Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 14ce26e7

History | View | Annotate | Download (14.6 kB)

1 2c0262af bellard
/*
2 2c0262af bellard
 *  i386 execution defines 
3 2c0262af bellard
 *
4 2c0262af bellard
 *  Copyright (c) 2003 Fabrice Bellard
5 2c0262af bellard
 *
6 2c0262af bellard
 * This library is free software; you can redistribute it and/or
7 2c0262af bellard
 * modify it under the terms of the GNU Lesser General Public
8 2c0262af bellard
 * License as published by the Free Software Foundation; either
9 2c0262af bellard
 * version 2 of the License, or (at your option) any later version.
10 2c0262af bellard
 *
11 2c0262af bellard
 * This library is distributed in the hope that it will be useful,
12 2c0262af bellard
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 2c0262af bellard
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 2c0262af bellard
 * Lesser General Public License for more details.
15 2c0262af bellard
 *
16 2c0262af bellard
 * You should have received a copy of the GNU Lesser General Public
17 2c0262af bellard
 * License along with this library; if not, write to the Free Software
18 2c0262af bellard
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19 2c0262af bellard
 */
20 7d3505c5 bellard
#include "config.h"
21 2c0262af bellard
#include "dyngen-exec.h"
22 2c0262af bellard
23 14ce26e7 bellard
/* XXX: factorize this mess */
24 14ce26e7 bellard
#if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__)
25 14ce26e7 bellard
#define HOST_LONG_BITS 64
26 14ce26e7 bellard
#else
27 14ce26e7 bellard
#define HOST_LONG_BITS 32
28 14ce26e7 bellard
#endif
29 14ce26e7 bellard
30 14ce26e7 bellard
#ifdef TARGET_X86_64
31 14ce26e7 bellard
#define TARGET_LONG_BITS 64
32 14ce26e7 bellard
#else
33 14ce26e7 bellard
#define TARGET_LONG_BITS 32
34 14ce26e7 bellard
#endif
35 14ce26e7 bellard
36 0d1a29f9 bellard
/* at least 4 register variables are defined */
37 2c0262af bellard
register struct CPUX86State *env asm(AREG0);
38 14ce26e7 bellard
39 14ce26e7 bellard
/* XXX: use 64 bit regs if HOST_LONG_BITS == 64 */
40 14ce26e7 bellard
#if TARGET_LONG_BITS == 32
41 14ce26e7 bellard
42 2c0262af bellard
register uint32_t T0 asm(AREG1);
43 2c0262af bellard
register uint32_t T1 asm(AREG2);
44 2c0262af bellard
register uint32_t T2 asm(AREG3);
45 2c0262af bellard
46 2c0262af bellard
/* if more registers are available, we define some registers too */
47 2c0262af bellard
#ifdef AREG4
48 2c0262af bellard
register uint32_t EAX asm(AREG4);
49 2c0262af bellard
#define reg_EAX
50 2c0262af bellard
#endif
51 2c0262af bellard
52 2c0262af bellard
#ifdef AREG5
53 2c0262af bellard
register uint32_t ESP asm(AREG5);
54 2c0262af bellard
#define reg_ESP
55 2c0262af bellard
#endif
56 2c0262af bellard
57 2c0262af bellard
#ifdef AREG6
58 2c0262af bellard
register uint32_t EBP asm(AREG6);
59 2c0262af bellard
#define reg_EBP
60 2c0262af bellard
#endif
61 2c0262af bellard
62 2c0262af bellard
#ifdef AREG7
63 2c0262af bellard
register uint32_t ECX asm(AREG7);
64 2c0262af bellard
#define reg_ECX
65 2c0262af bellard
#endif
66 2c0262af bellard
67 2c0262af bellard
#ifdef AREG8
68 2c0262af bellard
register uint32_t EDX asm(AREG8);
69 2c0262af bellard
#define reg_EDX
70 2c0262af bellard
#endif
71 2c0262af bellard
72 2c0262af bellard
#ifdef AREG9
73 2c0262af bellard
register uint32_t EBX asm(AREG9);
74 2c0262af bellard
#define reg_EBX
75 2c0262af bellard
#endif
76 2c0262af bellard
77 2c0262af bellard
#ifdef AREG10
78 2c0262af bellard
register uint32_t ESI asm(AREG10);
79 2c0262af bellard
#define reg_ESI
80 2c0262af bellard
#endif
81 2c0262af bellard
82 2c0262af bellard
#ifdef AREG11
83 2c0262af bellard
register uint32_t EDI asm(AREG11);
84 2c0262af bellard
#define reg_EDI
85 2c0262af bellard
#endif
86 2c0262af bellard
87 14ce26e7 bellard
#else
88 14ce26e7 bellard
89 14ce26e7 bellard
/* no registers can be used */
90 14ce26e7 bellard
#define T0 (env->t0)
91 14ce26e7 bellard
#define T1 (env->t1)
92 14ce26e7 bellard
#define T2 (env->t2)
93 14ce26e7 bellard
94 14ce26e7 bellard
#endif
95 14ce26e7 bellard
96 14ce26e7 bellard
#define A0 T2
97 14ce26e7 bellard
98 2c0262af bellard
extern FILE *logfile;
99 2c0262af bellard
extern int loglevel;
100 2c0262af bellard
101 2c0262af bellard
#ifndef reg_EAX
102 2c0262af bellard
#define EAX (env->regs[R_EAX])
103 2c0262af bellard
#endif
104 2c0262af bellard
#ifndef reg_ECX
105 2c0262af bellard
#define ECX (env->regs[R_ECX])
106 2c0262af bellard
#endif
107 2c0262af bellard
#ifndef reg_EDX
108 2c0262af bellard
#define EDX (env->regs[R_EDX])
109 2c0262af bellard
#endif
110 2c0262af bellard
#ifndef reg_EBX
111 2c0262af bellard
#define EBX (env->regs[R_EBX])
112 2c0262af bellard
#endif
113 2c0262af bellard
#ifndef reg_ESP
114 2c0262af bellard
#define ESP (env->regs[R_ESP])
115 2c0262af bellard
#endif
116 2c0262af bellard
#ifndef reg_EBP
117 2c0262af bellard
#define EBP (env->regs[R_EBP])
118 2c0262af bellard
#endif
119 2c0262af bellard
#ifndef reg_ESI
120 2c0262af bellard
#define ESI (env->regs[R_ESI])
121 2c0262af bellard
#endif
122 2c0262af bellard
#ifndef reg_EDI
123 2c0262af bellard
#define EDI (env->regs[R_EDI])
124 2c0262af bellard
#endif
125 2c0262af bellard
#define EIP  (env->eip)
126 2c0262af bellard
#define DF  (env->df)
127 2c0262af bellard
128 2c0262af bellard
#define CC_SRC (env->cc_src)
129 2c0262af bellard
#define CC_DST (env->cc_dst)
130 2c0262af bellard
#define CC_OP  (env->cc_op)
131 2c0262af bellard
132 2c0262af bellard
/* float macros */
133 2c0262af bellard
#define FT0    (env->ft0)
134 2c0262af bellard
#define ST0    (env->fpregs[env->fpstt])
135 2c0262af bellard
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7])
136 2c0262af bellard
#define ST1    ST(1)
137 2c0262af bellard
138 2c0262af bellard
#ifdef USE_FP_CONVERT
139 2c0262af bellard
#define FP_CONVERT  (env->fp_convert)
140 2c0262af bellard
#endif
141 2c0262af bellard
142 2c0262af bellard
#include "cpu.h"
143 2c0262af bellard
#include "exec-all.h"
144 2c0262af bellard
145 2c0262af bellard
typedef struct CCTable {
146 2c0262af bellard
    int (*compute_all)(void); /* return all the flags */
147 2c0262af bellard
    int (*compute_c)(void);  /* return the C flag */
148 2c0262af bellard
} CCTable;
149 2c0262af bellard
150 2c0262af bellard
extern CCTable cc_table[];
151 2c0262af bellard
152 8e682019 bellard
void load_seg(int seg_reg, int selector);
153 08cea4ee bellard
void helper_ljmp_protected_T0_T1(int next_eip);
154 2c0262af bellard
void helper_lcall_real_T0_T1(int shift, int next_eip);
155 2c0262af bellard
void helper_lcall_protected_T0_T1(int shift, int next_eip);
156 2c0262af bellard
void helper_iret_real(int shift);
157 08cea4ee bellard
void helper_iret_protected(int shift, int next_eip);
158 2c0262af bellard
void helper_lret_protected(int shift, int addend);
159 2c0262af bellard
void helper_lldt_T0(void);
160 2c0262af bellard
void helper_ltr_T0(void);
161 2c0262af bellard
void helper_movl_crN_T0(int reg);
162 2c0262af bellard
void helper_movl_drN_T0(int reg);
163 2c0262af bellard
void helper_invlpg(unsigned int addr);
164 1ac157da bellard
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
165 14ce26e7 bellard
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
166 1ac157da bellard
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
167 2c0262af bellard
void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
168 14ce26e7 bellard
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr, 
169 61382a50 bellard
                             int is_write, int is_user, int is_softmmu);
170 14ce26e7 bellard
void tlb_fill(target_ulong addr, int is_write, int is_user, 
171 61382a50 bellard
              void *retaddr);
172 2c0262af bellard
void __hidden cpu_lock(void);
173 2c0262af bellard
void __hidden cpu_unlock(void);
174 2c0262af bellard
void do_interrupt(int intno, int is_int, int error_code, 
175 14ce26e7 bellard
                  target_ulong next_eip, int is_hw);
176 2c0262af bellard
void do_interrupt_user(int intno, int is_int, int error_code, 
177 14ce26e7 bellard
                       target_ulong next_eip);
178 2c0262af bellard
void raise_interrupt(int intno, int is_int, int error_code, 
179 2c0262af bellard
                     unsigned int next_eip);
180 2c0262af bellard
void raise_exception_err(int exception_index, int error_code);
181 2c0262af bellard
void raise_exception(int exception_index);
182 2c0262af bellard
void __hidden cpu_loop_exit(void);
183 2c0262af bellard
184 2c0262af bellard
void OPPROTO op_movl_eflags_T0(void);
185 2c0262af bellard
void OPPROTO op_movl_T0_eflags(void);
186 2c0262af bellard
void raise_interrupt(int intno, int is_int, int error_code, 
187 2c0262af bellard
                     unsigned int next_eip);
188 2c0262af bellard
void raise_exception_err(int exception_index, int error_code);
189 2c0262af bellard
void raise_exception(int exception_index);
190 14ce26e7 bellard
void helper_divl_EAX_T0(void);
191 14ce26e7 bellard
void helper_idivl_EAX_T0(void);
192 14ce26e7 bellard
void helper_mulq_EAX_T0(void);
193 14ce26e7 bellard
void helper_imulq_EAX_T0(void);
194 14ce26e7 bellard
void helper_imulq_T0_T1(void);
195 14ce26e7 bellard
void helper_divq_EAX_T0(void);
196 14ce26e7 bellard
void helper_idivq_EAX_T0(void);
197 2c0262af bellard
void helper_cmpxchg8b(void);
198 2c0262af bellard
void helper_cpuid(void);
199 61a8c4ec bellard
void helper_enter_level(int level, int data32);
200 023fe10d bellard
void helper_sysenter(void);
201 023fe10d bellard
void helper_sysexit(void);
202 14ce26e7 bellard
void helper_syscall(void);
203 14ce26e7 bellard
void helper_sysret(int dflag);
204 2c0262af bellard
void helper_rdtsc(void);
205 2c0262af bellard
void helper_rdmsr(void);
206 2c0262af bellard
void helper_wrmsr(void);
207 2c0262af bellard
void helper_lsl(void);
208 2c0262af bellard
void helper_lar(void);
209 3ab493de bellard
void helper_verr(void);
210 3ab493de bellard
void helper_verw(void);
211 2c0262af bellard
212 3e25f951 bellard
void check_iob_T0(void);
213 3e25f951 bellard
void check_iow_T0(void);
214 3e25f951 bellard
void check_iol_T0(void);
215 3e25f951 bellard
void check_iob_DX(void);
216 3e25f951 bellard
void check_iow_DX(void);
217 3e25f951 bellard
void check_iol_DX(void);
218 3e25f951 bellard
219 9951bf39 bellard
/* XXX: move that to a generic header */
220 9951bf39 bellard
#if !defined(CONFIG_USER_ONLY)
221 9951bf39 bellard
222 9951bf39 bellard
#define ldul_user ldl_user
223 9951bf39 bellard
#define ldul_kernel ldl_kernel
224 9951bf39 bellard
225 9951bf39 bellard
#define ACCESS_TYPE 0
226 9951bf39 bellard
#define MEMSUFFIX _kernel
227 9951bf39 bellard
#define DATA_SIZE 1
228 9951bf39 bellard
#include "softmmu_header.h"
229 9951bf39 bellard
230 9951bf39 bellard
#define DATA_SIZE 2
231 9951bf39 bellard
#include "softmmu_header.h"
232 9951bf39 bellard
233 9951bf39 bellard
#define DATA_SIZE 4
234 9951bf39 bellard
#include "softmmu_header.h"
235 9951bf39 bellard
236 9951bf39 bellard
#define DATA_SIZE 8
237 9951bf39 bellard
#include "softmmu_header.h"
238 9951bf39 bellard
#undef ACCESS_TYPE
239 9951bf39 bellard
#undef MEMSUFFIX
240 9951bf39 bellard
241 9951bf39 bellard
#define ACCESS_TYPE 1
242 9951bf39 bellard
#define MEMSUFFIX _user
243 9951bf39 bellard
#define DATA_SIZE 1
244 9951bf39 bellard
#include "softmmu_header.h"
245 9951bf39 bellard
246 9951bf39 bellard
#define DATA_SIZE 2
247 9951bf39 bellard
#include "softmmu_header.h"
248 9951bf39 bellard
249 9951bf39 bellard
#define DATA_SIZE 4
250 9951bf39 bellard
#include "softmmu_header.h"
251 9951bf39 bellard
252 9951bf39 bellard
#define DATA_SIZE 8
253 9951bf39 bellard
#include "softmmu_header.h"
254 9951bf39 bellard
#undef ACCESS_TYPE
255 9951bf39 bellard
#undef MEMSUFFIX
256 9951bf39 bellard
257 9951bf39 bellard
/* these access are slower, they must be as rare as possible */
258 9951bf39 bellard
#define ACCESS_TYPE 2
259 9951bf39 bellard
#define MEMSUFFIX _data
260 9951bf39 bellard
#define DATA_SIZE 1
261 9951bf39 bellard
#include "softmmu_header.h"
262 9951bf39 bellard
263 9951bf39 bellard
#define DATA_SIZE 2
264 9951bf39 bellard
#include "softmmu_header.h"
265 9951bf39 bellard
266 9951bf39 bellard
#define DATA_SIZE 4
267 9951bf39 bellard
#include "softmmu_header.h"
268 9951bf39 bellard
269 9951bf39 bellard
#define DATA_SIZE 8
270 9951bf39 bellard
#include "softmmu_header.h"
271 9951bf39 bellard
#undef ACCESS_TYPE
272 9951bf39 bellard
#undef MEMSUFFIX
273 9951bf39 bellard
274 9951bf39 bellard
#define ldub(p) ldub_data(p)
275 9951bf39 bellard
#define ldsb(p) ldsb_data(p)
276 9951bf39 bellard
#define lduw(p) lduw_data(p)
277 9951bf39 bellard
#define ldsw(p) ldsw_data(p)
278 9951bf39 bellard
#define ldl(p) ldl_data(p)
279 9951bf39 bellard
#define ldq(p) ldq_data(p)
280 9951bf39 bellard
281 9951bf39 bellard
#define stb(p, v) stb_data(p, v)
282 9951bf39 bellard
#define stw(p, v) stw_data(p, v)
283 9951bf39 bellard
#define stl(p, v) stl_data(p, v)
284 9951bf39 bellard
#define stq(p, v) stq_data(p, v)
285 9951bf39 bellard
286 14ce26e7 bellard
static inline double ldfq(target_ulong ptr)
287 9951bf39 bellard
{
288 9951bf39 bellard
    union {
289 9951bf39 bellard
        double d;
290 9951bf39 bellard
        uint64_t i;
291 9951bf39 bellard
    } u;
292 9951bf39 bellard
    u.i = ldq(ptr);
293 9951bf39 bellard
    return u.d;
294 9951bf39 bellard
}
295 9951bf39 bellard
296 14ce26e7 bellard
static inline void stfq(target_ulong ptr, double v)
297 9951bf39 bellard
{
298 9951bf39 bellard
    union {
299 9951bf39 bellard
        double d;
300 9951bf39 bellard
        uint64_t i;
301 9951bf39 bellard
    } u;
302 9951bf39 bellard
    u.d = v;
303 9951bf39 bellard
    stq(ptr, u.i);
304 9951bf39 bellard
}
305 9951bf39 bellard
306 14ce26e7 bellard
static inline float ldfl(target_ulong ptr)
307 9951bf39 bellard
{
308 9951bf39 bellard
    union {
309 9951bf39 bellard
        float f;
310 9951bf39 bellard
        uint32_t i;
311 9951bf39 bellard
    } u;
312 9951bf39 bellard
    u.i = ldl(ptr);
313 9951bf39 bellard
    return u.f;
314 9951bf39 bellard
}
315 9951bf39 bellard
316 14ce26e7 bellard
static inline void stfl(target_ulong ptr, float v)
317 9951bf39 bellard
{
318 9951bf39 bellard
    union {
319 9951bf39 bellard
        float f;
320 9951bf39 bellard
        uint32_t i;
321 9951bf39 bellard
    } u;
322 9951bf39 bellard
    u.f = v;
323 9951bf39 bellard
    stl(ptr, u.i);
324 9951bf39 bellard
}
325 9951bf39 bellard
326 9951bf39 bellard
#endif /* !defined(CONFIG_USER_ONLY) */
327 9951bf39 bellard
328 2c0262af bellard
#ifdef USE_X86LDOUBLE
329 2c0262af bellard
/* use long double functions */
330 2c0262af bellard
#define lrint lrintl
331 2c0262af bellard
#define llrint llrintl
332 2c0262af bellard
#define fabs fabsl
333 2c0262af bellard
#define sin sinl
334 2c0262af bellard
#define cos cosl
335 2c0262af bellard
#define sqrt sqrtl
336 2c0262af bellard
#define pow powl
337 2c0262af bellard
#define log logl
338 2c0262af bellard
#define tan tanl
339 2c0262af bellard
#define atan2 atan2l
340 2c0262af bellard
#define floor floorl
341 2c0262af bellard
#define ceil ceill
342 2c0262af bellard
#define rint rintl
343 2c0262af bellard
#endif
344 2c0262af bellard
345 7d3505c5 bellard
#if !defined(_BSD)
346 2c0262af bellard
extern int lrint(CPU86_LDouble x);
347 2c0262af bellard
extern int64_t llrint(CPU86_LDouble x);
348 7d3505c5 bellard
#else
349 7d3505c5 bellard
#define lrint(d)                ((int)rint(d))
350 7d3505c5 bellard
#define llrint(d)                ((int)rint(d))
351 7d3505c5 bellard
#endif
352 2c0262af bellard
extern CPU86_LDouble fabs(CPU86_LDouble x);
353 2c0262af bellard
extern CPU86_LDouble sin(CPU86_LDouble x);
354 2c0262af bellard
extern CPU86_LDouble cos(CPU86_LDouble x);
355 2c0262af bellard
extern CPU86_LDouble sqrt(CPU86_LDouble x);
356 2c0262af bellard
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
357 2c0262af bellard
extern CPU86_LDouble log(CPU86_LDouble x);
358 2c0262af bellard
extern CPU86_LDouble tan(CPU86_LDouble x);
359 2c0262af bellard
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
360 2c0262af bellard
extern CPU86_LDouble floor(CPU86_LDouble x);
361 2c0262af bellard
extern CPU86_LDouble ceil(CPU86_LDouble x);
362 2c0262af bellard
extern CPU86_LDouble rint(CPU86_LDouble x);
363 2c0262af bellard
364 2c0262af bellard
#define RC_MASK         0xc00
365 2c0262af bellard
#define RC_NEAR                0x000
366 2c0262af bellard
#define RC_DOWN                0x400
367 2c0262af bellard
#define RC_UP                0x800
368 2c0262af bellard
#define RC_CHOP                0xc00
369 2c0262af bellard
370 2c0262af bellard
#define MAXTAN 9223372036854775808.0
371 2c0262af bellard
372 2c0262af bellard
#ifdef __arm__
373 2c0262af bellard
/* we have no way to do correct rounding - a FPU emulator is needed */
374 2c0262af bellard
#define FE_DOWNWARD   FE_TONEAREST
375 2c0262af bellard
#define FE_UPWARD     FE_TONEAREST
376 2c0262af bellard
#define FE_TOWARDZERO FE_TONEAREST
377 2c0262af bellard
#endif
378 2c0262af bellard
379 2c0262af bellard
#ifdef USE_X86LDOUBLE
380 2c0262af bellard
381 2c0262af bellard
/* only for x86 */
382 2c0262af bellard
typedef union {
383 2c0262af bellard
    long double d;
384 2c0262af bellard
    struct {
385 2c0262af bellard
        unsigned long long lower;
386 2c0262af bellard
        unsigned short upper;
387 2c0262af bellard
    } l;
388 2c0262af bellard
} CPU86_LDoubleU;
389 2c0262af bellard
390 2c0262af bellard
/* the following deal with x86 long double-precision numbers */
391 2c0262af bellard
#define MAXEXPD 0x7fff
392 2c0262af bellard
#define EXPBIAS 16383
393 2c0262af bellard
#define EXPD(fp)        (fp.l.upper & 0x7fff)
394 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
395 2c0262af bellard
#define MANTD(fp)       (fp.l.lower)
396 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
397 2c0262af bellard
398 2c0262af bellard
#else
399 2c0262af bellard
400 2c0262af bellard
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
401 2c0262af bellard
typedef union {
402 2c0262af bellard
    double d;
403 2c0262af bellard
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
404 2c0262af bellard
    struct {
405 2c0262af bellard
        uint32_t lower;
406 2c0262af bellard
        int32_t upper;
407 2c0262af bellard
    } l;
408 2c0262af bellard
#else
409 2c0262af bellard
    struct {
410 2c0262af bellard
        int32_t upper;
411 2c0262af bellard
        uint32_t lower;
412 2c0262af bellard
    } l;
413 2c0262af bellard
#endif
414 2c0262af bellard
#ifndef __arm__
415 2c0262af bellard
    int64_t ll;
416 2c0262af bellard
#endif
417 2c0262af bellard
} CPU86_LDoubleU;
418 2c0262af bellard
419 2c0262af bellard
/* the following deal with IEEE double-precision numbers */
420 2c0262af bellard
#define MAXEXPD 0x7ff
421 2c0262af bellard
#define EXPBIAS 1023
422 2c0262af bellard
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
423 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
424 2c0262af bellard
#ifdef __arm__
425 2c0262af bellard
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
426 2c0262af bellard
#else
427 2c0262af bellard
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
428 2c0262af bellard
#endif
429 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
430 2c0262af bellard
#endif
431 2c0262af bellard
432 2c0262af bellard
static inline void fpush(void)
433 2c0262af bellard
{
434 2c0262af bellard
    env->fpstt = (env->fpstt - 1) & 7;
435 2c0262af bellard
    env->fptags[env->fpstt] = 0; /* validate stack entry */
436 2c0262af bellard
}
437 2c0262af bellard
438 2c0262af bellard
static inline void fpop(void)
439 2c0262af bellard
{
440 2c0262af bellard
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
441 2c0262af bellard
    env->fpstt = (env->fpstt + 1) & 7;
442 2c0262af bellard
}
443 2c0262af bellard
444 2c0262af bellard
#ifndef USE_X86LDOUBLE
445 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
446 2c0262af bellard
{
447 2c0262af bellard
    CPU86_LDoubleU temp;
448 2c0262af bellard
    int upper, e;
449 2c0262af bellard
    uint64_t ll;
450 2c0262af bellard
451 2c0262af bellard
    /* mantissa */
452 2c0262af bellard
    upper = lduw(ptr + 8);
453 2c0262af bellard
    /* XXX: handle overflow ? */
454 2c0262af bellard
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
455 2c0262af bellard
    e |= (upper >> 4) & 0x800; /* sign */
456 2c0262af bellard
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
457 2c0262af bellard
#ifdef __arm__
458 2c0262af bellard
    temp.l.upper = (e << 20) | (ll >> 32);
459 2c0262af bellard
    temp.l.lower = ll;
460 2c0262af bellard
#else
461 2c0262af bellard
    temp.ll = ll | ((uint64_t)e << 52);
462 2c0262af bellard
#endif
463 2c0262af bellard
    return temp.d;
464 2c0262af bellard
}
465 2c0262af bellard
466 2c0262af bellard
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
467 2c0262af bellard
{
468 2c0262af bellard
    CPU86_LDoubleU temp;
469 2c0262af bellard
    int e;
470 2c0262af bellard
471 2c0262af bellard
    temp.d = f;
472 2c0262af bellard
    /* mantissa */
473 2c0262af bellard
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
474 2c0262af bellard
    /* exponent + sign */
475 2c0262af bellard
    e = EXPD(temp) - EXPBIAS + 16383;
476 2c0262af bellard
    e |= SIGND(temp) >> 16;
477 2c0262af bellard
    stw(ptr + 8, e);
478 2c0262af bellard
}
479 9951bf39 bellard
#else
480 9951bf39 bellard
481 9951bf39 bellard
/* XXX: same endianness assumed */
482 9951bf39 bellard
483 9951bf39 bellard
#ifdef CONFIG_USER_ONLY
484 9951bf39 bellard
485 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
486 9951bf39 bellard
{
487 9951bf39 bellard
    return *(CPU86_LDouble *)ptr;
488 9951bf39 bellard
}
489 9951bf39 bellard
490 14ce26e7 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
491 9951bf39 bellard
{
492 9951bf39 bellard
    *(CPU86_LDouble *)ptr = f;
493 9951bf39 bellard
}
494 9951bf39 bellard
495 9951bf39 bellard
#else
496 9951bf39 bellard
497 9951bf39 bellard
/* we use memory access macros */
498 9951bf39 bellard
499 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
500 9951bf39 bellard
{
501 9951bf39 bellard
    CPU86_LDoubleU temp;
502 9951bf39 bellard
503 9951bf39 bellard
    temp.l.lower = ldq(ptr);
504 9951bf39 bellard
    temp.l.upper = lduw(ptr + 8);
505 9951bf39 bellard
    return temp.d;
506 9951bf39 bellard
}
507 9951bf39 bellard
508 14ce26e7 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
509 9951bf39 bellard
{
510 9951bf39 bellard
    CPU86_LDoubleU temp;
511 9951bf39 bellard
    
512 9951bf39 bellard
    temp.d = f;
513 9951bf39 bellard
    stq(ptr, temp.l.lower);
514 9951bf39 bellard
    stw(ptr + 8, temp.l.upper);
515 9951bf39 bellard
}
516 9951bf39 bellard
517 9951bf39 bellard
#endif /* !CONFIG_USER_ONLY */
518 9951bf39 bellard
519 9951bf39 bellard
#endif /* USE_X86LDOUBLE */
520 2c0262af bellard
521 2ee73ac3 bellard
#define FPUS_IE (1 << 0)
522 2ee73ac3 bellard
#define FPUS_DE (1 << 1)
523 2ee73ac3 bellard
#define FPUS_ZE (1 << 2)
524 2ee73ac3 bellard
#define FPUS_OE (1 << 3)
525 2ee73ac3 bellard
#define FPUS_UE (1 << 4)
526 2ee73ac3 bellard
#define FPUS_PE (1 << 5)
527 2ee73ac3 bellard
#define FPUS_SF (1 << 6)
528 2ee73ac3 bellard
#define FPUS_SE (1 << 7)
529 2ee73ac3 bellard
#define FPUS_B  (1 << 15)
530 2ee73ac3 bellard
531 2ee73ac3 bellard
#define FPUC_EM 0x3f
532 2ee73ac3 bellard
533 83fb7adf bellard
extern const CPU86_LDouble f15rk[7];
534 2c0262af bellard
535 2c0262af bellard
void helper_fldt_ST0_A0(void);
536 2c0262af bellard
void helper_fstt_ST0_A0(void);
537 2ee73ac3 bellard
void fpu_raise_exception(void);
538 2ee73ac3 bellard
CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b);
539 2c0262af bellard
void helper_fbld_ST0_A0(void);
540 2c0262af bellard
void helper_fbst_ST0_A0(void);
541 2c0262af bellard
void helper_f2xm1(void);
542 2c0262af bellard
void helper_fyl2x(void);
543 2c0262af bellard
void helper_fptan(void);
544 2c0262af bellard
void helper_fpatan(void);
545 2c0262af bellard
void helper_fxtract(void);
546 2c0262af bellard
void helper_fprem1(void);
547 2c0262af bellard
void helper_fprem(void);
548 2c0262af bellard
void helper_fyl2xp1(void);
549 2c0262af bellard
void helper_fsqrt(void);
550 2c0262af bellard
void helper_fsincos(void);
551 2c0262af bellard
void helper_frndint(void);
552 2c0262af bellard
void helper_fscale(void);
553 2c0262af bellard
void helper_fsin(void);
554 2c0262af bellard
void helper_fcos(void);
555 2c0262af bellard
void helper_fxam_ST0(void);
556 14ce26e7 bellard
void helper_fstenv(target_ulong ptr, int data32);
557 14ce26e7 bellard
void helper_fldenv(target_ulong ptr, int data32);
558 14ce26e7 bellard
void helper_fsave(target_ulong ptr, int data32);
559 14ce26e7 bellard
void helper_frstor(target_ulong ptr, int data32);
560 14ce26e7 bellard
void helper_fxsave(target_ulong ptr, int data64);
561 14ce26e7 bellard
void helper_fxrstor(target_ulong ptr, int data64);
562 03857e31 bellard
void restore_native_fp_state(CPUState *env);
563 03857e31 bellard
void save_native_fp_state(CPUState *env);
564 2c0262af bellard
565 83fb7adf bellard
extern const uint8_t parity_table[256];
566 83fb7adf bellard
extern const uint8_t rclw_table[32];
567 83fb7adf bellard
extern const uint8_t rclb_table[32];
568 2c0262af bellard
569 2c0262af bellard
static inline uint32_t compute_eflags(void)
570 2c0262af bellard
{
571 2c0262af bellard
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
572 2c0262af bellard
}
573 2c0262af bellard
574 2c0262af bellard
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
575 2c0262af bellard
static inline void load_eflags(int eflags, int update_mask)
576 2c0262af bellard
{
577 2c0262af bellard
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
578 2c0262af bellard
    DF = 1 - (2 * ((eflags >> 10) & 1));
579 2c0262af bellard
    env->eflags = (env->eflags & ~update_mask) | 
580 2c0262af bellard
        (eflags & update_mask);
581 2c0262af bellard
}
582 2c0262af bellard
583 0d1a29f9 bellard
static inline void env_to_regs(void)
584 0d1a29f9 bellard
{
585 0d1a29f9 bellard
#ifdef reg_EAX
586 0d1a29f9 bellard
    EAX = env->regs[R_EAX];
587 0d1a29f9 bellard
#endif
588 0d1a29f9 bellard
#ifdef reg_ECX
589 0d1a29f9 bellard
    ECX = env->regs[R_ECX];
590 0d1a29f9 bellard
#endif
591 0d1a29f9 bellard
#ifdef reg_EDX
592 0d1a29f9 bellard
    EDX = env->regs[R_EDX];
593 0d1a29f9 bellard
#endif
594 0d1a29f9 bellard
#ifdef reg_EBX
595 0d1a29f9 bellard
    EBX = env->regs[R_EBX];
596 0d1a29f9 bellard
#endif
597 0d1a29f9 bellard
#ifdef reg_ESP
598 0d1a29f9 bellard
    ESP = env->regs[R_ESP];
599 0d1a29f9 bellard
#endif
600 0d1a29f9 bellard
#ifdef reg_EBP
601 0d1a29f9 bellard
    EBP = env->regs[R_EBP];
602 0d1a29f9 bellard
#endif
603 0d1a29f9 bellard
#ifdef reg_ESI
604 0d1a29f9 bellard
    ESI = env->regs[R_ESI];
605 0d1a29f9 bellard
#endif
606 0d1a29f9 bellard
#ifdef reg_EDI
607 0d1a29f9 bellard
    EDI = env->regs[R_EDI];
608 0d1a29f9 bellard
#endif
609 0d1a29f9 bellard
}
610 0d1a29f9 bellard
611 0d1a29f9 bellard
static inline void regs_to_env(void)
612 0d1a29f9 bellard
{
613 0d1a29f9 bellard
#ifdef reg_EAX
614 0d1a29f9 bellard
    env->regs[R_EAX] = EAX;
615 0d1a29f9 bellard
#endif
616 0d1a29f9 bellard
#ifdef reg_ECX
617 0d1a29f9 bellard
    env->regs[R_ECX] = ECX;
618 0d1a29f9 bellard
#endif
619 0d1a29f9 bellard
#ifdef reg_EDX
620 0d1a29f9 bellard
    env->regs[R_EDX] = EDX;
621 0d1a29f9 bellard
#endif
622 0d1a29f9 bellard
#ifdef reg_EBX
623 0d1a29f9 bellard
    env->regs[R_EBX] = EBX;
624 0d1a29f9 bellard
#endif
625 0d1a29f9 bellard
#ifdef reg_ESP
626 0d1a29f9 bellard
    env->regs[R_ESP] = ESP;
627 0d1a29f9 bellard
#endif
628 0d1a29f9 bellard
#ifdef reg_EBP
629 0d1a29f9 bellard
    env->regs[R_EBP] = EBP;
630 0d1a29f9 bellard
#endif
631 0d1a29f9 bellard
#ifdef reg_ESI
632 0d1a29f9 bellard
    env->regs[R_ESI] = ESI;
633 0d1a29f9 bellard
#endif
634 0d1a29f9 bellard
#ifdef reg_EDI
635 0d1a29f9 bellard
    env->regs[R_EDI] = EDI;
636 0d1a29f9 bellard
#endif
637 0d1a29f9 bellard
}