Statistics
| Branch: | Revision:

root / fpu / softfloat-native.h @ 128ab2ff

History | View | Annotate | Download (11.9 kB)

1
/* Native implementation of soft float functions */
2
#include <math.h>
3

    
4
#if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
5
#include <ieeefp.h>
6
#define fabsf(f) ((float)fabs(f))
7
#else
8
#include <fenv.h>
9
#endif
10

    
11
/*
12
 * Define some C99-7.12.3 classification macros and
13
 *        some C99-.12.4 for Solaris systems OS less than 10,
14
 *        or Solaris 10 systems running GCC 3.x or less.
15
 *   Solaris 10 with GCC4 does not need these macros as they
16
 *   are defined in <iso/math_c99.h> with a compiler directive
17
 */
18
#if defined(HOST_SOLARIS) && (( HOST_SOLARIS <= 9 ) || ((HOST_SOLARIS >= 10) \
19
                                                        && (__GNUC__ <= 4))) \
20
    || defined(__OpenBSD__)
21
/*
22
 * C99 7.12.3 classification macros
23
 * and
24
 * C99 7.12.14 comparison macros
25
 *
26
 * ... do not work on Solaris 10 using GNU CC 3.4.x.
27
 * Try to workaround the missing / broken C99 math macros.
28
 */
29
#if defined(__OpenBSD__)
30
#define unordered(x, y) (isnan(x) || isnan(y))
31
#endif
32

    
33
#define isnormal(x)             (fpclass(x) >= FP_NZERO)
34
#define isgreater(x, y)         ((!unordered(x, y)) && ((x) > (y)))
35
#define isgreaterequal(x, y)    ((!unordered(x, y)) && ((x) >= (y)))
36
#define isless(x, y)            ((!unordered(x, y)) && ((x) < (y)))
37
#define islessequal(x, y)       ((!unordered(x, y)) && ((x) <= (y)))
38
#define isunordered(x,y)        unordered(x, y)
39
#endif
40

    
41
#if defined(__sun__) && !defined(NEED_LIBSUNMATH)
42

    
43
#ifndef isnan
44
# define isnan(x) \
45
    (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
46
     : sizeof (x) == sizeof (double) ? isnan_d (x) \
47
     : isnan_f (x))
48
static inline int isnan_f  (float       x) { return x != x; }
49
static inline int isnan_d  (double      x) { return x != x; }
50
static inline int isnan_ld (long double x) { return x != x; }
51
#endif
52

    
53
#ifndef isinf
54
# define isinf(x) \
55
    (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
56
     : sizeof (x) == sizeof (double) ? isinf_d (x) \
57
     : isinf_f (x))
58
static inline int isinf_f  (float       x) { return isnan (x - x); }
59
static inline int isinf_d  (double      x) { return isnan (x - x); }
60
static inline int isinf_ld (long double x) { return isnan (x - x); }
61
#endif
62
#endif
63

    
64
typedef float float32;
65
typedef double float64;
66
#ifdef FLOATX80
67
typedef long double floatx80;
68
#endif
69

    
70
typedef union {
71
    float32 f;
72
    uint32_t i;
73
} float32u;
74
typedef union {
75
    float64 f;
76
    uint64_t i;
77
} float64u;
78
#ifdef FLOATX80
79
typedef union {
80
    floatx80 f;
81
    struct {
82
        uint64_t low;
83
        uint16_t high;
84
    } i;
85
} floatx80u;
86
#endif
87

    
88
/*----------------------------------------------------------------------------
89
| Software IEC/IEEE floating-point rounding mode.
90
*----------------------------------------------------------------------------*/
91
#if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
92
#if defined(__OpenBSD__)
93
#define FE_RM FP_RM
94
#define FE_RP FP_RP
95
#define FE_RZ FP_RZ
96
#endif
97
enum {
98
    float_round_nearest_even = FP_RN,
99
    float_round_down         = FP_RM,
100
    float_round_up           = FP_RP,
101
    float_round_to_zero      = FP_RZ
102
};
103
#elif defined(__arm__)
104
enum {
105
    float_round_nearest_even = 0,
106
    float_round_down         = 1,
107
    float_round_up           = 2,
108
    float_round_to_zero      = 3
109
};
110
#else
111
enum {
112
    float_round_nearest_even = FE_TONEAREST,
113
    float_round_down         = FE_DOWNWARD,
114
    float_round_up           = FE_UPWARD,
115
    float_round_to_zero      = FE_TOWARDZERO
116
};
117
#endif
118

    
119
typedef struct float_status {
120
    signed char float_rounding_mode;
121
#ifdef FLOATX80
122
    signed char floatx80_rounding_precision;
123
#endif
124
} float_status;
125

    
126
void set_float_rounding_mode(int val STATUS_PARAM);
127
#ifdef FLOATX80
128
void set_floatx80_rounding_precision(int val STATUS_PARAM);
129
#endif
130

    
131
/*----------------------------------------------------------------------------
132
| Software IEC/IEEE integer-to-floating-point conversion routines.
133
*----------------------------------------------------------------------------*/
134
float32 int32_to_float32( int STATUS_PARAM);
135
float32 uint32_to_float32( unsigned int STATUS_PARAM);
136
float64 int32_to_float64( int STATUS_PARAM);
137
float64 uint32_to_float64( unsigned int STATUS_PARAM);
138
#ifdef FLOATX80
139
floatx80 int32_to_floatx80( int STATUS_PARAM);
140
#endif
141
#ifdef FLOAT128
142
float128 int32_to_float128( int STATUS_PARAM);
143
#endif
144
float32 int64_to_float32( int64_t STATUS_PARAM);
145
float32 uint64_to_float32( uint64_t STATUS_PARAM);
146
float64 int64_to_float64( int64_t STATUS_PARAM);
147
float64 uint64_to_float64( uint64_t v STATUS_PARAM);
148
#ifdef FLOATX80
149
floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
150
#endif
151
#ifdef FLOAT128
152
float128 int64_to_float128( int64_t STATUS_PARAM);
153
#endif
154

    
155
/*----------------------------------------------------------------------------
156
| Software IEC/IEEE single-precision conversion routines.
157
*----------------------------------------------------------------------------*/
158
int float32_to_int32( float32  STATUS_PARAM);
159
int float32_to_int32_round_to_zero( float32  STATUS_PARAM);
160
unsigned int float32_to_uint32( float32 a STATUS_PARAM);
161
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
162
int64_t float32_to_int64( float32  STATUS_PARAM);
163
int64_t float32_to_int64_round_to_zero( float32  STATUS_PARAM);
164
float64 float32_to_float64( float32  STATUS_PARAM);
165
#ifdef FLOATX80
166
floatx80 float32_to_floatx80( float32  STATUS_PARAM);
167
#endif
168
#ifdef FLOAT128
169
float128 float32_to_float128( float32  STATUS_PARAM);
170
#endif
171

    
172
/*----------------------------------------------------------------------------
173
| Software IEC/IEEE single-precision operations.
174
*----------------------------------------------------------------------------*/
175
float32 float32_round_to_int( float32  STATUS_PARAM);
176
INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
177
{
178
    return a + b;
179
}
180
INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
181
{
182
    return a - b;
183
}
184
INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
185
{
186
    return a * b;
187
}
188
INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
189
{
190
    return a / b;
191
}
192
float32 float32_rem( float32, float32  STATUS_PARAM);
193
float32 float32_sqrt( float32  STATUS_PARAM);
194
INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
195
{
196
    return a == b;
197
}
198
INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
199
{
200
    return a <= b;
201
}
202
INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
203
{
204
    return a < b;
205
}
206
INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
207
{
208
    return a <= b && a >= b;
209
}
210
INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
211
{
212
    return islessequal(a, b);
213
}
214
INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
215
{
216
    return isless(a, b);
217
}
218
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
219
{
220
    return isunordered(a, b);
221

    
222
}
223
int float32_compare( float32, float32 STATUS_PARAM );
224
int float32_compare_quiet( float32, float32 STATUS_PARAM );
225
int float32_is_signaling_nan( float32 );
226

    
227
INLINE float32 float32_abs(float32 a)
228
{
229
    return fabsf(a);
230
}
231

    
232
INLINE float32 float32_chs(float32 a)
233
{
234
    return -a;
235
}
236

    
237
INLINE float32 float32_scalbn(float32 a, int n)
238
{
239
    return scalbnf(a, n);
240
}
241

    
242
/*----------------------------------------------------------------------------
243
| Software IEC/IEEE double-precision conversion routines.
244
*----------------------------------------------------------------------------*/
245
int float64_to_int32( float64 STATUS_PARAM );
246
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
247
unsigned int float64_to_uint32( float64 STATUS_PARAM );
248
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
249
int64_t float64_to_int64( float64 STATUS_PARAM );
250
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
251
uint64_t float64_to_uint64( float64 STATUS_PARAM );
252
uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
253
float32 float64_to_float32( float64 STATUS_PARAM );
254
#ifdef FLOATX80
255
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
256
#endif
257
#ifdef FLOAT128
258
float128 float64_to_float128( float64 STATUS_PARAM );
259
#endif
260

    
261
/*----------------------------------------------------------------------------
262
| Software IEC/IEEE double-precision operations.
263
*----------------------------------------------------------------------------*/
264
float64 float64_round_to_int( float64 STATUS_PARAM );
265
float64 float64_trunc_to_int( float64 STATUS_PARAM );
266
INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
267
{
268
    return a + b;
269
}
270
INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
271
{
272
    return a - b;
273
}
274
INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
275
{
276
    return a * b;
277
}
278
INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
279
{
280
    return a / b;
281
}
282
float64 float64_rem( float64, float64 STATUS_PARAM );
283
float64 float64_sqrt( float64 STATUS_PARAM );
284
INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
285
{
286
    return a == b;
287
}
288
INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
289
{
290
    return a <= b;
291
}
292
INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
293
{
294
    return a < b;
295
}
296
INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
297
{
298
    return a <= b && a >= b;
299
}
300
INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
301
{
302
    return islessequal(a, b);
303
}
304
INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
305
{
306
    return isless(a, b);
307

    
308
}
309
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
310
{
311
    return isunordered(a, b);
312

    
313
}
314
int float64_compare( float64, float64 STATUS_PARAM );
315
int float64_compare_quiet( float64, float64 STATUS_PARAM );
316
int float64_is_signaling_nan( float64 );
317
int float64_is_nan( float64 );
318

    
319
INLINE float64 float64_abs(float64 a)
320
{
321
    return fabs(a);
322
}
323

    
324
INLINE float64 float64_chs(float64 a)
325
{
326
    return -a;
327
}
328

    
329
INLINE float64 float64_scalbn(float64 a, int n)
330
{
331
    return scalbn(a, n);
332
}
333

    
334
#ifdef FLOATX80
335

    
336
/*----------------------------------------------------------------------------
337
| Software IEC/IEEE extended double-precision conversion routines.
338
*----------------------------------------------------------------------------*/
339
int floatx80_to_int32( floatx80 STATUS_PARAM );
340
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
341
int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
342
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
343
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
344
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
345
#ifdef FLOAT128
346
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
347
#endif
348

    
349
/*----------------------------------------------------------------------------
350
| Software IEC/IEEE extended double-precision operations.
351
*----------------------------------------------------------------------------*/
352
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
353
INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
354
{
355
    return a + b;
356
}
357
INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
358
{
359
    return a - b;
360
}
361
INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
362
{
363
    return a * b;
364
}
365
INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
366
{
367
    return a / b;
368
}
369
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
370
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
371
INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
372
{
373
    return a == b;
374
}
375
INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
376
{
377
    return a <= b;
378
}
379
INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
380
{
381
    return a < b;
382
}
383
INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
384
{
385
    return a <= b && a >= b;
386
}
387
INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
388
{
389
    return islessequal(a, b);
390
}
391
INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
392
{
393
    return isless(a, b);
394

    
395
}
396
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
397
{
398
    return isunordered(a, b);
399

    
400
}
401
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
402
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
403
int floatx80_is_signaling_nan( floatx80 );
404

    
405
INLINE floatx80 floatx80_abs(floatx80 a)
406
{
407
    return fabsl(a);
408
}
409

    
410
INLINE floatx80 floatx80_chs(floatx80 a)
411
{
412
    return -a;
413
}
414

    
415
INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
416
{
417
    return scalbnl(a, n);
418
}
419

    
420
#endif