Statistics
| Branch: | Revision:

root / hw / onenand.c @ 17786d52

History | View | Annotate | Download (19.2 kB)

1
/*
2
 * OneNAND flash memories emulation.
3
 *
4
 * Copyright (C) 2008 Nokia Corporation
5
 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6
 *
7
 * This program is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU General Public License as
9
 * published by the Free Software Foundation; either version 2 or
10
 * (at your option) version 3 of the License.
11
 *
12
 * This program is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
 * GNU General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU General Public License along
18
 * with this program; if not, see <http://www.gnu.org/licenses/>.
19
 */
20

    
21
#include "qemu-common.h"
22
#include "flash.h"
23
#include "irq.h"
24
#include "blockdev.h"
25

    
26
/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
27
#define PAGE_SHIFT        11
28

    
29
/* Fixed */
30
#define BLOCK_SHIFT        (PAGE_SHIFT + 6)
31

    
32
typedef struct {
33
    uint32_t id;
34
    int shift;
35
    target_phys_addr_t base;
36
    qemu_irq intr;
37
    qemu_irq rdy;
38
    BlockDriverState *bdrv;
39
    BlockDriverState *bdrv_cur;
40
    uint8_t *image;
41
    uint8_t *otp;
42
    uint8_t *current;
43
    ram_addr_t ram;
44
    uint8_t *boot[2];
45
    uint8_t *data[2][2];
46
    int iomemtype;
47
    int cycle;
48
    int otpmode;
49

    
50
    uint16_t addr[8];
51
    uint16_t unladdr[8];
52
    int bufaddr;
53
    int count;
54
    uint16_t command;
55
    uint16_t config[2];
56
    uint16_t status;
57
    uint16_t intstatus;
58
    uint16_t wpstatus;
59

    
60
    ECCState ecc;
61

    
62
    int density_mask;
63
    int secs;
64
    int secs_cur;
65
    int blocks;
66
    uint8_t *blockwp;
67
} OneNANDState;
68

    
69
enum {
70
    ONEN_BUF_BLOCK = 0,
71
    ONEN_BUF_BLOCK2 = 1,
72
    ONEN_BUF_DEST_BLOCK = 2,
73
    ONEN_BUF_DEST_PAGE = 3,
74
    ONEN_BUF_PAGE = 7,
75
};
76

    
77
enum {
78
    ONEN_ERR_CMD = 1 << 10,
79
    ONEN_ERR_ERASE = 1 << 11,
80
    ONEN_ERR_PROG = 1 << 12,
81
    ONEN_ERR_LOAD = 1 << 13,
82
};
83

    
84
enum {
85
    ONEN_INT_RESET = 1 << 4,
86
    ONEN_INT_ERASE = 1 << 5,
87
    ONEN_INT_PROG = 1 << 6,
88
    ONEN_INT_LOAD = 1 << 7,
89
    ONEN_INT = 1 << 15,
90
};
91

    
92
enum {
93
    ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
94
    ONEN_LOCK_LOCKED = 1 << 1,
95
    ONEN_LOCK_UNLOCKED = 1 << 2,
96
};
97

    
98
void onenand_base_update(void *opaque, target_phys_addr_t new)
99
{
100
    OneNANDState *s = (OneNANDState *) opaque;
101

    
102
    s->base = new;
103

    
104
    /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
105
     * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
106
     * write boot commands.  Also take note of the BWPS bit.  */
107
    cpu_register_physical_memory(s->base + (0x0000 << s->shift),
108
                    0x0200 << s->shift, s->iomemtype);
109
    cpu_register_physical_memory(s->base + (0x0200 << s->shift),
110
                    0xbe00 << s->shift,
111
                    (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
112
    if (s->iomemtype)
113
        cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
114
                    0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
115
}
116

    
117
void onenand_base_unmap(void *opaque)
118
{
119
    OneNANDState *s = (OneNANDState *) opaque;
120

    
121
    cpu_register_physical_memory(s->base,
122
                    0x10000 << s->shift, IO_MEM_UNASSIGNED);
123
}
124

    
125
static void onenand_intr_update(OneNANDState *s)
126
{
127
    qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
128
}
129

    
130
/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
131
static void onenand_reset(OneNANDState *s, int cold)
132
{
133
    memset(&s->addr, 0, sizeof(s->addr));
134
    s->command = 0;
135
    s->count = 1;
136
    s->bufaddr = 0;
137
    s->config[0] = 0x40c0;
138
    s->config[1] = 0x0000;
139
    onenand_intr_update(s);
140
    qemu_irq_raise(s->rdy);
141
    s->status = 0x0000;
142
    s->intstatus = cold ? 0x8080 : 0x8010;
143
    s->unladdr[0] = 0;
144
    s->unladdr[1] = 0;
145
    s->wpstatus = 0x0002;
146
    s->cycle = 0;
147
    s->otpmode = 0;
148
    s->bdrv_cur = s->bdrv;
149
    s->current = s->image;
150
    s->secs_cur = s->secs;
151

    
152
    if (cold) {
153
        /* Lock the whole flash */
154
        memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
155

    
156
        if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
157
            hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
158
    }
159
}
160

    
161
static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
162
                void *dest)
163
{
164
    if (s->bdrv_cur)
165
        return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
166
    else if (sec + secn > s->secs_cur)
167
        return 1;
168

    
169
    memcpy(dest, s->current + (sec << 9), secn << 9);
170

    
171
    return 0;
172
}
173

    
174
static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
175
                void *src)
176
{
177
    if (s->bdrv_cur)
178
        return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
179
    else if (sec + secn > s->secs_cur)
180
        return 1;
181

    
182
    memcpy(s->current + (sec << 9), src, secn << 9);
183

    
184
    return 0;
185
}
186

    
187
static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
188
                void *dest)
189
{
190
    uint8_t buf[512];
191

    
192
    if (s->bdrv_cur) {
193
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
194
            return 1;
195
        memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
196
    } else if (sec + secn > s->secs_cur)
197
        return 1;
198
    else
199
        memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
200
 
201
    return 0;
202
}
203

    
204
static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
205
                void *src)
206
{
207
    uint8_t buf[512];
208

    
209
    if (s->bdrv_cur) {
210
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
211
            return 1;
212
        memcpy(buf + ((sec & 31) << 4), src, secn << 4);
213
        return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
214
    } else if (sec + secn > s->secs_cur)
215
        return 1;
216

    
217
    memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
218
 
219
    return 0;
220
}
221

    
222
static inline int onenand_erase(OneNANDState *s, int sec, int num)
223
{
224
    /* TODO: optimise */
225
    uint8_t buf[512];
226

    
227
    memset(buf, 0xff, sizeof(buf));
228
    for (; num > 0; num --, sec ++) {
229
        if (onenand_prog_main(s, sec, 1, buf))
230
            return 1;
231
        if (onenand_prog_spare(s, sec, 1, buf))
232
            return 1;
233
    }
234

    
235
    return 0;
236
}
237

    
238
static void onenand_command(OneNANDState *s, int cmd)
239
{
240
    int b;
241
    int sec;
242
    void *buf;
243
#define SETADDR(block, page)                        \
244
    sec = (s->addr[page] & 3) +                        \
245
            ((((s->addr[page] >> 2) & 0x3f) +        \
246
              (((s->addr[block] & 0xfff) |        \
247
                (s->addr[block] >> 15 ?                \
248
                 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
249
#define SETBUF_M()                                \
250
    buf = (s->bufaddr & 8) ?                        \
251
            s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];        \
252
    buf += (s->bufaddr & 3) << 9;
253
#define SETBUF_S()                                \
254
    buf = (s->bufaddr & 8) ?                        \
255
            s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];        \
256
    buf += (s->bufaddr & 3) << 4;
257

    
258
    switch (cmd) {
259
    case 0x00:        /* Load single/multiple sector data unit into buffer */
260
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
261

    
262
        SETBUF_M()
263
        if (onenand_load_main(s, sec, s->count, buf))
264
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
265

    
266
#if 0
267
        SETBUF_S()
268
        if (onenand_load_spare(s, sec, s->count, buf))
269
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
270
#endif
271

    
272
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
273
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
274
         * then we need two split the read/write into two chunks.
275
         */
276
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
277
        break;
278
    case 0x13:        /* Load single/multiple spare sector into buffer */
279
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
280

    
281
        SETBUF_S()
282
        if (onenand_load_spare(s, sec, s->count, buf))
283
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
284

    
285
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
286
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
287
         * then we need two split the read/write into two chunks.
288
         */
289
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
290
        break;
291
    case 0x80:        /* Program single/multiple sector data unit from buffer */
292
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
293

    
294
        SETBUF_M()
295
        if (onenand_prog_main(s, sec, s->count, buf))
296
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
297

    
298
#if 0
299
        SETBUF_S()
300
        if (onenand_prog_spare(s, sec, s->count, buf))
301
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
302
#endif
303

    
304
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
305
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
306
         * then we need two split the read/write into two chunks.
307
         */
308
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
309
        break;
310
    case 0x1a:        /* Program single/multiple spare area sector from buffer */
311
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
312

    
313
        SETBUF_S()
314
        if (onenand_prog_spare(s, sec, s->count, buf))
315
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
316

    
317
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
318
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
319
         * then we need two split the read/write into two chunks.
320
         */
321
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
322
        break;
323
    case 0x1b:        /* Copy-back program */
324
        SETBUF_S()
325

    
326
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
327
        if (onenand_load_main(s, sec, s->count, buf))
328
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
329

    
330
        SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
331
        if (onenand_prog_main(s, sec, s->count, buf))
332
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
333

    
334
        /* TODO: spare areas */
335

    
336
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
337
        break;
338

    
339
    case 0x23:        /* Unlock NAND array block(s) */
340
        s->intstatus |= ONEN_INT;
341

    
342
        /* XXX the previous (?) area should be locked automatically */
343
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
344
            if (b >= s->blocks) {
345
                s->status |= ONEN_ERR_CMD;
346
                break;
347
            }
348
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
349
                break;
350

    
351
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
352
        }
353
        break;
354
    case 0x27:        /* Unlock All NAND array blocks */
355
        s->intstatus |= ONEN_INT;
356

    
357
        for (b = 0; b < s->blocks; b ++) {
358
            if (b >= s->blocks) {
359
                s->status |= ONEN_ERR_CMD;
360
                break;
361
            }
362
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
363
                break;
364

    
365
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
366
        }
367
        break;
368

    
369
    case 0x2a:        /* Lock NAND array block(s) */
370
        s->intstatus |= ONEN_INT;
371

    
372
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
373
            if (b >= s->blocks) {
374
                s->status |= ONEN_ERR_CMD;
375
                break;
376
            }
377
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
378
                break;
379

    
380
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
381
        }
382
        break;
383
    case 0x2c:        /* Lock-tight NAND array block(s) */
384
        s->intstatus |= ONEN_INT;
385

    
386
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
387
            if (b >= s->blocks) {
388
                s->status |= ONEN_ERR_CMD;
389
                break;
390
            }
391
            if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
392
                continue;
393

    
394
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
395
        }
396
        break;
397

    
398
    case 0x71:        /* Erase-Verify-Read */
399
        s->intstatus |= ONEN_INT;
400
        break;
401
    case 0x95:        /* Multi-block erase */
402
        qemu_irq_pulse(s->intr);
403
        /* Fall through.  */
404
    case 0x94:        /* Block erase */
405
        sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
406
                        (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
407
                << (BLOCK_SHIFT - 9);
408
        if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
409
            s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
410

    
411
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
412
        break;
413
    case 0xb0:        /* Erase suspend */
414
        break;
415
    case 0x30:        /* Erase resume */
416
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
417
        break;
418

    
419
    case 0xf0:        /* Reset NAND Flash core */
420
        onenand_reset(s, 0);
421
        break;
422
    case 0xf3:        /* Reset OneNAND */
423
        onenand_reset(s, 0);
424
        break;
425

    
426
    case 0x65:        /* OTP Access */
427
        s->intstatus |= ONEN_INT;
428
        s->bdrv_cur = NULL;
429
        s->current = s->otp;
430
        s->secs_cur = 1 << (BLOCK_SHIFT - 9);
431
        s->addr[ONEN_BUF_BLOCK] = 0;
432
        s->otpmode = 1;
433
        break;
434

    
435
    default:
436
        s->status |= ONEN_ERR_CMD;
437
        s->intstatus |= ONEN_INT;
438
        fprintf(stderr, "%s: unknown OneNAND command %x\n",
439
                        __FUNCTION__, cmd);
440
    }
441

    
442
    onenand_intr_update(s);
443
}
444

    
445
static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
446
{
447
    OneNANDState *s = (OneNANDState *) opaque;
448
    int offset = addr >> s->shift;
449

    
450
    switch (offset) {
451
    case 0x0000 ... 0xc000:
452
        return lduw_le_p(s->boot[0] + addr);
453

    
454
    case 0xf000:        /* Manufacturer ID */
455
        return (s->id >> 16) & 0xff;
456
    case 0xf001:        /* Device ID */
457
        return (s->id >>  8) & 0xff;
458
    /* TODO: get the following values from a real chip!  */
459
    case 0xf002:        /* Version ID */
460
        return (s->id >>  0) & 0xff;
461
    case 0xf003:        /* Data Buffer size */
462
        return 1 << PAGE_SHIFT;
463
    case 0xf004:        /* Boot Buffer size */
464
        return 0x200;
465
    case 0xf005:        /* Amount of buffers */
466
        return 1 | (2 << 8);
467
    case 0xf006:        /* Technology */
468
        return 0;
469

    
470
    case 0xf100 ... 0xf107:        /* Start addresses */
471
        return s->addr[offset - 0xf100];
472

    
473
    case 0xf200:        /* Start buffer */
474
        return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
475

    
476
    case 0xf220:        /* Command */
477
        return s->command;
478
    case 0xf221:        /* System Configuration 1 */
479
        return s->config[0] & 0xffe0;
480
    case 0xf222:        /* System Configuration 2 */
481
        return s->config[1];
482

    
483
    case 0xf240:        /* Controller Status */
484
        return s->status;
485
    case 0xf241:        /* Interrupt */
486
        return s->intstatus;
487
    case 0xf24c:        /* Unlock Start Block Address */
488
        return s->unladdr[0];
489
    case 0xf24d:        /* Unlock End Block Address */
490
        return s->unladdr[1];
491
    case 0xf24e:        /* Write Protection Status */
492
        return s->wpstatus;
493

    
494
    case 0xff00:        /* ECC Status */
495
        return 0x00;
496
    case 0xff01:        /* ECC Result of main area data */
497
    case 0xff02:        /* ECC Result of spare area data */
498
    case 0xff03:        /* ECC Result of main area data */
499
    case 0xff04:        /* ECC Result of spare area data */
500
        hw_error("%s: imeplement ECC\n", __FUNCTION__);
501
        return 0x0000;
502
    }
503

    
504
    fprintf(stderr, "%s: unknown OneNAND register %x\n",
505
                    __FUNCTION__, offset);
506
    return 0;
507
}
508

    
509
static void onenand_write(void *opaque, target_phys_addr_t addr,
510
                uint32_t value)
511
{
512
    OneNANDState *s = (OneNANDState *) opaque;
513
    int offset = addr >> s->shift;
514
    int sec;
515

    
516
    switch (offset) {
517
    case 0x0000 ... 0x01ff:
518
    case 0x8000 ... 0x800f:
519
        if (s->cycle) {
520
            s->cycle = 0;
521

    
522
            if (value == 0x0000) {
523
                SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
524
                onenand_load_main(s, sec,
525
                                1 << (PAGE_SHIFT - 9), s->data[0][0]);
526
                s->addr[ONEN_BUF_PAGE] += 4;
527
                s->addr[ONEN_BUF_PAGE] &= 0xff;
528
            }
529
            break;
530
        }
531

    
532
        switch (value) {
533
        case 0x00f0:        /* Reset OneNAND */
534
            onenand_reset(s, 0);
535
            break;
536

    
537
        case 0x00e0:        /* Load Data into Buffer */
538
            s->cycle = 1;
539
            break;
540

    
541
        case 0x0090:        /* Read Identification Data */
542
            memset(s->boot[0], 0, 3 << s->shift);
543
            s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
544
            s->boot[0][1 << s->shift] = (s->id >>  8) & 0xff;
545
            s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
546
            break;
547

    
548
        default:
549
            fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
550
                            __FUNCTION__, value);
551
        }
552
        break;
553

    
554
    case 0xf100 ... 0xf107:        /* Start addresses */
555
        s->addr[offset - 0xf100] = value;
556
        break;
557

    
558
    case 0xf200:        /* Start buffer */
559
        s->bufaddr = (value >> 8) & 0xf;
560
        if (PAGE_SHIFT == 11)
561
            s->count = (value & 3) ?: 4;
562
        else if (PAGE_SHIFT == 10)
563
            s->count = (value & 1) ?: 2;
564
        break;
565

    
566
    case 0xf220:        /* Command */
567
        if (s->intstatus & (1 << 15))
568
            break;
569
        s->command = value;
570
        onenand_command(s, s->command);
571
        break;
572
    case 0xf221:        /* System Configuration 1 */
573
        s->config[0] = value;
574
        onenand_intr_update(s);
575
        qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
576
        break;
577
    case 0xf222:        /* System Configuration 2 */
578
        s->config[1] = value;
579
        break;
580

    
581
    case 0xf241:        /* Interrupt */
582
        s->intstatus &= value;
583
        if ((1 << 15) & ~s->intstatus)
584
            s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
585
                            ONEN_ERR_PROG | ONEN_ERR_LOAD);
586
        onenand_intr_update(s);
587
        break;
588
    case 0xf24c:        /* Unlock Start Block Address */
589
        s->unladdr[0] = value & (s->blocks - 1);
590
        /* For some reason we have to set the end address to by default
591
         * be same as start because the software forgets to write anything
592
         * in there.  */
593
        s->unladdr[1] = value & (s->blocks - 1);
594
        break;
595
    case 0xf24d:        /* Unlock End Block Address */
596
        s->unladdr[1] = value & (s->blocks - 1);
597
        break;
598

    
599
    default:
600
        fprintf(stderr, "%s: unknown OneNAND register %x\n",
601
                        __FUNCTION__, offset);
602
    }
603
}
604

    
605
static CPUReadMemoryFunc * const onenand_readfn[] = {
606
    onenand_read,        /* TODO */
607
    onenand_read,
608
    onenand_read,
609
};
610

    
611
static CPUWriteMemoryFunc * const onenand_writefn[] = {
612
    onenand_write,        /* TODO */
613
    onenand_write,
614
    onenand_write,
615
};
616

    
617
void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
618
{
619
    OneNANDState *s = (OneNANDState *) qemu_mallocz(sizeof(*s));
620
    DriveInfo *dinfo = drive_get(IF_MTD, 0, 0);
621
    uint32_t size = 1 << (24 + ((id >> 12) & 7));
622
    void *ram;
623

    
624
    s->shift = regshift;
625
    s->intr = irq;
626
    s->rdy = NULL;
627
    s->id = id;
628
    s->blocks = size >> BLOCK_SHIFT;
629
    s->secs = size >> 9;
630
    s->blockwp = qemu_malloc(s->blocks);
631
    s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
632
    s->iomemtype = cpu_register_io_memory(onenand_readfn,
633
                    onenand_writefn, s);
634
    if (!dinfo)
635
        s->image = memset(qemu_malloc(size + (size >> 5)),
636
                        0xff, size + (size >> 5));
637
    else
638
        s->bdrv = dinfo->bdrv;
639
    s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
640
                    0xff, (64 + 2) << PAGE_SHIFT);
641
    s->ram = qemu_ram_alloc(NULL, "onenand.ram", 0xc000 << s->shift);
642
    ram = qemu_get_ram_ptr(s->ram);
643
    s->boot[0] = ram + (0x0000 << s->shift);
644
    s->boot[1] = ram + (0x8000 << s->shift);
645
    s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
646
    s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
647
    s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
648
    s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
649

    
650
    onenand_reset(s, 1);
651

    
652
    return s;
653
}
654

    
655
void *onenand_raw_otp(void *opaque)
656
{
657
    OneNANDState *s = (OneNANDState *) opaque;
658

    
659
    return s->otp;
660
}