root / linux-user / vm86.c @ 1455bf48
History | View | Annotate | Download (15.3 kB)
1 |
/*
|
---|---|
2 |
* vm86 linux syscall support
|
3 |
*
|
4 |
* Copyright (c) 2003 Fabrice Bellard
|
5 |
*
|
6 |
* This program is free software; you can redistribute it and/or modify
|
7 |
* it under the terms of the GNU General Public License as published by
|
8 |
* the Free Software Foundation; either version 2 of the License, or
|
9 |
* (at your option) any later version.
|
10 |
*
|
11 |
* This program is distributed in the hope that it will be useful,
|
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
* GNU General Public License for more details.
|
15 |
*
|
16 |
* You should have received a copy of the GNU General Public License
|
17 |
* along with this program; if not, write to the Free Software
|
18 |
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
19 |
*/
|
20 |
#include <stdlib.h> |
21 |
#include <stdio.h> |
22 |
#include <stdarg.h> |
23 |
#include <string.h> |
24 |
#include <errno.h> |
25 |
#include <unistd.h> |
26 |
|
27 |
#include "qemu.h" |
28 |
|
29 |
//#define DEBUG_VM86
|
30 |
|
31 |
#define set_flags(X,new,mask) \
|
32 |
((X) = ((X) & ~(mask)) | ((new) & (mask))) |
33 |
|
34 |
#define SAFE_MASK (0xDD5) |
35 |
#define RETURN_MASK (0xDFF) |
36 |
|
37 |
static inline int is_revectored(int nr, struct target_revectored_struct *bitmap) |
38 |
{ |
39 |
return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1; |
40 |
} |
41 |
|
42 |
static inline void vm_putw(uint32_t segptr, unsigned int reg16, unsigned int val) |
43 |
{ |
44 |
stw(segptr + (reg16 & 0xffff), val);
|
45 |
} |
46 |
|
47 |
static inline void vm_putl(uint32_t segptr, unsigned int reg16, unsigned int val) |
48 |
{ |
49 |
stl(segptr + (reg16 & 0xffff), val);
|
50 |
} |
51 |
|
52 |
static inline unsigned int vm_getb(uint32_t segptr, unsigned int reg16) |
53 |
{ |
54 |
return ldub(segptr + (reg16 & 0xffff)); |
55 |
} |
56 |
|
57 |
static inline unsigned int vm_getw(uint32_t segptr, unsigned int reg16) |
58 |
{ |
59 |
return lduw(segptr + (reg16 & 0xffff)); |
60 |
} |
61 |
|
62 |
static inline unsigned int vm_getl(uint32_t segptr, unsigned int reg16) |
63 |
{ |
64 |
return ldl(segptr + (reg16 & 0xffff)); |
65 |
} |
66 |
|
67 |
void save_v86_state(CPUX86State *env)
|
68 |
{ |
69 |
TaskState *ts = env->opaque; |
70 |
struct target_vm86plus_struct * target_v86;
|
71 |
|
72 |
if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0)) |
73 |
/* FIXME - should return an error */
|
74 |
return;
|
75 |
/* put the VM86 registers in the userspace register structure */
|
76 |
target_v86->regs.eax = tswap32(env->regs[R_EAX]); |
77 |
target_v86->regs.ebx = tswap32(env->regs[R_EBX]); |
78 |
target_v86->regs.ecx = tswap32(env->regs[R_ECX]); |
79 |
target_v86->regs.edx = tswap32(env->regs[R_EDX]); |
80 |
target_v86->regs.esi = tswap32(env->regs[R_ESI]); |
81 |
target_v86->regs.edi = tswap32(env->regs[R_EDI]); |
82 |
target_v86->regs.ebp = tswap32(env->regs[R_EBP]); |
83 |
target_v86->regs.esp = tswap32(env->regs[R_ESP]); |
84 |
target_v86->regs.eip = tswap32(env->eip); |
85 |
target_v86->regs.cs = tswap16(env->segs[R_CS].selector); |
86 |
target_v86->regs.ss = tswap16(env->segs[R_SS].selector); |
87 |
target_v86->regs.ds = tswap16(env->segs[R_DS].selector); |
88 |
target_v86->regs.es = tswap16(env->segs[R_ES].selector); |
89 |
target_v86->regs.fs = tswap16(env->segs[R_FS].selector); |
90 |
target_v86->regs.gs = tswap16(env->segs[R_GS].selector); |
91 |
set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask); |
92 |
target_v86->regs.eflags = tswap32(env->eflags); |
93 |
unlock_user_struct(target_v86, ts->target_v86, 1);
|
94 |
#ifdef DEBUG_VM86
|
95 |
fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
|
96 |
env->eflags, env->segs[R_CS].selector, env->eip); |
97 |
#endif
|
98 |
|
99 |
/* restore 32 bit registers */
|
100 |
env->regs[R_EAX] = ts->vm86_saved_regs.eax; |
101 |
env->regs[R_EBX] = ts->vm86_saved_regs.ebx; |
102 |
env->regs[R_ECX] = ts->vm86_saved_regs.ecx; |
103 |
env->regs[R_EDX] = ts->vm86_saved_regs.edx; |
104 |
env->regs[R_ESI] = ts->vm86_saved_regs.esi; |
105 |
env->regs[R_EDI] = ts->vm86_saved_regs.edi; |
106 |
env->regs[R_EBP] = ts->vm86_saved_regs.ebp; |
107 |
env->regs[R_ESP] = ts->vm86_saved_regs.esp; |
108 |
env->eflags = ts->vm86_saved_regs.eflags; |
109 |
env->eip = ts->vm86_saved_regs.eip; |
110 |
|
111 |
cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs); |
112 |
cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss); |
113 |
cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds); |
114 |
cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es); |
115 |
cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs); |
116 |
cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs); |
117 |
} |
118 |
|
119 |
/* return from vm86 mode to 32 bit. The vm86() syscall will return
|
120 |
'retval' */
|
121 |
static inline void return_to_32bit(CPUX86State *env, int retval) |
122 |
{ |
123 |
#ifdef DEBUG_VM86
|
124 |
fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval);
|
125 |
#endif
|
126 |
save_v86_state(env); |
127 |
env->regs[R_EAX] = retval; |
128 |
} |
129 |
|
130 |
static inline int set_IF(CPUX86State *env) |
131 |
{ |
132 |
TaskState *ts = env->opaque; |
133 |
|
134 |
ts->v86flags |= VIF_MASK; |
135 |
if (ts->v86flags & VIP_MASK) {
|
136 |
return_to_32bit(env, TARGET_VM86_STI); |
137 |
return 1; |
138 |
} |
139 |
return 0; |
140 |
} |
141 |
|
142 |
static inline void clear_IF(CPUX86State *env) |
143 |
{ |
144 |
TaskState *ts = env->opaque; |
145 |
|
146 |
ts->v86flags &= ~VIF_MASK; |
147 |
} |
148 |
|
149 |
static inline void clear_TF(CPUX86State *env) |
150 |
{ |
151 |
env->eflags &= ~TF_MASK; |
152 |
} |
153 |
|
154 |
static inline void clear_AC(CPUX86State *env) |
155 |
{ |
156 |
env->eflags &= ~AC_MASK; |
157 |
} |
158 |
|
159 |
static inline int set_vflags_long(unsigned long eflags, CPUX86State *env) |
160 |
{ |
161 |
TaskState *ts = env->opaque; |
162 |
|
163 |
set_flags(ts->v86flags, eflags, ts->v86mask); |
164 |
set_flags(env->eflags, eflags, SAFE_MASK); |
165 |
if (eflags & IF_MASK)
|
166 |
return set_IF(env);
|
167 |
else
|
168 |
clear_IF(env); |
169 |
return 0; |
170 |
} |
171 |
|
172 |
static inline int set_vflags_short(unsigned short flags, CPUX86State *env) |
173 |
{ |
174 |
TaskState *ts = env->opaque; |
175 |
|
176 |
set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
|
177 |
set_flags(env->eflags, flags, SAFE_MASK); |
178 |
if (flags & IF_MASK)
|
179 |
return set_IF(env);
|
180 |
else
|
181 |
clear_IF(env); |
182 |
return 0; |
183 |
} |
184 |
|
185 |
static inline unsigned int get_vflags(CPUX86State *env) |
186 |
{ |
187 |
TaskState *ts = env->opaque; |
188 |
unsigned int flags; |
189 |
|
190 |
flags = env->eflags & RETURN_MASK; |
191 |
if (ts->v86flags & VIF_MASK)
|
192 |
flags |= IF_MASK; |
193 |
flags |= IOPL_MASK; |
194 |
return flags | (ts->v86flags & ts->v86mask);
|
195 |
} |
196 |
|
197 |
#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff) |
198 |
|
199 |
/* handle VM86 interrupt (NOTE: the CPU core currently does not
|
200 |
support TSS interrupt revectoring, so this code is always executed) */
|
201 |
static void do_int(CPUX86State *env, int intno) |
202 |
{ |
203 |
TaskState *ts = env->opaque; |
204 |
uint32_t int_addr, segoffs, ssp; |
205 |
unsigned int sp; |
206 |
|
207 |
if (env->segs[R_CS].selector == TARGET_BIOSSEG)
|
208 |
goto cannot_handle;
|
209 |
if (is_revectored(intno, &ts->vm86plus.int_revectored))
|
210 |
goto cannot_handle;
|
211 |
if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, |
212 |
&ts->vm86plus.int21_revectored)) |
213 |
goto cannot_handle;
|
214 |
int_addr = (intno << 2);
|
215 |
segoffs = ldl(int_addr); |
216 |
if ((segoffs >> 16) == TARGET_BIOSSEG) |
217 |
goto cannot_handle;
|
218 |
#if defined(DEBUG_VM86)
|
219 |
fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
|
220 |
intno, segoffs >> 16, segoffs & 0xffff); |
221 |
#endif
|
222 |
/* save old state */
|
223 |
ssp = env->segs[R_SS].selector << 4;
|
224 |
sp = env->regs[R_ESP] & 0xffff;
|
225 |
vm_putw(ssp, sp - 2, get_vflags(env));
|
226 |
vm_putw(ssp, sp - 4, env->segs[R_CS].selector);
|
227 |
vm_putw(ssp, sp - 6, env->eip);
|
228 |
ADD16(env->regs[R_ESP], -6);
|
229 |
/* goto interrupt handler */
|
230 |
env->eip = segoffs & 0xffff;
|
231 |
cpu_x86_load_seg(env, R_CS, segoffs >> 16);
|
232 |
clear_TF(env); |
233 |
clear_IF(env); |
234 |
clear_AC(env); |
235 |
return;
|
236 |
cannot_handle:
|
237 |
#if defined(DEBUG_VM86)
|
238 |
fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno);
|
239 |
#endif
|
240 |
return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
|
241 |
} |
242 |
|
243 |
void handle_vm86_trap(CPUX86State *env, int trapno) |
244 |
{ |
245 |
if (trapno == 1 || trapno == 3) { |
246 |
return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
|
247 |
} else {
|
248 |
do_int(env, trapno); |
249 |
} |
250 |
} |
251 |
|
252 |
#define CHECK_IF_IN_TRAP() \
|
253 |
if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
|
254 |
(ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \ |
255 |
newflags |= TF_MASK |
256 |
|
257 |
#define VM86_FAULT_RETURN \
|
258 |
if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
|
259 |
(ts->v86flags & (IF_MASK | VIF_MASK))) \ |
260 |
return_to_32bit(env, TARGET_VM86_PICRETURN); \ |
261 |
return
|
262 |
|
263 |
void handle_vm86_fault(CPUX86State *env)
|
264 |
{ |
265 |
TaskState *ts = env->opaque; |
266 |
uint32_t csp, ssp; |
267 |
unsigned int ip, sp, newflags, newip, newcs, opcode, intno; |
268 |
int data32, pref_done;
|
269 |
|
270 |
csp = env->segs[R_CS].selector << 4;
|
271 |
ip = env->eip & 0xffff;
|
272 |
|
273 |
ssp = env->segs[R_SS].selector << 4;
|
274 |
sp = env->regs[R_ESP] & 0xffff;
|
275 |
|
276 |
#if defined(DEBUG_VM86)
|
277 |
fprintf(logfile, "VM86 exception %04x:%08x\n",
|
278 |
env->segs[R_CS].selector, env->eip); |
279 |
#endif
|
280 |
|
281 |
data32 = 0;
|
282 |
pref_done = 0;
|
283 |
do {
|
284 |
opcode = vm_getb(csp, ip); |
285 |
ADD16(ip, 1);
|
286 |
switch (opcode) {
|
287 |
case 0x66: /* 32-bit data */ data32=1; break; |
288 |
case 0x67: /* 32-bit address */ break; |
289 |
case 0x2e: /* CS */ break; |
290 |
case 0x3e: /* DS */ break; |
291 |
case 0x26: /* ES */ break; |
292 |
case 0x36: /* SS */ break; |
293 |
case 0x65: /* GS */ break; |
294 |
case 0x64: /* FS */ break; |
295 |
case 0xf2: /* repnz */ break; |
296 |
case 0xf3: /* rep */ break; |
297 |
default: pref_done = 1; |
298 |
} |
299 |
} while (!pref_done);
|
300 |
|
301 |
/* VM86 mode */
|
302 |
switch(opcode) {
|
303 |
case 0x9c: /* pushf */ |
304 |
if (data32) {
|
305 |
vm_putl(ssp, sp - 4, get_vflags(env));
|
306 |
ADD16(env->regs[R_ESP], -4);
|
307 |
} else {
|
308 |
vm_putw(ssp, sp - 2, get_vflags(env));
|
309 |
ADD16(env->regs[R_ESP], -2);
|
310 |
} |
311 |
env->eip = ip; |
312 |
VM86_FAULT_RETURN; |
313 |
|
314 |
case 0x9d: /* popf */ |
315 |
if (data32) {
|
316 |
newflags = vm_getl(ssp, sp); |
317 |
ADD16(env->regs[R_ESP], 4);
|
318 |
} else {
|
319 |
newflags = vm_getw(ssp, sp); |
320 |
ADD16(env->regs[R_ESP], 2);
|
321 |
} |
322 |
env->eip = ip; |
323 |
CHECK_IF_IN_TRAP(); |
324 |
if (data32) {
|
325 |
if (set_vflags_long(newflags, env))
|
326 |
return;
|
327 |
} else {
|
328 |
if (set_vflags_short(newflags, env))
|
329 |
return;
|
330 |
} |
331 |
VM86_FAULT_RETURN; |
332 |
|
333 |
case 0xcd: /* int */ |
334 |
intno = vm_getb(csp, ip); |
335 |
ADD16(ip, 1);
|
336 |
env->eip = ip; |
337 |
if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
|
338 |
if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >> |
339 |
(intno &7)) & 1) { |
340 |
return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
|
341 |
return;
|
342 |
} |
343 |
} |
344 |
do_int(env, intno); |
345 |
break;
|
346 |
|
347 |
case 0xcf: /* iret */ |
348 |
if (data32) {
|
349 |
newip = vm_getl(ssp, sp) & 0xffff;
|
350 |
newcs = vm_getl(ssp, sp + 4) & 0xffff; |
351 |
newflags = vm_getl(ssp, sp + 8);
|
352 |
ADD16(env->regs[R_ESP], 12);
|
353 |
} else {
|
354 |
newip = vm_getw(ssp, sp); |
355 |
newcs = vm_getw(ssp, sp + 2);
|
356 |
newflags = vm_getw(ssp, sp + 4);
|
357 |
ADD16(env->regs[R_ESP], 6);
|
358 |
} |
359 |
env->eip = newip; |
360 |
cpu_x86_load_seg(env, R_CS, newcs); |
361 |
CHECK_IF_IN_TRAP(); |
362 |
if (data32) {
|
363 |
if (set_vflags_long(newflags, env))
|
364 |
return;
|
365 |
} else {
|
366 |
if (set_vflags_short(newflags, env))
|
367 |
return;
|
368 |
} |
369 |
VM86_FAULT_RETURN; |
370 |
|
371 |
case 0xfa: /* cli */ |
372 |
env->eip = ip; |
373 |
clear_IF(env); |
374 |
VM86_FAULT_RETURN; |
375 |
|
376 |
case 0xfb: /* sti */ |
377 |
env->eip = ip; |
378 |
if (set_IF(env))
|
379 |
return;
|
380 |
VM86_FAULT_RETURN; |
381 |
|
382 |
default:
|
383 |
/* real VM86 GPF exception */
|
384 |
return_to_32bit(env, TARGET_VM86_UNKNOWN); |
385 |
break;
|
386 |
} |
387 |
} |
388 |
|
389 |
int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr) |
390 |
{ |
391 |
TaskState *ts = env->opaque; |
392 |
struct target_vm86plus_struct * target_v86;
|
393 |
int ret;
|
394 |
|
395 |
switch (subfunction) {
|
396 |
case TARGET_VM86_REQUEST_IRQ:
|
397 |
case TARGET_VM86_FREE_IRQ:
|
398 |
case TARGET_VM86_GET_IRQ_BITS:
|
399 |
case TARGET_VM86_GET_AND_RESET_IRQ:
|
400 |
gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
|
401 |
ret = -TARGET_EINVAL; |
402 |
goto out;
|
403 |
case TARGET_VM86_PLUS_INSTALL_CHECK:
|
404 |
/* NOTE: on old vm86 stuff this will return the error
|
405 |
from verify_area(), because the subfunction is
|
406 |
interpreted as (invalid) address to vm86_struct.
|
407 |
So the installation check works.
|
408 |
*/
|
409 |
ret = 0;
|
410 |
goto out;
|
411 |
} |
412 |
|
413 |
/* save current CPU regs */
|
414 |
ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */ |
415 |
ts->vm86_saved_regs.ebx = env->regs[R_EBX]; |
416 |
ts->vm86_saved_regs.ecx = env->regs[R_ECX]; |
417 |
ts->vm86_saved_regs.edx = env->regs[R_EDX]; |
418 |
ts->vm86_saved_regs.esi = env->regs[R_ESI]; |
419 |
ts->vm86_saved_regs.edi = env->regs[R_EDI]; |
420 |
ts->vm86_saved_regs.ebp = env->regs[R_EBP]; |
421 |
ts->vm86_saved_regs.esp = env->regs[R_ESP]; |
422 |
ts->vm86_saved_regs.eflags = env->eflags; |
423 |
ts->vm86_saved_regs.eip = env->eip; |
424 |
ts->vm86_saved_regs.cs = env->segs[R_CS].selector; |
425 |
ts->vm86_saved_regs.ss = env->segs[R_SS].selector; |
426 |
ts->vm86_saved_regs.ds = env->segs[R_DS].selector; |
427 |
ts->vm86_saved_regs.es = env->segs[R_ES].selector; |
428 |
ts->vm86_saved_regs.fs = env->segs[R_FS].selector; |
429 |
ts->vm86_saved_regs.gs = env->segs[R_GS].selector; |
430 |
|
431 |
ts->target_v86 = vm86_addr; |
432 |
if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1)) |
433 |
return -TARGET_EFAULT;
|
434 |
/* build vm86 CPU state */
|
435 |
ts->v86flags = tswap32(target_v86->regs.eflags); |
436 |
env->eflags = (env->eflags & ~SAFE_MASK) | |
437 |
(tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK; |
438 |
|
439 |
ts->vm86plus.cpu_type = tswapl(target_v86->cpu_type); |
440 |
switch (ts->vm86plus.cpu_type) {
|
441 |
case TARGET_CPU_286:
|
442 |
ts->v86mask = 0;
|
443 |
break;
|
444 |
case TARGET_CPU_386:
|
445 |
ts->v86mask = NT_MASK | IOPL_MASK; |
446 |
break;
|
447 |
case TARGET_CPU_486:
|
448 |
ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK; |
449 |
break;
|
450 |
default:
|
451 |
ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK; |
452 |
break;
|
453 |
} |
454 |
|
455 |
env->regs[R_EBX] = tswap32(target_v86->regs.ebx); |
456 |
env->regs[R_ECX] = tswap32(target_v86->regs.ecx); |
457 |
env->regs[R_EDX] = tswap32(target_v86->regs.edx); |
458 |
env->regs[R_ESI] = tswap32(target_v86->regs.esi); |
459 |
env->regs[R_EDI] = tswap32(target_v86->regs.edi); |
460 |
env->regs[R_EBP] = tswap32(target_v86->regs.ebp); |
461 |
env->regs[R_ESP] = tswap32(target_v86->regs.esp); |
462 |
env->eip = tswap32(target_v86->regs.eip); |
463 |
cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs)); |
464 |
cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss)); |
465 |
cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds)); |
466 |
cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es)); |
467 |
cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs)); |
468 |
cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs)); |
469 |
ret = tswap32(target_v86->regs.eax); /* eax will be restored at
|
470 |
the end of the syscall */
|
471 |
memcpy(&ts->vm86plus.int_revectored, |
472 |
&target_v86->int_revectored, 32);
|
473 |
memcpy(&ts->vm86plus.int21_revectored, |
474 |
&target_v86->int21_revectored, 32);
|
475 |
ts->vm86plus.vm86plus.flags = tswapl(target_v86->vm86plus.flags); |
476 |
memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab, |
477 |
target_v86->vm86plus.vm86dbg_intxxtab, 32);
|
478 |
unlock_user_struct(target_v86, vm86_addr, 0);
|
479 |
|
480 |
#ifdef DEBUG_VM86
|
481 |
fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n",
|
482 |
env->segs[R_CS].selector, env->eip); |
483 |
#endif
|
484 |
/* now the virtual CPU is ready for vm86 execution ! */
|
485 |
out:
|
486 |
return ret;
|
487 |
} |
488 |
|