Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 14ce26e7

History | View | Annotate | Download (14.6 kB)

1
/*
2
 *  i386 execution defines 
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "dyngen-exec.h"
22

    
23
/* XXX: factorize this mess */
24
#if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__)
25
#define HOST_LONG_BITS 64
26
#else
27
#define HOST_LONG_BITS 32
28
#endif
29

    
30
#ifdef TARGET_X86_64
31
#define TARGET_LONG_BITS 64
32
#else
33
#define TARGET_LONG_BITS 32
34
#endif
35

    
36
/* at least 4 register variables are defined */
37
register struct CPUX86State *env asm(AREG0);
38

    
39
/* XXX: use 64 bit regs if HOST_LONG_BITS == 64 */
40
#if TARGET_LONG_BITS == 32
41

    
42
register uint32_t T0 asm(AREG1);
43
register uint32_t T1 asm(AREG2);
44
register uint32_t T2 asm(AREG3);
45

    
46
/* if more registers are available, we define some registers too */
47
#ifdef AREG4
48
register uint32_t EAX asm(AREG4);
49
#define reg_EAX
50
#endif
51

    
52
#ifdef AREG5
53
register uint32_t ESP asm(AREG5);
54
#define reg_ESP
55
#endif
56

    
57
#ifdef AREG6
58
register uint32_t EBP asm(AREG6);
59
#define reg_EBP
60
#endif
61

    
62
#ifdef AREG7
63
register uint32_t ECX asm(AREG7);
64
#define reg_ECX
65
#endif
66

    
67
#ifdef AREG8
68
register uint32_t EDX asm(AREG8);
69
#define reg_EDX
70
#endif
71

    
72
#ifdef AREG9
73
register uint32_t EBX asm(AREG9);
74
#define reg_EBX
75
#endif
76

    
77
#ifdef AREG10
78
register uint32_t ESI asm(AREG10);
79
#define reg_ESI
80
#endif
81

    
82
#ifdef AREG11
83
register uint32_t EDI asm(AREG11);
84
#define reg_EDI
85
#endif
86

    
87
#else
88

    
89
/* no registers can be used */
90
#define T0 (env->t0)
91
#define T1 (env->t1)
92
#define T2 (env->t2)
93

    
94
#endif
95

    
96
#define A0 T2
97

    
98
extern FILE *logfile;
99
extern int loglevel;
100

    
101
#ifndef reg_EAX
102
#define EAX (env->regs[R_EAX])
103
#endif
104
#ifndef reg_ECX
105
#define ECX (env->regs[R_ECX])
106
#endif
107
#ifndef reg_EDX
108
#define EDX (env->regs[R_EDX])
109
#endif
110
#ifndef reg_EBX
111
#define EBX (env->regs[R_EBX])
112
#endif
113
#ifndef reg_ESP
114
#define ESP (env->regs[R_ESP])
115
#endif
116
#ifndef reg_EBP
117
#define EBP (env->regs[R_EBP])
118
#endif
119
#ifndef reg_ESI
120
#define ESI (env->regs[R_ESI])
121
#endif
122
#ifndef reg_EDI
123
#define EDI (env->regs[R_EDI])
124
#endif
125
#define EIP  (env->eip)
126
#define DF  (env->df)
127

    
128
#define CC_SRC (env->cc_src)
129
#define CC_DST (env->cc_dst)
130
#define CC_OP  (env->cc_op)
131

    
132
/* float macros */
133
#define FT0    (env->ft0)
134
#define ST0    (env->fpregs[env->fpstt])
135
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7])
136
#define ST1    ST(1)
137

    
138
#ifdef USE_FP_CONVERT
139
#define FP_CONVERT  (env->fp_convert)
140
#endif
141

    
142
#include "cpu.h"
143
#include "exec-all.h"
144

    
145
typedef struct CCTable {
146
    int (*compute_all)(void); /* return all the flags */
147
    int (*compute_c)(void);  /* return the C flag */
148
} CCTable;
149

    
150
extern CCTable cc_table[];
151

    
152
void load_seg(int seg_reg, int selector);
153
void helper_ljmp_protected_T0_T1(int next_eip);
154
void helper_lcall_real_T0_T1(int shift, int next_eip);
155
void helper_lcall_protected_T0_T1(int shift, int next_eip);
156
void helper_iret_real(int shift);
157
void helper_iret_protected(int shift, int next_eip);
158
void helper_lret_protected(int shift, int addend);
159
void helper_lldt_T0(void);
160
void helper_ltr_T0(void);
161
void helper_movl_crN_T0(int reg);
162
void helper_movl_drN_T0(int reg);
163
void helper_invlpg(unsigned int addr);
164
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
165
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
166
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
167
void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
168
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr, 
169
                             int is_write, int is_user, int is_softmmu);
170
void tlb_fill(target_ulong addr, int is_write, int is_user, 
171
              void *retaddr);
172
void __hidden cpu_lock(void);
173
void __hidden cpu_unlock(void);
174
void do_interrupt(int intno, int is_int, int error_code, 
175
                  target_ulong next_eip, int is_hw);
176
void do_interrupt_user(int intno, int is_int, int error_code, 
177
                       target_ulong next_eip);
178
void raise_interrupt(int intno, int is_int, int error_code, 
179
                     unsigned int next_eip);
180
void raise_exception_err(int exception_index, int error_code);
181
void raise_exception(int exception_index);
182
void __hidden cpu_loop_exit(void);
183

    
184
void OPPROTO op_movl_eflags_T0(void);
185
void OPPROTO op_movl_T0_eflags(void);
186
void raise_interrupt(int intno, int is_int, int error_code, 
187
                     unsigned int next_eip);
188
void raise_exception_err(int exception_index, int error_code);
189
void raise_exception(int exception_index);
190
void helper_divl_EAX_T0(void);
191
void helper_idivl_EAX_T0(void);
192
void helper_mulq_EAX_T0(void);
193
void helper_imulq_EAX_T0(void);
194
void helper_imulq_T0_T1(void);
195
void helper_divq_EAX_T0(void);
196
void helper_idivq_EAX_T0(void);
197
void helper_cmpxchg8b(void);
198
void helper_cpuid(void);
199
void helper_enter_level(int level, int data32);
200
void helper_sysenter(void);
201
void helper_sysexit(void);
202
void helper_syscall(void);
203
void helper_sysret(int dflag);
204
void helper_rdtsc(void);
205
void helper_rdmsr(void);
206
void helper_wrmsr(void);
207
void helper_lsl(void);
208
void helper_lar(void);
209
void helper_verr(void);
210
void helper_verw(void);
211

    
212
void check_iob_T0(void);
213
void check_iow_T0(void);
214
void check_iol_T0(void);
215
void check_iob_DX(void);
216
void check_iow_DX(void);
217
void check_iol_DX(void);
218

    
219
/* XXX: move that to a generic header */
220
#if !defined(CONFIG_USER_ONLY)
221

    
222
#define ldul_user ldl_user
223
#define ldul_kernel ldl_kernel
224

    
225
#define ACCESS_TYPE 0
226
#define MEMSUFFIX _kernel
227
#define DATA_SIZE 1
228
#include "softmmu_header.h"
229

    
230
#define DATA_SIZE 2
231
#include "softmmu_header.h"
232

    
233
#define DATA_SIZE 4
234
#include "softmmu_header.h"
235

    
236
#define DATA_SIZE 8
237
#include "softmmu_header.h"
238
#undef ACCESS_TYPE
239
#undef MEMSUFFIX
240

    
241
#define ACCESS_TYPE 1
242
#define MEMSUFFIX _user
243
#define DATA_SIZE 1
244
#include "softmmu_header.h"
245

    
246
#define DATA_SIZE 2
247
#include "softmmu_header.h"
248

    
249
#define DATA_SIZE 4
250
#include "softmmu_header.h"
251

    
252
#define DATA_SIZE 8
253
#include "softmmu_header.h"
254
#undef ACCESS_TYPE
255
#undef MEMSUFFIX
256

    
257
/* these access are slower, they must be as rare as possible */
258
#define ACCESS_TYPE 2
259
#define MEMSUFFIX _data
260
#define DATA_SIZE 1
261
#include "softmmu_header.h"
262

    
263
#define DATA_SIZE 2
264
#include "softmmu_header.h"
265

    
266
#define DATA_SIZE 4
267
#include "softmmu_header.h"
268

    
269
#define DATA_SIZE 8
270
#include "softmmu_header.h"
271
#undef ACCESS_TYPE
272
#undef MEMSUFFIX
273

    
274
#define ldub(p) ldub_data(p)
275
#define ldsb(p) ldsb_data(p)
276
#define lduw(p) lduw_data(p)
277
#define ldsw(p) ldsw_data(p)
278
#define ldl(p) ldl_data(p)
279
#define ldq(p) ldq_data(p)
280

    
281
#define stb(p, v) stb_data(p, v)
282
#define stw(p, v) stw_data(p, v)
283
#define stl(p, v) stl_data(p, v)
284
#define stq(p, v) stq_data(p, v)
285

    
286
static inline double ldfq(target_ulong ptr)
287
{
288
    union {
289
        double d;
290
        uint64_t i;
291
    } u;
292
    u.i = ldq(ptr);
293
    return u.d;
294
}
295

    
296
static inline void stfq(target_ulong ptr, double v)
297
{
298
    union {
299
        double d;
300
        uint64_t i;
301
    } u;
302
    u.d = v;
303
    stq(ptr, u.i);
304
}
305

    
306
static inline float ldfl(target_ulong ptr)
307
{
308
    union {
309
        float f;
310
        uint32_t i;
311
    } u;
312
    u.i = ldl(ptr);
313
    return u.f;
314
}
315

    
316
static inline void stfl(target_ulong ptr, float v)
317
{
318
    union {
319
        float f;
320
        uint32_t i;
321
    } u;
322
    u.f = v;
323
    stl(ptr, u.i);
324
}
325

    
326
#endif /* !defined(CONFIG_USER_ONLY) */
327

    
328
#ifdef USE_X86LDOUBLE
329
/* use long double functions */
330
#define lrint lrintl
331
#define llrint llrintl
332
#define fabs fabsl
333
#define sin sinl
334
#define cos cosl
335
#define sqrt sqrtl
336
#define pow powl
337
#define log logl
338
#define tan tanl
339
#define atan2 atan2l
340
#define floor floorl
341
#define ceil ceill
342
#define rint rintl
343
#endif
344

    
345
#if !defined(_BSD)
346
extern int lrint(CPU86_LDouble x);
347
extern int64_t llrint(CPU86_LDouble x);
348
#else
349
#define lrint(d)                ((int)rint(d))
350
#define llrint(d)                ((int)rint(d))
351
#endif
352
extern CPU86_LDouble fabs(CPU86_LDouble x);
353
extern CPU86_LDouble sin(CPU86_LDouble x);
354
extern CPU86_LDouble cos(CPU86_LDouble x);
355
extern CPU86_LDouble sqrt(CPU86_LDouble x);
356
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
357
extern CPU86_LDouble log(CPU86_LDouble x);
358
extern CPU86_LDouble tan(CPU86_LDouble x);
359
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
360
extern CPU86_LDouble floor(CPU86_LDouble x);
361
extern CPU86_LDouble ceil(CPU86_LDouble x);
362
extern CPU86_LDouble rint(CPU86_LDouble x);
363

    
364
#define RC_MASK         0xc00
365
#define RC_NEAR                0x000
366
#define RC_DOWN                0x400
367
#define RC_UP                0x800
368
#define RC_CHOP                0xc00
369

    
370
#define MAXTAN 9223372036854775808.0
371

    
372
#ifdef __arm__
373
/* we have no way to do correct rounding - a FPU emulator is needed */
374
#define FE_DOWNWARD   FE_TONEAREST
375
#define FE_UPWARD     FE_TONEAREST
376
#define FE_TOWARDZERO FE_TONEAREST
377
#endif
378

    
379
#ifdef USE_X86LDOUBLE
380

    
381
/* only for x86 */
382
typedef union {
383
    long double d;
384
    struct {
385
        unsigned long long lower;
386
        unsigned short upper;
387
    } l;
388
} CPU86_LDoubleU;
389

    
390
/* the following deal with x86 long double-precision numbers */
391
#define MAXEXPD 0x7fff
392
#define EXPBIAS 16383
393
#define EXPD(fp)        (fp.l.upper & 0x7fff)
394
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
395
#define MANTD(fp)       (fp.l.lower)
396
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
397

    
398
#else
399

    
400
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
401
typedef union {
402
    double d;
403
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
404
    struct {
405
        uint32_t lower;
406
        int32_t upper;
407
    } l;
408
#else
409
    struct {
410
        int32_t upper;
411
        uint32_t lower;
412
    } l;
413
#endif
414
#ifndef __arm__
415
    int64_t ll;
416
#endif
417
} CPU86_LDoubleU;
418

    
419
/* the following deal with IEEE double-precision numbers */
420
#define MAXEXPD 0x7ff
421
#define EXPBIAS 1023
422
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
423
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
424
#ifdef __arm__
425
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
426
#else
427
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
428
#endif
429
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
430
#endif
431

    
432
static inline void fpush(void)
433
{
434
    env->fpstt = (env->fpstt - 1) & 7;
435
    env->fptags[env->fpstt] = 0; /* validate stack entry */
436
}
437

    
438
static inline void fpop(void)
439
{
440
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
441
    env->fpstt = (env->fpstt + 1) & 7;
442
}
443

    
444
#ifndef USE_X86LDOUBLE
445
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
446
{
447
    CPU86_LDoubleU temp;
448
    int upper, e;
449
    uint64_t ll;
450

    
451
    /* mantissa */
452
    upper = lduw(ptr + 8);
453
    /* XXX: handle overflow ? */
454
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
455
    e |= (upper >> 4) & 0x800; /* sign */
456
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
457
#ifdef __arm__
458
    temp.l.upper = (e << 20) | (ll >> 32);
459
    temp.l.lower = ll;
460
#else
461
    temp.ll = ll | ((uint64_t)e << 52);
462
#endif
463
    return temp.d;
464
}
465

    
466
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
467
{
468
    CPU86_LDoubleU temp;
469
    int e;
470

    
471
    temp.d = f;
472
    /* mantissa */
473
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
474
    /* exponent + sign */
475
    e = EXPD(temp) - EXPBIAS + 16383;
476
    e |= SIGND(temp) >> 16;
477
    stw(ptr + 8, e);
478
}
479
#else
480

    
481
/* XXX: same endianness assumed */
482

    
483
#ifdef CONFIG_USER_ONLY
484

    
485
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
486
{
487
    return *(CPU86_LDouble *)ptr;
488
}
489

    
490
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
491
{
492
    *(CPU86_LDouble *)ptr = f;
493
}
494

    
495
#else
496

    
497
/* we use memory access macros */
498

    
499
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
500
{
501
    CPU86_LDoubleU temp;
502

    
503
    temp.l.lower = ldq(ptr);
504
    temp.l.upper = lduw(ptr + 8);
505
    return temp.d;
506
}
507

    
508
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
509
{
510
    CPU86_LDoubleU temp;
511
    
512
    temp.d = f;
513
    stq(ptr, temp.l.lower);
514
    stw(ptr + 8, temp.l.upper);
515
}
516

    
517
#endif /* !CONFIG_USER_ONLY */
518

    
519
#endif /* USE_X86LDOUBLE */
520

    
521
#define FPUS_IE (1 << 0)
522
#define FPUS_DE (1 << 1)
523
#define FPUS_ZE (1 << 2)
524
#define FPUS_OE (1 << 3)
525
#define FPUS_UE (1 << 4)
526
#define FPUS_PE (1 << 5)
527
#define FPUS_SF (1 << 6)
528
#define FPUS_SE (1 << 7)
529
#define FPUS_B  (1 << 15)
530

    
531
#define FPUC_EM 0x3f
532

    
533
extern const CPU86_LDouble f15rk[7];
534

    
535
void helper_fldt_ST0_A0(void);
536
void helper_fstt_ST0_A0(void);
537
void fpu_raise_exception(void);
538
CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b);
539
void helper_fbld_ST0_A0(void);
540
void helper_fbst_ST0_A0(void);
541
void helper_f2xm1(void);
542
void helper_fyl2x(void);
543
void helper_fptan(void);
544
void helper_fpatan(void);
545
void helper_fxtract(void);
546
void helper_fprem1(void);
547
void helper_fprem(void);
548
void helper_fyl2xp1(void);
549
void helper_fsqrt(void);
550
void helper_fsincos(void);
551
void helper_frndint(void);
552
void helper_fscale(void);
553
void helper_fsin(void);
554
void helper_fcos(void);
555
void helper_fxam_ST0(void);
556
void helper_fstenv(target_ulong ptr, int data32);
557
void helper_fldenv(target_ulong ptr, int data32);
558
void helper_fsave(target_ulong ptr, int data32);
559
void helper_frstor(target_ulong ptr, int data32);
560
void helper_fxsave(target_ulong ptr, int data64);
561
void helper_fxrstor(target_ulong ptr, int data64);
562
void restore_native_fp_state(CPUState *env);
563
void save_native_fp_state(CPUState *env);
564

    
565
extern const uint8_t parity_table[256];
566
extern const uint8_t rclw_table[32];
567
extern const uint8_t rclb_table[32];
568

    
569
static inline uint32_t compute_eflags(void)
570
{
571
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
572
}
573

    
574
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
575
static inline void load_eflags(int eflags, int update_mask)
576
{
577
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
578
    DF = 1 - (2 * ((eflags >> 10) & 1));
579
    env->eflags = (env->eflags & ~update_mask) | 
580
        (eflags & update_mask);
581
}
582

    
583
static inline void env_to_regs(void)
584
{
585
#ifdef reg_EAX
586
    EAX = env->regs[R_EAX];
587
#endif
588
#ifdef reg_ECX
589
    ECX = env->regs[R_ECX];
590
#endif
591
#ifdef reg_EDX
592
    EDX = env->regs[R_EDX];
593
#endif
594
#ifdef reg_EBX
595
    EBX = env->regs[R_EBX];
596
#endif
597
#ifdef reg_ESP
598
    ESP = env->regs[R_ESP];
599
#endif
600
#ifdef reg_EBP
601
    EBP = env->regs[R_EBP];
602
#endif
603
#ifdef reg_ESI
604
    ESI = env->regs[R_ESI];
605
#endif
606
#ifdef reg_EDI
607
    EDI = env->regs[R_EDI];
608
#endif
609
}
610

    
611
static inline void regs_to_env(void)
612
{
613
#ifdef reg_EAX
614
    env->regs[R_EAX] = EAX;
615
#endif
616
#ifdef reg_ECX
617
    env->regs[R_ECX] = ECX;
618
#endif
619
#ifdef reg_EDX
620
    env->regs[R_EDX] = EDX;
621
#endif
622
#ifdef reg_EBX
623
    env->regs[R_EBX] = EBX;
624
#endif
625
#ifdef reg_ESP
626
    env->regs[R_ESP] = ESP;
627
#endif
628
#ifdef reg_EBP
629
    env->regs[R_EBP] = EBP;
630
#endif
631
#ifdef reg_ESI
632
    env->regs[R_ESI] = ESI;
633
#endif
634
#ifdef reg_EDI
635
    env->regs[R_EDI] = EDI;
636
#endif
637
}