Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 19ccb8ea

History | View | Annotate | Download (30.9 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27

    
28
#ifdef CONFIG_KVM_PARA
29
#include <linux/kvm_para.h>
30
#endif
31
//
32
//#define DEBUG_KVM
33

    
34
#ifdef DEBUG_KVM
35
#define dprintf(fmt, ...) \
36
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37
#else
38
#define dprintf(fmt, ...) \
39
    do { } while (0)
40
#endif
41

    
42
#define MSR_KVM_WALL_CLOCK  0x11
43
#define MSR_KVM_SYSTEM_TIME 0x12
44

    
45
#ifdef KVM_CAP_EXT_CPUID
46

    
47
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
48
{
49
    struct kvm_cpuid2 *cpuid;
50
    int r, size;
51

    
52
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
53
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
54
    cpuid->nent = max;
55
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
56
    if (r == 0 && cpuid->nent >= max) {
57
        r = -E2BIG;
58
    }
59
    if (r < 0) {
60
        if (r == -E2BIG) {
61
            qemu_free(cpuid);
62
            return NULL;
63
        } else {
64
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
65
                    strerror(-r));
66
            exit(1);
67
        }
68
    }
69
    return cpuid;
70
}
71

    
72
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
73
{
74
    struct kvm_cpuid2 *cpuid;
75
    int i, max;
76
    uint32_t ret = 0;
77
    uint32_t cpuid_1_edx;
78

    
79
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
80
        return -1U;
81
    }
82

    
83
    max = 1;
84
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
85
        max *= 2;
86
    }
87

    
88
    for (i = 0; i < cpuid->nent; ++i) {
89
        if (cpuid->entries[i].function == function) {
90
            switch (reg) {
91
            case R_EAX:
92
                ret = cpuid->entries[i].eax;
93
                break;
94
            case R_EBX:
95
                ret = cpuid->entries[i].ebx;
96
                break;
97
            case R_ECX:
98
                ret = cpuid->entries[i].ecx;
99
                break;
100
            case R_EDX:
101
                ret = cpuid->entries[i].edx;
102
                switch (function) {
103
                case 1:
104
                    /* KVM before 2.6.30 misreports the following features */
105
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
106
                    break;
107
                case 0x80000001:
108
                    /* On Intel, kvm returns cpuid according to the Intel spec,
109
                     * so add missing bits according to the AMD spec:
110
                     */
111
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
112
                    ret |= cpuid_1_edx & 0xdfeff7ff;
113
                    break;
114
                }
115
                break;
116
            }
117
        }
118
    }
119

    
120
    qemu_free(cpuid);
121

    
122
    return ret;
123
}
124

    
125
#else
126

    
127
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
128
{
129
    return -1U;
130
}
131

    
132
#endif
133

    
134
static void kvm_trim_features(uint32_t *features, uint32_t supported)
135
{
136
    int i;
137
    uint32_t mask;
138

    
139
    for (i = 0; i < 32; ++i) {
140
        mask = 1U << i;
141
        if ((*features & mask) && !(supported & mask)) {
142
            *features &= ~mask;
143
        }
144
    }
145
}
146

    
147
#ifdef CONFIG_KVM_PARA
148
struct kvm_para_features {
149
        int cap;
150
        int feature;
151
} para_features[] = {
152
#ifdef KVM_CAP_CLOCKSOURCE
153
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
154
#endif
155
#ifdef KVM_CAP_NOP_IO_DELAY
156
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
157
#endif
158
#ifdef KVM_CAP_PV_MMU
159
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
160
#endif
161
#ifdef KVM_CAP_CR3_CACHE
162
        { KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
163
#endif
164
        { -1, -1 }
165
};
166

    
167
static int get_para_features(CPUState *env)
168
{
169
        int i, features = 0;
170

    
171
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
172
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
173
                        features |= (1 << para_features[i].feature);
174
        }
175

    
176
        return features;
177
}
178
#endif
179

    
180
int kvm_arch_init_vcpu(CPUState *env)
181
{
182
    struct {
183
        struct kvm_cpuid2 cpuid;
184
        struct kvm_cpuid_entry2 entries[100];
185
    } __attribute__((packed)) cpuid_data;
186
    uint32_t limit, i, j, cpuid_i;
187
    uint32_t unused;
188
    struct kvm_cpuid_entry2 *c;
189
#ifdef KVM_CPUID_SIGNATURE
190
    uint32_t signature[3];
191
#endif
192

    
193
    env->mp_state = KVM_MP_STATE_RUNNABLE;
194

    
195
    kvm_trim_features(&env->cpuid_features,
196
        kvm_arch_get_supported_cpuid(env, 1, R_EDX));
197

    
198
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
199
    kvm_trim_features(&env->cpuid_ext_features,
200
        kvm_arch_get_supported_cpuid(env, 1, R_ECX));
201
    env->cpuid_ext_features |= i;
202

    
203
    kvm_trim_features(&env->cpuid_ext2_features,
204
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
205
    kvm_trim_features(&env->cpuid_ext3_features,
206
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
207

    
208
    cpuid_i = 0;
209

    
210
#ifdef CONFIG_KVM_PARA
211
    /* Paravirtualization CPUIDs */
212
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
213
    c = &cpuid_data.entries[cpuid_i++];
214
    memset(c, 0, sizeof(*c));
215
    c->function = KVM_CPUID_SIGNATURE;
216
    c->eax = 0;
217
    c->ebx = signature[0];
218
    c->ecx = signature[1];
219
    c->edx = signature[2];
220

    
221
    c = &cpuid_data.entries[cpuid_i++];
222
    memset(c, 0, sizeof(*c));
223
    c->function = KVM_CPUID_FEATURES;
224
    c->eax = env->cpuid_kvm_features & get_para_features(env);
225
#endif
226

    
227
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
228

    
229
    for (i = 0; i <= limit; i++) {
230
        c = &cpuid_data.entries[cpuid_i++];
231

    
232
        switch (i) {
233
        case 2: {
234
            /* Keep reading function 2 till all the input is received */
235
            int times;
236

    
237
            c->function = i;
238
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
239
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
240
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
241
            times = c->eax & 0xff;
242

    
243
            for (j = 1; j < times; ++j) {
244
                c = &cpuid_data.entries[cpuid_i++];
245
                c->function = i;
246
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
247
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
248
            }
249
            break;
250
        }
251
        case 4:
252
        case 0xb:
253
        case 0xd:
254
            for (j = 0; ; j++) {
255
                c->function = i;
256
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
257
                c->index = j;
258
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
259

    
260
                if (i == 4 && c->eax == 0)
261
                    break;
262
                if (i == 0xb && !(c->ecx & 0xff00))
263
                    break;
264
                if (i == 0xd && c->eax == 0)
265
                    break;
266

    
267
                c = &cpuid_data.entries[cpuid_i++];
268
            }
269
            break;
270
        default:
271
            c->function = i;
272
            c->flags = 0;
273
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
274
            break;
275
        }
276
    }
277
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
278

    
279
    for (i = 0x80000000; i <= limit; i++) {
280
        c = &cpuid_data.entries[cpuid_i++];
281

    
282
        c->function = i;
283
        c->flags = 0;
284
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
285
    }
286

    
287
    cpuid_data.cpuid.nent = cpuid_i;
288

    
289
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
290
}
291

    
292
void kvm_arch_reset_vcpu(CPUState *env)
293
{
294
    env->exception_injected = -1;
295
    env->interrupt_injected = -1;
296
    env->nmi_injected = 0;
297
    env->nmi_pending = 0;
298
}
299

    
300
static int kvm_has_msr_star(CPUState *env)
301
{
302
    static int has_msr_star;
303
    int ret;
304

    
305
    /* first time */
306
    if (has_msr_star == 0) {        
307
        struct kvm_msr_list msr_list, *kvm_msr_list;
308

    
309
        has_msr_star = -1;
310

    
311
        /* Obtain MSR list from KVM.  These are the MSRs that we must
312
         * save/restore */
313
        msr_list.nmsrs = 0;
314
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
315
        if (ret < 0 && ret != -E2BIG) {
316
            return 0;
317
        }
318
        /* Old kernel modules had a bug and could write beyond the provided
319
           memory. Allocate at least a safe amount of 1K. */
320
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
321
                                              msr_list.nmsrs *
322
                                              sizeof(msr_list.indices[0])));
323

    
324
        kvm_msr_list->nmsrs = msr_list.nmsrs;
325
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
326
        if (ret >= 0) {
327
            int i;
328

    
329
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
330
                if (kvm_msr_list->indices[i] == MSR_STAR) {
331
                    has_msr_star = 1;
332
                    break;
333
                }
334
            }
335
        }
336

    
337
        free(kvm_msr_list);
338
    }
339

    
340
    if (has_msr_star == 1)
341
        return 1;
342
    return 0;
343
}
344

    
345
int kvm_arch_init(KVMState *s, int smp_cpus)
346
{
347
    int ret;
348

    
349
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
350
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
351
     * must be part of guest physical memory, we need to allocate it.  Older
352
     * versions of KVM just assumed that it would be at the end of physical
353
     * memory but that doesn't work with more than 4GB of memory.  We simply
354
     * refuse to work with those older versions of KVM. */
355
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
356
    if (ret <= 0) {
357
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
358
        return ret;
359
    }
360

    
361
    /* this address is 3 pages before the bios, and the bios should present
362
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
363
     * this?
364
     */
365
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
366
}
367
                    
368
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
369
{
370
    lhs->selector = rhs->selector;
371
    lhs->base = rhs->base;
372
    lhs->limit = rhs->limit;
373
    lhs->type = 3;
374
    lhs->present = 1;
375
    lhs->dpl = 3;
376
    lhs->db = 0;
377
    lhs->s = 1;
378
    lhs->l = 0;
379
    lhs->g = 0;
380
    lhs->avl = 0;
381
    lhs->unusable = 0;
382
}
383

    
384
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
385
{
386
    unsigned flags = rhs->flags;
387
    lhs->selector = rhs->selector;
388
    lhs->base = rhs->base;
389
    lhs->limit = rhs->limit;
390
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
391
    lhs->present = (flags & DESC_P_MASK) != 0;
392
    lhs->dpl = rhs->selector & 3;
393
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
394
    lhs->s = (flags & DESC_S_MASK) != 0;
395
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
396
    lhs->g = (flags & DESC_G_MASK) != 0;
397
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
398
    lhs->unusable = 0;
399
}
400

    
401
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
402
{
403
    lhs->selector = rhs->selector;
404
    lhs->base = rhs->base;
405
    lhs->limit = rhs->limit;
406
    lhs->flags =
407
        (rhs->type << DESC_TYPE_SHIFT)
408
        | (rhs->present * DESC_P_MASK)
409
        | (rhs->dpl << DESC_DPL_SHIFT)
410
        | (rhs->db << DESC_B_SHIFT)
411
        | (rhs->s * DESC_S_MASK)
412
        | (rhs->l << DESC_L_SHIFT)
413
        | (rhs->g * DESC_G_MASK)
414
        | (rhs->avl * DESC_AVL_MASK);
415
}
416

    
417
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
418
{
419
    if (set)
420
        *kvm_reg = *qemu_reg;
421
    else
422
        *qemu_reg = *kvm_reg;
423
}
424

    
425
static int kvm_getput_regs(CPUState *env, int set)
426
{
427
    struct kvm_regs regs;
428
    int ret = 0;
429

    
430
    if (!set) {
431
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
432
        if (ret < 0)
433
            return ret;
434
    }
435

    
436
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
437
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
438
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
439
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
440
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
441
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
442
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
443
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
444
#ifdef TARGET_X86_64
445
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
446
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
447
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
448
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
449
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
450
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
451
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
452
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
453
#endif
454

    
455
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
456
    kvm_getput_reg(&regs.rip, &env->eip, set);
457

    
458
    if (set)
459
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
460

    
461
    return ret;
462
}
463

    
464
static int kvm_put_fpu(CPUState *env)
465
{
466
    struct kvm_fpu fpu;
467
    int i;
468

    
469
    memset(&fpu, 0, sizeof fpu);
470
    fpu.fsw = env->fpus & ~(7 << 11);
471
    fpu.fsw |= (env->fpstt & 7) << 11;
472
    fpu.fcw = env->fpuc;
473
    for (i = 0; i < 8; ++i)
474
        fpu.ftwx |= (!env->fptags[i]) << i;
475
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
476
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
477
    fpu.mxcsr = env->mxcsr;
478

    
479
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
480
}
481

    
482
static int kvm_put_sregs(CPUState *env)
483
{
484
    struct kvm_sregs sregs;
485

    
486
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
487
    if (env->interrupt_injected >= 0) {
488
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
489
                (uint64_t)1 << (env->interrupt_injected % 64);
490
    }
491

    
492
    if ((env->eflags & VM_MASK)) {
493
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
494
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
495
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
496
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
497
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
498
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
499
    } else {
500
            set_seg(&sregs.cs, &env->segs[R_CS]);
501
            set_seg(&sregs.ds, &env->segs[R_DS]);
502
            set_seg(&sregs.es, &env->segs[R_ES]);
503
            set_seg(&sregs.fs, &env->segs[R_FS]);
504
            set_seg(&sregs.gs, &env->segs[R_GS]);
505
            set_seg(&sregs.ss, &env->segs[R_SS]);
506

    
507
            if (env->cr[0] & CR0_PE_MASK) {
508
                /* force ss cpl to cs cpl */
509
                sregs.ss.selector = (sregs.ss.selector & ~3) |
510
                        (sregs.cs.selector & 3);
511
                sregs.ss.dpl = sregs.ss.selector & 3;
512
            }
513
    }
514

    
515
    set_seg(&sregs.tr, &env->tr);
516
    set_seg(&sregs.ldt, &env->ldt);
517

    
518
    sregs.idt.limit = env->idt.limit;
519
    sregs.idt.base = env->idt.base;
520
    sregs.gdt.limit = env->gdt.limit;
521
    sregs.gdt.base = env->gdt.base;
522

    
523
    sregs.cr0 = env->cr[0];
524
    sregs.cr2 = env->cr[2];
525
    sregs.cr3 = env->cr[3];
526
    sregs.cr4 = env->cr[4];
527

    
528
    sregs.cr8 = cpu_get_apic_tpr(env);
529
    sregs.apic_base = cpu_get_apic_base(env);
530

    
531
    sregs.efer = env->efer;
532

    
533
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
534
}
535

    
536
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
537
                              uint32_t index, uint64_t value)
538
{
539
    entry->index = index;
540
    entry->data = value;
541
}
542

    
543
static int kvm_put_msrs(CPUState *env)
544
{
545
    struct {
546
        struct kvm_msrs info;
547
        struct kvm_msr_entry entries[100];
548
    } msr_data;
549
    struct kvm_msr_entry *msrs = msr_data.entries;
550
    int n = 0;
551

    
552
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
553
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
554
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
555
    if (kvm_has_msr_star(env))
556
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
557
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
558
#ifdef TARGET_X86_64
559
    /* FIXME if lm capable */
560
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
561
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
562
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
563
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
564
#endif
565
    kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,  env->system_time_msr);
566
    kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK,  env->wall_clock_msr);
567

    
568
    msr_data.info.nmsrs = n;
569

    
570
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
571

    
572
}
573

    
574

    
575
static int kvm_get_fpu(CPUState *env)
576
{
577
    struct kvm_fpu fpu;
578
    int i, ret;
579

    
580
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
581
    if (ret < 0)
582
        return ret;
583

    
584
    env->fpstt = (fpu.fsw >> 11) & 7;
585
    env->fpus = fpu.fsw;
586
    env->fpuc = fpu.fcw;
587
    for (i = 0; i < 8; ++i)
588
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
589
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
590
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
591
    env->mxcsr = fpu.mxcsr;
592

    
593
    return 0;
594
}
595

    
596
static int kvm_get_sregs(CPUState *env)
597
{
598
    struct kvm_sregs sregs;
599
    uint32_t hflags;
600
    int bit, i, ret;
601

    
602
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
603
    if (ret < 0)
604
        return ret;
605

    
606
    /* There can only be one pending IRQ set in the bitmap at a time, so try
607
       to find it and save its number instead (-1 for none). */
608
    env->interrupt_injected = -1;
609
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
610
        if (sregs.interrupt_bitmap[i]) {
611
            bit = ctz64(sregs.interrupt_bitmap[i]);
612
            env->interrupt_injected = i * 64 + bit;
613
            break;
614
        }
615
    }
616

    
617
    get_seg(&env->segs[R_CS], &sregs.cs);
618
    get_seg(&env->segs[R_DS], &sregs.ds);
619
    get_seg(&env->segs[R_ES], &sregs.es);
620
    get_seg(&env->segs[R_FS], &sregs.fs);
621
    get_seg(&env->segs[R_GS], &sregs.gs);
622
    get_seg(&env->segs[R_SS], &sregs.ss);
623

    
624
    get_seg(&env->tr, &sregs.tr);
625
    get_seg(&env->ldt, &sregs.ldt);
626

    
627
    env->idt.limit = sregs.idt.limit;
628
    env->idt.base = sregs.idt.base;
629
    env->gdt.limit = sregs.gdt.limit;
630
    env->gdt.base = sregs.gdt.base;
631

    
632
    env->cr[0] = sregs.cr0;
633
    env->cr[2] = sregs.cr2;
634
    env->cr[3] = sregs.cr3;
635
    env->cr[4] = sregs.cr4;
636

    
637
    cpu_set_apic_base(env, sregs.apic_base);
638

    
639
    env->efer = sregs.efer;
640
    //cpu_set_apic_tpr(env, sregs.cr8);
641

    
642
#define HFLAG_COPY_MASK ~( \
643
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
644
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
645
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
646
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
647

    
648

    
649

    
650
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
651
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
652
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
653
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
654
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
655
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
656
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
657

    
658
    if (env->efer & MSR_EFER_LMA) {
659
        hflags |= HF_LMA_MASK;
660
    }
661

    
662
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
663
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
664
    } else {
665
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
666
                (DESC_B_SHIFT - HF_CS32_SHIFT);
667
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
668
                (DESC_B_SHIFT - HF_SS32_SHIFT);
669
        if (!(env->cr[0] & CR0_PE_MASK) ||
670
                   (env->eflags & VM_MASK) ||
671
                   !(hflags & HF_CS32_MASK)) {
672
                hflags |= HF_ADDSEG_MASK;
673
            } else {
674
                hflags |= ((env->segs[R_DS].base |
675
                                env->segs[R_ES].base |
676
                                env->segs[R_SS].base) != 0) <<
677
                    HF_ADDSEG_SHIFT;
678
            }
679
    }
680
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
681

    
682
    return 0;
683
}
684

    
685
static int kvm_get_msrs(CPUState *env)
686
{
687
    struct {
688
        struct kvm_msrs info;
689
        struct kvm_msr_entry entries[100];
690
    } msr_data;
691
    struct kvm_msr_entry *msrs = msr_data.entries;
692
    int ret, i, n;
693

    
694
    n = 0;
695
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
696
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
697
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
698
    if (kvm_has_msr_star(env))
699
        msrs[n++].index = MSR_STAR;
700
    msrs[n++].index = MSR_IA32_TSC;
701
#ifdef TARGET_X86_64
702
    /* FIXME lm_capable_kernel */
703
    msrs[n++].index = MSR_CSTAR;
704
    msrs[n++].index = MSR_KERNELGSBASE;
705
    msrs[n++].index = MSR_FMASK;
706
    msrs[n++].index = MSR_LSTAR;
707
#endif
708
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
709
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
710

    
711
    msr_data.info.nmsrs = n;
712
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
713
    if (ret < 0)
714
        return ret;
715

    
716
    for (i = 0; i < ret; i++) {
717
        switch (msrs[i].index) {
718
        case MSR_IA32_SYSENTER_CS:
719
            env->sysenter_cs = msrs[i].data;
720
            break;
721
        case MSR_IA32_SYSENTER_ESP:
722
            env->sysenter_esp = msrs[i].data;
723
            break;
724
        case MSR_IA32_SYSENTER_EIP:
725
            env->sysenter_eip = msrs[i].data;
726
            break;
727
        case MSR_STAR:
728
            env->star = msrs[i].data;
729
            break;
730
#ifdef TARGET_X86_64
731
        case MSR_CSTAR:
732
            env->cstar = msrs[i].data;
733
            break;
734
        case MSR_KERNELGSBASE:
735
            env->kernelgsbase = msrs[i].data;
736
            break;
737
        case MSR_FMASK:
738
            env->fmask = msrs[i].data;
739
            break;
740
        case MSR_LSTAR:
741
            env->lstar = msrs[i].data;
742
            break;
743
#endif
744
        case MSR_IA32_TSC:
745
            env->tsc = msrs[i].data;
746
            break;
747
        case MSR_KVM_SYSTEM_TIME:
748
            env->system_time_msr = msrs[i].data;
749
            break;
750
        case MSR_KVM_WALL_CLOCK:
751
            env->wall_clock_msr = msrs[i].data;
752
            break;
753
        }
754
    }
755

    
756
    return 0;
757
}
758

    
759
static int kvm_put_mp_state(CPUState *env)
760
{
761
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
762

    
763
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
764
}
765

    
766
static int kvm_get_mp_state(CPUState *env)
767
{
768
    struct kvm_mp_state mp_state;
769
    int ret;
770

    
771
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
772
    if (ret < 0) {
773
        return ret;
774
    }
775
    env->mp_state = mp_state.mp_state;
776
    return 0;
777
}
778

    
779
static int kvm_put_vcpu_events(CPUState *env)
780
{
781
#ifdef KVM_CAP_VCPU_EVENTS
782
    struct kvm_vcpu_events events;
783

    
784
    if (!kvm_has_vcpu_events()) {
785
        return 0;
786
    }
787

    
788
    events.exception.injected = (env->exception_injected >= 0);
789
    events.exception.nr = env->exception_injected;
790
    events.exception.has_error_code = env->has_error_code;
791
    events.exception.error_code = env->error_code;
792

    
793
    events.interrupt.injected = (env->interrupt_injected >= 0);
794
    events.interrupt.nr = env->interrupt_injected;
795
    events.interrupt.soft = env->soft_interrupt;
796

    
797
    events.nmi.injected = env->nmi_injected;
798
    events.nmi.pending = env->nmi_pending;
799
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
800

    
801
    events.sipi_vector = env->sipi_vector;
802

    
803
    events.flags =
804
        KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
805

    
806
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
807
#else
808
    return 0;
809
#endif
810
}
811

    
812
static int kvm_get_vcpu_events(CPUState *env)
813
{
814
#ifdef KVM_CAP_VCPU_EVENTS
815
    struct kvm_vcpu_events events;
816
    int ret;
817

    
818
    if (!kvm_has_vcpu_events()) {
819
        return 0;
820
    }
821

    
822
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
823
    if (ret < 0) {
824
       return ret;
825
    }
826
    env->exception_injected =
827
       events.exception.injected ? events.exception.nr : -1;
828
    env->has_error_code = events.exception.has_error_code;
829
    env->error_code = events.exception.error_code;
830

    
831
    env->interrupt_injected =
832
        events.interrupt.injected ? events.interrupt.nr : -1;
833
    env->soft_interrupt = events.interrupt.soft;
834

    
835
    env->nmi_injected = events.nmi.injected;
836
    env->nmi_pending = events.nmi.pending;
837
    if (events.nmi.masked) {
838
        env->hflags2 |= HF2_NMI_MASK;
839
    } else {
840
        env->hflags2 &= ~HF2_NMI_MASK;
841
    }
842

    
843
    env->sipi_vector = events.sipi_vector;
844
#endif
845

    
846
    return 0;
847
}
848

    
849
int kvm_arch_put_registers(CPUState *env)
850
{
851
    int ret;
852

    
853
    ret = kvm_getput_regs(env, 1);
854
    if (ret < 0)
855
        return ret;
856

    
857
    ret = kvm_put_fpu(env);
858
    if (ret < 0)
859
        return ret;
860

    
861
    ret = kvm_put_sregs(env);
862
    if (ret < 0)
863
        return ret;
864

    
865
    ret = kvm_put_msrs(env);
866
    if (ret < 0)
867
        return ret;
868

    
869
    ret = kvm_put_mp_state(env);
870
    if (ret < 0)
871
        return ret;
872

    
873
    ret = kvm_put_vcpu_events(env);
874
    if (ret < 0)
875
        return ret;
876

    
877
    return 0;
878
}
879

    
880
int kvm_arch_get_registers(CPUState *env)
881
{
882
    int ret;
883

    
884
    ret = kvm_getput_regs(env, 0);
885
    if (ret < 0)
886
        return ret;
887

    
888
    ret = kvm_get_fpu(env);
889
    if (ret < 0)
890
        return ret;
891

    
892
    ret = kvm_get_sregs(env);
893
    if (ret < 0)
894
        return ret;
895

    
896
    ret = kvm_get_msrs(env);
897
    if (ret < 0)
898
        return ret;
899

    
900
    ret = kvm_get_mp_state(env);
901
    if (ret < 0)
902
        return ret;
903

    
904
    ret = kvm_get_vcpu_events(env);
905
    if (ret < 0)
906
        return ret;
907

    
908
    return 0;
909
}
910

    
911
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
912
{
913
    /* Try to inject an interrupt if the guest can accept it */
914
    if (run->ready_for_interrupt_injection &&
915
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
916
        (env->eflags & IF_MASK)) {
917
        int irq;
918

    
919
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
920
        irq = cpu_get_pic_interrupt(env);
921
        if (irq >= 0) {
922
            struct kvm_interrupt intr;
923
            intr.irq = irq;
924
            /* FIXME: errors */
925
            dprintf("injected interrupt %d\n", irq);
926
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
927
        }
928
    }
929

    
930
    /* If we have an interrupt but the guest is not ready to receive an
931
     * interrupt, request an interrupt window exit.  This will
932
     * cause a return to userspace as soon as the guest is ready to
933
     * receive interrupts. */
934
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
935
        run->request_interrupt_window = 1;
936
    else
937
        run->request_interrupt_window = 0;
938

    
939
    dprintf("setting tpr\n");
940
    run->cr8 = cpu_get_apic_tpr(env);
941

    
942
    return 0;
943
}
944

    
945
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
946
{
947
    if (run->if_flag)
948
        env->eflags |= IF_MASK;
949
    else
950
        env->eflags &= ~IF_MASK;
951
    
952
    cpu_set_apic_tpr(env, run->cr8);
953
    cpu_set_apic_base(env, run->apic_base);
954

    
955
    return 0;
956
}
957

    
958
static int kvm_handle_halt(CPUState *env)
959
{
960
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
961
          (env->eflags & IF_MASK)) &&
962
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
963
        env->halted = 1;
964
        env->exception_index = EXCP_HLT;
965
        return 0;
966
    }
967

    
968
    return 1;
969
}
970

    
971
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
972
{
973
    int ret = 0;
974

    
975
    switch (run->exit_reason) {
976
    case KVM_EXIT_HLT:
977
        dprintf("handle_hlt\n");
978
        ret = kvm_handle_halt(env);
979
        break;
980
    }
981

    
982
    return ret;
983
}
984

    
985
#ifdef KVM_CAP_SET_GUEST_DEBUG
986
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
987
{
988
    static const uint8_t int3 = 0xcc;
989

    
990
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
991
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
992
        return -EINVAL;
993
    return 0;
994
}
995

    
996
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
997
{
998
    uint8_t int3;
999

    
1000
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1001
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1002
        return -EINVAL;
1003
    return 0;
1004
}
1005

    
1006
static struct {
1007
    target_ulong addr;
1008
    int len;
1009
    int type;
1010
} hw_breakpoint[4];
1011

    
1012
static int nb_hw_breakpoint;
1013

    
1014
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1015
{
1016
    int n;
1017

    
1018
    for (n = 0; n < nb_hw_breakpoint; n++)
1019
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1020
            (hw_breakpoint[n].len == len || len == -1))
1021
            return n;
1022
    return -1;
1023
}
1024

    
1025
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1026
                                  target_ulong len, int type)
1027
{
1028
    switch (type) {
1029
    case GDB_BREAKPOINT_HW:
1030
        len = 1;
1031
        break;
1032
    case GDB_WATCHPOINT_WRITE:
1033
    case GDB_WATCHPOINT_ACCESS:
1034
        switch (len) {
1035
        case 1:
1036
            break;
1037
        case 2:
1038
        case 4:
1039
        case 8:
1040
            if (addr & (len - 1))
1041
                return -EINVAL;
1042
            break;
1043
        default:
1044
            return -EINVAL;
1045
        }
1046
        break;
1047
    default:
1048
        return -ENOSYS;
1049
    }
1050

    
1051
    if (nb_hw_breakpoint == 4)
1052
        return -ENOBUFS;
1053

    
1054
    if (find_hw_breakpoint(addr, len, type) >= 0)
1055
        return -EEXIST;
1056

    
1057
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1058
    hw_breakpoint[nb_hw_breakpoint].len = len;
1059
    hw_breakpoint[nb_hw_breakpoint].type = type;
1060
    nb_hw_breakpoint++;
1061

    
1062
    return 0;
1063
}
1064

    
1065
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1066
                                  target_ulong len, int type)
1067
{
1068
    int n;
1069

    
1070
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1071
    if (n < 0)
1072
        return -ENOENT;
1073

    
1074
    nb_hw_breakpoint--;
1075
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1076

    
1077
    return 0;
1078
}
1079

    
1080
void kvm_arch_remove_all_hw_breakpoints(void)
1081
{
1082
    nb_hw_breakpoint = 0;
1083
}
1084

    
1085
static CPUWatchpoint hw_watchpoint;
1086

    
1087
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1088
{
1089
    int handle = 0;
1090
    int n;
1091

    
1092
    if (arch_info->exception == 1) {
1093
        if (arch_info->dr6 & (1 << 14)) {
1094
            if (cpu_single_env->singlestep_enabled)
1095
                handle = 1;
1096
        } else {
1097
            for (n = 0; n < 4; n++)
1098
                if (arch_info->dr6 & (1 << n))
1099
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1100
                    case 0x0:
1101
                        handle = 1;
1102
                        break;
1103
                    case 0x1:
1104
                        handle = 1;
1105
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1106
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1107
                        hw_watchpoint.flags = BP_MEM_WRITE;
1108
                        break;
1109
                    case 0x3:
1110
                        handle = 1;
1111
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1112
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1113
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1114
                        break;
1115
                    }
1116
        }
1117
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1118
        handle = 1;
1119

    
1120
    if (!handle)
1121
        kvm_update_guest_debug(cpu_single_env,
1122
                        (arch_info->exception == 1) ?
1123
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
1124

    
1125
    return handle;
1126
}
1127

    
1128
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1129
{
1130
    const uint8_t type_code[] = {
1131
        [GDB_BREAKPOINT_HW] = 0x0,
1132
        [GDB_WATCHPOINT_WRITE] = 0x1,
1133
        [GDB_WATCHPOINT_ACCESS] = 0x3
1134
    };
1135
    const uint8_t len_code[] = {
1136
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1137
    };
1138
    int n;
1139

    
1140
    if (kvm_sw_breakpoints_active(env))
1141
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1142

    
1143
    if (nb_hw_breakpoint > 0) {
1144
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1145
        dbg->arch.debugreg[7] = 0x0600;
1146
        for (n = 0; n < nb_hw_breakpoint; n++) {
1147
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1148
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1149
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1150
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1151
        }
1152
    }
1153
}
1154
#endif /* KVM_CAP_SET_GUEST_DEBUG */