow was changed */
260
#ifdef __sparc__
261
                        tmp_T0 = 0;
262
#else
263
                        T0 = 0;
264
#endif
265
                    }
266
#elif defined(TARGET_PPC)
267
#if 0
268
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
269
                        cpu_ppc_reset(env);
270
                    }
271
#endif
272
                    if (msr_ee != 0) {
273
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
274
                            /* Raise it */
275
                            env->exception_index = EXCP_EXTERNAL;
276
                            env->error_code = 0;
277
                            do_interrupt(env);
278
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
279
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
280
                            /* Raise it */
281
                            env->exception_index = EXCP_DECR;
282
                            env->error_code = 0;
283
                            do_interrupt(env);
284
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
285
                        }
286
                    }
287
#elif defined(TARGET_SPARC)
288
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
289
                        (env->psret != 0)) {
290
                        int pil = env->interrupt_index & 15;
291
                        int type = env->interrupt_index & 0xf0;
292

    
293
                        if (((type == TT_EXTINT) &&
294
                             (pil == 15 || pil > env->psrpil)) ||
295
                            type != TT_EXTINT) {
296
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
297
                            do_interrupt(env->interrupt_index);
298
                            env->interrupt_index = 0;
299
                        }
300
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
301
                        //do_interrupt(0, 0, 0, 0, 0);
302
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
303
                    }
304
#endif
305
                    if (interrupt_request & CPU_INTERRUPT_EXITTB) {
306
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
307
                        /* ensure that no TB jump will be modified as
308
                           the program flow was changed */
309
#ifdef __sparc__
310
                        tmp_T0 = 0;
311
#else
312
                        T0 = 0;
313
#endif
314
                    }
315
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
316
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
317
                        env->exception_index = EXCP_INTERRUPT;
318
                        cpu_loop_exit();
319
                    }
320
                }
321
#ifdef DEBUG_EXEC
322
                if ((loglevel & CPU_LOG_EXEC)) {
323
#if defined(TARGET_I386)
324
                    /* restore flags in standard format */
325
                    env->regs[R_EAX] = EAX;
326
                    env->regs[R_EBX] = EBX;
327
                    env->regs[R_ECX] = ECX;
328
                    env->regs[R_EDX] = EDX;
329
                    env->regs[R_ESI] = ESI;
330
                    env->regs[R_EDI] = EDI;
331
                    env->regs[R_EBP] = EBP;
332
                    env->regs[R_ESP] = ESP;
333
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
334
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
335
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
336
#elif defined(TARGET_ARM)
337
                    env->cpsr = compute_cpsr();
338
                    cpu_dump_state(env, logfile, fprintf, 0);
339
                    env->cpsr &= ~CACHED_CPSR_BITS;
340
#elif defined(TARGET_SPARC)
341
                    cpu_dump_state (env, logfile, fprintf, 0);
342
#elif defined(TARGET_PPC)
343
                    cpu_dump_state(env, logfile, fprintf, 0);
344
#else
345
#error unsupported target CPU 
346
#endif
347
                }
348
#endif
349
                /* we record a subset of the CPU state. It will
350
                   always be the same before a given translated block
351
                   is executed. */
352
#if defined(TARGET_I386)
353
                flags = env->hflags;
354
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
355
                cs_base = env->segs[R_CS].base;
356
                pc = cs_base + env->eip;
357
#elif defined(TARGET_ARM)
358
                flags = env->thumb | (env->vfp.vec_len << 1)
359
                        | (env->vfp.vec_stride << 4);
360
                cs_base = 0;
361
                pc = env->regs[15];
362
#elif defined(TARGET_SPARC)
363
                flags = 0;
364
                cs_base = env->npc;
365
                pc = env->pc;
366
#elif defined(TARGET_PPC)
367
                flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
368
                    (msr_se << MSR_SE) | (msr_le << MSR_LE);
369
                cs_base = 0;
370
                pc = env->nip;
371
#else
372
#error unsupported CPU
373
#endif
374
                tb = tb_find(&ptb, pc, cs_base, 
375
                             flags);
376
                if (!tb) {
377
                    TranslationBlock **ptb1;
378
                    unsigned int h;
379
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
380
                    
381
                    
382
                    spin_lock(&tb_lock);
383

    
384
                    tb_invalidated_flag = 0;
385
                    
386
                    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
387

    
388
                    /* find translated block using physical mappings */
389
                    phys_pc = get_phys_addr_code(env, pc);
390
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
391
                    phys_page2 = -1;
392
                    h = tb_phys_hash_func(phys_pc);
393
                    ptb1 = &tb_phys_hash[h];
394
                    for(;;) {
395
                        tb = *ptb1;
396
                        if (!tb)
397
                            goto not_found;
398
                        if (tb->pc == pc && 
399
                            tb->page_addr[0] == phys_page1 &&
400
                            tb->cs_base == cs_base && 
401
                            tb->flags == flags) {
402
                            /* check next page if needed */
403
                            if (tb->page_addr[1] != -1) {
404
                                virt_page2 = (pc & TARGET_PAGE_MASK) + 
405
                                    TARGET_PAGE_SIZE;
406
                                phys_page2 = get_phys_addr_code(env, virt_page2);
407
                                if (tb->page_addr[1] == phys_page2)
408
                                    goto found;
409
                            } else {
410
                                goto found;
411
                            }
412
                        }
413
                        ptb1 = &tb->phys_hash_next;
414
                    }
415
                not_found:
416
                    /* if no translated code available, then translate it now */
417
                    tb = tb_alloc(pc);
418
                    if (!tb) {
419
                        /* flush must be done */
420
                        tb_flush(env);
421
                        /* cannot fail at this point */
422
                        tb = tb_alloc(pc);
423
                        /* don't forget to invalidate previous TB info */
424
                        ptb = &tb_hash[tb_hash_func(pc)];
425
                        T0 = 0;
426
                    }
427
                    tc_ptr = code_gen_ptr;
428
                    tb->tc_ptr = tc_ptr;
429
                    tb->cs_base = cs_base;
430
                    tb->flags = flags;
431
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
432
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
433
                    
434
                    /* check next page if needed */
435
                    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
436
                    phys_page2 = -1;
437
                    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
438
                        phys_page2 = get_phys_addr_code(env, virt_page2);
439
                    }
440
                    tb_link_phys(tb, phys_pc, phys_page2);
441

    
442
                found:
443
                    if (tb_invalidated_flag) {
444
                        /* as some TB could have been invalidated because
445
                           of memory exceptions while generating the code, we
446
                           must recompute the hash index here */
447
                        ptb = &tb_hash[tb_hash_func(pc)];
448
                        while (*ptb != NULL)
449
                            ptb = &(*ptb)->hash_next;
450
                        T0 = 0;
451
                    }
452
                    /* we add the TB in the virtual pc hash table */
453
                    *ptb = tb;
454
                    tb->hash_next = NULL;
455
                    tb_link(tb);
456
                    spin_unlock(&tb_lock);
457
                }
458
#ifdef DEBUG_EXEC
459
                if ((loglevel & CPU_LOG_EXEC)) {
460
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
461
                            (long)tb->tc_ptr, tb->pc,
462
                            lookup_symbol(tb->pc));
463
                }
464
#endif
465
#ifdef __sparc__
466
                T0 = tmp_T0;
467
#endif            
468
                /* see if we can patch the calling TB. */
469
                {
470
                    if (T0 != 0
471
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
472
                    && (tb->cflags & CF_CODE_COPY) == 
473
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
474
#endif
475
                    ) {
476
                    spin_lock(&tb_lock);
477
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
478
#if defined(USE_CODE_COPY)
479
                    /* propagates the FP use info */
480
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
481
                        (tb->cflags & CF_FP_USED);
482
#endif
483
                    spin_unlock(&tb_lock);
484
                }
485
                }
486
                tc_ptr = tb->tc_ptr;
487
                env->current_tb = tb;
488
                /* execute the generated code */
489
                gen_func = (void *)tc_ptr;
490
#if defined(__sparc__)
491
                __asm__ __volatile__("call        %0\n\t"
492
                                     "mov        %%o7,%%i0"
493
                                     : /* no outputs */
494
                                     : "r" (gen_func) 
495
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
496
#elif defined(__arm__)
497
                asm volatile ("mov pc, %0\n\t"
498
                              ".global exec_loop\n\t"
499
                              "exec_loop:\n\t"
500
                              : /* no outputs */
501
                              : "r" (gen_func)
502
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
503
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
504
{
505
    if (!(tb->cflags & CF_CODE_COPY)) {
506
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
507
            save_native_fp_state(env);
508
        }
509
        gen_func();
510
    } else {
511
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
512
            restore_native_fp_state(env);
513
        }
514
        /* we work with native eflags */
515
        CC_SRC = cc_table[CC_OP].compute_all();
516
        CC_OP = CC_OP_EFLAGS;
517
        asm(".globl exec_loop\n"
518
            "\n"
519
            "debug1:\n"
520
            "    pushl %%ebp\n"
521
            "    fs movl %10, %9\n"
522
            "    fs movl %11, %%eax\n"
523
            "    andl $0x400, %%eax\n"
524
            "    fs orl %8, %%eax\n"
525
            "    pushl %%eax\n"
526
            "    popf\n"
527
            "    fs movl %%esp, %12\n"
528
            "    fs movl %0, %%eax\n"
529
            "    fs movl %1, %%ecx\n"
530
            "    fs movl %2, %%edx\n"
531
            "    fs movl %3, %%ebx\n"
532
            "    fs movl %4, %%esp\n"
533
            "    fs movl %5, %%ebp\n"
534
            "    fs movl %6, %%esi\n"
535
            "    fs movl %7, %%edi\n"
536
            "    fs jmp *%9\n"
537
            "exec_loop:\n"
538
            "    fs movl %%esp, %4\n"
539
            "    fs movl %12, %%esp\n"
540
            "    fs movl %%eax, %0\n"
541
            "    fs movl %%ecx, %1\n"
542
            "    fs movl %%edx, %2\n"
543
            "    fs movl %%ebx, %3\n"
544
            "    fs movl %%ebp, %5\n"
545
            "    fs movl %%esi, %6\n"
546
            "    fs movl %%edi, %7\n"
547
            "    pushf\n"
548
            "    popl %%eax\n"
549
            "    movl %%eax, %%ecx\n"
550
            "    andl $0x400, %%ecx\n"
551
            "    shrl $9, %%ecx\n"
552
            "    andl $0x8d5, %%eax\n"
553
            "    fs movl %%eax, %8\n"
554
            "    movl $1, %%eax\n"
555
            "    subl %%ecx, %%eax\n"
556
            "    fs movl %%eax, %11\n"
557
            "    fs movl %9, %%ebx\n" /* get T0 value */
558
            "    popl %%ebp\n"
559
            :
560
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
561
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
562
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
563
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
564
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
565
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
566
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
567
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
568
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
569
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
570
            "a" (gen_func),
571
            "m" (*(uint8_t *)offsetof(CPUState, df)),
572
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
573
            : "%ecx", "%edx"
574
            );
575
    }
576
}
577
#elif defined(__ia64)
578
                struct fptr {
579
                        void *ip;
580
                        void *gp;
581
                } fp;
582

    
583
                fp.ip = tc_ptr;
584
                fp.gp = code_gen_buffer + 2 * (1 << 20);
585
                (*(void (*)(void)) &fp)();
586
#else
587
                gen_func();
588
#endif
589
                env->current_tb = NULL;
590
                /* reset soft MMU for next block (it can currently
591
                   only be set by a memory fault) */
592
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
593
                if (env->hflags & HF_SOFTMMU_MASK) {
594
                    env->hflags &= ~HF_SOFTMMU_MASK;
595
                    /* do not allow linking to another block */
596
                    T0 = 0;
597
                }
598
#endif
599
            }
600
        } else {
601
            env_to_regs();
602
        }
603
    } /* for(;;) */
604

    
605

    
606
#if defined(TARGET_I386)
607
#if defined(USE_CODE_COPY)
608
    if (env->native_fp_regs) {
609
        save_native_fp_state(env);
610
    }
611
#endif
612
    /* restore flags in standard format */
613
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
614

    
615
    /* restore global registers */
616
#ifdef reg_EAX
617
    EAX = saved_EAX;
618
#endif
619
#ifdef reg_ECX
620
    ECX = saved_ECX;
621
#endif
622
#ifdef reg_EDX
623
    EDX = saved_EDX;
624
#endif
625
#ifdef reg_EBX
626
    EBX = saved_EBX;
627
#endif
628
#ifdef reg_ESP
629
    ESP = saved_ESP;
630
#endif
631
#ifdef reg_EBP
632
    EBP = saved_EBP;
633
#endif
634
#ifdef reg_ESI
635
    ESI = saved_ESI;
636
#endif
637
#ifdef reg_EDI
638
    EDI = saved_EDI;
639
#endif
640
#elif defined(TARGET_ARM)
641
    env->cpsr = compute_cpsr();
642
    /* XXX: Save/restore host fpu exception state?.  */
643
#elif defined(TARGET_SPARC)
644
#elif defined(TARGET_PPC)
645
#else
646
#error unsupported target CPU
647
#endif
648
#ifdef __sparc__
649
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
650
#endif
651
    T0 = saved_T0;
652
    T1 = saved_T1;
653
    T2 = saved_T2;
654
    env = saved_env;
655
    return ret;
656
}
657

    
658
/* must only be called from the generated code as an exception can be
659
   generated */
660
void tb_invalidate_page_range(target_ulong start, target_ulong end)
661
{
662
    /* XXX: cannot enable it yet because it yields to MMU exception
663
       where NIP != read address on PowerPC */
664
#if 0
665
    target_ulong phys_addr;
666
    phys_addr = get_phys_addr_code(env, start);
667
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
668
#endif
669
}
670

    
671
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
672

    
673
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
674
{
675
    CPUX86State *saved_env;
676

    
677
    saved_env = env;
678
    env = s;
679
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
680
        selector &= 0xffff;
681
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
682
                               (selector << 4), 0xffff, 0);
683
    } else {
684
        load_seg(seg_reg, selector);
685
    }
686
    env = saved_env;
687
}
688

    
689
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
690
{
691
    CPUX86State *saved_env;
692

    
693
    saved_env = env;
694
    env = s;
695
    
696
    helper_fsave((target_ulong)ptr, data32);
697

    
698
    env = saved_env;
699
}
700

    
701
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
702
{
703
    CPUX86State *saved_env;
704

    
705
    saved_env = env;
706
    env = s;
707
    
708
    helper_frstor((target_ulong)ptr, data32);
709

    
710
    env = saved_env;
711
}
712

    
713
#endif /* TARGET_I386 */
714

    
715
#if !defined(CONFIG_SOFTMMU)
716

    
717
#if defined(TARGET_I386)
718

    
719
/* 'pc' is the host PC at which the exception was raised. 'address' is
720
   the effective address of the memory exception. 'is_write' is 1 if a
721
   write caused the exception and otherwise 0'. 'old_set' is the
722
   signal set which should be restored */
723
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
724
                                    int is_write, sigset_t *old_set, 
725
                                    void *puc)
726
{
727
    TranslationBlock *tb;
728
    int ret;
729

    
730
    if (cpu_single_env)
731
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
732
#if defined(DEBUG_SIGNAL)
733
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
734
                pc, address, is_write, *(unsigned long *)old_set);
735
#endif
736
    /* XXX: locking issue */
737
    if (is_write && page_unprotect(address, pc, puc)) {
738
        return 1;
739
    }
740

    
741
    /* see if it is an MMU fault */
742
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
743
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
744
    if (ret < 0)
745
        return 0; /* not an MMU fault */
746
    if (ret == 0)
747
        return 1; /* the MMU fault was handled without causing real CPU fault */
748
    /* now we have a real cpu fault */
749
    tb = tb_find_pc(pc);
750
    if (tb) {
751
        /* the PC is inside the translated code. It means that we have
752
           a virtual CPU fault */
753
        cpu_restore_state(tb, env, pc, puc);
754
    }
755
    if (ret == 1) {
756
#if 0
757
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
758
               env->eip, env->cr[2], env->error_code);
759
#endif
760
        /* we restore the process signal mask as the sigreturn should
761
           do it (XXX: use sigsetjmp) */
762
        sigprocmask(SIG_SETMASK, old_set, NULL);
763
        raise_exception_err(EXCP0E_PAGE, env->error_code);
764
    } else {
765
        /* activate soft MMU for this block */
766
        env->hflags |= HF_SOFTMMU_MASK;
767
        cpu_resume_from_signal(env, puc);
768
    }
769
    /* never comes here */
770
    return 1;
771
}
772

    
773
#elif defined(TARGET_ARM)
774
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
775
                                    int is_write, sigset_t *old_set,
776
                                    void *puc)
777
{
778
    TranslationBlock *tb;
779
    int ret;
780

    
781
    if (cpu_single_env)
782
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
783
#if defined(DEBUG_SIGNAL)
784
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
785
           pc, address, is_write, *(unsigned long *)old_set);
786
#endif
787
    /* XXX: locking issue */
788
    if (is_write && page_unprotect(address, pc, puc)) {
789
        return 1;
790
    }
791
    /* see if it is an MMU fault */
792
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
793
    if (ret < 0)
794
        return 0; /* not an MMU fault */
795
    if (ret == 0)
796
        return 1; /* the MMU fault was handled without causing real CPU fault */
797
    /* now we have a real cpu fault */
798
    tb = tb_find_pc(pc);
799
    if (tb) {
800
        /* the PC is inside the translated code. It means that we have
801
           a virtual CPU fault */
802
        cpu_restore_state(tb, env, pc, puc);
803
    }
804
    /* we restore the process signal mask as the sigreturn should
805
       do it (XXX: use sigsetjmp) */
806
    sigprocmask(SIG_SETMASK, old_set, NULL);
807
    cpu_loop_exit();
808
}
809
#elif defined(TARGET_SPARC)
810
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
811
                                    int is_write, sigset_t *old_set,
812
                                    void *puc)
813
{
814
    TranslationBlock *tb;
815
    int ret;
816

    
817
    if (cpu_single_env)
818
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
819
#if defined(DEBUG_SIGNAL)
820
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
821
           pc, address, is_write, *(unsigned long *)old_set);
822
#endif
823
    /* XXX: locking issue */
824
    if (is_write && page_unprotect(address, pc, puc)) {
825
        return 1;
826
    }
827
    /* see if it is an MMU fault */
828
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
829
    if (ret < 0)
830
        return 0; /* not an MMU fault */
831
    if (ret == 0)
832
        return 1; /* the MMU fault was handled without causing real CPU fault */
833
    /* now we have a real cpu fault */
834
    tb = tb_find_pc(pc);
835
    if (tb) {
836
        /* the PC is inside the translated code. It means that we have
837
           a virtual CPU fault */
838
        cpu_restore_state(tb, env, pc, puc);
839
    }
840
    /* we restore the process signal mask as the sigreturn should
841
       do it (XXX: use sigsetjmp) */
842
    sigprocmask(SIG_SETMASK, old_set, NULL);
843
    cpu_loop_exit();
844
}
845
#elif defined (TARGET_PPC)
846
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
847
                                    int is_write, sigset_t *old_set,
848
                                    void *puc)
849
{
850
    TranslationBlock *tb;
851
    int ret;
852
    
853
    if (cpu_single_env)
854
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
855
#if defined(DEBUG_SIGNAL)
856
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
857
           pc, address, is_write, *(unsigned long *)old_set);
858
#endif
859
    /* XXX: locking issue */
860
    if (is_write && page_unprotect(address, pc, puc)) {
861
        return 1;
862
    }
863

    
864
    /* see if it is an MMU fault */
865
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
866
    if (ret < 0)
867
        return 0; /* not an MMU fault */
868
    if (ret == 0)
869
        return 1; /* the MMU fault was handled without causing real CPU fault */
870

    
871
    /* now we have a real cpu fault */
872
    tb = tb_find_pc(pc);
873
    if (tb) {
874
        /* the PC is inside the translated code. It means that we have
875
           a virtual CPU fault */
876
        cpu_restore_state(tb, env, pc, puc);
877
    }
878
    if (ret == 1) {
879
#if 0
880
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
881
               env->nip, env->error_code, tb);
882
#endif
883
    /* we restore the process signal mask as the sigreturn should
884
       do it (XXX: use sigsetjmp) */
885
        sigprocmask(SIG_SETMASK, old_set, NULL);
886
        do_raise_exception_err(env->exception_index, env->error_code);
887
    } else {
888
        /* activate soft MMU for this block */
889
        cpu_resume_from_signal(env, puc);
890
    }
891
    /* never comes here */
892
    return 1;
893
}
894
#else
895
#error unsupported target CPU
896
#endif
897

    
898
#if defined(__i386__)
899

    
900
#if defined(USE_CODE_COPY)
901
static void cpu_send_trap(unsigned long pc, int trap, 
902
                          struct ucontext *uc)
903
{
904
    TranslationBlock *tb;
905

    
906
    if (cpu_single_env)
907
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
908
    /* now we have a real cpu fault */
909
    tb = tb_find_pc(pc);
910
    if (tb) {
911
        /* the PC is inside the translated code. It means that we have
912
           a virtual CPU fault */
913
        cpu_restore_state(tb, env, pc, uc);
914
    }
915
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
916
    raise_exception_err(trap, env->error_code);
917
}
918
#endif
919

    
920
int cpu_signal_handler(int host_signum, struct siginfo *info, 
921
                       void *puc)
922
{
923
    struct ucontext *uc = puc;
924
    unsigned long pc;
925
    int trapno;
926

    
927
#ifndef REG_EIP
928
/* for glibc 2.1 */
929
#define REG_EIP    EIP
930
#define REG_ERR    ERR
931
#define REG_TRAPNO TRAPNO
932
#endif
933
    pc = uc->uc_mcontext.gregs[REG_EIP];
934
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
935
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
936
    if (trapno == 0x00 || trapno == 0x05) {
937
        /* send division by zero or bound exception */
938
        cpu_send_trap(pc, trapno, uc);
939
        return 1;
940
    } else
941
#endif
942
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
943
                                 trapno == 0xe ? 
944
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
945
                                 &uc->uc_sigmask, puc);
946
}
947

    
948
#elif defined(__x86_64__)
949

    
950
int cpu_signal_handler(int host_signum, struct siginfo *info,
951
                       void *puc)
952
{
953
    struct ucontext *uc = puc;
954
    unsigned long pc;
955

    
956
    pc = uc->uc_mcontext.gregs[REG_RIP];
957
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
958
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
959
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
960
                             &uc->uc_sigmask, puc);
961
}
962

    
963
#elif defined(__powerpc__)
964

    
965
/***********************************************************************
966
 * signal context platform-specific definitions
967
 * From Wine
968
 */
969
#ifdef linux
970
/* All Registers access - only for local access */
971
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
972
/* Gpr Registers access  */
973
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
974
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
975
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
976
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
977
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
978
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
979
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
980
/* Float Registers access  */
981
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
982
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
983
/* Exception Registers access */
984
# define DAR_sig(context)                        REG_sig(dar, context)
985
# define DSISR_sig(context)                        REG_sig(dsisr, context)
986
# define TRAP_sig(context)                        REG_sig(trap, context)
987
#endif /* linux */
988

    
989
#ifdef __APPLE__
990
# include <sys/ucontext.h>
991
typedef struct ucontext SIGCONTEXT;
992
/* All Registers access - only for local access */
993
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
994
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
995
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
996
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
997
/* Gpr Registers access */
998
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
999
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1000
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1001
# define CTR_sig(context)                        REG_sig(ctr, context)
1002
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1003
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1004
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1005
/* Float Registers access */
1006
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1007
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1008
/* Exception Registers access */
1009
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1010
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1011
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1012
#endif /* __APPLE__ */
1013

    
1014
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1015
                       void *puc)
1016
{
1017
    struct ucontext *uc = puc;
1018
    unsigned long pc;
1019
    int is_write;
1020

    
1021
    pc = IAR_sig(uc);
1022
    is_write = 0;
1023
#if 0
1024
    /* ppc 4xx case */
1025
    if (DSISR_sig(uc) & 0x00800000)
1026
        is_write = 1;
1027
#else
1028
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1029
        is_write = 1;
1030
#endif
1031
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1032
                             is_write, &uc->uc_sigmask, puc);
1033
}
1034

    
1035
#elif defined(__alpha__)
1036

    
1037
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1038
                           void *puc)
1039
{
1040
    struct ucontext *uc = puc;
1041
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1042
    uint32_t insn = *pc;
1043
    int is_write = 0;
1044

    
1045
    /* XXX: need kernel patch to get write flag faster */
1046
    switch (insn >> 26) {
1047
    case 0x0d: // stw
1048
    case 0x0e: // stb
1049
    case 0x0f: // stq_u
1050
    case 0x24: // stf
1051
    case 0x25: // stg
1052
    case 0x26: // sts
1053
    case 0x27: // stt
1054
    case 0x2c: // stl
1055
    case 0x2d: // stq
1056
    case 0x2e: // stl_c
1057
    case 0x2f: // stq_c
1058
        is_write = 1;
1059
    }
1060

    
1061
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1062
                             is_write, &uc->uc_sigmask, puc);
1063
}
1064
#elif defined(__sparc__)
1065

    
1066
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1067
                       void *puc)
1068
{
1069
    uint32_t *regs = (uint32_t *)(info + 1);
1070
    void *sigmask = (regs + 20);
1071
    unsigned long pc;
1072
    int is_write;
1073
    uint32_t insn;
1074
    
1075
    /* XXX: is there a standard glibc define ? */
1076
    pc = regs[1];
1077
    /* XXX: need kernel patch to get write flag faster */
1078
    is_write = 0;
1079
    insn = *(uint32_t *)pc;
1080
    if ((insn >> 30) == 3) {
1081
      switch((insn >> 19) & 0x3f) {
1082
      case 0x05: // stb
1083
      case 0x06: // sth
1084
      case 0x04: // st
1085
      case 0x07: // std
1086
      case 0x24: // stf
1087
      case 0x27: // stdf
1088
      case 0x25: // stfsr
1089
        is_write = 1;
1090
        break;
1091
      }
1092
    }
1093
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1094
                             is_write, sigmask, NULL);
1095
}
1096

    
1097
#elif defined(__arm__)
1098

    
1099
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1100
                       void *puc)
1101
{
1102
    struct ucontext *uc = puc;
1103
    unsigned long pc;
1104
    int is_write;
1105
    
1106
    pc = uc->uc_mcontext.gregs[R15];
1107
    /* XXX: compute is_write */
1108
    is_write = 0;
1109
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1110
                             is_write,
1111
                             &uc->uc_sigmask);
1112
}
1113

    
1114
#elif defined(__mc68000)
1115

    
1116
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1117
                       void *puc)
1118
{
1119
    struct ucontext *uc = puc;
1120
    unsigned long pc;
1121
    int is_write;
1122
    
1123
    pc = uc->uc_mcontext.gregs[16];
1124
    /* XXX: compute is_write */
1125
    is_write = 0;
1126
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1127
                             is_write,
1128
                             &uc->uc_sigmask, puc);
1129
}
1130

    
1131
#elif defined(__ia64)
1132

    
1133
#ifndef __ISR_VALID
1134
  /* This ought to be in <bits/siginfo.h>... */
1135
# define __ISR_VALID        1
1136
# define si_flags        _sifields._sigfault._si_pad0
1137
#endif
1138

    
1139
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1140
{
1141
    struct ucontext *uc = puc;
1142
    unsigned long ip;
1143
    int is_write = 0;
1144

    
1145
    ip = uc->uc_mcontext.sc_ip;
1146
    switch (host_signum) {
1147
      case SIGILL:
1148
      case SIGFPE:
1149
      case SIGSEGV:
1150
      case SIGBUS:
1151
      case SIGTRAP:
1152
          if (info->si_code && (info->si_flags & __ISR_VALID))
1153
              /* ISR.W (write-access) is bit 33:  */
1154
              is_write = (info->si_isr >> 33) & 1;
1155
          break;
1156

    
1157
      default:
1158
          break;
1159
    }
1160
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1161
                             is_write,
1162
                             &uc->uc_sigmask, puc);
1163
}
1164

    
1165
#else
1166

    
1167
#error host CPU specific signal handler needed
1168

    
1169
#endif
1170

    
1171
#endif /* !defined(CONFIG_SOFTMMU) */