Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 173a543b

History | View | Annotate | Download (23.6 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "pc.h"
27
#include "net.h"
28

    
29
/* debug NE2000 card */
30
//#define DEBUG_NE2000
31

    
32
#define MAX_ETH_FRAME_SIZE 1514
33

    
34
#define E8390_CMD        0x00  /* The command register (for all pages) */
35
/* Page 0 register offsets. */
36
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
37
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
38
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
39
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
40
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
41
#define EN0_TSR                0x04        /* Transmit status reg RD */
42
#define EN0_TPSR        0x04        /* Transmit starting page WR */
43
#define EN0_NCR                0x05        /* Number of collision reg RD */
44
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
45
#define EN0_FIFO        0x06        /* FIFO RD */
46
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
47
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
48
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
49
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
50
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
51
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
52
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
53
#define EN0_RTL8029ID0        0x0a        /* Realtek ID byte #1 RD */
54
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
55
#define EN0_RTL8029ID1        0x0b        /* Realtek ID byte #2 RD */
56
#define EN0_RSR                0x0c        /* rx status reg RD */
57
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
58
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
59
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
60
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
61
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
62
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
63
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
64

    
65
#define EN1_PHYS        0x11
66
#define EN1_CURPAG      0x17
67
#define EN1_MULT        0x18
68

    
69
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
70
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
71

    
72
#define EN3_CONFIG0        0x33
73
#define EN3_CONFIG1        0x34
74
#define EN3_CONFIG2        0x35
75
#define EN3_CONFIG3        0x36
76

    
77
/*  Register accessed at EN_CMD, the 8390 base addr.  */
78
#define E8390_STOP        0x01        /* Stop and reset the chip */
79
#define E8390_START        0x02        /* Start the chip, clear reset */
80
#define E8390_TRANS        0x04        /* Transmit a frame */
81
#define E8390_RREAD        0x08        /* Remote read */
82
#define E8390_RWRITE        0x10        /* Remote write  */
83
#define E8390_NODMA        0x20        /* Remote DMA */
84
#define E8390_PAGE0        0x00        /* Select page chip registers */
85
#define E8390_PAGE1        0x40        /* using the two high-order bits */
86
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
87

    
88
/* Bits in EN0_ISR - Interrupt status register */
89
#define ENISR_RX        0x01        /* Receiver, no error */
90
#define ENISR_TX        0x02        /* Transmitter, no error */
91
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
92
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
93
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
94
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
95
#define ENISR_RDC        0x40        /* remote dma complete */
96
#define ENISR_RESET        0x80        /* Reset completed */
97
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
98

    
99
/* Bits in received packet status byte and EN0_RSR*/
100
#define ENRSR_RXOK        0x01        /* Received a good packet */
101
#define ENRSR_CRC        0x02        /* CRC error */
102
#define ENRSR_FAE        0x04        /* frame alignment error */
103
#define ENRSR_FO        0x08        /* FIFO overrun */
104
#define ENRSR_MPA        0x10        /* missed pkt */
105
#define ENRSR_PHY        0x20        /* physical/multicast address */
106
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
107
#define ENRSR_DEF        0x80        /* deferring */
108

    
109
/* Transmitted packet status, EN0_TSR. */
110
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
111
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
112
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
113
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
114
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
115
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
116
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
117
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
118

    
119
#define NE2000_PMEM_SIZE    (32*1024)
120
#define NE2000_PMEM_START   (16*1024)
121
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
122
#define NE2000_MEM_SIZE     NE2000_PMEM_END
123

    
124
typedef struct NE2000State {
125
    uint8_t cmd;
126
    uint32_t start;
127
    uint32_t stop;
128
    uint8_t boundary;
129
    uint8_t tsr;
130
    uint8_t tpsr;
131
    uint16_t tcnt;
132
    uint16_t rcnt;
133
    uint32_t rsar;
134
    uint8_t rsr;
135
    uint8_t rxcr;
136
    uint8_t isr;
137
    uint8_t dcfg;
138
    uint8_t imr;
139
    uint8_t phys[6]; /* mac address */
140
    uint8_t curpag;
141
    uint8_t mult[8]; /* multicast mask array */
142
    qemu_irq irq;
143
    PCIDevice *pci_dev;
144
    VLANClientState *vc;
145
    uint8_t macaddr[6];
146
    uint8_t mem[NE2000_MEM_SIZE];
147
} NE2000State;
148

    
149
static void ne2000_reset(NE2000State *s)
150
{
151
    int i;
152

    
153
    s->isr = ENISR_RESET;
154
    memcpy(s->mem, s->macaddr, 6);
155
    s->mem[14] = 0x57;
156
    s->mem[15] = 0x57;
157

    
158
    /* duplicate prom data */
159
    for(i = 15;i >= 0; i--) {
160
        s->mem[2 * i] = s->mem[i];
161
        s->mem[2 * i + 1] = s->mem[i];
162
    }
163
}
164

    
165
static void ne2000_update_irq(NE2000State *s)
166
{
167
    int isr;
168
    isr = (s->isr & s->imr) & 0x7f;
169
#if defined(DEBUG_NE2000)
170
    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
171
           isr ? 1 : 0, s->isr, s->imr);
172
#endif
173
    qemu_set_irq(s->irq, (isr != 0));
174
}
175

    
176
#define POLYNOMIAL 0x04c11db6
177

    
178
/* From FreeBSD */
179
/* XXX: optimize */
180
static int compute_mcast_idx(const uint8_t *ep)
181
{
182
    uint32_t crc;
183
    int carry, i, j;
184
    uint8_t b;
185

    
186
    crc = 0xffffffff;
187
    for (i = 0; i < 6; i++) {
188
        b = *ep++;
189
        for (j = 0; j < 8; j++) {
190
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
191
            crc <<= 1;
192
            b >>= 1;
193
            if (carry)
194
                crc = ((crc ^ POLYNOMIAL) | carry);
195
        }
196
    }
197
    return (crc >> 26);
198
}
199

    
200
static int ne2000_buffer_full(NE2000State *s)
201
{
202
    int avail, index, boundary;
203

    
204
    index = s->curpag << 8;
205
    boundary = s->boundary << 8;
206
    if (index < boundary)
207
        avail = boundary - index;
208
    else
209
        avail = (s->stop - s->start) - (index - boundary);
210
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
211
        return 1;
212
    return 0;
213
}
214

    
215
static int ne2000_can_receive(void *opaque)
216
{
217
    NE2000State *s = opaque;
218

    
219
    if (s->cmd & E8390_STOP)
220
        return 1;
221
    return !ne2000_buffer_full(s);
222
}
223

    
224
#define MIN_BUF_SIZE 60
225

    
226
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
227
{
228
    NE2000State *s = opaque;
229
    uint8_t *p;
230
    unsigned int total_len, next, avail, len, index, mcast_idx;
231
    uint8_t buf1[60];
232
    static const uint8_t broadcast_macaddr[6] =
233
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
234

    
235
#if defined(DEBUG_NE2000)
236
    printf("NE2000: received len=%d\n", size);
237
#endif
238

    
239
    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
240
        return;
241

    
242
    /* XXX: check this */
243
    if (s->rxcr & 0x10) {
244
        /* promiscuous: receive all */
245
    } else {
246
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
247
            /* broadcast address */
248
            if (!(s->rxcr & 0x04))
249
                return;
250
        } else if (buf[0] & 0x01) {
251
            /* multicast */
252
            if (!(s->rxcr & 0x08))
253
                return;
254
            mcast_idx = compute_mcast_idx(buf);
255
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
256
                return;
257
        } else if (s->mem[0] == buf[0] &&
258
                   s->mem[2] == buf[1] &&
259
                   s->mem[4] == buf[2] &&
260
                   s->mem[6] == buf[3] &&
261
                   s->mem[8] == buf[4] &&
262
                   s->mem[10] == buf[5]) {
263
            /* match */
264
        } else {
265
            return;
266
        }
267
    }
268

    
269

    
270
    /* if too small buffer, then expand it */
271
    if (size < MIN_BUF_SIZE) {
272
        memcpy(buf1, buf, size);
273
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
274
        buf = buf1;
275
        size = MIN_BUF_SIZE;
276
    }
277

    
278
    index = s->curpag << 8;
279
    /* 4 bytes for header */
280
    total_len = size + 4;
281
    /* address for next packet (4 bytes for CRC) */
282
    next = index + ((total_len + 4 + 255) & ~0xff);
283
    if (next >= s->stop)
284
        next -= (s->stop - s->start);
285
    /* prepare packet header */
286
    p = s->mem + index;
287
    s->rsr = ENRSR_RXOK; /* receive status */
288
    /* XXX: check this */
289
    if (buf[0] & 0x01)
290
        s->rsr |= ENRSR_PHY;
291
    p[0] = s->rsr;
292
    p[1] = next >> 8;
293
    p[2] = total_len;
294
    p[3] = total_len >> 8;
295
    index += 4;
296

    
297
    /* write packet data */
298
    while (size > 0) {
299
        if (index <= s->stop)
300
            avail = s->stop - index;
301
        else
302
            avail = 0;
303
        len = size;
304
        if (len > avail)
305
            len = avail;
306
        memcpy(s->mem + index, buf, len);
307
        buf += len;
308
        index += len;
309
        if (index == s->stop)
310
            index = s->start;
311
        size -= len;
312
    }
313
    s->curpag = next >> 8;
314

    
315
    /* now we can signal we have received something */
316
    s->isr |= ENISR_RX;
317
    ne2000_update_irq(s);
318
}
319

    
320
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
321
{
322
    NE2000State *s = opaque;
323
    int offset, page, index;
324

    
325
    addr &= 0xf;
326
#ifdef DEBUG_NE2000
327
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
328
#endif
329
    if (addr == E8390_CMD) {
330
        /* control register */
331
        s->cmd = val;
332
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
333
            s->isr &= ~ENISR_RESET;
334
            /* test specific case: zero length transfer */
335
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
336
                s->rcnt == 0) {
337
                s->isr |= ENISR_RDC;
338
                ne2000_update_irq(s);
339
            }
340
            if (val & E8390_TRANS) {
341
                index = (s->tpsr << 8);
342
                /* XXX: next 2 lines are a hack to make netware 3.11 work */
343
                if (index >= NE2000_PMEM_END)
344
                    index -= NE2000_PMEM_SIZE;
345
                /* fail safe: check range on the transmitted length  */
346
                if (index + s->tcnt <= NE2000_PMEM_END) {
347
                    qemu_send_packet(s->vc, s->mem + index, s->tcnt);
348
                }
349
                /* signal end of transfer */
350
                s->tsr = ENTSR_PTX;
351
                s->isr |= ENISR_TX;
352
                s->cmd &= ~E8390_TRANS;
353
                ne2000_update_irq(s);
354
            }
355
        }
356
    } else {
357
        page = s->cmd >> 6;
358
        offset = addr | (page << 4);
359
        switch(offset) {
360
        case EN0_STARTPG:
361
            s->start = val << 8;
362
            break;
363
        case EN0_STOPPG:
364
            s->stop = val << 8;
365
            break;
366
        case EN0_BOUNDARY:
367
            s->boundary = val;
368
            break;
369
        case EN0_IMR:
370
            s->imr = val;
371
            ne2000_update_irq(s);
372
            break;
373
        case EN0_TPSR:
374
            s->tpsr = val;
375
            break;
376
        case EN0_TCNTLO:
377
            s->tcnt = (s->tcnt & 0xff00) | val;
378
            break;
379
        case EN0_TCNTHI:
380
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
381
            break;
382
        case EN0_RSARLO:
383
            s->rsar = (s->rsar & 0xff00) | val;
384
            break;
385
        case EN0_RSARHI:
386
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
387
            break;
388
        case EN0_RCNTLO:
389
            s->rcnt = (s->rcnt & 0xff00) | val;
390
            break;
391
        case EN0_RCNTHI:
392
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
393
            break;
394
        case EN0_RXCR:
395
            s->rxcr = val;
396
            break;
397
        case EN0_DCFG:
398
            s->dcfg = val;
399
            break;
400
        case EN0_ISR:
401
            s->isr &= ~(val & 0x7f);
402
            ne2000_update_irq(s);
403
            break;
404
        case EN1_PHYS ... EN1_PHYS + 5:
405
            s->phys[offset - EN1_PHYS] = val;
406
            break;
407
        case EN1_CURPAG:
408
            s->curpag = val;
409
            break;
410
        case EN1_MULT ... EN1_MULT + 7:
411
            s->mult[offset - EN1_MULT] = val;
412
            break;
413
        }
414
    }
415
}
416

    
417
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
418
{
419
    NE2000State *s = opaque;
420
    int offset, page, ret;
421

    
422
    addr &= 0xf;
423
    if (addr == E8390_CMD) {
424
        ret = s->cmd;
425
    } else {
426
        page = s->cmd >> 6;
427
        offset = addr | (page << 4);
428
        switch(offset) {
429
        case EN0_TSR:
430
            ret = s->tsr;
431
            break;
432
        case EN0_BOUNDARY:
433
            ret = s->boundary;
434
            break;
435
        case EN0_ISR:
436
            ret = s->isr;
437
            break;
438
        case EN0_RSARLO:
439
            ret = s->rsar & 0x00ff;
440
            break;
441
        case EN0_RSARHI:
442
            ret = s->rsar >> 8;
443
            break;
444
        case EN1_PHYS ... EN1_PHYS + 5:
445
            ret = s->phys[offset - EN1_PHYS];
446
            break;
447
        case EN1_CURPAG:
448
            ret = s->curpag;
449
            break;
450
        case EN1_MULT ... EN1_MULT + 7:
451
            ret = s->mult[offset - EN1_MULT];
452
            break;
453
        case EN0_RSR:
454
            ret = s->rsr;
455
            break;
456
        case EN2_STARTPG:
457
            ret = s->start >> 8;
458
            break;
459
        case EN2_STOPPG:
460
            ret = s->stop >> 8;
461
            break;
462
        case EN0_RTL8029ID0:
463
            ret = 0x50;
464
            break;
465
        case EN0_RTL8029ID1:
466
            ret = 0x43;
467
            break;
468
        case EN3_CONFIG0:
469
            ret = 0;                /* 10baseT media */
470
            break;
471
        case EN3_CONFIG2:
472
            ret = 0x40;                /* 10baseT active */
473
            break;
474
        case EN3_CONFIG3:
475
            ret = 0x40;                /* Full duplex */
476
            break;
477
        default:
478
            ret = 0x00;
479
            break;
480
        }
481
    }
482
#ifdef DEBUG_NE2000
483
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
484
#endif
485
    return ret;
486
}
487

    
488
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
489
                                     uint32_t val)
490
{
491
    if (addr < 32 ||
492
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
493
        s->mem[addr] = val;
494
    }
495
}
496

    
497
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
498
                                     uint32_t val)
499
{
500
    addr &= ~1; /* XXX: check exact behaviour if not even */
501
    if (addr < 32 ||
502
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
503
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
504
    }
505
}
506

    
507
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
508
                                     uint32_t val)
509
{
510
    addr &= ~1; /* XXX: check exact behaviour if not even */
511
    if (addr < 32 ||
512
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
513
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
514
    }
515
}
516

    
517
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
518
{
519
    if (addr < 32 ||
520
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
521
        return s->mem[addr];
522
    } else {
523
        return 0xff;
524
    }
525
}
526

    
527
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
528
{
529
    addr &= ~1; /* XXX: check exact behaviour if not even */
530
    if (addr < 32 ||
531
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
532
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
533
    } else {
534
        return 0xffff;
535
    }
536
}
537

    
538
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
539
{
540
    addr &= ~1; /* XXX: check exact behaviour if not even */
541
    if (addr < 32 ||
542
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
543
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
544
    } else {
545
        return 0xffffffff;
546
    }
547
}
548

    
549
static inline void ne2000_dma_update(NE2000State *s, int len)
550
{
551
    s->rsar += len;
552
    /* wrap */
553
    /* XXX: check what to do if rsar > stop */
554
    if (s->rsar == s->stop)
555
        s->rsar = s->start;
556

    
557
    if (s->rcnt <= len) {
558
        s->rcnt = 0;
559
        /* signal end of transfer */
560
        s->isr |= ENISR_RDC;
561
        ne2000_update_irq(s);
562
    } else {
563
        s->rcnt -= len;
564
    }
565
}
566

    
567
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
568
{
569
    NE2000State *s = opaque;
570

    
571
#ifdef DEBUG_NE2000
572
    printf("NE2000: asic write val=0x%04x\n", val);
573
#endif
574
    if (s->rcnt == 0)
575
        return;
576
    if (s->dcfg & 0x01) {
577
        /* 16 bit access */
578
        ne2000_mem_writew(s, s->rsar, val);
579
        ne2000_dma_update(s, 2);
580
    } else {
581
        /* 8 bit access */
582
        ne2000_mem_writeb(s, s->rsar, val);
583
        ne2000_dma_update(s, 1);
584
    }
585
}
586

    
587
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
588
{
589
    NE2000State *s = opaque;
590
    int ret;
591

    
592
    if (s->dcfg & 0x01) {
593
        /* 16 bit access */
594
        ret = ne2000_mem_readw(s, s->rsar);
595
        ne2000_dma_update(s, 2);
596
    } else {
597
        /* 8 bit access */
598
        ret = ne2000_mem_readb(s, s->rsar);
599
        ne2000_dma_update(s, 1);
600
    }
601
#ifdef DEBUG_NE2000
602
    printf("NE2000: asic read val=0x%04x\n", ret);
603
#endif
604
    return ret;
605
}
606

    
607
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
608
{
609
    NE2000State *s = opaque;
610

    
611
#ifdef DEBUG_NE2000
612
    printf("NE2000: asic writel val=0x%04x\n", val);
613
#endif
614
    if (s->rcnt == 0)
615
        return;
616
    /* 32 bit access */
617
    ne2000_mem_writel(s, s->rsar, val);
618
    ne2000_dma_update(s, 4);
619
}
620

    
621
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
622
{
623
    NE2000State *s = opaque;
624
    int ret;
625

    
626
    /* 32 bit access */
627
    ret = ne2000_mem_readl(s, s->rsar);
628
    ne2000_dma_update(s, 4);
629
#ifdef DEBUG_NE2000
630
    printf("NE2000: asic readl val=0x%04x\n", ret);
631
#endif
632
    return ret;
633
}
634

    
635
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
636
{
637
    /* nothing to do (end of reset pulse) */
638
}
639

    
640
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
641
{
642
    NE2000State *s = opaque;
643
    ne2000_reset(s);
644
    return 0;
645
}
646

    
647
static void ne2000_save(QEMUFile* f,void* opaque)
648
{
649
        NE2000State* s=(NE2000State*)opaque;
650
        uint32_t tmp;
651

    
652
        if (s->pci_dev)
653
            pci_device_save(s->pci_dev, f);
654

    
655
        qemu_put_8s(f, &s->rxcr);
656

    
657
        qemu_put_8s(f, &s->cmd);
658
        qemu_put_be32s(f, &s->start);
659
        qemu_put_be32s(f, &s->stop);
660
        qemu_put_8s(f, &s->boundary);
661
        qemu_put_8s(f, &s->tsr);
662
        qemu_put_8s(f, &s->tpsr);
663
        qemu_put_be16s(f, &s->tcnt);
664
        qemu_put_be16s(f, &s->rcnt);
665
        qemu_put_be32s(f, &s->rsar);
666
        qemu_put_8s(f, &s->rsr);
667
        qemu_put_8s(f, &s->isr);
668
        qemu_put_8s(f, &s->dcfg);
669
        qemu_put_8s(f, &s->imr);
670
        qemu_put_buffer(f, s->phys, 6);
671
        qemu_put_8s(f, &s->curpag);
672
        qemu_put_buffer(f, s->mult, 8);
673
        tmp = 0;
674
        qemu_put_be32s(f, &tmp); /* ignored, was irq */
675
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
676
}
677

    
678
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
679
{
680
        NE2000State* s=(NE2000State*)opaque;
681
        int ret;
682
        uint32_t tmp;
683

    
684
        if (version_id > 3)
685
            return -EINVAL;
686

    
687
        if (s->pci_dev && version_id >= 3) {
688
            ret = pci_device_load(s->pci_dev, f);
689
            if (ret < 0)
690
                return ret;
691
        }
692

    
693
        if (version_id >= 2) {
694
            qemu_get_8s(f, &s->rxcr);
695
        } else {
696
            s->rxcr = 0x0c;
697
        }
698

    
699
        qemu_get_8s(f, &s->cmd);
700
        qemu_get_be32s(f, &s->start);
701
        qemu_get_be32s(f, &s->stop);
702
        qemu_get_8s(f, &s->boundary);
703
        qemu_get_8s(f, &s->tsr);
704
        qemu_get_8s(f, &s->tpsr);
705
        qemu_get_be16s(f, &s->tcnt);
706
        qemu_get_be16s(f, &s->rcnt);
707
        qemu_get_be32s(f, &s->rsar);
708
        qemu_get_8s(f, &s->rsr);
709
        qemu_get_8s(f, &s->isr);
710
        qemu_get_8s(f, &s->dcfg);
711
        qemu_get_8s(f, &s->imr);
712
        qemu_get_buffer(f, s->phys, 6);
713
        qemu_get_8s(f, &s->curpag);
714
        qemu_get_buffer(f, s->mult, 8);
715
        qemu_get_be32s(f, &tmp); /* ignored */
716
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
717

    
718
        return 0;
719
}
720

    
721
void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
722
{
723
    NE2000State *s;
724

    
725
    qemu_check_nic_model(nd, "ne2k_isa");
726

    
727
    s = qemu_mallocz(sizeof(NE2000State));
728
    if (!s)
729
        return;
730

    
731
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
732
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
733

    
734
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
735
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
736
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
737
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
738

    
739
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
740
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
741
    s->irq = irq;
742
    memcpy(s->macaddr, nd->macaddr, 6);
743

    
744
    ne2000_reset(s);
745

    
746
    s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
747
                                 ne2000_receive, ne2000_can_receive, s);
748

    
749
    qemu_format_nic_info_str(s->vc, s->macaddr);
750

    
751
    register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
752
}
753

    
754
/***********************************************************/
755
/* PCI NE2000 definitions */
756

    
757
typedef struct PCINE2000State {
758
    PCIDevice dev;
759
    NE2000State ne2000;
760
} PCINE2000State;
761

    
762
static void ne2000_map(PCIDevice *pci_dev, int region_num,
763
                       uint32_t addr, uint32_t size, int type)
764
{
765
    PCINE2000State *d = (PCINE2000State *)pci_dev;
766
    NE2000State *s = &d->ne2000;
767

    
768
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
769
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
770

    
771
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
772
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
773
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
774
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
775
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
776
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
777

    
778
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
779
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
780
}
781

    
782
void pci_ne2000_init(PCIBus *bus, NICInfo *nd, int devfn)
783
{
784
    PCINE2000State *d;
785
    NE2000State *s;
786
    uint8_t *pci_conf;
787

    
788
    d = (PCINE2000State *)pci_register_device(bus,
789
                                              "NE2000", sizeof(PCINE2000State),
790
                                              devfn,
791
                                              NULL, NULL);
792
    pci_conf = d->dev.config;
793
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
794
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_RTL8029);
795
    pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
796
    pci_conf[0x0e] = 0x00; // header_type
797
    pci_conf[0x3d] = 1; // interrupt pin 0
798

    
799
    pci_register_io_region(&d->dev, 0, 0x100,
800
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
801
    s = &d->ne2000;
802
    s->irq = d->dev.irq[0];
803
    s->pci_dev = (PCIDevice *)d;
804
    memcpy(s->macaddr, nd->macaddr, 6);
805
    ne2000_reset(s);
806
    s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
807
                                 ne2000_receive, ne2000_can_receive, s);
808

    
809
    qemu_format_nic_info_str(s->vc, s->macaddr);
810

    
811
    register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s);
812
}