Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ 173a543b

History | View | Annotate | Download (56.6 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include "hw.h"
14
#include "pci.h"
15
#include "scsi-disk.h"
16

    
17
//#define DEBUG_LSI
18
//#define DEBUG_LSI_REG
19

    
20
#ifdef DEBUG_LSI
21
#define DPRINTF(fmt, args...) \
22
do { printf("lsi_scsi: " fmt , ##args); } while (0)
23
#define BADF(fmt, args...) \
24
do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args); exit(1);} while (0)
25
#else
26
#define DPRINTF(fmt, args...) do {} while(0)
27
#define BADF(fmt, args...) \
28
do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args);} while (0)
29
#endif
30

    
31
#define LSI_SCNTL0_TRG    0x01
32
#define LSI_SCNTL0_AAP    0x02
33
#define LSI_SCNTL0_EPC    0x08
34
#define LSI_SCNTL0_WATN   0x10
35
#define LSI_SCNTL0_START  0x20
36

    
37
#define LSI_SCNTL1_SST    0x01
38
#define LSI_SCNTL1_IARB   0x02
39
#define LSI_SCNTL1_AESP   0x04
40
#define LSI_SCNTL1_RST    0x08
41
#define LSI_SCNTL1_CON    0x10
42
#define LSI_SCNTL1_DHP    0x20
43
#define LSI_SCNTL1_ADB    0x40
44
#define LSI_SCNTL1_EXC    0x80
45

    
46
#define LSI_SCNTL2_WSR    0x01
47
#define LSI_SCNTL2_VUE0   0x02
48
#define LSI_SCNTL2_VUE1   0x04
49
#define LSI_SCNTL2_WSS    0x08
50
#define LSI_SCNTL2_SLPHBEN 0x10
51
#define LSI_SCNTL2_SLPMD  0x20
52
#define LSI_SCNTL2_CHM    0x40
53
#define LSI_SCNTL2_SDU    0x80
54

    
55
#define LSI_ISTAT0_DIP    0x01
56
#define LSI_ISTAT0_SIP    0x02
57
#define LSI_ISTAT0_INTF   0x04
58
#define LSI_ISTAT0_CON    0x08
59
#define LSI_ISTAT0_SEM    0x10
60
#define LSI_ISTAT0_SIGP   0x20
61
#define LSI_ISTAT0_SRST   0x40
62
#define LSI_ISTAT0_ABRT   0x80
63

    
64
#define LSI_ISTAT1_SI     0x01
65
#define LSI_ISTAT1_SRUN   0x02
66
#define LSI_ISTAT1_FLSH   0x04
67

    
68
#define LSI_SSTAT0_SDP0   0x01
69
#define LSI_SSTAT0_RST    0x02
70
#define LSI_SSTAT0_WOA    0x04
71
#define LSI_SSTAT0_LOA    0x08
72
#define LSI_SSTAT0_AIP    0x10
73
#define LSI_SSTAT0_OLF    0x20
74
#define LSI_SSTAT0_ORF    0x40
75
#define LSI_SSTAT0_ILF    0x80
76

    
77
#define LSI_SIST0_PAR     0x01
78
#define LSI_SIST0_RST     0x02
79
#define LSI_SIST0_UDC     0x04
80
#define LSI_SIST0_SGE     0x08
81
#define LSI_SIST0_RSL     0x10
82
#define LSI_SIST0_SEL     0x20
83
#define LSI_SIST0_CMP     0x40
84
#define LSI_SIST0_MA      0x80
85

    
86
#define LSI_SIST1_HTH     0x01
87
#define LSI_SIST1_GEN     0x02
88
#define LSI_SIST1_STO     0x04
89
#define LSI_SIST1_SBMC    0x10
90

    
91
#define LSI_SOCL_IO       0x01
92
#define LSI_SOCL_CD       0x02
93
#define LSI_SOCL_MSG      0x04
94
#define LSI_SOCL_ATN      0x08
95
#define LSI_SOCL_SEL      0x10
96
#define LSI_SOCL_BSY      0x20
97
#define LSI_SOCL_ACK      0x40
98
#define LSI_SOCL_REQ      0x80
99

    
100
#define LSI_DSTAT_IID     0x01
101
#define LSI_DSTAT_SIR     0x04
102
#define LSI_DSTAT_SSI     0x08
103
#define LSI_DSTAT_ABRT    0x10
104
#define LSI_DSTAT_BF      0x20
105
#define LSI_DSTAT_MDPE    0x40
106
#define LSI_DSTAT_DFE     0x80
107

    
108
#define LSI_DCNTL_COM     0x01
109
#define LSI_DCNTL_IRQD    0x02
110
#define LSI_DCNTL_STD     0x04
111
#define LSI_DCNTL_IRQM    0x08
112
#define LSI_DCNTL_SSM     0x10
113
#define LSI_DCNTL_PFEN    0x20
114
#define LSI_DCNTL_PFF     0x40
115
#define LSI_DCNTL_CLSE    0x80
116

    
117
#define LSI_DMODE_MAN     0x01
118
#define LSI_DMODE_BOF     0x02
119
#define LSI_DMODE_ERMP    0x04
120
#define LSI_DMODE_ERL     0x08
121
#define LSI_DMODE_DIOM    0x10
122
#define LSI_DMODE_SIOM    0x20
123

    
124
#define LSI_CTEST2_DACK   0x01
125
#define LSI_CTEST2_DREQ   0x02
126
#define LSI_CTEST2_TEOP   0x04
127
#define LSI_CTEST2_PCICIE 0x08
128
#define LSI_CTEST2_CM     0x10
129
#define LSI_CTEST2_CIO    0x20
130
#define LSI_CTEST2_SIGP   0x40
131
#define LSI_CTEST2_DDIR   0x80
132

    
133
#define LSI_CTEST5_BL2    0x04
134
#define LSI_CTEST5_DDIR   0x08
135
#define LSI_CTEST5_MASR   0x10
136
#define LSI_CTEST5_DFSN   0x20
137
#define LSI_CTEST5_BBCK   0x40
138
#define LSI_CTEST5_ADCK   0x80
139

    
140
#define LSI_CCNTL0_DILS   0x01
141
#define LSI_CCNTL0_DISFC  0x10
142
#define LSI_CCNTL0_ENNDJ  0x20
143
#define LSI_CCNTL0_PMJCTL 0x40
144
#define LSI_CCNTL0_ENPMJ  0x80
145

    
146
#define LSI_CCNTL1_EN64DBMV  0x01
147
#define LSI_CCNTL1_EN64TIBMV 0x02
148
#define LSI_CCNTL1_64TIMOD   0x04
149
#define LSI_CCNTL1_DDAC      0x08
150
#define LSI_CCNTL1_ZMOD      0x80
151

    
152
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
153

    
154
#define PHASE_DO          0
155
#define PHASE_DI          1
156
#define PHASE_CMD         2
157
#define PHASE_ST          3
158
#define PHASE_MO          6
159
#define PHASE_MI          7
160
#define PHASE_MASK        7
161

    
162
/* Maximum length of MSG IN data.  */
163
#define LSI_MAX_MSGIN_LEN 8
164

    
165
/* Flag set if this is a tagged command.  */
166
#define LSI_TAG_VALID     (1 << 16)
167

    
168
typedef struct {
169
    uint32_t tag;
170
    uint32_t pending;
171
    int out;
172
} lsi_queue;
173

    
174
typedef struct {
175
    PCIDevice pci_dev;
176
    int mmio_io_addr;
177
    int ram_io_addr;
178
    uint32_t script_ram_base;
179

    
180
    int carry; /* ??? Should this be an a visible register somewhere?  */
181
    int sense;
182
    /* Action to take at the end of a MSG IN phase.
183
       0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN.  */
184
    int msg_action;
185
    int msg_len;
186
    uint8_t msg[LSI_MAX_MSGIN_LEN];
187
    /* 0 if SCRIPTS are running or stopped.
188
     * 1 if a Wait Reselect instruction has been issued.
189
     * 2 if processing DMA from lsi_execute_script.
190
     * 3 if a DMA operation is in progress.  */
191
    int waiting;
192
    SCSIDevice *scsi_dev[LSI_MAX_DEVS];
193
    SCSIDevice *current_dev;
194
    int current_lun;
195
    /* The tag is a combination of the device ID and the SCSI tag.  */
196
    uint32_t current_tag;
197
    uint32_t current_dma_len;
198
    int command_complete;
199
    uint8_t *dma_buf;
200
    lsi_queue *queue;
201
    int queue_len;
202
    int active_commands;
203

    
204
    uint32_t dsa;
205
    uint32_t temp;
206
    uint32_t dnad;
207
    uint32_t dbc;
208
    uint8_t istat0;
209
    uint8_t istat1;
210
    uint8_t dcmd;
211
    uint8_t dstat;
212
    uint8_t dien;
213
    uint8_t sist0;
214
    uint8_t sist1;
215
    uint8_t sien0;
216
    uint8_t sien1;
217
    uint8_t mbox0;
218
    uint8_t mbox1;
219
    uint8_t dfifo;
220
    uint8_t ctest2;
221
    uint8_t ctest3;
222
    uint8_t ctest4;
223
    uint8_t ctest5;
224
    uint8_t ccntl0;
225
    uint8_t ccntl1;
226
    uint32_t dsp;
227
    uint32_t dsps;
228
    uint8_t dmode;
229
    uint8_t dcntl;
230
    uint8_t scntl0;
231
    uint8_t scntl1;
232
    uint8_t scntl2;
233
    uint8_t scntl3;
234
    uint8_t sstat0;
235
    uint8_t sstat1;
236
    uint8_t scid;
237
    uint8_t sxfer;
238
    uint8_t socl;
239
    uint8_t sdid;
240
    uint8_t ssid;
241
    uint8_t sfbr;
242
    uint8_t stest1;
243
    uint8_t stest2;
244
    uint8_t stest3;
245
    uint8_t sidl;
246
    uint8_t stime0;
247
    uint8_t respid0;
248
    uint8_t respid1;
249
    uint32_t mmrs;
250
    uint32_t mmws;
251
    uint32_t sfs;
252
    uint32_t drs;
253
    uint32_t sbms;
254
    uint32_t dbms;
255
    uint32_t dnad64;
256
    uint32_t pmjad1;
257
    uint32_t pmjad2;
258
    uint32_t rbc;
259
    uint32_t ua;
260
    uint32_t ia;
261
    uint32_t sbc;
262
    uint32_t csbc;
263
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
264

    
265
    /* Script ram is stored as 32-bit words in host byteorder.  */
266
    uint32_t script_ram[2048];
267
} LSIState;
268

    
269
static void lsi_soft_reset(LSIState *s)
270
{
271
    DPRINTF("Reset\n");
272
    s->carry = 0;
273

    
274
    s->waiting = 0;
275
    s->dsa = 0;
276
    s->dnad = 0;
277
    s->dbc = 0;
278
    s->temp = 0;
279
    memset(s->scratch, 0, sizeof(s->scratch));
280
    s->istat0 = 0;
281
    s->istat1 = 0;
282
    s->dcmd = 0;
283
    s->dstat = 0;
284
    s->dien = 0;
285
    s->sist0 = 0;
286
    s->sist1 = 0;
287
    s->sien0 = 0;
288
    s->sien1 = 0;
289
    s->mbox0 = 0;
290
    s->mbox1 = 0;
291
    s->dfifo = 0;
292
    s->ctest2 = 0;
293
    s->ctest3 = 0;
294
    s->ctest4 = 0;
295
    s->ctest5 = 0;
296
    s->ccntl0 = 0;
297
    s->ccntl1 = 0;
298
    s->dsp = 0;
299
    s->dsps = 0;
300
    s->dmode = 0;
301
    s->dcntl = 0;
302
    s->scntl0 = 0xc0;
303
    s->scntl1 = 0;
304
    s->scntl2 = 0;
305
    s->scntl3 = 0;
306
    s->sstat0 = 0;
307
    s->sstat1 = 0;
308
    s->scid = 7;
309
    s->sxfer = 0;
310
    s->socl = 0;
311
    s->stest1 = 0;
312
    s->stest2 = 0;
313
    s->stest3 = 0;
314
    s->sidl = 0;
315
    s->stime0 = 0;
316
    s->respid0 = 0x80;
317
    s->respid1 = 0;
318
    s->mmrs = 0;
319
    s->mmws = 0;
320
    s->sfs = 0;
321
    s->drs = 0;
322
    s->sbms = 0;
323
    s->dbms = 0;
324
    s->dnad64 = 0;
325
    s->pmjad1 = 0;
326
    s->pmjad2 = 0;
327
    s->rbc = 0;
328
    s->ua = 0;
329
    s->ia = 0;
330
    s->sbc = 0;
331
    s->csbc = 0;
332
}
333

    
334
static int lsi_dma_40bit(LSIState *s)
335
{
336
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
337
        return 1;
338
    return 0;
339
}
340

    
341
static int lsi_dma_ti64bit(LSIState *s)
342
{
343
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
344
        return 1;
345
    return 0;
346
}
347

    
348
static int lsi_dma_64bit(LSIState *s)
349
{
350
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
351
        return 1;
352
    return 0;
353
}
354

    
355
static uint8_t lsi_reg_readb(LSIState *s, int offset);
356
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
357
static void lsi_execute_script(LSIState *s);
358

    
359
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
360
{
361
    uint32_t buf;
362

    
363
    /* Optimize reading from SCRIPTS RAM.  */
364
    if ((addr & 0xffffe000) == s->script_ram_base) {
365
        return s->script_ram[(addr & 0x1fff) >> 2];
366
    }
367
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
368
    return cpu_to_le32(buf);
369
}
370

    
371
static void lsi_stop_script(LSIState *s)
372
{
373
    s->istat1 &= ~LSI_ISTAT1_SRUN;
374
}
375

    
376
static void lsi_update_irq(LSIState *s)
377
{
378
    int level;
379
    static int last_level;
380

    
381
    /* It's unclear whether the DIP/SIP bits should be cleared when the
382
       Interrupt Status Registers are cleared or when istat0 is read.
383
       We currently do the formwer, which seems to work.  */
384
    level = 0;
385
    if (s->dstat) {
386
        if (s->dstat & s->dien)
387
            level = 1;
388
        s->istat0 |= LSI_ISTAT0_DIP;
389
    } else {
390
        s->istat0 &= ~LSI_ISTAT0_DIP;
391
    }
392

    
393
    if (s->sist0 || s->sist1) {
394
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
395
            level = 1;
396
        s->istat0 |= LSI_ISTAT0_SIP;
397
    } else {
398
        s->istat0 &= ~LSI_ISTAT0_SIP;
399
    }
400
    if (s->istat0 & LSI_ISTAT0_INTF)
401
        level = 1;
402

    
403
    if (level != last_level) {
404
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
405
                level, s->dstat, s->sist1, s->sist0);
406
        last_level = level;
407
    }
408
    qemu_set_irq(s->pci_dev.irq[0], level);
409
}
410

    
411
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
412
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
413
{
414
    uint32_t mask0;
415
    uint32_t mask1;
416

    
417
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
418
            stat1, stat0, s->sist1, s->sist0);
419
    s->sist0 |= stat0;
420
    s->sist1 |= stat1;
421
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
422
       we don't stop processing when raising STO.  Instead continue
423
       execution and stop at the next insn that accesses the SCSI bus.  */
424
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
425
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
426
    mask1 &= ~LSI_SIST1_STO;
427
    if (s->sist0 & mask0 || s->sist1 & mask1) {
428
        lsi_stop_script(s);
429
    }
430
    lsi_update_irq(s);
431
}
432

    
433
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
434
static void lsi_script_dma_interrupt(LSIState *s, int stat)
435
{
436
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
437
    s->dstat |= stat;
438
    lsi_update_irq(s);
439
    lsi_stop_script(s);
440
}
441

    
442
static inline void lsi_set_phase(LSIState *s, int phase)
443
{
444
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
445
}
446

    
447
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
448
{
449
    /* Trigger a phase mismatch.  */
450
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
451
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
452
            s->dsp = s->pmjad1;
453
        } else {
454
            s->dsp = s->pmjad2;
455
        }
456
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
457
    } else {
458
        DPRINTF("Phase mismatch interrupt\n");
459
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
460
        lsi_stop_script(s);
461
    }
462
    lsi_set_phase(s, new_phase);
463
}
464

    
465

    
466
/* Resume SCRIPTS execution after a DMA operation.  */
467
static void lsi_resume_script(LSIState *s)
468
{
469
    if (s->waiting != 2) {
470
        s->waiting = 0;
471
        lsi_execute_script(s);
472
    } else {
473
        s->waiting = 0;
474
    }
475
}
476

    
477
/* Initiate a SCSI layer data transfer.  */
478
static void lsi_do_dma(LSIState *s, int out)
479
{
480
    uint32_t count;
481
    target_phys_addr_t addr;
482

    
483
    if (!s->current_dma_len) {
484
        /* Wait until data is available.  */
485
        DPRINTF("DMA no data available\n");
486
        return;
487
    }
488

    
489
    count = s->dbc;
490
    if (count > s->current_dma_len)
491
        count = s->current_dma_len;
492

    
493
    addr = s->dnad;
494
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
495
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
496
        addr |= ((uint64_t)s->dnad64 << 32);
497
    else if (s->dbms)
498
        addr |= ((uint64_t)s->dbms << 32);
499
    else if (s->sbms)
500
        addr |= ((uint64_t)s->sbms << 32);
501

    
502
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
503
    s->csbc += count;
504
    s->dnad += count;
505
    s->dbc -= count;
506

    
507
    if (s->dma_buf == NULL) {
508
        s->dma_buf = s->current_dev->get_buf(s->current_dev,
509
                                             s->current_tag);
510
    }
511

    
512
    /* ??? Set SFBR to first data byte.  */
513
    if (out) {
514
        cpu_physical_memory_read(addr, s->dma_buf, count);
515
    } else {
516
        cpu_physical_memory_write(addr, s->dma_buf, count);
517
    }
518
    s->current_dma_len -= count;
519
    if (s->current_dma_len == 0) {
520
        s->dma_buf = NULL;
521
        if (out) {
522
            /* Write the data.  */
523
            s->current_dev->write_data(s->current_dev, s->current_tag);
524
        } else {
525
            /* Request any remaining data.  */
526
            s->current_dev->read_data(s->current_dev, s->current_tag);
527
        }
528
    } else {
529
        s->dma_buf += count;
530
        lsi_resume_script(s);
531
    }
532
}
533

    
534

    
535
/* Add a command to the queue.  */
536
static void lsi_queue_command(LSIState *s)
537
{
538
    lsi_queue *p;
539

    
540
    DPRINTF("Queueing tag=0x%x\n", s->current_tag);
541
    if (s->queue_len == s->active_commands) {
542
        s->queue_len++;
543
        s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
544
    }
545
    p = &s->queue[s->active_commands++];
546
    p->tag = s->current_tag;
547
    p->pending = 0;
548
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
549
}
550

    
551
/* Queue a byte for a MSG IN phase.  */
552
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
553
{
554
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
555
        BADF("MSG IN data too long\n");
556
    } else {
557
        DPRINTF("MSG IN 0x%02x\n", data);
558
        s->msg[s->msg_len++] = data;
559
    }
560
}
561

    
562
/* Perform reselection to continue a command.  */
563
static void lsi_reselect(LSIState *s, uint32_t tag)
564
{
565
    lsi_queue *p;
566
    int n;
567
    int id;
568

    
569
    p = NULL;
570
    for (n = 0; n < s->active_commands; n++) {
571
        p = &s->queue[n];
572
        if (p->tag == tag)
573
            break;
574
    }
575
    if (n == s->active_commands) {
576
        BADF("Reselected non-existant command tag=0x%x\n", tag);
577
        return;
578
    }
579
    id = (tag >> 8) & 0xf;
580
    s->ssid = id | 0x80;
581
    DPRINTF("Reselected target %d\n", id);
582
    s->current_dev = s->scsi_dev[id];
583
    s->current_tag = tag;
584
    s->scntl1 |= LSI_SCNTL1_CON;
585
    lsi_set_phase(s, PHASE_MI);
586
    s->msg_action = p->out ? 2 : 3;
587
    s->current_dma_len = p->pending;
588
    s->dma_buf = NULL;
589
    lsi_add_msg_byte(s, 0x80);
590
    if (s->current_tag & LSI_TAG_VALID) {
591
        lsi_add_msg_byte(s, 0x20);
592
        lsi_add_msg_byte(s, tag & 0xff);
593
    }
594

    
595
    s->active_commands--;
596
    if (n != s->active_commands) {
597
        s->queue[n] = s->queue[s->active_commands];
598
    }
599
}
600

    
601
/* Record that data is available for a queued command.  Returns zero if
602
   the device was reselected, nonzero if the IO is deferred.  */
603
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
604
{
605
    lsi_queue *p;
606
    int i;
607
    for (i = 0; i < s->active_commands; i++) {
608
        p = &s->queue[i];
609
        if (p->tag == tag) {
610
            if (p->pending) {
611
                BADF("Multiple IO pending for tag %d\n", tag);
612
            }
613
            p->pending = arg;
614
            if (s->waiting == 1) {
615
                /* Reselect device.  */
616
                lsi_reselect(s, tag);
617
                return 0;
618
            } else {
619
               DPRINTF("Queueing IO tag=0x%x\n", tag);
620
                p->pending = arg;
621
                return 1;
622
            }
623
        }
624
    }
625
    BADF("IO with unknown tag %d\n", tag);
626
    return 1;
627
}
628

    
629
/* Callback to indicate that the SCSI layer has completed a transfer.  */
630
static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
631
                                 uint32_t arg)
632
{
633
    LSIState *s = (LSIState *)opaque;
634
    int out;
635

    
636
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
637
    if (reason == SCSI_REASON_DONE) {
638
        DPRINTF("Command complete sense=%d\n", (int)arg);
639
        s->sense = arg;
640
        s->command_complete = 2;
641
        if (s->waiting && s->dbc != 0) {
642
            /* Raise phase mismatch for short transfers.  */
643
            lsi_bad_phase(s, out, PHASE_ST);
644
        } else {
645
            lsi_set_phase(s, PHASE_ST);
646
        }
647
        lsi_resume_script(s);
648
        return;
649
    }
650

    
651
    if (s->waiting == 1 || tag != s->current_tag) {
652
        if (lsi_queue_tag(s, tag, arg))
653
            return;
654
    }
655
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
656
    s->current_dma_len = arg;
657
    s->command_complete = 1;
658
    if (!s->waiting)
659
        return;
660
    if (s->waiting == 1 || s->dbc == 0) {
661
        lsi_resume_script(s);
662
    } else {
663
        lsi_do_dma(s, out);
664
    }
665
}
666

    
667
static void lsi_do_command(LSIState *s)
668
{
669
    uint8_t buf[16];
670
    int n;
671

    
672
    DPRINTF("Send command len=%d\n", s->dbc);
673
    if (s->dbc > 16)
674
        s->dbc = 16;
675
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
676
    s->sfbr = buf[0];
677
    s->command_complete = 0;
678
    n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
679
                                     s->current_lun);
680
    if (n > 0) {
681
        lsi_set_phase(s, PHASE_DI);
682
        s->current_dev->read_data(s->current_dev, s->current_tag);
683
    } else if (n < 0) {
684
        lsi_set_phase(s, PHASE_DO);
685
        s->current_dev->write_data(s->current_dev, s->current_tag);
686
    }
687

    
688
    if (!s->command_complete) {
689
        if (n) {
690
            /* Command did not complete immediately so disconnect.  */
691
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
692
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
693
            /* wait data */
694
            lsi_set_phase(s, PHASE_MI);
695
            s->msg_action = 1;
696
            lsi_queue_command(s);
697
        } else {
698
            /* wait command complete */
699
            lsi_set_phase(s, PHASE_DI);
700
        }
701
    }
702
}
703

    
704
static void lsi_do_status(LSIState *s)
705
{
706
    uint8_t sense;
707
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
708
    if (s->dbc != 1)
709
        BADF("Bad Status move\n");
710
    s->dbc = 1;
711
    sense = s->sense;
712
    s->sfbr = sense;
713
    cpu_physical_memory_write(s->dnad, &sense, 1);
714
    lsi_set_phase(s, PHASE_MI);
715
    s->msg_action = 1;
716
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
717
}
718

    
719
static void lsi_disconnect(LSIState *s)
720
{
721
    s->scntl1 &= ~LSI_SCNTL1_CON;
722
    s->sstat1 &= ~PHASE_MASK;
723
}
724

    
725
static void lsi_do_msgin(LSIState *s)
726
{
727
    int len;
728
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
729
    s->sfbr = s->msg[0];
730
    len = s->msg_len;
731
    if (len > s->dbc)
732
        len = s->dbc;
733
    cpu_physical_memory_write(s->dnad, s->msg, len);
734
    /* Linux drivers rely on the last byte being in the SIDL.  */
735
    s->sidl = s->msg[len - 1];
736
    s->msg_len -= len;
737
    if (s->msg_len) {
738
        memmove(s->msg, s->msg + len, s->msg_len);
739
    } else {
740
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
741
           switch to PHASE_MO.  */
742
        switch (s->msg_action) {
743
        case 0:
744
            lsi_set_phase(s, PHASE_CMD);
745
            break;
746
        case 1:
747
            lsi_disconnect(s);
748
            break;
749
        case 2:
750
            lsi_set_phase(s, PHASE_DO);
751
            break;
752
        case 3:
753
            lsi_set_phase(s, PHASE_DI);
754
            break;
755
        default:
756
            abort();
757
        }
758
    }
759
}
760

    
761
/* Read the next byte during a MSGOUT phase.  */
762
static uint8_t lsi_get_msgbyte(LSIState *s)
763
{
764
    uint8_t data;
765
    cpu_physical_memory_read(s->dnad, &data, 1);
766
    s->dnad++;
767
    s->dbc--;
768
    return data;
769
}
770

    
771
static void lsi_do_msgout(LSIState *s)
772
{
773
    uint8_t msg;
774
    int len;
775

    
776
    DPRINTF("MSG out len=%d\n", s->dbc);
777
    while (s->dbc) {
778
        msg = lsi_get_msgbyte(s);
779
        s->sfbr = msg;
780

    
781
        switch (msg) {
782
        case 0x00:
783
            DPRINTF("MSG: Disconnect\n");
784
            lsi_disconnect(s);
785
            break;
786
        case 0x08:
787
            DPRINTF("MSG: No Operation\n");
788
            lsi_set_phase(s, PHASE_CMD);
789
            break;
790
        case 0x01:
791
            len = lsi_get_msgbyte(s);
792
            msg = lsi_get_msgbyte(s);
793
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
794
            switch (msg) {
795
            case 1:
796
                DPRINTF("SDTR (ignored)\n");
797
                s->dbc -= 2;
798
                break;
799
            case 3:
800
                DPRINTF("WDTR (ignored)\n");
801
                s->dbc -= 1;
802
                break;
803
            default:
804
                goto bad;
805
            }
806
            break;
807
        case 0x20: /* SIMPLE queue */
808
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
809
            DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
810
            break;
811
        case 0x21: /* HEAD of queue */
812
            BADF("HEAD queue not implemented\n");
813
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
814
            break;
815
        case 0x22: /* ORDERED queue */
816
            BADF("ORDERED queue not implemented\n");
817
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
818
            break;
819
        default:
820
            if ((msg & 0x80) == 0) {
821
                goto bad;
822
            }
823
            s->current_lun = msg & 7;
824
            DPRINTF("Select LUN %d\n", s->current_lun);
825
            lsi_set_phase(s, PHASE_CMD);
826
            break;
827
        }
828
    }
829
    return;
830
bad:
831
    BADF("Unimplemented message 0x%02x\n", msg);
832
    lsi_set_phase(s, PHASE_MI);
833
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
834
    s->msg_action = 0;
835
}
836

    
837
/* Sign extend a 24-bit value.  */
838
static inline int32_t sxt24(int32_t n)
839
{
840
    return (n << 8) >> 8;
841
}
842

    
843
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
844
{
845
    int n;
846
    uint8_t buf[TARGET_PAGE_SIZE];
847

    
848
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
849
    while (count) {
850
        n = (count > TARGET_PAGE_SIZE) ? TARGET_PAGE_SIZE : count;
851
        cpu_physical_memory_read(src, buf, n);
852
        cpu_physical_memory_write(dest, buf, n);
853
        src += n;
854
        dest += n;
855
        count -= n;
856
    }
857
}
858

    
859
static void lsi_wait_reselect(LSIState *s)
860
{
861
    int i;
862
    DPRINTF("Wait Reselect\n");
863
    if (s->current_dma_len)
864
        BADF("Reselect with pending DMA\n");
865
    for (i = 0; i < s->active_commands; i++) {
866
        if (s->queue[i].pending) {
867
            lsi_reselect(s, s->queue[i].tag);
868
            break;
869
        }
870
    }
871
    if (s->current_dma_len == 0) {
872
        s->waiting = 1;
873
    }
874
}
875

    
876
static void lsi_execute_script(LSIState *s)
877
{
878
    uint32_t insn;
879
    uint32_t addr, addr_high;
880
    int opcode;
881
    int insn_processed = 0;
882

    
883
    s->istat1 |= LSI_ISTAT1_SRUN;
884
again:
885
    insn_processed++;
886
    insn = read_dword(s, s->dsp);
887
    if (!insn) {
888
        /* If we receive an empty opcode increment the DSP by 4 bytes
889
           instead of 8 and execute the next opcode at that location */
890
        s->dsp += 4;
891
        goto again;
892
    }
893
    addr = read_dword(s, s->dsp + 4);
894
    addr_high = 0;
895
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
896
    s->dsps = addr;
897
    s->dcmd = insn >> 24;
898
    s->dsp += 8;
899
    switch (insn >> 30) {
900
    case 0: /* Block move.  */
901
        if (s->sist1 & LSI_SIST1_STO) {
902
            DPRINTF("Delayed select timeout\n");
903
            lsi_stop_script(s);
904
            break;
905
        }
906
        s->dbc = insn & 0xffffff;
907
        s->rbc = s->dbc;
908
        /* ??? Set ESA.  */
909
        s->ia = s->dsp - 8;
910
        if (insn & (1 << 29)) {
911
            /* Indirect addressing.  */
912
            addr = read_dword(s, addr);
913
        } else if (insn & (1 << 28)) {
914
            uint32_t buf[2];
915
            int32_t offset;
916
            /* Table indirect addressing.  */
917

    
918
            /* 32-bit Table indirect */
919
            offset = sxt24(addr);
920
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
921
            /* byte count is stored in bits 0:23 only */
922
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
923
            s->rbc = s->dbc;
924
            addr = cpu_to_le32(buf[1]);
925

    
926
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
927
             * table, bits [31:24] */
928
            if (lsi_dma_40bit(s))
929
                addr_high = cpu_to_le32(buf[0]) >> 24;
930
            else if (lsi_dma_ti64bit(s)) {
931
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
932
                switch (selector) {
933
                case 0 ... 0x0f:
934
                    /* offset index into scratch registers since
935
                     * TI64 mode can use registers C to R */
936
                    addr_high = s->scratch[2 + selector];
937
                    break;
938
                case 0x10:
939
                    addr_high = s->mmrs;
940
                    break;
941
                case 0x11:
942
                    addr_high = s->mmws;
943
                    break;
944
                case 0x12:
945
                    addr_high = s->sfs;
946
                    break;
947
                case 0x13:
948
                    addr_high = s->drs;
949
                    break;
950
                case 0x14:
951
                    addr_high = s->sbms;
952
                    break;
953
                case 0x15:
954
                    addr_high = s->dbms;
955
                    break;
956
                default:
957
                    BADF("Illegal selector specified (0x%x > 0x15)"
958
                         " for 64-bit DMA block move", selector);
959
                    break;
960
                }
961
            }
962
        } else if (lsi_dma_64bit(s)) {
963
            /* fetch a 3rd dword if 64-bit direct move is enabled and
964
               only if we're not doing table indirect or indirect addressing */
965
            s->dbms = read_dword(s, s->dsp);
966
            s->dsp += 4;
967
            s->ia = s->dsp - 12;
968
        }
969
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
970
            DPRINTF("Wrong phase got %d expected %d\n",
971
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
972
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
973
            break;
974
        }
975
        s->dnad = addr;
976
        s->dnad64 = addr_high;
977
        switch (s->sstat1 & 0x7) {
978
        case PHASE_DO:
979
            s->waiting = 2;
980
            lsi_do_dma(s, 1);
981
            if (s->waiting)
982
                s->waiting = 3;
983
            break;
984
        case PHASE_DI:
985
            s->waiting = 2;
986
            lsi_do_dma(s, 0);
987
            if (s->waiting)
988
                s->waiting = 3;
989
            break;
990
        case PHASE_CMD:
991
            lsi_do_command(s);
992
            break;
993
        case PHASE_ST:
994
            lsi_do_status(s);
995
            break;
996
        case PHASE_MO:
997
            lsi_do_msgout(s);
998
            break;
999
        case PHASE_MI:
1000
            lsi_do_msgin(s);
1001
            break;
1002
        default:
1003
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1004
            exit(1);
1005
        }
1006
        s->dfifo = s->dbc & 0xff;
1007
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1008
        s->sbc = s->dbc;
1009
        s->rbc -= s->dbc;
1010
        s->ua = addr + s->dbc;
1011
        break;
1012

    
1013
    case 1: /* IO or Read/Write instruction.  */
1014
        opcode = (insn >> 27) & 7;
1015
        if (opcode < 5) {
1016
            uint32_t id;
1017

    
1018
            if (insn & (1 << 25)) {
1019
                id = read_dword(s, s->dsa + sxt24(insn));
1020
            } else {
1021
                id = addr;
1022
            }
1023
            id = (id >> 16) & 0xf;
1024
            if (insn & (1 << 26)) {
1025
                addr = s->dsp + sxt24(addr);
1026
            }
1027
            s->dnad = addr;
1028
            switch (opcode) {
1029
            case 0: /* Select */
1030
                s->sdid = id;
1031
                if (s->current_dma_len && (s->ssid & 0xf) == id) {
1032
                    DPRINTF("Already reselected by target %d\n", id);
1033
                    break;
1034
                }
1035
                s->sstat0 |= LSI_SSTAT0_WOA;
1036
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1037
                if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
1038
                    DPRINTF("Selected absent target %d\n", id);
1039
                    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1040
                    lsi_disconnect(s);
1041
                    break;
1042
                }
1043
                DPRINTF("Selected target %d%s\n",
1044
                        id, insn & (1 << 3) ? " ATN" : "");
1045
                /* ??? Linux drivers compain when this is set.  Maybe
1046
                   it only applies in low-level mode (unimplemented).
1047
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1048
                s->current_dev = s->scsi_dev[id];
1049
                s->current_tag = id << 8;
1050
                s->scntl1 |= LSI_SCNTL1_CON;
1051
                if (insn & (1 << 3)) {
1052
                    s->socl |= LSI_SOCL_ATN;
1053
                }
1054
                lsi_set_phase(s, PHASE_MO);
1055
                break;
1056
            case 1: /* Disconnect */
1057
                DPRINTF("Wait Disconect\n");
1058
                s->scntl1 &= ~LSI_SCNTL1_CON;
1059
                break;
1060
            case 2: /* Wait Reselect */
1061
                lsi_wait_reselect(s);
1062
                break;
1063
            case 3: /* Set */
1064
                DPRINTF("Set%s%s%s%s\n",
1065
                        insn & (1 << 3) ? " ATN" : "",
1066
                        insn & (1 << 6) ? " ACK" : "",
1067
                        insn & (1 << 9) ? " TM" : "",
1068
                        insn & (1 << 10) ? " CC" : "");
1069
                if (insn & (1 << 3)) {
1070
                    s->socl |= LSI_SOCL_ATN;
1071
                    lsi_set_phase(s, PHASE_MO);
1072
                }
1073
                if (insn & (1 << 9)) {
1074
                    BADF("Target mode not implemented\n");
1075
                    exit(1);
1076
                }
1077
                if (insn & (1 << 10))
1078
                    s->carry = 1;
1079
                break;
1080
            case 4: /* Clear */
1081
                DPRINTF("Clear%s%s%s%s\n",
1082
                        insn & (1 << 3) ? " ATN" : "",
1083
                        insn & (1 << 6) ? " ACK" : "",
1084
                        insn & (1 << 9) ? " TM" : "",
1085
                        insn & (1 << 10) ? " CC" : "");
1086
                if (insn & (1 << 3)) {
1087
                    s->socl &= ~LSI_SOCL_ATN;
1088
                }
1089
                if (insn & (1 << 10))
1090
                    s->carry = 0;
1091
                break;
1092
            }
1093
        } else {
1094
            uint8_t op0;
1095
            uint8_t op1;
1096
            uint8_t data8;
1097
            int reg;
1098
            int operator;
1099
#ifdef DEBUG_LSI
1100
            static const char *opcode_names[3] =
1101
                {"Write", "Read", "Read-Modify-Write"};
1102
            static const char *operator_names[8] =
1103
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1104
#endif
1105

    
1106
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1107
            data8 = (insn >> 8) & 0xff;
1108
            opcode = (insn >> 27) & 7;
1109
            operator = (insn >> 24) & 7;
1110
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1111
                    opcode_names[opcode - 5], reg,
1112
                    operator_names[operator], data8, s->sfbr,
1113
                    (insn & (1 << 23)) ? " SFBR" : "");
1114
            op0 = op1 = 0;
1115
            switch (opcode) {
1116
            case 5: /* From SFBR */
1117
                op0 = s->sfbr;
1118
                op1 = data8;
1119
                break;
1120
            case 6: /* To SFBR */
1121
                if (operator)
1122
                    op0 = lsi_reg_readb(s, reg);
1123
                op1 = data8;
1124
                break;
1125
            case 7: /* Read-modify-write */
1126
                if (operator)
1127
                    op0 = lsi_reg_readb(s, reg);
1128
                if (insn & (1 << 23)) {
1129
                    op1 = s->sfbr;
1130
                } else {
1131
                    op1 = data8;
1132
                }
1133
                break;
1134
            }
1135

    
1136
            switch (operator) {
1137
            case 0: /* move */
1138
                op0 = op1;
1139
                break;
1140
            case 1: /* Shift left */
1141
                op1 = op0 >> 7;
1142
                op0 = (op0 << 1) | s->carry;
1143
                s->carry = op1;
1144
                break;
1145
            case 2: /* OR */
1146
                op0 |= op1;
1147
                break;
1148
            case 3: /* XOR */
1149
                op0 ^= op1;
1150
                break;
1151
            case 4: /* AND */
1152
                op0 &= op1;
1153
                break;
1154
            case 5: /* SHR */
1155
                op1 = op0 & 1;
1156
                op0 = (op0 >> 1) | (s->carry << 7);
1157
                s->carry = op1;
1158
                break;
1159
            case 6: /* ADD */
1160
                op0 += op1;
1161
                s->carry = op0 < op1;
1162
                break;
1163
            case 7: /* ADC */
1164
                op0 += op1 + s->carry;
1165
                if (s->carry)
1166
                    s->carry = op0 <= op1;
1167
                else
1168
                    s->carry = op0 < op1;
1169
                break;
1170
            }
1171

    
1172
            switch (opcode) {
1173
            case 5: /* From SFBR */
1174
            case 7: /* Read-modify-write */
1175
                lsi_reg_writeb(s, reg, op0);
1176
                break;
1177
            case 6: /* To SFBR */
1178
                s->sfbr = op0;
1179
                break;
1180
            }
1181
        }
1182
        break;
1183

    
1184
    case 2: /* Transfer Control.  */
1185
        {
1186
            int cond;
1187
            int jmp;
1188

    
1189
            if ((insn & 0x002e0000) == 0) {
1190
                DPRINTF("NOP\n");
1191
                break;
1192
            }
1193
            if (s->sist1 & LSI_SIST1_STO) {
1194
                DPRINTF("Delayed select timeout\n");
1195
                lsi_stop_script(s);
1196
                break;
1197
            }
1198
            cond = jmp = (insn & (1 << 19)) != 0;
1199
            if (cond == jmp && (insn & (1 << 21))) {
1200
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1201
                cond = s->carry != 0;
1202
            }
1203
            if (cond == jmp && (insn & (1 << 17))) {
1204
                DPRINTF("Compare phase %d %c= %d\n",
1205
                        (s->sstat1 & PHASE_MASK),
1206
                        jmp ? '=' : '!',
1207
                        ((insn >> 24) & 7));
1208
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1209
            }
1210
            if (cond == jmp && (insn & (1 << 18))) {
1211
                uint8_t mask;
1212

    
1213
                mask = (~insn >> 8) & 0xff;
1214
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1215
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1216
                cond = (s->sfbr & mask) == (insn & mask);
1217
            }
1218
            if (cond == jmp) {
1219
                if (insn & (1 << 23)) {
1220
                    /* Relative address.  */
1221
                    addr = s->dsp + sxt24(addr);
1222
                }
1223
                switch ((insn >> 27) & 7) {
1224
                case 0: /* Jump */
1225
                    DPRINTF("Jump to 0x%08x\n", addr);
1226
                    s->dsp = addr;
1227
                    break;
1228
                case 1: /* Call */
1229
                    DPRINTF("Call 0x%08x\n", addr);
1230
                    s->temp = s->dsp;
1231
                    s->dsp = addr;
1232
                    break;
1233
                case 2: /* Return */
1234
                    DPRINTF("Return to 0x%08x\n", s->temp);
1235
                    s->dsp = s->temp;
1236
                    break;
1237
                case 3: /* Interrupt */
1238
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1239
                    if ((insn & (1 << 20)) != 0) {
1240
                        s->istat0 |= LSI_ISTAT0_INTF;
1241
                        lsi_update_irq(s);
1242
                    } else {
1243
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1244
                    }
1245
                    break;
1246
                default:
1247
                    DPRINTF("Illegal transfer control\n");
1248
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1249
                    break;
1250
                }
1251
            } else {
1252
                DPRINTF("Control condition failed\n");
1253
            }
1254
        }
1255
        break;
1256

    
1257
    case 3:
1258
        if ((insn & (1 << 29)) == 0) {
1259
            /* Memory move.  */
1260
            uint32_t dest;
1261
            /* ??? The docs imply the destination address is loaded into
1262
               the TEMP register.  However the Linux drivers rely on
1263
               the value being presrved.  */
1264
            dest = read_dword(s, s->dsp);
1265
            s->dsp += 4;
1266
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1267
        } else {
1268
            uint8_t data[7];
1269
            int reg;
1270
            int n;
1271
            int i;
1272

    
1273
            if (insn & (1 << 28)) {
1274
                addr = s->dsa + sxt24(addr);
1275
            }
1276
            n = (insn & 7);
1277
            reg = (insn >> 16) & 0xff;
1278
            if (insn & (1 << 24)) {
1279
                cpu_physical_memory_read(addr, data, n);
1280
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1281
                        addr, *(int *)data);
1282
                for (i = 0; i < n; i++) {
1283
                    lsi_reg_writeb(s, reg + i, data[i]);
1284
                }
1285
            } else {
1286
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1287
                for (i = 0; i < n; i++) {
1288
                    data[i] = lsi_reg_readb(s, reg + i);
1289
                }
1290
                cpu_physical_memory_write(addr, data, n);
1291
            }
1292
        }
1293
    }
1294
    if (insn_processed > 10000 && !s->waiting) {
1295
        /* Some windows drivers make the device spin waiting for a memory
1296
           location to change.  If we have been executed a lot of code then
1297
           assume this is the case and force an unexpected device disconnect.
1298
           This is apparently sufficient to beat the drivers into submission.
1299
         */
1300
        if (!(s->sien0 & LSI_SIST0_UDC))
1301
            fprintf(stderr, "inf. loop with UDC masked\n");
1302
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1303
        lsi_disconnect(s);
1304
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1305
        if (s->dcntl & LSI_DCNTL_SSM) {
1306
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1307
        } else {
1308
            goto again;
1309
        }
1310
    }
1311
    DPRINTF("SCRIPTS execution stopped\n");
1312
}
1313

    
1314
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1315
{
1316
    uint8_t tmp;
1317
#define CASE_GET_REG24(name, addr) \
1318
    case addr: return s->name & 0xff; \
1319
    case addr + 1: return (s->name >> 8) & 0xff; \
1320
    case addr + 2: return (s->name >> 16) & 0xff;
1321

    
1322
#define CASE_GET_REG32(name, addr) \
1323
    case addr: return s->name & 0xff; \
1324
    case addr + 1: return (s->name >> 8) & 0xff; \
1325
    case addr + 2: return (s->name >> 16) & 0xff; \
1326
    case addr + 3: return (s->name >> 24) & 0xff;
1327

    
1328
#ifdef DEBUG_LSI_REG
1329
    DPRINTF("Read reg %x\n", offset);
1330
#endif
1331
    switch (offset) {
1332
    case 0x00: /* SCNTL0 */
1333
        return s->scntl0;
1334
    case 0x01: /* SCNTL1 */
1335
        return s->scntl1;
1336
    case 0x02: /* SCNTL2 */
1337
        return s->scntl2;
1338
    case 0x03: /* SCNTL3 */
1339
        return s->scntl3;
1340
    case 0x04: /* SCID */
1341
        return s->scid;
1342
    case 0x05: /* SXFER */
1343
        return s->sxfer;
1344
    case 0x06: /* SDID */
1345
        return s->sdid;
1346
    case 0x07: /* GPREG0 */
1347
        return 0x7f;
1348
    case 0x08: /* Revision ID */
1349
        return 0x00;
1350
    case 0xa: /* SSID */
1351
        return s->ssid;
1352
    case 0xb: /* SBCL */
1353
        /* ??? This is not correct. However it's (hopefully) only
1354
           used for diagnostics, so should be ok.  */
1355
        return 0;
1356
    case 0xc: /* DSTAT */
1357
        tmp = s->dstat | 0x80;
1358
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1359
            s->dstat = 0;
1360
        lsi_update_irq(s);
1361
        return tmp;
1362
    case 0x0d: /* SSTAT0 */
1363
        return s->sstat0;
1364
    case 0x0e: /* SSTAT1 */
1365
        return s->sstat1;
1366
    case 0x0f: /* SSTAT2 */
1367
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1368
    CASE_GET_REG32(dsa, 0x10)
1369
    case 0x14: /* ISTAT0 */
1370
        return s->istat0;
1371
    case 0x16: /* MBOX0 */
1372
        return s->mbox0;
1373
    case 0x17: /* MBOX1 */
1374
        return s->mbox1;
1375
    case 0x18: /* CTEST0 */
1376
        return 0xff;
1377
    case 0x19: /* CTEST1 */
1378
        return 0;
1379
    case 0x1a: /* CTEST2 */
1380
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1381
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1382
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1383
            tmp |= LSI_CTEST2_SIGP;
1384
        }
1385
        return tmp;
1386
    case 0x1b: /* CTEST3 */
1387
        return s->ctest3;
1388
    CASE_GET_REG32(temp, 0x1c)
1389
    case 0x20: /* DFIFO */
1390
        return 0;
1391
    case 0x21: /* CTEST4 */
1392
        return s->ctest4;
1393
    case 0x22: /* CTEST5 */
1394
        return s->ctest5;
1395
    case 0x23: /* CTEST6 */
1396
         return 0;
1397
    CASE_GET_REG24(dbc, 0x24)
1398
    case 0x27: /* DCMD */
1399
        return s->dcmd;
1400
    CASE_GET_REG32(dsp, 0x2c)
1401
    CASE_GET_REG32(dsps, 0x30)
1402
    CASE_GET_REG32(scratch[0], 0x34)
1403
    case 0x38: /* DMODE */
1404
        return s->dmode;
1405
    case 0x39: /* DIEN */
1406
        return s->dien;
1407
    case 0x3b: /* DCNTL */
1408
        return s->dcntl;
1409
    case 0x40: /* SIEN0 */
1410
        return s->sien0;
1411
    case 0x41: /* SIEN1 */
1412
        return s->sien1;
1413
    case 0x42: /* SIST0 */
1414
        tmp = s->sist0;
1415
        s->sist0 = 0;
1416
        lsi_update_irq(s);
1417
        return tmp;
1418
    case 0x43: /* SIST1 */
1419
        tmp = s->sist1;
1420
        s->sist1 = 0;
1421
        lsi_update_irq(s);
1422
        return tmp;
1423
    case 0x46: /* MACNTL */
1424
        return 0x0f;
1425
    case 0x47: /* GPCNTL0 */
1426
        return 0x0f;
1427
    case 0x48: /* STIME0 */
1428
        return s->stime0;
1429
    case 0x4a: /* RESPID0 */
1430
        return s->respid0;
1431
    case 0x4b: /* RESPID1 */
1432
        return s->respid1;
1433
    case 0x4d: /* STEST1 */
1434
        return s->stest1;
1435
    case 0x4e: /* STEST2 */
1436
        return s->stest2;
1437
    case 0x4f: /* STEST3 */
1438
        return s->stest3;
1439
    case 0x50: /* SIDL */
1440
        /* This is needed by the linux drivers.  We currently only update it
1441
           during the MSG IN phase.  */
1442
        return s->sidl;
1443
    case 0x52: /* STEST4 */
1444
        return 0xe0;
1445
    case 0x56: /* CCNTL0 */
1446
        return s->ccntl0;
1447
    case 0x57: /* CCNTL1 */
1448
        return s->ccntl1;
1449
    case 0x58: /* SBDL */
1450
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1451
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1452
            return s->msg[0];
1453
        return 0;
1454
    case 0x59: /* SBDL high */
1455
        return 0;
1456
    CASE_GET_REG32(mmrs, 0xa0)
1457
    CASE_GET_REG32(mmws, 0xa4)
1458
    CASE_GET_REG32(sfs, 0xa8)
1459
    CASE_GET_REG32(drs, 0xac)
1460
    CASE_GET_REG32(sbms, 0xb0)
1461
    CASE_GET_REG32(dbms, 0xb4)
1462
    CASE_GET_REG32(dnad64, 0xb8)
1463
    CASE_GET_REG32(pmjad1, 0xc0)
1464
    CASE_GET_REG32(pmjad2, 0xc4)
1465
    CASE_GET_REG32(rbc, 0xc8)
1466
    CASE_GET_REG32(ua, 0xcc)
1467
    CASE_GET_REG32(ia, 0xd4)
1468
    CASE_GET_REG32(sbc, 0xd8)
1469
    CASE_GET_REG32(csbc, 0xdc)
1470
    }
1471
    if (offset >= 0x5c && offset < 0xa0) {
1472
        int n;
1473
        int shift;
1474
        n = (offset - 0x58) >> 2;
1475
        shift = (offset & 3) * 8;
1476
        return (s->scratch[n] >> shift) & 0xff;
1477
    }
1478
    BADF("readb 0x%x\n", offset);
1479
    exit(1);
1480
#undef CASE_GET_REG24
1481
#undef CASE_GET_REG32
1482
}
1483

    
1484
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1485
{
1486
#define CASE_SET_REG32(name, addr) \
1487
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1488
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1489
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1490
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1491

    
1492
#ifdef DEBUG_LSI_REG
1493
    DPRINTF("Write reg %x = %02x\n", offset, val);
1494
#endif
1495
    switch (offset) {
1496
    case 0x00: /* SCNTL0 */
1497
        s->scntl0 = val;
1498
        if (val & LSI_SCNTL0_START) {
1499
            BADF("Start sequence not implemented\n");
1500
        }
1501
        break;
1502
    case 0x01: /* SCNTL1 */
1503
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1504
        if (val & LSI_SCNTL1_IARB) {
1505
            BADF("Immediate Arbritration not implemented\n");
1506
        }
1507
        if (val & LSI_SCNTL1_RST) {
1508
            s->sstat0 |= LSI_SSTAT0_RST;
1509
            lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1510
        } else {
1511
            s->sstat0 &= ~LSI_SSTAT0_RST;
1512
        }
1513
        break;
1514
    case 0x02: /* SCNTL2 */
1515
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1516
        s->scntl2 = val;
1517
        break;
1518
    case 0x03: /* SCNTL3 */
1519
        s->scntl3 = val;
1520
        break;
1521
    case 0x04: /* SCID */
1522
        s->scid = val;
1523
        break;
1524
    case 0x05: /* SXFER */
1525
        s->sxfer = val;
1526
        break;
1527
    case 0x06: /* SDID */
1528
        if ((val & 0xf) != (s->ssid & 0xf))
1529
            BADF("Destination ID does not match SSID\n");
1530
        s->sdid = val & 0xf;
1531
        break;
1532
    case 0x07: /* GPREG0 */
1533
        break;
1534
    case 0x08: /* SFBR */
1535
        /* The CPU is not allowed to write to this register.  However the
1536
           SCRIPTS register move instructions are.  */
1537
        s->sfbr = val;
1538
        break;
1539
    case 0x0a: case 0x0b: 
1540
        /* Openserver writes to these readonly registers on startup */
1541
        return;    
1542
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1543
        /* Linux writes to these readonly registers on startup.  */
1544
        return;
1545
    CASE_SET_REG32(dsa, 0x10)
1546
    case 0x14: /* ISTAT0 */
1547
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1548
        if (val & LSI_ISTAT0_ABRT) {
1549
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1550
        }
1551
        if (val & LSI_ISTAT0_INTF) {
1552
            s->istat0 &= ~LSI_ISTAT0_INTF;
1553
            lsi_update_irq(s);
1554
        }
1555
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1556
            DPRINTF("Woken by SIGP\n");
1557
            s->waiting = 0;
1558
            s->dsp = s->dnad;
1559
            lsi_execute_script(s);
1560
        }
1561
        if (val & LSI_ISTAT0_SRST) {
1562
            lsi_soft_reset(s);
1563
        }
1564
        break;
1565
    case 0x16: /* MBOX0 */
1566
        s->mbox0 = val;
1567
        break;
1568
    case 0x17: /* MBOX1 */
1569
        s->mbox1 = val;
1570
        break;
1571
    case 0x1a: /* CTEST2 */
1572
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1573
        break;
1574
    case 0x1b: /* CTEST3 */
1575
        s->ctest3 = val & 0x0f;
1576
        break;
1577
    CASE_SET_REG32(temp, 0x1c)
1578
    case 0x21: /* CTEST4 */
1579
        if (val & 7) {
1580
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1581
        }
1582
        s->ctest4 = val;
1583
        break;
1584
    case 0x22: /* CTEST5 */
1585
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1586
            BADF("CTEST5 DMA increment not implemented\n");
1587
        }
1588
        s->ctest5 = val;
1589
        break;
1590
    case 0x2c: /* DSP[0:7] */
1591
        s->dsp &= 0xffffff00;
1592
        s->dsp |= val;
1593
        break;
1594
    case 0x2d: /* DSP[8:15] */
1595
        s->dsp &= 0xffff00ff;
1596
        s->dsp |= val << 8;
1597
        break;
1598
    case 0x2e: /* DSP[16:23] */
1599
        s->dsp &= 0xff00ffff;
1600
        s->dsp |= val << 16;
1601
        break;
1602
    case 0x2f: /* DSP[24:31] */
1603
        s->dsp &= 0x00ffffff;
1604
        s->dsp |= val << 24;
1605
        if ((s->dmode & LSI_DMODE_MAN) == 0
1606
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1607
            lsi_execute_script(s);
1608
        break;
1609
    CASE_SET_REG32(dsps, 0x30)
1610
    CASE_SET_REG32(scratch[0], 0x34)
1611
    case 0x38: /* DMODE */
1612
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1613
            BADF("IO mappings not implemented\n");
1614
        }
1615
        s->dmode = val;
1616
        break;
1617
    case 0x39: /* DIEN */
1618
        s->dien = val;
1619
        lsi_update_irq(s);
1620
        break;
1621
    case 0x3b: /* DCNTL */
1622
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1623
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1624
            lsi_execute_script(s);
1625
        break;
1626
    case 0x40: /* SIEN0 */
1627
        s->sien0 = val;
1628
        lsi_update_irq(s);
1629
        break;
1630
    case 0x41: /* SIEN1 */
1631
        s->sien1 = val;
1632
        lsi_update_irq(s);
1633
        break;
1634
    case 0x47: /* GPCNTL0 */
1635
        break;
1636
    case 0x48: /* STIME0 */
1637
        s->stime0 = val;
1638
        break;
1639
    case 0x49: /* STIME1 */
1640
        if (val & 0xf) {
1641
            DPRINTF("General purpose timer not implemented\n");
1642
            /* ??? Raising the interrupt immediately seems to be sufficient
1643
               to keep the FreeBSD driver happy.  */
1644
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1645
        }
1646
        break;
1647
    case 0x4a: /* RESPID0 */
1648
        s->respid0 = val;
1649
        break;
1650
    case 0x4b: /* RESPID1 */
1651
        s->respid1 = val;
1652
        break;
1653
    case 0x4d: /* STEST1 */
1654
        s->stest1 = val;
1655
        break;
1656
    case 0x4e: /* STEST2 */
1657
        if (val & 1) {
1658
            BADF("Low level mode not implemented\n");
1659
        }
1660
        s->stest2 = val;
1661
        break;
1662
    case 0x4f: /* STEST3 */
1663
        if (val & 0x41) {
1664
            BADF("SCSI FIFO test mode not implemented\n");
1665
        }
1666
        s->stest3 = val;
1667
        break;
1668
    case 0x56: /* CCNTL0 */
1669
        s->ccntl0 = val;
1670
        break;
1671
    case 0x57: /* CCNTL1 */
1672
        s->ccntl1 = val;
1673
        break;
1674
    CASE_SET_REG32(mmrs, 0xa0)
1675
    CASE_SET_REG32(mmws, 0xa4)
1676
    CASE_SET_REG32(sfs, 0xa8)
1677
    CASE_SET_REG32(drs, 0xac)
1678
    CASE_SET_REG32(sbms, 0xb0)
1679
    CASE_SET_REG32(dbms, 0xb4)
1680
    CASE_SET_REG32(dnad64, 0xb8)
1681
    CASE_SET_REG32(pmjad1, 0xc0)
1682
    CASE_SET_REG32(pmjad2, 0xc4)
1683
    CASE_SET_REG32(rbc, 0xc8)
1684
    CASE_SET_REG32(ua, 0xcc)
1685
    CASE_SET_REG32(ia, 0xd4)
1686
    CASE_SET_REG32(sbc, 0xd8)
1687
    CASE_SET_REG32(csbc, 0xdc)
1688
    default:
1689
        if (offset >= 0x5c && offset < 0xa0) {
1690
            int n;
1691
            int shift;
1692
            n = (offset - 0x58) >> 2;
1693
            shift = (offset & 3) * 8;
1694
            s->scratch[n] &= ~(0xff << shift);
1695
            s->scratch[n] |= (val & 0xff) << shift;
1696
        } else {
1697
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1698
        }
1699
    }
1700
#undef CASE_SET_REG32
1701
}
1702

    
1703
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1704
{
1705
    LSIState *s = (LSIState *)opaque;
1706

    
1707
    lsi_reg_writeb(s, addr & 0xff, val);
1708
}
1709

    
1710
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1711
{
1712
    LSIState *s = (LSIState *)opaque;
1713

    
1714
    addr &= 0xff;
1715
    lsi_reg_writeb(s, addr, val & 0xff);
1716
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1717
}
1718

    
1719
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1720
{
1721
    LSIState *s = (LSIState *)opaque;
1722

    
1723
    addr &= 0xff;
1724
    lsi_reg_writeb(s, addr, val & 0xff);
1725
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1726
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1727
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1728
}
1729

    
1730
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1731
{
1732
    LSIState *s = (LSIState *)opaque;
1733

    
1734
    return lsi_reg_readb(s, addr & 0xff);
1735
}
1736

    
1737
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1738
{
1739
    LSIState *s = (LSIState *)opaque;
1740
    uint32_t val;
1741

    
1742
    addr &= 0xff;
1743
    val = lsi_reg_readb(s, addr);
1744
    val |= lsi_reg_readb(s, addr + 1) << 8;
1745
    return val;
1746
}
1747

    
1748
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1749
{
1750
    LSIState *s = (LSIState *)opaque;
1751
    uint32_t val;
1752
    addr &= 0xff;
1753
    val = lsi_reg_readb(s, addr);
1754
    val |= lsi_reg_readb(s, addr + 1) << 8;
1755
    val |= lsi_reg_readb(s, addr + 2) << 16;
1756
    val |= lsi_reg_readb(s, addr + 3) << 24;
1757
    return val;
1758
}
1759

    
1760
static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
1761
    lsi_mmio_readb,
1762
    lsi_mmio_readw,
1763
    lsi_mmio_readl,
1764
};
1765

    
1766
static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
1767
    lsi_mmio_writeb,
1768
    lsi_mmio_writew,
1769
    lsi_mmio_writel,
1770
};
1771

    
1772
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1773
{
1774
    LSIState *s = (LSIState *)opaque;
1775
    uint32_t newval;
1776
    int shift;
1777

    
1778
    addr &= 0x1fff;
1779
    newval = s->script_ram[addr >> 2];
1780
    shift = (addr & 3) * 8;
1781
    newval &= ~(0xff << shift);
1782
    newval |= val << shift;
1783
    s->script_ram[addr >> 2] = newval;
1784
}
1785

    
1786
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1787
{
1788
    LSIState *s = (LSIState *)opaque;
1789
    uint32_t newval;
1790

    
1791
    addr &= 0x1fff;
1792
    newval = s->script_ram[addr >> 2];
1793
    if (addr & 2) {
1794
        newval = (newval & 0xffff) | (val << 16);
1795
    } else {
1796
        newval = (newval & 0xffff0000) | val;
1797
    }
1798
    s->script_ram[addr >> 2] = newval;
1799
}
1800

    
1801

    
1802
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1803
{
1804
    LSIState *s = (LSIState *)opaque;
1805

    
1806
    addr &= 0x1fff;
1807
    s->script_ram[addr >> 2] = val;
1808
}
1809

    
1810
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1811
{
1812
    LSIState *s = (LSIState *)opaque;
1813
    uint32_t val;
1814

    
1815
    addr &= 0x1fff;
1816
    val = s->script_ram[addr >> 2];
1817
    val >>= (addr & 3) * 8;
1818
    return val & 0xff;
1819
}
1820

    
1821
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1822
{
1823
    LSIState *s = (LSIState *)opaque;
1824
    uint32_t val;
1825

    
1826
    addr &= 0x1fff;
1827
    val = s->script_ram[addr >> 2];
1828
    if (addr & 2)
1829
        val >>= 16;
1830
    return le16_to_cpu(val);
1831
}
1832

    
1833
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1834
{
1835
    LSIState *s = (LSIState *)opaque;
1836

    
1837
    addr &= 0x1fff;
1838
    return le32_to_cpu(s->script_ram[addr >> 2]);
1839
}
1840

    
1841
static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
1842
    lsi_ram_readb,
1843
    lsi_ram_readw,
1844
    lsi_ram_readl,
1845
};
1846

    
1847
static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
1848
    lsi_ram_writeb,
1849
    lsi_ram_writew,
1850
    lsi_ram_writel,
1851
};
1852

    
1853
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1854
{
1855
    LSIState *s = (LSIState *)opaque;
1856
    return lsi_reg_readb(s, addr & 0xff);
1857
}
1858

    
1859
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1860
{
1861
    LSIState *s = (LSIState *)opaque;
1862
    uint32_t val;
1863
    addr &= 0xff;
1864
    val = lsi_reg_readb(s, addr);
1865
    val |= lsi_reg_readb(s, addr + 1) << 8;
1866
    return val;
1867
}
1868

    
1869
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1870
{
1871
    LSIState *s = (LSIState *)opaque;
1872
    uint32_t val;
1873
    addr &= 0xff;
1874
    val = lsi_reg_readb(s, addr);
1875
    val |= lsi_reg_readb(s, addr + 1) << 8;
1876
    val |= lsi_reg_readb(s, addr + 2) << 16;
1877
    val |= lsi_reg_readb(s, addr + 3) << 24;
1878
    return val;
1879
}
1880

    
1881
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1882
{
1883
    LSIState *s = (LSIState *)opaque;
1884
    lsi_reg_writeb(s, addr & 0xff, val);
1885
}
1886

    
1887
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1888
{
1889
    LSIState *s = (LSIState *)opaque;
1890
    addr &= 0xff;
1891
    lsi_reg_writeb(s, addr, val & 0xff);
1892
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1893
}
1894

    
1895
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1896
{
1897
    LSIState *s = (LSIState *)opaque;
1898
    addr &= 0xff;
1899
    lsi_reg_writeb(s, addr, val & 0xff);
1900
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1901
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1902
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1903
}
1904

    
1905
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1906
                           uint32_t addr, uint32_t size, int type)
1907
{
1908
    LSIState *s = (LSIState *)pci_dev;
1909

    
1910
    DPRINTF("Mapping IO at %08x\n", addr);
1911

    
1912
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1913
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1914
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1915
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1916
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1917
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1918
}
1919

    
1920
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1921
                            uint32_t addr, uint32_t size, int type)
1922
{
1923
    LSIState *s = (LSIState *)pci_dev;
1924

    
1925
    DPRINTF("Mapping ram at %08x\n", addr);
1926
    s->script_ram_base = addr;
1927
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1928
}
1929

    
1930
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1931
                             uint32_t addr, uint32_t size, int type)
1932
{
1933
    LSIState *s = (LSIState *)pci_dev;
1934

    
1935
    DPRINTF("Mapping registers at %08x\n", addr);
1936
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1937
}
1938

    
1939
void lsi_scsi_attach(void *opaque, BlockDriverState *bd, int id)
1940
{
1941
    LSIState *s = (LSIState *)opaque;
1942

    
1943
    if (id < 0) {
1944
        for (id = 0; id < LSI_MAX_DEVS; id++) {
1945
            if (s->scsi_dev[id] == NULL)
1946
                break;
1947
        }
1948
    }
1949
    if (id >= LSI_MAX_DEVS) {
1950
        BADF("Bad Device ID %d\n", id);
1951
        return;
1952
    }
1953
    if (s->scsi_dev[id]) {
1954
        DPRINTF("Destroying device %d\n", id);
1955
        s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1956
    }
1957
    DPRINTF("Attaching block device %d\n", id);
1958
    s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1959
    if (s->scsi_dev[id] == NULL)
1960
        s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1961
}
1962

    
1963
void *lsi_scsi_init(PCIBus *bus, int devfn)
1964
{
1965
    LSIState *s;
1966
    uint8_t *pci_conf;
1967

    
1968
    s = (LSIState *)pci_register_device(bus, "LSI53C895A SCSI HBA",
1969
                                        sizeof(*s), devfn, NULL, NULL);
1970
    if (s == NULL) {
1971
        fprintf(stderr, "lsi-scsi: Failed to register PCI device\n");
1972
        return NULL;
1973
    }
1974

    
1975
    pci_conf = s->pci_dev.config;
1976

    
1977
    /* PCI Vendor ID (word) */
1978
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
1979
    /* PCI device ID (word) */
1980
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
1981
    /* PCI base class code */
1982
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
1983
    /* PCI subsystem ID */
1984
    pci_conf[0x2e] = 0x00;
1985
    pci_conf[0x2f] = 0x10;
1986
    /* PCI latency timer = 255 */
1987
    pci_conf[0x0d] = 0xff;
1988
    /* Interrupt pin 1 */
1989
    pci_conf[0x3d] = 0x01;
1990

    
1991
    s->mmio_io_addr = cpu_register_io_memory(0, lsi_mmio_readfn,
1992
                                             lsi_mmio_writefn, s);
1993
    s->ram_io_addr = cpu_register_io_memory(0, lsi_ram_readfn,
1994
                                            lsi_ram_writefn, s);
1995

    
1996
    pci_register_io_region((struct PCIDevice *)s, 0, 256,
1997
                           PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
1998
    pci_register_io_region((struct PCIDevice *)s, 1, 0x400,
1999
                           PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
2000
    pci_register_io_region((struct PCIDevice *)s, 2, 0x2000,
2001
                           PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
2002
    s->queue = qemu_malloc(sizeof(lsi_queue));
2003
    s->queue_len = 1;
2004
    s->active_commands = 0;
2005

    
2006
    lsi_soft_reset(s);
2007

    
2008
    return s;
2009
}